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The Kervaire-Milnor classification of exotic spheres
About 50 years ago three papers appeared that revolutionized
algebraic and differential topology.

• John Milnor’s On manifolds homeomorphic to the
7-sphere, 1956. He constructed the first “exotic spheres”,
manifolds homeomorphic but not diffeomorphic to the
standard S7. They were certain S3-bundles over S4.

•

Michel Kervaire 1927-2007

Michel Kervaire’s A manifold which does not admit any
differentiable structure, 1960. His manifold was
10-dimensional. I will say more about it later.
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1.5

The Kervaire-Milnor classification of exotic spheres
(continued)

• Kervaire and Milnor’s Groups of homotopy spheres, I,
1963.

They gave a complete classification of exotic spheres in
dimensions ≥ 5, with two caveats:

(i) Their answer was given in terms of the stable homotopy
groups of spheres, which remain a mystery to this day.

(ii) There was an ambiguous factor of two in dimensions
congruent to 1 mod 4. The solution to that problem is the
subject of this talk.
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1.6

Pontryagin’s early work on homotopy groups of spheres

Back to the 1930s

Lev Pontryagin 1908-1988

Pontryagin’s approach to continuous maps f : Sn+k → Sk was
• Assume f is smooth. We know that any map f can be

continuously deformed to a smooth one.
• Pick a regular value y ∈ Sk . Its inverse image will be a

smooth n-manifold M in Sn+k .
• By studying such manifolds, Pontryagin was able to

deduce things about maps between spheres.
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Pontryagin’s early work (continued)

Sn+k f // Sk

Mn × Dk V n+k //
?�

OO

Dk
?�

OO

Mn //?�

OO

{y}
?�

OO

Let Dk be the closure of an open ball around a regular value
y ∈ Sk .

If it is sufficiently small, then V n+k = f−1(Dk ) ⊂ Sn+k is
an (n + k)-manifold homeomorphic to M × Dk .

A local coordinate system around around the point y ∈ Sk pulls
back to one around M called a framing.

There is a way to reverse this procedure. A framed manifold
Mn ⊂ Sn+k determines a map f : Sn+k → Sk .
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Pontryagin’s early work (continued)

To proceed further, we need to be more precise about what we
mean by continuous deformation.

Two maps f1, f2 : Sn+k → Sk are homotopic if there is a
continuous map h : Sn+k × [0,1] → Sk (called a homotopy
between f1 and f2) such that

h(x ,0) = f1(x) and h(x ,1) = f2(x).

If y ∈ Sk is a regular value of h, then h−1(y) is a framed
(n + 1)-manifold N ⊂ Sn+k × [0,1] whose boundary is the
disjoint union of M1 = f−1

1 (y) and M2 = f−1
2 (y). This N is called

a framed cobordism between M1 and M2. When it exists the
two closed manifolds are said to be framed cobordant.
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Pontryagin’s early work (continued)

To proceed further, we need to be more precise about what we
mean by continuous deformation.

Two maps f1, f2 : Sn+k → Sk are homotopic if there is a
continuous map h : Sn+k × [0,1] → Sk (called a homotopy
between f1 and f2) such that

h(x ,0) = f1(x) and h(x ,1) = f2(x).

If y ∈ Sk is a regular value of h, then h−1(y) is a framed
(n + 1)-manifold N ⊂ Sn+k × [0,1]

whose boundary is the
disjoint union of M1 = f−1

1 (y) and M2 = f−1
2 (y). This N is called

a framed cobordism between M1 and M2. When it exists the
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Pontryagin’s early work (continued)
Here is an example of a framed cobordism for n = k = 1.

Pontryagin (1930’s)

M1

M2

N

Framed cobordism
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1.10

Pontryagin’s early work (continued)

Let Ωfr
n,k denote the cobordism group of framed n-manifolds in

Rn+k , or equivalently in Sn+k .

Pontryagin’s construction leads
to a homomorphism

Ωfr
n,k → πn+k Sk .

Pontyagin’s Theorem (1936)

The above homomorphism is an isomorphism in all cases.

Both groups are known to be independent of k for k > n. We
denote the resulting stable groups by simply Ωfr

n and πS
n .

The determination of the stable homotopy groups πS
n is an

ongoing problem in algebraic topology. Experience has shown
that unfortunately its connection with framed cobordism is not
very helpful. It is not used in the proof of our theorem.
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1.11

Exotic spheres as framed manifolds

Into the 60s again

Following Kervaire-Milnor, let Θn de-
note the group of diffeomorphism
classes of exotic n-spheres Σn. The
group operation here is connected
sum.

Each Σn admits a framed embedding into some Euclidean
space Rn+k , but the framing is not unique. Thus we do not
have a homomorphism from Θn to πS

n , but we do get a map to a
certain quotient.
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1.12

Exotic spheres as framed manifolds (continued)

Two framings of an exotic sphere Σn ⊂ Sn+k differ by a map to
the special orthogonal group SO(k), and this map does not
depend on the differentiable structure on Σn. Varying the
framing on the standard sphere Sn leads to a homomorphism

πnSO(k) J // πn+k Sk

Heinz Hopf George Whitehead
1894-1971 1918-2004

called the Hopf-Whitehead J-homomorphism. It is well
understood by homotopy theorists.
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1.13

Exotic spheres as framed manifolds (continued)

Thus we get a homomorphism

Θn
p // πS

n /Im J.

The bulk of the Kervaire-Milnor paper is devoted to studying its
kernel and cokernel using surgery. The two questions are
closely related.

• The map p is onto iff every framed n-manifold is cobordant
to a sphere, possibly an exotic one.

• It is one-to-one iff every exotic n-sphere that bounds a
framed manifold also bounds an (n + 1)-dimensional disk
and is therefore diffeomorphic to the standard Sn.

They denote the kernel of p by bPn+1, the group of exotic
n-spheres bounding parallelizable (n + 1)-manifolds. Behrens
called this group ΘbP

n .
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Exotic spheres as framed manifolds (continued)
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Exotic spheres as framed manifolds (continued)

Hence we have an exact sequence

0 // bPn+1 // Θn
p // πS

n /Im J.

Kervaire-Milnor Theorem (1963)

• The homomorphism p above is onto except possibly when
n = 4m + 2 for m ∈ Z, and then the cokernel has order at
most 2.

• Its kernel bPn+1 is trivial when n is even.
• bP4m is a certain cyclic group. Its order is related to the

numerator of the mth Bernoulli number.
• The order of bP4m+2 is at most 2.
• bP4m+2 is trivial iff the cokernel of p in dimension 4m + 2 is

nontrivial.

We now know the value of bP4m+2 in every case except
m = 31.
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Exotic spheres as framed manifolds (continued)
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1.15

Exotic spheres as framed manifolds (continued)

In other words have a 4-term exact sequence

0 // Θ4m+2
p // πS

4m+2/Im J // Z/2 // bP4m+2 // 0

The early work of Pontryagin implies that bP2 = 0 and bP6 = 0.

In 1960 Kervaire showed that bP10 = Z/2.

To say more about this we need to define the Kervaire invariant
of a framed manifold.
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1.16

The Arf invariant of a quadratic form in characteristic 2

Back to the 1940s

Cahit Arf 1910-1997

Let λ be a nonsingular anti-symmetric bilinear form on a free
abelian group H of rank 2n with mod 2 reduction H. It is known
that H has a basis of the form {ai ,bi : 1 ≤ i ≤ n} with

λ(ai ,ai′) = 0 λ(bj ,bj′) = 0 and λ(ai ,bj) = δi,j .
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1.17

The Arf invariant of a quadratic form in characteristic 2
(continued)

In other words, H has a basis for which the bilinear form’s
matrix has the symplectic form

0 1
1 0

0 1
1 0

. . .
0 1
1 0


.
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1.18

The Arf invariant of a quadratic form in characteristic 2
(continued)

A quadratic refinement of λ is a map q : H → Z/2 satisfying

q(x + y) = q(x) + q(y) + λ(x , y)

Its Arf invariant is

Arf(q) =
n∑

i=1

q(ai)q(bi) ∈ Z/2.

In 1941 Arf proved that this invariant (along with the number n)
determines the isomorphism type of q.
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From my stamp collection
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Money talks: Arf’s definition republished in 2009

Cahit Arf 1910-1997
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1.23

The Kervaire invariant of a framed (4m + 2)-manifold

Into the 60s
a third time

Let M be a 2m-connected smooth
closed framed manifold of dimension
4m + 2. Let H = H2m+1(M;Z), the ho-
mology group in the middle dimension.
Each x ∈ H is represented by an em-
bedding ix : S2m+1 ↪→ M with a stably
trivialized normal bundle. H has an an-
tisymmetric bilinear form λ defined in
terms of intersection numbers.

Here is a simple example. Let M = T 2, the torus, be embedded
in S3 with a framing. We define the quadratic refinement

q : H1(T 2;Z/2) → Z/2

as follows. An element x ∈ H1(T 2;Z/2) can be represented by
a closed curve, with a neighborhood V which is an embedded
cylinder. We define q(x) to be the number of its full twists
modulo 2.
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cylinder. We define q(x) to be the number of its full twists
modulo 2.
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The Kervaire invariant of a framed (4m + 2)-manifold

Into the 60s
a third time
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1.24

The Kervaire invariant of a framed (4m + 2)-manifold
(continued)

For M = T 2 ⊂ S3 and x ∈ H1(T 2;Z/2), q(x) is the number of
full twists in a cylinder V neighboring a curve representing x .

This function is not additive!
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The Kervaire invariant of a framed (4m + 2)-manifold
(continued)
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1.25

The Kervaire invariant of a framed (4m + 2)-manifold
(continued)

Again, let M be a 2m-connected smooth closed framed
manifold of dimension 4m + 2,

and let H = H2m+1(M;Z). Each
x ∈ H is represented by an embedding S2m+1 ↪→ M. H has an
antisymmetric bilinear form λ defined in terms of intersection
numbers.

Kervaire defined a quadratic refinement q on its mod 2
reduction H in terms of each sphere’s normal bundle. The
Kervaire invariant Φ(M) is defined to be the Arf invariant of q.

Recall the Kervaire-Milnor 4-term exact sequence

0 // Θ4m+2
p // πS

4m+2/Im J // Z/2 // bP4m+2 // 0

Kervaire-Milnor Theorem (1963)

bP4m+2 = 0 iff there is a smooth framed (4m + 2)-manifold M
with Φ(M) nontrivial.
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The Kervaire invariant of a framed (4m + 2)-manifold
(continued)
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1.26

The Kervaire invariant of a framed (4m + 2)-manifold
(continued)

What can we say about Φ(M)?

For m = 0 there is a framing on the torus S1 × S1 ⊂ R4 with
nontrivial Kervaire invariant.

Pontryagin (1930’s)

Pontryagin used it in 1950 (after some false starts in the 30s)
to show πk+2(Sk ) = Z/2 for all k ≥ 2. There are similar
framings of S3 × S3 and S7 × S7. This means that bP2, bP6
and bP14 are each trivial.
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(continued)
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For m = 0 there is a framing on the torus S1 × S1 ⊂ R4 with
nontrivial Kervaire invariant.

Pontryagin (1930’s)
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1.27

The Kervaire invariant of a framed (4m + 2)-manifold
(continued)

More of what we can say about Φ(M).

Kervaire (1960) showed it must vanish when m = 2, so
bP10 = Z/2. This enabled him to construct the first example of
a topological manifold (of dimension 10) without a smooth
structure.

This construction generalizes to higher m, but Kervaire’s proof
that the boundary is exotic does not.
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The Kervaire invariant of a framed (4m + 2)-manifold
(continued)

More of what we can say about Φ(M).

Ed Brown Frank Peterson
1930-2000

Brown-Peterson (1966) showed that it vanishes for all positive
even m. This means bP8`+2 = Z/2 for ` > 0.
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The Kervaire invariant of a framed (4m + 2)-manifold
(continued)

More of what we can say about Φ(M).

•

Bill Browder

Browder (1969) showed that the Ker-
vaire invaraint of a smooth framed
(4m+2)-manifold can be nontrivial (and
hence bP4m+2 = 0) only if m = 2j−1 − 1
for some j > 0. This happens iff the
element h2

j is a permanent cycle in the
Adams spectral sequence. The corre-
sponding element in πn+2j+1−2(Sn) for
large n is θj , the subject of our theo-
rem. This is the stable homotopy the-
oretic formulation of the problem.

• θj is known to exist for 1 ≤ j ≤ 5, i.e., in dimensions 2, 6,
14, 30 and 62. In other words, bP2, bP6, bP14, bP30 and
bP62 are all trivial.
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1.30

And then . . .

the problem went viral!

A wildly popular dance craze

Drawing by Carolyn Snaith 1981
London, Ontario
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1.31

Speculations about θj after Browder’s theorem

In the decade following Browder’s theorem, many topologists
tried without success to construct framed manifolds with
nontrivial Kervaire invariant in all such dimensions, i.e., to show
that bP2j+1−2 = 0 for all j > 0.

Mark Mahowald

Some homotopy theorists, most no-
tably Mahowald, speculated about
what would happen if θj existed for
all j . He derived numerous conse-
quences about homotopy groups of
spheres. The possible nonexistence
of the θj for large j was known as the
Doomsday Hypothesis.
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Mark Mahowald’s sailboat
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1.33

After Browder’ theorem (continued)

Vic Snaith and Bill Browder in 1981
Photo by Clarence Wilkerson

After 1980, the problem faded into the background because it
was thought to be too hard. Our proof is two giant steps away
from anything that was attempted in the 70s. We now know
that the world of homotopy theory is very different from what
topologists had envisioned then.
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1.34

Fast forward
to 2009

Snaith’s book

Stable Homotopy Around the Arf-Kervaire Invariant, published
in early 2009, just before we proved our theorem.

“As ideas for progress on a particular mathematics problem
atrophy it can disappear. Accordingly I wrote this book to stem
the tide of oblivion.”
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1.35

Snaith’s book (continued)

“For a brief period overnight we were convinced that we had
the method to make all the sought after framed manifolds

- a
feeling which must have been shared by many topologists
working on this problem. All in all, the temporary high of
believing that one had the construction was sufficient to
maintain in me at least an enthusiastic spectator’s interest in
the problem.”
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Snaith’s book (continued)

“In the light of the above conjecture and the failure over fifty
years to construct framed manifolds of Arf-Kervaire invariant
one

this might turn out to be a book about things which do not
exist. This [is] why the quotations which preface each chapter
contain a preponderance of utterances from the pen of Lewis
Carroll.”
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1.37

Our main result

Our main theorem can be stated in three different but
equivalent ways:

• Manifold formulation: It says that the Kervaire invariant
Φ(M4m+2) of a smooth 2m-connected framed
(4m + 2)-manifold must vanish (and bP4m+2 = Z/2) for all
but 5 or 6 values of m.

• Stable homotopy theoretic formulation: It says that certain
long sought hypothetical maps between high dimensional
spheres do not exist.

• Unstable homotopy theoretic formulation: It says
something about the EHP sequence, which has to do with
unstable homotopy groups of spheres.

There were several unsuccessful attempts in the 1970s to
prove the opposite of what we have proved, namely that
bP2j+1−2 = 0 for all j > 0.
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Our main result

Here is the stable homotopy theoretic formulation.

Main Theorem

The Arf-Kervaire elements θj ∈ π2j+1−2+n(Sn) for large n do not
exist for j ≥ 7.

The θj in the theorem is the name given to a hypothetical map
between spheres represented by a framed manifold with
nontrivial Kervaire invariant. It follows from Browder’s theorem
of 1969 that such things can exist only in dimensions that are 2
less than a power of 2.

Corollary

The Kervaire-Milnor group bP2j+1−2 is nontrivial for j ≥ 7.

It is known to be trivial for 1 ≤ j ≤ 5. The case j = 6, i.e., bP126,
is still open.
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1.39

Questions raised by our theorem

Adams spectral sequence formulation. We now know that the
h2

j for j ≥ 7 are not permanent cycles, so they have to support
nontrivial differentials. We have no idea what their targets are.

Unstable homotopy theoretic formulation. In 1967 Mahowald
published an elaborate conjecture about the role of the θj
(assuming that they all exist) in the unstable homotopy groups
of spheres. Since they do not exist, a substitute for his
conjecture is needed. We have no idea what it should be.

Our method of proof offers a new tool, the slice spectral
sequence, for studying the stable homotopy groups of spheres.
We look forward to learning more with it in the future. I will
illustrate it at the end of the talk.
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of spheres. Since they do not exist, a substitute for his
conjecture is needed. We have no idea what it should be.

Our method of proof offers a new tool, the slice spectral
sequence, for studying the stable homotopy groups of spheres.
We look forward to learning more with it in the future.

I will
illustrate it at the end of the talk.



A solution to the
Arf-Kervaire invariant

problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and
history
Classifying exotic spheres

Pontryagin’s early work

Exotic spheres as framed
manifolds

The Arf-Kervaire
invariant

The main theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

The slice spectral sequence

1.39

Questions raised by our theorem

Adams spectral sequence formulation. We now know that the
h2

j for j ≥ 7 are not permanent cycles, so they have to support
nontrivial differentials. We have no idea what their targets are.

Unstable homotopy theoretic formulation. In 1967 Mahowald
published an elaborate conjecture about the role of the θj
(assuming that they all exist) in the unstable homotopy groups
of spheres. Since they do not exist, a substitute for his
conjecture is needed. We have no idea what it should be.

Our method of proof offers a new tool, the slice spectral
sequence, for studying the stable homotopy groups of spheres.
We look forward to learning more with it in the future. I will
illustrate it at the end of the talk.



A solution to the
Arf-Kervaire invariant

problem

Mike Hill
Mike Hopkins
Doug Ravenel

Background and
history
Classifying exotic spheres

Pontryagin’s early work

Exotic spheres as framed
manifolds

The Arf-Kervaire
invariant

The main theorem

Our strategy
Ingredients of the proof

The spectrum Ω

How we construct Ω

The slice spectral sequence

1.40

Ingredients of the proof

Our proof has several ingredients.

• We use methods of stable homotopy theory, which means
we use spectra instead of topological spaces. Roughly
speaking, spectra are to spaces as integers are to natural
numbers. Instead of making addition formally invertible,
we do the same for suspension. While a space X has a
homotopy group πn(X ) for each positive integer n, a
spectrum X has an abelian homotopy group πn(X ) defined
for every integer n.

For the sphere spectrum S0, πn(S0) (previously denoted
by πS

n ) is the usual homotopy group πn+k (Sk ) for
k > n + 1. The hypothetical θj is an element of this group
for n = 2j+1 − 2.
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Ingredients of the proof (continued)

More ingredients of our proof:

• We use complex cobordism theory. This is a branch of
algebraic topology having deep connections with algebraic
geometry and number theory. It includes some highly
developed computational techniques that began with work
by Milnor, Novikov and Quillen in the 60s. A pivotal tool in
the subject is the theory of formal group laws.

John Milnor Sergei Novikov Dan Quillen
1940–2011
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Ingredients of the proof (continued)
More ingredients of our proof:
• We also make use of newer less familiar methods from

equivariant stable homotopy theory.

This means there is a
finite group G (a cyclic 2-group) acting on all spaces in
sight, and all maps are required to commute with these
actions. When we pass to spectra, we get homotopy
groups indexed not just by the integers Z, but by RO(G),
the real representation ring of G. Our calculations make
use of this richer structure.

Peter May John Greenlees Gaunce Lewis
1949-2006
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The spectrum Ω

We will produce a map S0 → Ω, where Ω is a nonconnective
spectrum (meaning that it has nontrivial homotopy groups in
arbitrarily large negative dimensions) with the following
properties.

(i) Detection Theorem. It has an Adams-Novikov spectral
sequence (which is a device for calculating homotopy
groups) in which the image of each θj is nontrivial. This
means that if θj exists, we will see its image in π∗(Ω).

(ii) Periodicity Theorem. It is 256-periodic, meaning that
πk (Ω) depends only on the reduction of k modulo 256.

(iii) Gap Theorem. πk (Ω) = 0 for −4 < k < 0. This property is
our zinger. Its proof involves a new tool we call the slice
spectral sequence, which I will illustrate at the end of the
talk.
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The spectrum Ω (continued)

Here again are the properties of Ω

(i) Detection Theorem. If θj exists, it has nontrivial image in
π∗(Ω).

(ii) Periodicity Theorem. πk (Ω) depends only on the reduction
of k modulo 256.

(iii) Gap Theorem. π−2(Ω) = 0.

(ii) and (iii) imply that π254(Ω) = 0.

If θ7 ∈ π254(S0) exists, (i) implies it has a nontrivial image in this
group, so it cannot exist. The argument for θj for larger j is
similar, since |θj | = 2j+1 − 2 ≡ −2 mod 256 for j ≥ 7.
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The spectrum Ω (continued)

Here again are the properties of Ω

(i) Detection Theorem. If θj exists, it has nontrivial image in
π∗(Ω).

(ii) Periodicity Theorem. πk (Ω) depends only on the reduction
of k modulo 256.

(iii) Gap Theorem. π−2(Ω) = 0.

(ii) and (iii) imply that π254(Ω) = 0.

If θ7 ∈ π254(S0) exists, (i) implies it has a nontrivial image in this
group, so it cannot exist. The argument for θj for larger j is
similar, since |θj | = 2j+1 − 2 ≡ −2 mod 256 for j ≥ 7.
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The spectrum Ω (continued)

Here again are the properties of Ω

(i) Detection Theorem. If θj exists, it has nontrivial image in
π∗(Ω).

(ii) Periodicity Theorem. πk (Ω) depends only on the reduction
of k modulo 256.

(iii) Gap Theorem. π−2(Ω) = 0.

(ii) and (iii) imply that π254(Ω) = 0.
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1.45

How we construct Ω

Our spectrum Ω will be the fixed point spectrum for the action of
C8 (the cyclic group of order 8) on an equivariant spectrum Ω̃.

To construct it we start with the complex cobordism spectrum
MU. It can be thought of as the set of complex points of an
algebraic variety defined over the real numbers. This means
that it has an action of C2 defined by complex conjugation. The
fixed point set of this action is the set of real points, known to
topologists as MO, the unoriented cobordism spectrum. In this
notation, U and O stand for the unitary and orthogonal groups.
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How we construct Ω (continued)

To get a C8-spectrum, we use the following general
construction for getting from a space or spectrum X acted on
by a group H to one acted on by a larger group G containing H
as a subgroup.

Let

Y = MapH(G,X ),

the space (or spectrum) of H-equivariant maps from G to X .
Here the action of H on G is by left multiplication, and the
resulting object has an action of G by left multiplication. As a
space, Y = X |G/H|, the |G/H|-fold Cartesian power of X . A
general element of G permutes these factors, each of which is
invariant under the action of the subgroup H.

In particular we get a C8-spectrum

MU(4)
R = MapC2

(C8,MUR).

This spectrum is not periodic, but it has a close relative Ω̃
which is.
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How we construct Ω (continued)

To get a C8-spectrum, we use the following general
construction for getting from a space or spectrum X acted on
by a group H to one acted on by a larger group G containing H
as a subgroup. Let

Y = MapH(G,X ),

the space (or spectrum) of H-equivariant maps from G to X .

Here the action of H on G is by left multiplication, and the
resulting object has an action of G by left multiplication. As a
space, Y = X |G/H|, the |G/H|-fold Cartesian power of X . A
general element of G permutes these factors, each of which is
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How we construct Ω (continued)

To get a C8-spectrum, we use the following general
construction for getting from a space or spectrum X acted on
by a group H to one acted on by a larger group G containing H
as a subgroup. Let

Y = MapH(G,X ),

the space (or spectrum) of H-equivariant maps from G to X .
Here the action of H on G is by left multiplication, and the
resulting object has an action of G by left multiplication.

As a
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How we construct Ω (continued)

To get a C8-spectrum, we use the following general
construction for getting from a space or spectrum X acted on
by a group H to one acted on by a larger group G containing H
as a subgroup. Let

Y = MapH(G,X ),

the space (or spectrum) of H-equivariant maps from G to X .
Here the action of H on G is by left multiplication, and the
resulting object has an action of G by left multiplication. As a
space, Y = X |G/H|, the |G/H|-fold Cartesian power of X .

A
general element of G permutes these factors, each of which is
invariant under the action of the subgroup H.

In particular we get a C8-spectrum
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R = MapC2
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How we construct Ω (continued)

To get a C8-spectrum, we use the following general
construction for getting from a space or spectrum X acted on
by a group H to one acted on by a larger group G containing H
as a subgroup. Let

Y = MapH(G,X ),

the space (or spectrum) of H-equivariant maps from G to X .
Here the action of H on G is by left multiplication, and the
resulting object has an action of G by left multiplication. As a
space, Y = X |G/H|, the |G/H|-fold Cartesian power of X . A
general element of G permutes these factors, each of which is
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How we construct Ω (continued)

To get a C8-spectrum, we use the following general
construction for getting from a space or spectrum X acted on
by a group H to one acted on by a larger group G containing H
as a subgroup. Let

Y = MapH(G,X ),

the space (or spectrum) of H-equivariant maps from G to X .
Here the action of H on G is by left multiplication, and the
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How we construct Ω (continued)

To get a C8-spectrum, we use the following general
construction for getting from a space or spectrum X acted on
by a group H to one acted on by a larger group G containing H
as a subgroup. Let

Y = MapH(G,X ),

the space (or spectrum) of H-equivariant maps from G to X .
Here the action of H on G is by left multiplication, and the
resulting object has an action of G by left multiplication. As a
space, Y = X |G/H|, the |G/H|-fold Cartesian power of X . A
general element of G permutes these factors, each of which is
invariant under the action of the subgroup H.

In particular we get a C8-spectrum

MU(4)
R = MapC2

(C8,MUR).

This spectrum is not periodic, but it has a close relative Ω̃
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1.47

A homotopy fixed point spectral sequence
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The corresponding slice spectral sequence
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