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Ever since its introduction by J. F. Adams [8] in 1958, the 

spectral sequence that bears his name has been a source of 

fascination to homotopy theorists. By glancing at a table of 

its structure in low dimensions (such have been published in 

[7], [i0] and [27]; one can also be found in ~2) one sees not 

only the values of but the structural relations among the corres- 

ponding stable homotopy groups of spheres. It cannot be denied 

that the determination of the latter is one of the central problems 

of algebraic topology. It is equally clear that the Adams spectral 

sequence and its variants provide us with a very powerful 

systematic approach to this question. 

The Adams spectral sequence in its original form is a device 

for converting algebraic information coming from the Steenrod 

algebra into geometric information, namely the structure of the 

stable homotopy groups of spheres. In 1967 Novikov [44] introduced 

an analogous spectral sequence (formally known now as the Adams- 

Novikov spectral sequence, and informally as simply the Novikov 

spectral sequence) whose input is a~ebraic information coming from 

MU MU, the algebra of cohomology operations of complex cobordism 

theory (regarded as a generalized cohomology theory (see [2])). 

This new spectral sequence is formally similar to the classical 

one. In both cases, the E2-term is computable (at least in 

principle) by purely algebraic methods and the E -term is the 

bigraded object associated to some filtration of the stable homo- 

topy groups of spheres (the filtrations are not the same for the 

*Partially supported by NSF 



405 

two spectral sequences>. However, it became immediately apparent, 

for odd primes at least, that the Novikov spectral sequence has 

some striking advantages. Its E2-term is smaller and there are 

fewer differentials, i.e. the Novikov E2-term provides a better 

approximation to stable homotopy than the Adams E2-term. Most 

of the groups in the former are trivial for trivial reasons (the 

sparseness phenomenon to be described in Corollary 3.17) and this 

fact places severe restrictions on when nontrivial differentials 

can occur. It implies for example that E 2 = E2p_l. For p = 3, 

the entire Novikov spectral sequence through dimension 80 can be 

legibly displayed on a single page (hopefully this will be done 

in [52]; see [75] for a table through dimension 45), whereas the 

Adams spectral sequence through a comparable range requires 4 

pages (see [36]). 

In the Adams spectral sequence for p > 2, the first non- 

trivial differential originates in dimension pq - I (where 

q = 2p - 2) and is related to the odd primary analogue of the 

nonexistence of elements of Hopf invariant one (see §2). The 

latter result is, in the context of the Novikov spectral sequence 

(even for p = 2), a corollary of the structure of the l-line 
I,* 

E 2 , which is isomorphic to the image of the J-homomorphism (see [~). 

In the Novikov spectral sequence for p > 2, the first non- 

trivial differential does not occur until dimension p2q _ 2 

and is a consequence of Toda's important relation in stable 

homotopy ~i B~ = 0 (see [70], [71] and [56]). An analogous 

differential occurs in the Adams spectral sequence as well. 

The situation at the prime 2 is quite different. At first 

glance (see Zahler's table in [75]) the Novikov spectral sequence 

appears to be less efficient than the Adams spectral sequence. 

The first nontrivial differential in the former originates in 

dimension 5 whereas the first nontrivial Adams differential does 

not originate until dimension 15. In looking at Zahler's table 

one is struck by the abundance of differentials, and also by the 
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nontrivial group extensions occuring in dimensions 3 and Ii 

(the table stops at dimension 17). 

These apparent drawbacks have been responsible for public 

apathy toward the 2-primary Novikov spectral sequence up until 

now. An object of this paper, besides providing a general 

introduction to the subject, is to convince the reader that the 

Novikov spectral sequence at the prime 2 is a potentially 

powerful (and almost totally untested) tool for hacking one's 

way through the jungles of stable homotopy. In particular in 

§7 we will show how it can be used to detect some interesting 

new families of elements recently constructed by Mahowald. 

The plan of the rest of the paper is as follows: 

In §2, we will discuss the classical Adams spectral sequence 

and some of the questions it raised about the stable homotopy. 

In ~3, we will set up the Novikov spectral sequence. 

In §4, we will discuss the relation between the two spectral 

sequences and show how comparing the two E2-terms for p = 2 

leads to a complete determination of stable homotopy through 

dimension 17. 

In ~5, we discuss what we call 'first order' phenomena in 

the Novikov spectral sequence, i.e. we show how it detects the 

image of the J-homomorphism and related elements. 

In §6 and ~7, we discuss second order phenomena, i.e. certain 

possible new families of homotopy elements which are difficult 

if not impossible even to conceive of without the Novikov spectral 

sequence. 

In §8, we will discuss some recent theoretical developments 

which have led to some unexpected insights into the nature of 

stable homotopy and (most interestingly) the relation between it 

and algebraic number theory. In other words, we will discuss the 

theory of Morava stabilizer algebras and the chromatic spectral 

sequence, in hopes of persuading more people to read (or at least 
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believe) [37], [58], [51] and [39]. 

I have tried to write this paper in the expository spirit 

of the talk given at the conference. Naturally, I have expanded 

the lecture considerably in order to make the paper more 

comprehensive and useful to someone wishing to begin research in 

this promising area. At two points however, I have been unable 

to resist giving some fairly detailed proofs which have not 

appeared (and probably will not appear) elsewhere. In §5, you 

will find a new partial proof of Theorem 5.8, which describes 

the image of the J-homomorphism and related phenomena at the prime 

2. The proof uses techniqes which can be generalized to higher 

order phenomena (such as those described in §6 and ~7) and it 

makes no use of the J-homomorphism itself. In §7 are derivations 

of some consequences of certain hypotheses concerning the Arf 

invariant elements and Mahowald's nj's. 

I am painfully aware of the esoteric nature of this subject 

and of the difficulties faced by anyone in the past who wanted 

to become familiar with it. I hope that this introduction will 

make the subject more accessible and that there will be greater 

activity in what appears to be a very fertile field of research. 
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The E2-term can be written either.as Ext A (IFp, IFp) (Ext 

in the category of A~modules) or Ext A (]Fp, IFp) (Ext in the 

category A.-comodules). The distinction here is didactic, but 

in the case E = BP (the Novikov spectral sequence) the formula- 

tion in terms of comodules leads to a substantial simplification. 

The identification of the E2-term can be carried out for 

general E provided that E is a ring spectrum and E ^ E is 

a wedge of suspensions of E. This is the case when E = MU, BP 

or MSp, but not if E = bo or bu. (For the homotopy type of 

E ^ E in these two cases, see [35] and [6] ~III 17 respectively.) 

We now specialize to the case p = 2. Table I, which 

displays the behavior of the spectral sequence through dimension 

19 is provided for the reader's amusement. Before commenting on 

i t ,  we w i l l  d i s c u s s  E x t  ' (IF 2, IF2), t h e  Adams " l - l i n e " .  

Proposition 2.5 

Ext t 2  IZ 2 othe iseift2i 
2 i 

The generator of Ext~ • ' (~2' ~2 ) is denoted by h i and represented 
2 l 

by ~I in the cobar complex (2.3). 

Proof. In (2.3), there are no coboundaries in A., so all 

cocylces in that group are nontrivial. An element is a cocycle 

iff its image in A. is primitive, i.e. if i t is dual to a generator 

of A. A is generated by the elements Sq 21 [66], so the result 

follows. [] 

The first 4 of these generators detect well-known elements 

in stable homotopy: h detects 21, where ~ generates the 
o 

zero stem, while h I , h 2, and h 3 detect the suspensions of the 3 

Hopf fibrations S 3 + S 2, S 7 ÷ S 4 and S 15 ÷ S 8 respectively. 
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§2. The Classical Adams Spectral Sequence 

In this section, we discuss the outstanding features of the 

classical mod 2 Adams spectral sequence. Readers who are already 

knowledgeable in this area will lose very little by skipping this 

section. 

A general formulation of the Adams spectral sequence is the 

following. We have a diagram of spectra 

(2.1) X = X o + X I ÷ X 2 + X 3 + -'' 

Yo Y1 Y2 Y3 

where Xs+l ÷ Xs ÷ Ys is a cofibration for each 

the theory of exact couples (see [7]) we have 

s. Then from 

Theorem 2.2 Associated to the diagram (2.1) there is a 

spectral sequence {E s't} with differentials d : E s't ÷ E s+r't+r-I 
r r r r 

such that: 

_s,t = ~t Ys; (a) ~I -s 

s,t ~s+l,t is induced by the composite (b) dl: E1 + ~i 

Ys ÷ [Xs+l ÷ [Ys+l; 

(c) the spectral sequence converges to ~. X where X is 

the cofibre of lim X. ÷ X ÷ X. [] 
+ 1 

The diagram (2.1) is called an Adams resolution if lim X. 
÷ l 

is weakly contractible after localizing at some prime p. In this 

case, the spectral sequence will converge to the p-localization 

of 7. X. 

Needless to say, the spectral sequence is useful only if one 

knows ~*Ys" This is often the case if we set Ys = Xs ^ E, where 

E is the representing spectrum for some familiar homology theory, 
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such as ordinary mod p homology theory. In that case, we have 

the E.-homology Adams spectral sequence for ~.X. For a more 

detailed discussion, see [6] §III 15~ The case E = MU or BP 

is that of the Novikov spectral sequence. 

If X is connective and E = H~ (the mod p Eilenberg- 
P 

MacLane spectrum) or BP (the Brown-Peterson spectrum), then 

is the p-adic completion of X or the p-localization of X 

respectively (see [ii] or [12]). If either X or E fail to be 

connective (e.g. if E is the spectrum representing K-theory) 

then the relation between X and X (which Bousfield calls the 

E-nilpotent completion of X) is far from obvious. 

Theorem 2.2 yields the classical mod p Adams spectral sequence 

if we set X = S ° , E = H~ , and Y = X ^ E. If we denote X I 
S S 

by E, we have Xs = ~(s) p (the s-fold smash product of E with 

itself) and Y = E ^ E (s) for s > 0. It follows that each Y 
S S 

is a wedge of mod p Eilenberg-MacLane spectra and that for 

s > 0, ~.[-SYs = ~.~s where A. is the agumentation ideal of 

the dual mod p steenrod algebra A.. One can show further that 

the Adams El-term in this case is isomorphic to the normalized 

cobar complex 

61 6 2 ... 
(2.3) IFp --> . . . . .  

that one uses to compute the cohomology of the Steenrod algebra. 

Specifically. we have 

s i 
(-I) a. ~.-~ai_l~A (ai) ~ ai+l...as 6s(al ~ a2"''~as) = i= I l 

where a i ~ and A: A. + A. ~ 2. is the coproduet. In this 

way, we arrive at Adams' celebrated original theorem. 

Theorem 2.4 (Adams [8]). There is a spectral sequence 

s.t Ext,, t (~p. ~p), converging ~ the p-component of ~.S ° with E 2 = 

where A is the mod p Steenrod algebra. [] 
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(These elements are customarily denoted by ~, ~ and o 

respectively.) 

The question then arises as to whether h i for i > 3 is 

a permanent cycle in the spectral sequence and therefore detects 

a homotopy element, This question has some interesting implications. 

Theorem 2.6 The following statements are equivalent: 

(a) h i is a permanent cycle in the Adams spectral, sequence. 

(b) There is a 2-cell complex X = S n u e n+21 such that 
2 i 

Sq is nontrival in H (X; ~2 ) . 

(c) IR 21 can be made into a division algebra over IR. 

(d) S 2i'I is parallelizable. 

A proof can be found in [4]° 

In one of the more glorious moments of algebraic topology, 

Adams answered the question in the following spectacular way. 

Theorem 2.7 (Adams [4]). For i > 3, h. is not a perm- 
l 

anent cycle in the Adams spectral sequence. More precisely, 

d 2 h i = hoh~_ 1 # 0. [] 
_s,t 

We now con~nent on Table i. A similar table showing E 2 

for t - s ~ 70 (but not showing any differentials) can be found 

in [67], where the method for computing it developed by May [32] 

[33] is discussed. Differentials up to t - s = 45 have been 

computed and published in [I0] and [31]. 

The vertical axis s is filtration or cohomological degree. 

The horizontal axis is t - s, so all elements in the same 

topological dimension will have the same horizontal co-ordinate. 

Each small circle represents a basis element of the vector space 

s,t = Ext~,t(iF2, ~2) . When a space is empty, the corresponding E 2 

vector space is trivial. EXtA ~=2' ~2 ) has a commutative algebra 

structure, as does E s't for r > 2, and the differentials are 
r 
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derivations, i.e. the spectral sequence is one of commutative 

algebras. Hence many of the elements of E~ 't are products 

of elements in lower filtration (i.e. lower values of s). The 

vertical lines represent multiplication by h o (all powers of 

h are nontrivial), and the solid diagonal lines going up and 
o 

to the right indicate multiplication by h I. Certain multiplica- 

tive relations are built into the table, e.g. h = hoh 2, 

h3do = hoeo ,3 h~ = h2h 3, etc. Differentials in the spectral 

sequence are indicated by solid arrows going up and to the left, 

e.g. d2h 4 = hoh2 (by Theorem 2.7) and d3hoh 4 = hodo. The 

broken line going from 3 hoh 4 to Pc ° indicates a nontrivial 

extension in the multiplicative structure, i.e. if p is the 

S ° 30 element of ~15 detected by h h 4, then np ~ ~16 S° is 

detected by Pc o. The elements which are not products of 
! 

h i s can be expressed as Massey products (see [34]), e.g. 

o % ho, ao° %, 
and fo = <h2'v h2'~ h2>" The letter P denotes a periodicity 

I i 

s,t h 4 Ks+4, t+12 (see [5 ]) Px = <X,ho4,h3> operatnr P: E 2 n ker o ~+ -2 ' " 

(In particular, Ph 3 = h 3ah4 and Ph 2 =h2do .) Its analogue in the 

Novikov spectral sequence wlil be discussed in some detail in ~5. 

The corresponding homotopy groups are listed on the lower 

part of the table. They can be read off from the spectral sequence 

with the help of 

Proposition 2.8 If a and hoa are nonzero permanent 

cycles in the Adams spectral sequence then the homotopy element 

detected by the latter is twice that detected by the former, i.e. 
s,t multiplication by h o in E 2 corresponds to multiplication by 

2 in ~,S ° . 

Proof. The statement is certainly true in dimension zero 
**_@ 

since we know ~o S° = Z and Ext A' (~2' ~2 ) = ~2 [ho]" The 

statement in higher dimensions follows from the multiplicative 

properties of the spectral sequence. [] 
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Note that all differentials in the spectral sequence 

decrease t - s by i and increase s by at least 2. Hence 

elements that are low enough in the table cannot be targets of 

nontrivial differentials, while those that are high enough cannot 

be sources of same. In §4, we will show how all differentials 

and group extensions through dimension 17 can be determined by 

comparing the Adams and Novikov E2-terms. 

We conclude this section with a discussion of the Adams 

2-1ine. 

Theorem 2.9 (Adams [4]) EXtA2'*(]F2 , IF2) has as a basis 

the elements h.h. with i -< j and i # j i. 
z ] 

As in the case of the l-line, we can ask what happens to 

these elements in the spectral sequence. There is no possibility 

of any of them being the target of a differential, as such a 

differential would have to originate on the 0-line, which is 

trivial in positive dimensions. Hence any of these elements 

which is a permanent cycle will detect a nontrivial homotopy 

element. In the range of our table, we see that all such elements 

except hoh 4 are permanent cycles. A big step forward in answer- 

ing this question is 

Theorem 2.10 (Mahowald-Tangora [30]) With the exceptions 

hoh 2, hoh 3, h2h 4 and possibly h2h 5 and h3h 6, the only elements 

of Ext ' (~2' IF2) which can possibly be permanent cycles are 

h~j and hlh j . [] 

2 The elements hj are commonly known as the Arf (or Kervaire) 

invariant elements, due to the following result. 

Theorem 2.11 (Browder [13]) There is a framed (2 j+l - 2)- 

manifold with nontrival Kervaire (or Arf) invariant iff the element 

h~ is a permanent cycle in the Adams spectral sequence. J 
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These elements are known to survive (i.e. to be permanent 

cycles) for j ~ 5. They have been the object of intense 

investigation by Barratt, Mahowald, and others (see [29]). 

The corresponding homotopy element is commonly known as @j. 

Barratt and Mahowald have privately expressed the belief that 

if e. can be shown to exist for all of stable homotopy will 
J 

follow with relative ease. 

The survival of the elements h.h. is closely related to lJ 
that of h 2. If e. exists and 2e. = 0, then the Toda bracket 

J J 3 

nj+ I = <ej,2,n> is detected by hlhj+ I. 

Mahowald has recently devised an extremely ingenious construc- 

tion to prove 

Theorem 2.12 (Mahowald [28]) The element nj ~ ~2JS ° exists 

for all j e 3 i.e. hlh j is a permanent cycle. [] 

In §7, we will indicate how ej and nj appear in the 

Novikov spectral sequence and how the latter produces a new family 

of homotopy elements. 

A computation of the Adams 3-1ine can be found in [74]. 
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53 S,,etting up the Novikov Spectral Sequen,ce 

The Novikov spectral sequence for the p-localization of the 

stable homotopy groups of spheres is obtained from Theorem 2.2 

by setting X = S ° and Y = X ^ BP, where BP is the Brown- 
s s 

Peterson spectrum. If we replace BP by MU (the Thom spectrum 

associated with the unitary group; its homotopy is the complex 

cobordism ring) we obtain a 'global' Novikov spectral sequence 

which converges to all of ~.S °, not just the p-component. 

Novikov [44] knew that the p-localizaton of the MU spectral 

sequence is isomorphic to the BP spectral sequence but he did 

not know how to compute with the latter. In either case, the 

identification of the E2-term is as in the classical case and we 

have 

Theorem 3.1 (Novikov [44], Adams [6] ~I~ 15) There are 

spectral sequences 

and 

vS,t -- -S,t 
= ~x~. MU (MU., MU~) => ~S ° ~2 ~ u ~  ," 

E S , t  ~ s,t [] 
= mxtBP.B P (BP., BP.) => (~.S°)(p). 2 

Novikov [44] and Zahler [75] used MU MU instead of ~.MU. 

Since the former is not of finite type, this approach leads to 

certain technical difficulties, as one can see by reading [75]. 

In order to make Theorem 3.1 more explicit (see Proposition 

3.16), we will describe BP.BP. MU.MU was determined by Novikov 

[44], and BP.BP by Quillen [50]. Both are described lucidly 

by Adams [6], §II 16. An illuminating functorial description of 

BP.BP has been given by Landweber [22], and will be discussed 

briefly in §8. 

The structure of MH.MU is easier to describe than that of 

BP.BP. Nevertheless, the latter object,being much smaller, is 
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easier to compute with, even if it takes some time to convince 

oneself of this. (It took me about four years.) 

It would be a disservice to the reader not to begin the 

description of BP,BP with a brief discussion of formal group 

laws. It is safe to say that every major conceptual advance in 

this subject since Quillen's work [50] has been connected directly 

or indirectly with ~he theory of formal group laws. 

Definition 3.2 A one dimensional commutative formal group 

law over a commutative ring with unit R (hereafter and herebefore 

referred to simply as a formal group law) is a power series 

F(x, y) ~ R[[x, y]] such that 

(i) F(0, x) = F(x, 0) = x (identity element) 

(ii) F(x, y) = F(y, x) (commutativity) 

(iii) F(F(x, y), z) = F(x, F(y, z)) (associativity). 

Examples 3.3 

(i) F(x, y) = x + y, the additive formal group law. 

(ii) F(x, y) = x + y + xy, the multiplicative formal group 

law so named because 1 + F(x, y) = (I + x)(l + y). 

(iii) F(x, y)= X -~y +2 Z ~ -~-~x 
l+x y 

This is a formal group law over Z[I/2], originally discovered 

by Euler in his investigation of elliptic integrals (see [62] 

pp. 1-9). 

There are notions of homomorphisms and isomorphisms of formal 

groups over R, whose easy definitions we leave to the reader. 

A comprehensive and down-to-earth account of the theory of formal 

group laws has recently been provided by Hazewinkel [18]. Fr~hlich's 

book [17] is also useful. 

There is also a change of rings homomorphism. If F(x, y) 

is a formal group law over R and 8: R ÷ S is a ring homomorphism, 
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then O(F (x, y)) is a formal group law over S. With this 

in mind, we can ask for a universal formal group law Fu(X, y) 

over a certain ring L (named for its discoverer, Lazard [25]) 

such that for any formal group law F over any ring R there 

is a unique ring homomorphism 0: L + R such that F(x, y) = 

(F u(x, y)). 

The Lazard ring L and the universal formal group law 

Fu(X, y) are easy to construct. Simply write Fu(X, y) = 
xiy i ~ai, j and regard the coefficients ai, j as indeterminates 

and set L = Z[ai,j]/(~), where denotes the relations among 

the ai, j imposed by Definition 3,2. It is obvious then that 

L and Fu(X, y) have the desired properties. However, it was 

not easy to determine L explicitly. After Lazard [25] did so, 

Quillen made the following remarkable observation. Before stating 

it± recall ~hat MU = Z[x I, x2.1.] where dim x i = -2i and 

MU"CP ~ = MU'~[[t]] where t ~ MuZcP ~ is canonically defined 

(see [6] Ill 2). Then we have 

Theorem 3.4 (Quillen [50]). The complex cobordism ring 

MU is isomorphic to the Lazard ring L, and under this isomor- 
. ~ p~ 

phism, a(t) = Fu(tfll , l~t), where 4: MU*CP ~ ÷ MU (CP xC ) is 

the map induced by the tensor product (of complex line bundles) 

map CP~xCP ~ ÷ CP ~. [] 

Proofs can be found in [6] Ill 8, and [14]. This result 

establishes an intimate connection between complex cobordism and 

formal group laws. Most of the advances in the former since 1969 

(the date of Quillen's theorem) have ignored complex manifolds 

entirely. It would be nice in some sense to have a description 

of the spectrum MU which is rooted entirely in formal group 

laws and which makes no mention of Thom spectra or complex manifolds. 

A recent result of Snaith [65] appears to be a step in this 

direction. Also the results of [59] imply that MU*CP ~ as a 

Hopf algebra actually characterizes MU. 



419 

To proceed with the narrative, we have 

Proposition 3.5 Let F(x, y) be a formal group law over 

a torsion free ring R and define f(x) e Pd~Q[[x]] by 

ix dt 
f(x) = f2tt 0) 

0 

where 

~F 
f2 (x' Y) = 7y " 

Then f(F(x, y)) = f(x) + f(y), i.e. f(x) is an isomorphism 

over P~Q between F and the additive formal group law. [] 

Definition 3.6 The power series f(x) above is the log- 

arithm lOgF(x ) of the formal group law F. 

The word logarithm is used because in the case of the 

multiplicative formal group law (Example 3.3(ii)), 

log F x = log(l + x) = ~ (I) n+l n 
- 

nzl n 

x = [CP n]x n+l Theorem 3.7 (Mischenko [44]) log F n!0 n+--ST ' 
U 

where [CP n] denotes the element of MU represented by the 

complex manifold CP n . [] 

Definition 3.8 A formal group law •F over a torsion free 

ring is p-typical if log F x = [ £. x pl 
ie0 

This definition is due to Cartier [16] and can be generalized 

to rings with torsion (e.g. finite fields). See [18], [23] or [9]. 

Theorem 3.9 (Cartier [16]) Every formal group law F 

over a torsion free Z(p)-algebra R is canonically isomorphic i 

to a p-typical formal group law F T, such that if log F x = ~a i x , 
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i 
a x p • [] then x = ~ pl lOgFT 

Proofs can be found in [18], [23] and [9]. It is possible 

to define a universal p-typical formal group law FT(X, y) over 

a p-typical Lazard ring L T and we have 

Theorem 3.10 (Quillen [50]). The p-typical Lazard ring 

L T is isomorphic to the Brown-Peterson coefficient ring BP. = 

Z(p) [v I, v2--" ] where dim v n = 2(pn _ I) in such a way that 

in BP (CP~xCP~), A(t) = FT(t~I, l~t), where A is as in Theorem 

3.4. 

Quillen's proof translates Carrier's canonical isomorphism 

(theorem 3.9) into a canonical retraction x of MU(p) (the 

localization of MU at the prime p) onto BP. Its action on 

homotopy is determined by 

X*[cpn] = I [CPn]0 

i 
if n= p - I 

otherwise. 

It follows that ~(x) ~ [CP pI-I] x pi = is the logarithm for the 
ie0 -T 

P i 
universal p-typical formal group law. We let ~i = [CPp -I]/p~BP~Q' 

so ~(x) = ~i ~pl and BP.~Q = Q[~i]. We define 

the formal sum ~F xi by ~(~F xi ) = ~ ~(xi ) or equivalently, 

IF xi = F(xI ' F(x2 ' F(x3 ...)...). 

We are now ready to describe BP ~BP Since it is ~.~BP^BP 

there are two maps n L, nR: BP. ÷ BP.BP (the left and right units) 

induced by BP = BP ^ S ° -÷ BP ^ BP and BP = S ° ^ BP ÷ BP ^ BP 

respectively. The latter map nR: ~.BP ÷ BP.BP is the Hurewicz 

map in BP.-homology. 

Since BP.BP is the dual of BP BP, the algebra of BP - 

cohomology operations, it has a coproduct A: BP~BP.. ÷ BP,BP~Bp,BP.BP,~ . 



421 

where the tensor product is with respect to the bimodule structure 

given by the maps n R and n L. 

The maps n R and A are related by the commutative diagram 

n R 
BP. ................. > BP.BP = BP.~Bp * BP. BP 

(3.11) nR I i nR fl i 

BP.BP A BP ~BP~Bp ~ "  ~ BP., BP 

Again, we refer the reader to [22] for novel and illuminating 

interpretation of this structure, which admittedly seems a bit 

peculiar at first. 

Theorem 3.12 (Quillen [50], Adams [6] 311 16). As an 

algebra, BP.BP = BP.[tl, t2,...] where dim t i = 2(p i - i). The 

structure maps A: BP~BP~. ÷ BP.BP~Bp.,BP.BP,. and nL, nR: BP ÷ BP~BP.~ 

are given by 

~(A(ti)) = ~ ~(t i ~ t~ l) 
i~0 i,je0 J 

F i 
(or equivalently ~ A(ti ) = ~F t.~t~ ) where t = i, nL(~n) = 

ie0 i,je0 I j o 

= I ~. tpl. [] ~n' and nR ~n 0~i~n i n-l' 

The reader can easily verify that these formulae satisfy 

(3.11), and moreover that using (3.11). n R determines A. 

Example A(tl) = tl~l + l~tl, A(t2) = t2~l + tl~t ~ - + l~t 2 - 

(P)i i p-i tl~t I and A(t3) is too messy to write down in 0<i<p 

public. Partial simplification of these formulae is achieved in 

[57] and [54]. 
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We are not finished yet. In order to use Theorem 3.12 in 

practice, we need to relate the generators ~i of BP.~Q to 

generators v i of BP., which as yet have not been defined. 

Theorem 3.13 (Hazewinkel [18], [19]. Generators v. of 
i 

BP can be defined recursively by the formula 

i 

P~n = ~ £i vp " " [] 
O~i<n n-l 

and 

Example 

v I v~ +p v 2 
~ l  = -g -  ' ~2 = - - - - 2 -  + - f -  ' 

P 

I+p+P 2 VlV~+V2V~ 2 
~3 Vl v3 

- 3 + 7 + --ff- 
P P 

The following formula for nR(Vn) is useful 

Theorem 3.14 [57] 

F pi F nR(vi)pj v.t. ~ ~ tj rood (p) 
i>0 I J i>0 
je0 je0 

[] 

Example nRv 2 z v 2 + vlt ~ - o • vit I mod p. 

Araki [9] has defined another set of generators v i by the 

slightly different formula ~ ~i vpl" where v = p. 
P~n = 0sign n-l o 

This gives messier expressions for the ~i' e.g. gl = Vl/(P - Pp)' 

but the analogue of Theorem 3.14 is true on the nose, not just 

mod (p). Araki's and Hazewinkel's generators are the same mod (p). 
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We conclude this section by exhibiting a complex whose 

cohomology is EXtBP~B P (BP., BP.), i.e. the E2-term of the 

Novikov spectral sequence. Let ~ (BP.) be the complex 

~o d ° d I d 2 BP. > ~IBp. > ~2Bp. > a3Bp. > "'" 

where 

S 
BP~... = BP.fiBp ~' ,~BP~'~BPfiBP~,~ • - - ~Bp, BP~,. ,~BP 

(s factors of BP.BP) with 

(3.15) dS(v ~ x I ~ --- Xs) = r~R(V ) ~ x I ~ ...Xs 

S 

+ I (-l)iv~ 
i = l  

x I ~ --- Xi_l~ 4 (xi)~Xi+l~ "''x s 

- (-l)Sv flx I fl "'' x s fl I . 

This is the cobar complex for BP.. Let BP.BP = (t I, t 2 -..) c 

BP ~BP and define the normalized cobar complex 9, 

~s(Bp.) by ~°BP.,. = BP~ and ~s(Bp.,~) = BP~Bp BP~,~BP~Bp ~ • " " 

BP.BP (with s factors BP.BP). Then (3.15) gives 
~ 

dS sBp~ > ~s+l BP., e.g. d ° v = nR(V) - nL(V). Then we 

have 

Proposition 3.16 

* * * ~* 

H ~ BP.  ~ H a BP.  ~ Ext  BP.BP (BP.  B P . ) .  [ ]  

Corollary 3.17 (Sparseness) In the Novikov spectral sequence 

~s,t ~s,t 
ES'tr  = 0 i f  q ~ t .  w h e r e  q = 2p - 2,  and  ~qm+2 = ~qm+q-1 

for all m ~ 0. [] 
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Two systematic methods of computing Ext BP. through a range 

of dimensions have been developed [5~ [55], and we hope they 

will be applied soon. 
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§4 Comparing the Adams and Novikov Spectral Sequences 

In this section, we make some general remarks about the 

relation between the two spectral sequences, and then we make a 

specific comparison in low dimensions (~ 17) at p = 2. 

To begin with, the natural map BP ÷ H~ of spectra induces 
P 

a map of Adams resolutions (2.1) and hence a spectral sequence 

homomorphism (i.e. one which commutes with differentials) ¢ from 

the Novikov to the Adams spectral sequence. This implies the 

following 

Proposition 4.1 If a homotopy element is detected in the Adams 

spectral sequence by an element in E~ 't, then it is detected in the 
~' t' t' ' Novikov spectral sequence by an element in some E ' with - s = 

t - s and s' ~ s. If a homotopy element is detected in the Novikov 

spectral sequence by an element in E~ 't, then it is detected in the 

Adams spectral sequence by an element in some E~ ''t' with t' - s' = 

t - s and s' ~ s. 

This fact, along with knowledge of the behavior of ~ on 

the l-line (see §5) leads to an easy proof of the first part 

of Theorem 2.7 and its odd primary analogue. The latter was first 

proved by other means by Liulevicius [26] and Shimada-Yamanoshita 

[61]. In §9 of [39] we calculated the image of ~ on the 2-1ine 

for p > 2 and thereby proved an odd primary analogue of Theorem 

2.10. Our ignorance of the Novikov 2-1ine (see §6) for p = 2 

prevented us from giving a similar proof of Theorem 2.10 itself. 

Next, we will describe some spectral sequences which indicate 

a certain relationship between the two E2-terms. We begin with 

a Cartan-Eilenberg ([15] p. 349) spectral sequence for the Adams 

E2-term. Recall that for p > 2 A, = Fp[~ I, ~2 "'']flE(~o' ~i "'') 

and for p = 2 A, = ~2 [~I' ~2 '''] (see [66]). Define 

extension of Hopf algebras E + A + P by p, = IFp [gi ] for 

p > 2 and ~ = ~2 [~] for p = 2. 

Theorem 4.2 (a) There is a spectral sequence converging 

s,t EXtE(IF p IFp )) to EXtA(IFp, ~p) with E 2 = EXtp(IFp, 
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(b) Ext E (~p, ~p) = IFp[ ao, al,--.] 

where a i e Ext l'2pi-I is represented by the image of T i 

$i+i if p = 2) in the cobar complex for E. 

(or 

(e) The spectral sequence collapses from E 2 for p > 2. 

Proof: (a) is a special case of Theorem XVI 6.1 of [15]. 

(b) follows from the fact that E is an exterior algebra. For 

(c) observe that for p > 2, we can give A. a second grading 

based on the number of T's which is preserved by both the co- 

product and product. (The coproduct does not preserve this grading 

for p = 2). The fact that differentials must respect this grading 

implies that the spectral sequence collapses. [] 

Next, we construct the so-called algebraic Novikov spectral 

sequence ([44], [36]) which converges to the Novikov E2-term and 

has itself the same E2-term (indexed differently) as that of that 

Cartan-Eilenberg spectral sequence above. 

Let I = (p, v I, v2..- ) c BP.. This ideal is independent of 

the choice of generators v i. If we filter BP. by powers of I, 

the associated bigraded ring E°BP. is isomorphic to ~p[a o, al,--- ] 

where a i has dimension 2(p I - I) and filtration 1 and corres- 

ponds to the generators v. (where v = p). This filtration can 
l o 

be extended to BP.BP and to the normalized cobar complex 

~*(BP.). We have E°BP.BP = E°BP.[ti ] and Theorem 3.12 implies 

= ~ t. ~ t pl. ~ E°BP~BP. It follows that BP~BP/I ~ that At n 

as Hopf algebras. To describe the coboundary operator in 
o~. E ~ (BP.), it remains to determine d ° = E°BP. ÷ E°B~.BP. It 

follows from (3.15) and Theorem 3.14 that d ° an = [ ai t~-i'i 

0~i<n 
This agrees, via the appropriate isomorphism, with the d I in 

the Cartan-Eilenberg spectral sequence of Theorem 4.2. Combining 

all these remarks we get 
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Theorem 4.3 (Novikov [44], Miller [36]) The filtration 
~. 

of ~ BP. by powers of I leads to a spectral sequence converg- 

ing to EXtBP.B P (BP.BP.) whose E2-term is isomorphic to 

EXtp.(~Fp, ~p [ai])- [] 

Theorems 4.2 and 4.3 give algebraic spectral sequences having 

the same E2-term (up to reindexing) and converging to the Adams 

and Novikov E2-terms respectively. For p > 2 the former 

collapses, so in that case the spectral sequence of Theorem 4.3 

can be regarded as passing from the Adams E2-term (reindexed) to 

the Novikov E2-term. Presumably (but this has not been proved) 

differentials in this spectral sequence correspond in some way 

to differentials in the Adams spectral sequence. For example, one 

can easily find the Hopf invariant differentials, i.e. those 

originating on the Adams l-line, in this manner. Philosophically, 

Theorems 4.2 and 4.3 imply that for p > 2, any information that 

can be gotten out of the Adams spectral sequence can be obtained 

more efficiently from the Novikov spectral sequence. 

Another way of describing this situation is the following. 

According to the experts (i.e. M. C. Tangora), all known diff- 

erentials in the Adams spectral sequence for odd primes are caused 

by two phenomena. Each is a formal consequence (in some devious 

way possibly involving Massey products [34]) of either the Hopf 

invariant differentials or the relations described by Toda in [70] 

and [71]. In computing the Novikov E2-term via Theorem 4.3 or 

any other method one effectively computes all the Hopf invariant 

differentials in one fell swoop and is left with only the Toda 

type differentials to contend with. Better yet, for p = 3, all 

known differentials in the Novikov spectral sequence are formal 

consequences of the first one in dimension 34 (see [52]). One 

is tempted to conjecture that this is a general phenomenon, i.e. 

that if one knows the Novikov E2-term and the first nontrivial 

differential, then one knows all of the stable homotopy groups 

of spheres. However, apart from limited empirical evidence, we 
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have no reason to believe in such an optimistic conjecture. 

At the prime 2, the relation between the Adams and Novikov 

E2-terms is more distant since the spectral sequence of Theorem 

4.2 does not collapse. In this case, the Adams spectral sequence 

does yield some information more readily than the Novikov spectral 

sequence, and the use of the two spectral sequences in concert 

provides one with a very powerful tool which has, as yet, no odd 

primary analogue. We will illustrate by comparing the two 

through dimension 17, the limit of Zahler's computation [75]. 

Table 2 is a reproduction of Zahler's table, with the added 

feature that all elements are named. We will explain this notation 

s,t is finite except for in the next two sections. Each E 2 
o,o 

E 2 = Z(2 ). Each circle in the table represents an element of 

order 2 and each square represents an element of higher order. 

Specifically, e2i/j has order 2 j. The diagonal lines going up 

and to the right indicate multiplication by ~i = n, and an 

arrow pointing in this direction indicates that multiplication 

by all powers of ~I is nontrivial. The arrows going up and to 

the left indicate differentials, and the broken vertical lines 

indicate nontrivial group extensions. 

We now show all the differentials and extensions in the two 

tables can be deduced by purely algebraic arguments, i.e. without 

resorting to any geometric considerations. 

First, observe that there is no room for any nontrivial 

differentials in the Adams spectral sequence below dimension 14. 

(The multiplicative structure precludes nontrivial differentials on h 1 

and h I h3.) There are also no nontrivial group extensions in this 

range other than those implied by proposition 2.8. (The fact that 

2n = 0 precludes nontrivial extensions in dimensions 8 and 9.) 

One also knows that 3 = 0 because 3 = nv3 = (nv) 2 = 0. 

One can deduce that n3o = 0, instead of the element detected by Phi, 

by comparing the filtrations of the corresponding elements in the 
3 

Novikov spectral sequence. The former ~I ~4/4 has filtration 4, while 

the latter, ~1 ~S' has filtration 2. 
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We can use this information to determine the behavior of 

the Novikov spectral sequence up to dimension 14. The fact that 

73 = Z/8 implies the nontrivial group extension in dimension 3. 
4 

The fact that 74 = 75 = 0 implies d3~3 = ~i' and that 

t t+4 
d3~I~3 = ~I for all t e 0. The group extensionindimension9 is trivial 

t = 
because 279 = O. The triviality of q3o implies d3~i~6/3 

3+t 
~i ~4/4' and the cyclicity of 711 implies a nontrivial group 

extension in dimension ii. The triviality of 712 and 713 imply 
t 3+t 

d3~i~7 = ~i ~5" 

In dimensions 14 through 17, the Novikov spectral sequence 

resolves ambiguities in the Adams spectral sequence as well as 

vice versa. The former now yieldso ~14 = 2Z/2, which forces the 

Adams differentials d2h 4 = hoh ~ and d3hoh4 = hod o. The Adams 

spectral sequence then yields ~15 = Z/2 • Z/32, so the group 

extension 15 of the Novikov spectral sequence is trivial. The 

latter then shows that q annihilates the elements of order 2 

in ~15' so d2e ° = h~d o._ On the other hand, n does not 

annihilate the generator of order 32, so there is the indicated 

nontrivial multiplicative extension in the Adams spectral sequence. 

In dimension 17, it can be shown that ~9 and p2h I detect the 

same element,o (see Theoremo 5.12) so 2~12 = 0 and the Adams 

elements h~elv and h~e °~ must be hit by differentials. This last 

fact also follows from the multiplicative structure, i.e. 

d3eo = h2do implies d3hleo = h~do = h~eo, so d3fo = hoe o. 

Just how far one can carry this procedure and get away with 

it is a very tantalizing question. It leads one to the following 

unsolved, purely algebraic problem: given two Adams type spectral 

sequences converging to the same thing, find a way to use one of 

them to get information about the other and vice versa. The low 

dimensional comparison above is based on simplistic, ad hoc 

arguments which are very unlikely to be strong enough to deal with 

the more complicated situations which will undoubtedly arise in 

higher dimensions. 

For further discussion of this point, see 57. 
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~5 First Order Phenomena in the Novikov Spectral Sequence 

We will not say exactly what we mean by nth order phenomena 

until ~8. Roughly speaking, first order phenomena consist of 

Im J and closely related homotopy elements as described by Adams 

in [I]. The manner in which the Novikov spectral sequence detects 

these elements was apparently known to Novikov [44] and was 

sketched by Zahler [75]. Most of the detailed computations 

necessary were described in §4 of [39] but some of the proofs we 

present here are new. 

We begin by computing the Novikov l-line. First, we need 

some notation. For a BP.BP-comodule M, EXtBP.B P (BP., M) will 

be denoted simply by Ext M. If M = BP X, then Ext M is the . 
E2-term of the Novikov spectral sequence for ~.X. 

Proposition 5.1 If M is a cyclic BP.-module, Ext M = 

H (M_~Bp J ~BP.) o [] 
a¢ 

A proof can be found in ~I of [39]. 

Now Ext I BP., the Novikov l-line, is a torsion group, so 

we begin by finding the elements of order p. Consider the short 

exact sequence 

(5.2) 0 ÷ BP. --~> BP. ÷ BP./(p) ÷ 0. 

Ext°BP,/(p) ÷ ExtlBp.. The image of the connecting homomorphism 6o: ~ 

is, by elementary arguments, the subgroup of elements of order p. 

The following result was first published by Landweber [21] and 

can be derived easily from Theorem 3.14. 

Theorem 5.3 Let I n = (p, Vl,...Vn_l) c BP.. Then 

BP./I n is a BP.BP-comodule and Ext°BP./In ~ ~p[Vn]. [7 

Corollary 5.4 E x t ° B P . / ( p )  = ~ p ~ l  ] and ~oV~ ~ a t ~ 0 c ExtlBp. 

for all t > 0. 
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Proof The nontriviality of ~t follows from the long 

exact sequence in Ext associated with (5.2), in which we have 

Ext°BP. ÷ Ext°BP./(p) --9-°> ExtlBp.. 

o 
is monomorphic because Ext BP.~ In positive dimensions, ~o 

is trivial. [] 

In [75] ~t denotes the generator of Ext l'2t BP* for 

p = 2, but our s t is an element of order 2 in that group. 

All that remains in computing ExtlBp., the Novikov l-line, 

is determining how many times we can divide ~t by p. From §4 

of [39] we have 

Theorem 5.5 

(a) For p > 2, ~. e Ext l'qt BP. is divisible by t but 

not by pt, i.e. Extl'q~BP. = Z/(p l+v(t)) where pV(t) is the 

largest power of p which divides t. 

(b) For p = 2, ~t c Extl'2tBp. is divisible by 

I 
t but not by 2t if t is odd or t = 2 

2t but not by 4t if t is even and t > 2; 

i.e. 

Extl,2tBp. = 

Z/(2) if t is odd 

Z/(4) if t = 2 

Z/(22+v(t)) if t is even and t > 2. 

It is easy to see that ~t is divisible by pV(t) From 

the fact that nRV I = v I + pt I (using Hazewinkel's v I (Theorem 

i t 
3.13) and Theorem 3.12), one computes 6or ~ = ~[(v I + Ptl )t - Vl] 

which is easily seen to be divisible by pV(t). 
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We can now explain part of the notation of Table 2. ~t/i 

denotes a certain element (defined precisely in [39]) of 

order pi in Extl'qtBp.. In particular, ~t/l = at and 

i-i 
P ~t/i = ~t" 

As in ~2, one can ask which of these elements are permanent 

cycles. 

Theorem 5.6 (Novikov [44]) For p > 2, Im J maps 

isomorphically to ExtlBp., i.e. each element of ExtlBp. is 

a nontrivial permanent cycle and in homotopy pa t = 0 for all 

t>O. [] 

S o The homotopy elements ~t c ~qt-I can also be constructed 

inductively by Toda brackets, specifically ~t = <~t-l' P~' al> [72]. 

As Table 2 indicates, the situation at p = 2 is not so 

simple. Let x t ~ Extl'2tBp. be a generator. Then from [39] ~4 

we have 

s 
Theorem 5:~ For all s > 0 and t # 2, ~ixt generates 

a nontrivial summand of order 2 in Extl+2'2s+2tBpg°~ 

(This is a consequence of Theorem 5.10 below.) Note that this 

says that for t > 2s + 2 all the groups ~s,t which are not 
~2 

trivial by sparseness (Corollary 3.17) are in fact nontrivial. 

The behavior of these elements in the spectral sequence and 

in homotopy is as follows. 

Theorem 5.8 In the Novikov spectral sequence for p = 2 

(a) d 3 ~ a4t+3 = a~ +3 a4t+l and d 3 a~ x4t+6 = 3+s x4t+4 

for all s, t >_ 0. 

(b) For t > 0, the elements x4t, ~i x4t' 2 x4t' a4t+l' ~le4t+] 
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2 
~l~4t+l and 2x4t+2 = ~4t+2/2 are all nontrivial permanent 

cycles, as are ~I' ~' ~ and ~4/2 = x2" In ~.S °, we have 

2 
2~4t = 2e4t+l = 0 and 2~4t+2 = ~l~4t+l , i.e. there is a non- 

trivial group extension in dimension 8t + 3. 

(c) The image of the J-homomorphism is the group generated 
2 

by x4t, ~I x4t' ~i x4t and ~4t+2/2 (which generates a Z/8 
2 

summand with 4a4t+2/2 = al~4t+l ). 

This result says that the following pattern occurs in the 

Novikov E -term as a direct summand for all k > 0o 

i X4k 

0 

~IX4k 

2 
~iX4k 

~4k+l 

~l~4k+l 

2 
~l~4k+l 

t 
I 
I 
I 
I 
I 
! 
| 

I 
i 
I 
I 

a4k+2/2 

8k-i 8k 8k+l 8k+2 8k+3 

t-s~+ 

where all elements have order 2 except ~k+2/2 which has order 

4 and X4k which has order 2 v(k)+4, and the broken vertical 

line indicates a nontrivial group extension. 

In [27] the elements x4t' ~4t+l and ~4t+2/2 are denoted 

by Pt' ~t and St respectively, while Adams [i] denotes ~4t+l and 

~l~4t+l by ~St+l and ~8t+2 respectively. 
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Parts (a) and (b) seem to have been known to Novikov [44] 

as was the fact that Im J maps onto the groups indicated in 

(c). The fact that this map from Im J ~anisomorphism requires the 

Adams Conjecture [1],[49]. We will prove (a) and a weaker form of 

(b), namely we will only show that the elements said to have 

order 16 or less are permanent cycles. Another proof of this 

fact, based on a comparison of the Adams and Novikov spectral 

sequences can be derived from Theorem 5.12. The J homomorphism 

can be used to show that x4t is a permanent cycle. 

Our proof is based on an analysis of the mod 16 Moore 

spectrum, which we denote by M(16). As it is somewhat involved, 

the reader may want to proceed directly to ~6. 

We begin with Table 3, which displays the Novikov spectral 

sequence for M(16) through dimension 13. The notation is the 

same as in Table 2, from which Table 3 can be easily deduced. 

Circles represent elements or order 2, and squares represent 

elements of higher order. The orders of I, v, b, o, v, ~6/3 

and d are 16, 4, 4, 16, 16, 8 and 8 respectively. There are 

various multiplicative relations among these elements, e.g. 

2d = vb, v~2t+l = ~2t+5' and v~4t+2/3 = e4t+6/3 which are easy 

to find. 

The element v e Ext°'8Bp./16 has the property that v t # 0 

for all t > 0. Since v is a permanent cycle and M(16) is a 

ring spectrum, nontrivial differentials and group extensions 

respect multiplication by powers of v. We wish to describe which 

elements of Ext BP./16 are not annihilated by any power v, 

i.e. to describe Ext BP./16 mod 'v-torsion' The methods of 

[39] (also sketched in ~8) make this possible. Let 

R = (Z/16) [V,~l]/(2~l). Then we have 

Theorem 5.9 In dimensions e6, Ext BP./16 mOd v-torsion 

is the R-module generated by c, v, va, d, o, ao, ~6/3 and ~7 

with relations 2c = 2va = 8d = 2ao = 8~6/~ = 2~ 7 = 0. (Hore precisely, 
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-i 
this describes the image of Ext BP./16 in v Ext BP./16 in 

dimensions e6. In dimensions 0 through 5 one also has the 

elements I, a, ~ (note v~ = 2~6/3), b (vb = 2d) and ~3 

(v~ 3 = e 7 ) • ) 

This can be deduced from the corresponding statement about 

Ext BP./2, namely 

Theorem 5.10 Ext BP./2 modulo Vl-torsion (i.e. the image 

of Ext BP./2 in Vl I Ext BP./2) is ~2 [Vl' ~i' ~]/(2). 

The method of proof for this result will be discussed in §8. 

In order to relate the behavior of the spectral sequence for 

M(16) to that for the sphere, we need the Geometric Boundary 

Theorem. 

Theorem 5.11 (Johnson-Miller-Wilson-Zahler [20]) Let 

w--f> X -g--> Y h > ~w be a cofibre sequence of finite spectra 

such that BP.(h) = 0, i.e. such that 

g* 
0 > BP.W f* > BP.X -~--> BP.Y > 0 

* *+I is exact, and let ~: Ext BP.Y + Ext BP.W be the connecting 

homomorphism. Then if x ~ Ext BP~Y is a permanent cycle detecting 

x c ~.Y, then 6(x) c Ext BP.W is a permanent cycle detecting 

h.(x)~ ~ ~.[W. 

3 
Now we can prove Theorem 5.8 a) In ~.M(16) we have ~i a = 0 

so 6(x~ vta)3 = ~i~4t+13 = 0. Hence by Theorem 5.11, a differential 

must hit el~4t+l , and by Sparseness (Corollary 3.17) and our 

knowledge of ExtlBp. (Theorem 5.5 (b)), the only possibility 

d3~4t+3- 

Fort he otherf~mily of d3's, one can show that ~o (a~ v t) = 

~i x4t+4' so by Theorem 5.11, ~ x4t+4 must be hit by a differential, 
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and the only possible source is ~4t+6/3" 

For the group extensions in (b), we have ~ v t a = 4v t b 

in ~,M(16), so ~o(~ v t a) = ~ ~4t+l detects twice the 

element by ~o(2Vt b) = e4t+2" For the permanent cycles of order 

16 or less, we have in ~,S ° ~4t+4/4 = ~vt o, ~4t+l = ~ vt a 

and ~4t+2/2 = ~vt v, This concludes the proof of our weakened 

form of theorem 5.8. 

We draw the reader's attention to the basic idea of the 

above proof. Theorem 5,9 provides a lever with which we can 

extrapolate the low dimensional information of Table 3 to the 

infinite amount of information contained in Theorem 5.8. This 

kind of extrapolation is typical of applications of the Novikov 

sepctral sequence to stable homotopy; a finite amount of low 

dimensional information can often be made to yield an infinite 

number of nontrivial homotopy elements. 

We conclude this section with a discussion of how the phenomena 

of Theorem 5.8 appear in the Adams spectral sequence. It follows 

from Corollary 5.4 that any element of order 2 in Ext BP, can be 

'multiplied' (modulo some indeterminacy) by v I. In other words, 

the IF2[Vl]-module structure of Ext BP,/2 translates to a Massey 

<x, 
\ 

product operator which sends an element x of order 2 to 2, ~I #, 

In a similar way, the fact that Ext ° BP,/16 c (Z/16) [v~ + 8VlV 2] 

leads to an 8-dimensional periodicity operator which sends an 

element x of order 16 to <x, 16, ~4/4 ~. 

This is readily seen to correspond to the Adams periodicity 

operator Px = <x, h4 o' h3> discussed in ~2. The important difference 

is that the Novikov operator preserves filtration, while the Adams 

operator raises filtration by 4. With this in mind, one can prove 

2 
Theorem 5.12 The Novikov elements ~4t/4' ~i x4t' ~i x4t' 

~4t+l' ~l~4t+l and ~4t+2/2 correspond to (i.e. detect the same 
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homotopy elements as) the Adams elements pt-I h3 ' pt-I Co , 

pt pt pt hi pt-i Co , hi , h~ and h 2 respectively for all t e I 

(the last three elements correspond for t e 0.) 

Hence the Adams spectral sequence shows that these elements 

are permanent cycles, since they lie along the vanishing line ([5]) 

and the Novikov spectral sequence shows that they are nontrivial. 

For future reference, we mention the behavior of the elements 

of Theorem 5o10. 

Theorem 5.13 In the Novikov spectral sequence for the mod 

2 Moore spectrum M(2) 

(a) d3 v4t+2 = ~31 v4t , d3 v4t+3 = ~13 v 4t+l, d 3 v4t+2~ = 

3 v4t+3 = ~ v4t+l ~i v4t~ and d 3 o o. 

The elements ~ o e v 4t+j are nontrivial (b) permanent 

cycles for 0-<i~2, s = 0, I; j = 0, i; t >- 0. 

(c) The homotopy element detected by 2 as v~t (~ = 0, i; 
c 4t+l 

t e 0) is twice that detected by o v I 

4t+l All homotopy elements implied by (b) except o v I have 

order 2. D 

This can be proved by using Theorem 5.10 and comparing the 

Adams and Novikov spectral sequences for M(2) through dimension 8. 

We will need the following odd primary analogue 

Theorem 5.14(a) For p e 3, Ext BP./p modulo Vl-torsion 

(i.e. the ima§e of Ext BP./p in Vl I Ext BP.(p) is 

~p [v I, el]/(~). 
t (b) Each element v~ and ~i Vl a (t e 0) is a nontrivial 

permanent cycle and the corresponding homotopy element has order p. D 
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~6 Some Second Order Phenomena in the Novikov Spectral Sequence 

for Odd Primes 

As remarked at the beginning of ~5, we postpone our definition 

of nth order phenomena until ~8. Unlike the first order phenomena, 

which was essentially described by Adams in [I], second and 

higher order phenomena are still largely unexplored. The infinite 

families of elements discovered in recent years by Larry Smith 

[63].[64], Oka [45],~6], [47] and Zahler [76] are examples of what 

we call second order families. The y-family of Toda [73] is an 

example of a third order family. We will comment on this family 

and the unusual publicity received by its first member at the end 

of the section. The elements nj recently constructed by Mahowald 

[28] presumably fit into not one but a series of second order 

familities, as we shall describe in ~7. 

We will treat the odd primary case first because it is simpler. 

We begin by considering the computation of Ext2BP. o (See the 

beginning of §5 for the relevant notation.) As in the case of 

ExtlBp., it is a torsion group of finite type, and the subgroup 

of order p is precisely the image of no: ExtlBp./p + Ext2Bp.. 

By Theorem 5.3, ExtlBp./p is a module over IFp [Vl]. Its structure 

modulo Vl-torsion is given by Theorem 5.14. It can also be 

t E x t l B p , / p  shown that for each t e 0, Vle I ~ is the mod p 

reduction of an element and ExtlBp., and therefore in ker ~o" 

Hence we are interested in elements of ExtlBp./p which are 

vl-torsion, i.e. which are annihilated by some power of v I. To 

get at the Vl-torsion submodule of Ext!BP./p, we first study 

the elements which are killed by v I itself. 

To this end, consider the short exact sequence 

v 1 
(6.1) 0 ÷ ~qBP./p > BP./p ÷ BP./I 2 * 0 , 

* I+* and let 81: Ext BP~/I 2~ ÷ Ext BP~/I I= be the connecting homomor- 

phism.  By Theorem 5 . 3 ,  E x t ° B P , / I  2 = F p [ V 2 ] ,  so we g e t  
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Proposition 6.2 There are nontrivial elements 

B t -= 61(v 2) ~ Ext l'(p+l)tq-~ BP./p for all t > O• 

To finish computing ExtlBp./p, one needs to determine how 

many times one can divide B t by v I. We let Bt/i denote an 

i-i 
element (if such exists) such that v I Bt/i = Bt/1 -z Bt. It 

is clear then that the Vl-torsion submodule of ExtlBp./p is 

generated over IF by such elements. 
P 

Theorem 6.3 For all primes p, 

0 # B • ~ Extl'(sp1(p+l)~)qBP./p exists for all s > 0, 
spl/j 

and 0 < j ~ pi. (Precise definitions of these elements are 

given in the proof below•) 

i _> 0 

Proof: The basic fact that we need is that nR(V 2) 

+ vlt ~ - v~t I mod p (Theorem 3.14)• From this, we v 2 get 

i i i i i 
sp e Ext°BP./(p v~ ) for n R v~ ~ v~ mod (p, v~ ), so v 2 

s e 0• Let ~ be the connecting homomorphism for 
i 

P 
(6• 4) 0 ÷ lqPiBP./p v--I > BP./p ÷ BP./(p, v~ i) + 0 . 

sp i i 
Then we can define B • • = 61(v 2 ) and for j < p 

i . spl/Pl ' ' 

B i . = v~ -JB i/pi " 
sp /J sp 

The interested reader can verify that this method of defining 

elements in ExtlBp./p is far easier than writing down explicit 

cocycles in ~BP./p. 

that Theorem 6.3 says that ExtlBp./p contains Note ~p- 

vector spaces of arbitrarily large finite dimension. For example 
1 3 

~p2/p2 and Bp2_p+l are both in Ext 'p qBP./p• 



442 

Unfortunately, Theorem 6.3 is not the best result possible. 

Further v I divisibility does occur, e.g. one can define 

B2p2/p2+p_l. The complete computation of ExtlBp,/p for p > 2 

(and of ExtlBp,/In for all p and n > i) was first done 

by Miller-Wilson in [40] and redone (including the case p = 2, 

n = i) in ~5 of [39]. However, the elements of Theorem 6.4 will 

suffice for our purposes here. 

The next and final step in the computation of Ext2Bp, is 

to determine how much 6o(6i/j) (which will also be denoted by 

6i/j) can be divided by p. This was done for p > 2 in §6 

of [39] and announced in [38]. The computational difficulties 

encountered there are formidable. The problem is still open 

for p = 2, but it is certain that the methods of [39], if pushed 

a little further, will yield the answer. 

We denote by Bi/(j,k) a certain element with pk-iBi/(j,k ) = 

~i/(j,l) ~ ~i/j" Then along the lines of Theorem 6.3 we have 

Theorem 6.5 For all primes p 

0 # B ~ Ext2'(spZ(p+I)-tpJ)qBP~ exists for all 

spi/(tp j ,l+j) 

s > 0 and 0 < t < pi-2j (an will be defined in the proof below), 

except 61 = 0 for p = 2. 

Proof From n R v 2 ~ v 2 + Vlt ~_ - v~t I_ mod p (Theorem 3.14) 

we obtain nR(V~ 2j+k 
p2j+k pj+k 

) ~ v 2 mod (pl+j, Vl ), and since 

pJ pJ pl+j 
n R v I = v I + Ptl, we have n R v I ~ v I mod . It follows 

p2j+k j+k pj 
that v 2 c Ext°BP./(p l+j, v~ ) and v I ~ Ext°BP.(pl+j). 

Let ~o and ~i be the connecting homomorphisms for the short 

exact sequences 



443 

l+j 
0 ÷ BP. P > BP. > BP./(p l+j) ...... > 0 

and 

0 ÷ ~qpJ+kBp./(pl+j) 

pj+k 
v I - - >  BP./(pl+j ) BP./(pl+j v pj+k ÷ , )÷0 

respectively. Then we can define 

= - pJ (pk-t) ~ sP 2j+k 
Ssp2j+k/(tp j ,l+j) ~o(Vl l(V2 ))" 

The nontriviality of these elements can be seen by looking 

at the long exact sequences in Ext associated with the short 

exact sequences above. The one nontrivial fact that is needed is 

that the image of the mod (p l+j )  r e d u c t i o n  Ext lBp.  ÷ Ext lBp/(p l+ j )  
consists of elements which are not annihilated by any power of 

v~ J . 

Again, this is not the best result possible, but these elements 

will suffice for our purposes. 

Note that Theorem 6.5 says that Ext2Bp. contains elements 

of arbitrarily high order, but that they occur very infrequently. 

is the first element of order p2, and For example, Bp2/(p,2) 

and it is in dimension 130 for p = 3, and ~p4/(p2,3) , the first 

element of order p3 is in dimension 1258 for p = 3. 

Theorem 6.5 gives most of the additive generators of Ext2Bp. 

for p > 2. This group is much more complicated then ExtlBp.. 

As the reader might guess, the question to ask now is which 

elements in this group are permanent cycles in the Novikov spectral 

sequence. This problem is far from being solved. Some progress 

has been made for p e 5. The current state of the art is 
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Theorem 6.6 For p e 5, the following elements in Ext2Bp, 

are permanent cycles, and the nontrivial homotopy elements they 

detect have the same order as the corresponding elements in the 

E2-term. 

(a) (Smith [63]) ~t for t > O. 

(b) (Smith [64], Oka [45], Zahler [76])Bpt/j for t > 0 

and 0 < j < p. 

(c) (Oka [46]) 

(d) (oka [45]) 

(e) (Oka [47]) 

(f) (Oka [47]) 

Btp/p for t e 2. 

Btp2/j for t > 0 and I ~ j ~ 2p - 2 

Btp2/j for t e 2. and i ~ j ~ 2p 

Btp2/(p,2) for t e 2. 

Some of the elements in (b) - (e) were initially denoted by 

or p with various subscripts. On the other hand, we have 

Theorem 6.7 [56] For p e 3 and i e i the element 

Bpi/p i c Ext2Bp, is not a permanent cycle; in fact d2p_iBpi/p i 

~iB~i_i/pi_l_ modulo certain indeterminacy. 

The special case i = 1 was first proved by Toda [70], [71] 

and it gives the first nontrivial differential in the Novikov 

spectral sequence for p e 3. 

Theorem 6.6 (a) is definitely false for p = 3, for we have 
+ 2 

e.g. d5B 4 = _~IBI33/3 ~ 0. We hope to have more to say about 

this in [52]. Tentative computations indicate for example that 

(for p = 3) B t is a permanent cycle iff t ~ 4, 7 or 8 mod 9. 

We will now sketch the proof of Theorem 6.6 (a), as the proofs 

of (b) - (f) are all based on the same idea. Let M(p) denote 
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the mod p Moore spectrum. Then applying BP homology to the 

cofibration 

(6.8) S ° P > S ° > M(p) 

yields the short exact sequence (5.2). In this instance, we say 

6.8 realizes (5.2). In [63] Smith shows that for p e 3 there 

is a map ~: ~qM(p) ÷ M(p) which in BP homology realizes 

multiplication by v I. We denote the cofibre of ~ by M(p, Vl), 

so the cofibration 

~q M(p) ~ > M(p) > M(p, v I) 

realizes the sequence 6.1. (It is not hard to see that this cannot 
l 

be done for p = 2, but one can construct the spectrum M(2, v~)° 

Our proof of Theorem 5.8 is based on the existences of 

M(16, v~ + 8VlV2).) 

Next, Smith shows that for p e 5 there is a map 

~: ~+l)qM~,Vl) + M(p, v I) which realizes multiplication by v 2, 

so the cofibration 

(p+l)q M(p, v I) B > M(p, v I) + M(p, Vl, v 2) 

realizes the short exact sequence 

(p+l)q v 2 
(6.9) 0 ÷ BP./I 2 > BP./I 2 ~ BP./I 3 ÷ 0 • 

(The map B does not exist for p = 3.) 

Then it is not hard to show (with two applications of 

Theorem 5.11) that the composite 

÷ ~t 
st(p+l)q ~t(p+l)q M(p) ÷ ~t(p+l)q M(p, v I) > M(p, v I) ÷ ~q+l M(p) + S q+2 

(where the first two maps are inclusions of low dimensional skeleta, 
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and the last two maps are projections obtained by pinching low 

dimensional skeleta) is a homotopy element detected by 

B t ~ Ext2Bp.. 

In other words, the existence of B t e ~.S ° is based on 

the existence of the map B: ~(p+l)q M(p, v I) * M(p, Vl). As in 

~5, the low dimensional information required to construct this 

map can be extrapolated by the Novikov spectral sequence into an 

Xnfinite amount' of information, i.e. the existence and nontriviality 

of 6 t for all t > 0. 

Parts (b) and (d) of Theorem 6.6 are based in a similar manner 

on the existence of maps 

- - 2p-2. [p(p+l)q M(p, v~ i) + M(p, v~ i) and I p2(p+I)q M(p, v I ) ÷ 

M(p, v~ p-2) 

p2 
realizing multiplication by v~ and v 2 respectively. For (c) 

the complex M(p, v~, v~) does not exist (its existence would 

contradict Theorem 6.7 for i = i), 

M(p v~ 2p , , v 2 ) and M(p, vi, vzP ) 

which yield the indicated elements. 

in a similar manner. 

but Oka [46] constructs 

from self-maps of M(p, v~) 

Parts (e) and (f) are proved 

We should point out that the 4-cell and 8-cell complexes 

M( ) above are not necessarily unique, i.e. a complex whose BP- 

homology is a cyclic BP.-module is not in general characterized 

by that module. What is essential to the argument above is the 

existence of a self-map of the appropriate 4-cell complex which 

realizes mu2tiplication by the appropriate power of v 2. 

In a similar spirit, Theorem 6.7 implies 

Theorem 6.10 [56] For p _> 3 and i >_ I there is no 

connective spectrum X such that BP.~X = Be./(p, v~ l, v~i). D 
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In [73] Toda considers the existence of complex 

M(p, v I, v2"''v n) which he calls V(n) and which he characterizes 

in terms of their cohomology as modules over the Steenrod algebra. 

(Such a description of the M( )'s considered above will not 

work unless one is willing to resort to (much) higher order 

cohomology operations. We regard this fact as another advantage 

of BP-homology.) He proves 

Theorem 6.11 (Toda [73]) For p e 7 the complex V(3) = 

M(p, v I, v 2, v 3) exists and is the cofibre of a map 

y: ~ (p2+p+I)q M(p, v I, v 2) ÷ M(p, Vl, v2). 

Let 62 be the connecting homomorphism for the short exact 

sequence (6.9). (Recall that 6 ° and 61 are the connecting 

homomorphisms of(5.2) and (6.1) respectively.) Then we can define 

(6.12) ¥t = ~0~162(v~ ) ~ Ext3'(t(p2+p+l)-(P+2))q BP, • 

From Theorem 6.10, we derive 

Corolary 6.13 For p e 7 the elements Yt e Ext3Bp* are 

permanent cycles for all t > 0. 

However, the nontriviality of these elements is far from 

obvious. The status of Y1 was the subject of a controversy 

[48], [68], [3] which attracted widespread attention [43], [60]. 

In order to settle the question for all t one must know Ext2Bp, 

in all of the appropriate dimensions. Having determined the 

latter, we proved 

Theorem 6.14 [38] [39] For p e 3, the element 7t ~ Ext3Bp* 

is nontrivial for all t > 0. D 

The y's are an example of what we call third order phenomena. 
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~7. Some Second Order Phenomena in the Novikov Spectral Sequence 

for the Prime 2. 

We must assume that the reader is familiar with the notation 

introduced in the previous two sections. Our current knowledge 

of 2-primary second order phenomena is in some sense even sketchier 

than in the odd primary case. Nevertheless, the situation is 

quite tantalizing, especially in light of Mahowald's recent result 

(Theorem 2.12) on the existence of the elements nj. We will see 

below thatthe Novikov spectral sequence provides a very suitable 

setting for understanding these elements and the families of 

elements that could possibly derive from them. 

As in!i6, we begin with a discussion of Ext2Bp., this time 

for p = 2. It ~ atorsion group, so to get at the elements of 

order 2, we look at ExtlBp./2. It is a module over F 2 Iv I] 

(Theorem 5.3) and its structure modulo vl-torsion is given by 

Theorem 5.10. Unlike the odd primary case, not all of the v I- 
1 2 torsion free part of Ext BP~/ is in the kernel of the 

'" 1 connecting homomorphism 6o: Ext BP./2 ÷ Ext2Bp.. Indeed, the 

summand of Ext2Bp. indicated in Theorem 5.7 is precisely the 

image under d ° of the summand of ExtlBp./2 given by Theorem 

5.10. We call the former summand the first order part of Ext2Bp.. 

(For p > 2, the first order part of Ext2Bp. is trivial.) 

The second order part of Ext2Bp. is that summand associated 

(via division by powers of 2) with the image under d ° of the 

submodule of ExtlBp./2. This submodule contains all vl-torsion 

the elements provided by Theorem 6.4 (which is valid for all primes) 

as well as some more exotic elements which are described in §5 

of [39]. 

Similarly Ext2Bp. itself contains the summand of Theorem 

5.7, the subgroup (which is not a summand) provided by Theorem 

6.5 (which is also valid for all primes) and some additional elements 

which have not yet been determined. For emphasis, we repeat that 

the determination of Ext2Bp. for p = 2 is still an open problem, 

but the methods of [39] are surely adequate for solving it. 
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We now wish to relate certain elements of Theorem 6.5 to 

elements in the Adams E2-term. The manner in which elements of 

the two E2-terms correspond to each other is difficult to define 

precisely, although in many cases it is easy enough to see in 

practice. Proposition 4.1 gives a correspondance only between 

nontrivial permanent cycles, and the homomorphism ¢: Ext BP, ÷ 

Ext A (F2, IF2) is nontrivial only on a very small number of 

elements. Most of the elements in Ext2Bp, correspond in some 

way to elements of higher filtration in the Adams E2-term. 

A working (but not completely precise) procedure for matching 

elements in the two E2-terms is the following. Theorem 4.2 and 

4.3 give us two spectral sequences having essentially the same 

E2-term and converging to the Adams and Novikov E2-terms respect- 

ively. Hence we can take an element in the Novikov E2-term, 

represent it(not uniqu~yin general) by some permanent cycle in the 

E2-term of Theorem 4.3, and then see what happens to the corres- 

ponding element in the E2-term of Theorem 4.2. The latter may 

fail to be a permanent cycle in the spectral sequence of Theorem 

4.2. This would probably mean that the element we started with 

is not a permanent cycle in the Novikov spectral sequence (and 

that it supports a differential in some way related to a differential 

of Theorem 4.2), but this assertion has not beenproved. It could 

also happen that the element we get is the target of a differential 

in 4.2. This might mean either that our original element is the 

target of some Novikov differential or that it 'corresponds' to 

an element having higher Adams filtration than originally estimated. 

Of course, this procedure could be reversed (i.e. we could 

start with Adams elements and try to get Novikov elements), and 

the same remarks would apply. As we tried to indicate at the end 

of §4, making all of this more precise, especially nailing down the 

possible method of computing both Adams and Novikov differentials 

is an important unsolved algebraic problem. 

With the above reservations in mind, we make 
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Assertion 7.1 For p = 2 

(a) ~ = hi+ I and 2 i / 2  2 i / 2  i -  = h l h i +  2. 

a theorem. ) 

(This is 

Under the procedure outlined above, 

(b) for j > i e 0 -2 i 
' B2J/2 j 

h2i-]o hl+i h2+j and B21+i/(2i 2 ) 

corresponds to 

.2i-2 
corresponds to n o hl+ i h3+i; 

(c) for t e 0, 

i 
pt 2 -I 

h o hl+ i h2+ j 

i 
pt h 2 -2 

o hl+i h3+i" 

B . corresponds to 
2J/2J-2i-4t 

and B21+i/(2i_4t,2) corresponds to 

Argument: 

[ 3 9 ] .  

For (b) and (o), recall the definition of ~2J/2J_2i. 

Let 6 ° and ~I be the connecting homomorphisms for the short 

exact sequences 0 ~ BP. 2_~_> BP. ~> BP./2 ~ 0 and 

~2 j+l v l 
0 ÷ BP./2 ..... > BP./2 ÷ BP./ , v ~ 0 

r e s p e c t i v e l y .  Then v 2 e Ext  ° BP, /  , v and ~ 2 J / 2 J _ 2 i  

60 ~1 2 ( s ee  Theorem 6 . 4 ) .  
k ~ 

The s p e c t r a l  s equence  o f  Theorem 4 .3  has  o b v i o u s  a n a l o g u e s  
/ 4 \  

converging to Ext BP./(2, v~), and Ext BP./2, and we can 
\ 

An odd primary analogue of (a) is proved in ~9 of 
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compute 

We have 61 

and 6o(V~ i 

corresponds to 

i 

element h 2 - 1  
O 

B2J/2J_2i in the E2-terms of those spectral sequences. 

2 j 2 j÷l modulo terms with higher I-filtration, 
v 2 = t 1 

~ Iv2J 1 ) i j+l i 2i 21+J 
~I\/~2 - ~o v~ t~ _ 22 -i tl i t I . Since 2 

2 i 
h ° and t I corresponds to hl+i, we get the 

hl+ i h2+ j as desired. The argument for 

$21+i/(2i,2 ) is similar. 

For (c) we use the fact (see the discussion preceeding Theorem 

5.12) that multiplication by v~ in Ext BP,/2 and Ext BP,/4 

corresponds to the Adams periodicity operator P. 

The discussion that follows will be of a more hypothetical 

nature. We will see how various hypotheses relating to the Arf 

invariant elements and Mahowald's nj (Theorem 2.12) imply the 

existence of new families of homotopy elements. We list our 

hypothesis in order of decreasing strength. 

Hypothesis 7.2i (i e 2) B2i/2 i 

and the corresponding homotopy element can be factored 

S 6'2i ÷ ~6"2i ~M , v 12i) B > M(2 2£i ÷ $2+2"2i, v I , i e.. 

map B realizes multiplication by v 2 . 

is a permanent cycle and 

the 

Hypothesis 7.3 i B2i/2 i is a nontrivial permanent cycle and 

the corresponding homotopy element has order 2. 
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Hypothesis 7.4 i B2i/2i_ I is a permanent cycle and the 

corresponding homotopy element has order 4 and is annihilated by v. 

Theorem 2.12 and 7.1(a) imply that there is a permanent 

cycle equal to . . modulo ker 4. It appears unlikely that ~21/21_1 
the error term in ker ~ would affect any of the arguments that 

follow, so we assume for simplicity that it is zero. 

Similarly, if the Arf invariant element oi+ I exists it is 

detected by ~2i/2 i modulo ker ©. 

Hypothesis 7.2 is known to be false for i = 2, and we have 

included it mainly to illustrate the methodology in as simple a 

way as possible. The statement that $ . . extends to M(2 v~) 
21/2 l 

or, by duality that it coextends, is equivalent to the Todd bracket 

[69]° <~2i/2i, 2~, ~2i' 2~} being defined and trivial. Mahowald 

has shown the following substitute for it. 

Theorem 7.5 There is a map $: ~48 M(4, v~) + M(4, v~) 

which realizes multiplication by v~. 

Corollary 7.6 The elements ~8t/(4,2) c Ext 2'48t-8 BP, for 

all t > 0 are nontrivial permanent cycles and the corresponding 

homotopy elements have order 4. 

Proof: The argument is similar to that of Theorem 6.6 (which 

is discussed following Theorem 6.7). We use Theorem 5.11 twice 

the show that the composite 

$48t ÷ ~48t M(4, v~) ~_~t> M(4, v4)~ S I0 
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is detected by 68t/(4,2)" 

~38 S° S ° From 7.1 we see that ~8/(4,2) c ~16/(4,2) c 786 and 

~32/(4,2) c ~182 S° are detected in the Adams spectral sequence by 

2 Ph~ h 4 o " h o h 3 h5, h 6, and p3 h14 h5 h7 respectively 

Proposition 7.7 

(a) Hypothesis 7.2 i implies 7.3 i. 

(b) Hypothesis 7.3 i implies 7.4 i. 

Proof: (a) If B2i/2 i extends to M , v I , it certainly 

extends to M(2) and so has order 2. 

(b) If 62i/2 i has order 2, then it extends to a map 

f: ~ 4"2i-2 M(2) + S ° . By Theorem 5.13, v I ~ ~2M(2) has order 

4, ~v I = 0 and f,(vl) = B2i/2i_ I by Theorem 5.11 and an easy 

calculation. 

• = ~B i i c ~ i+2 Note that the proof of (b) shows 292i/2z_ I ± 2 /2 2 

if 7.3 i holds. 

S ° 

The Hypothesis 7.2 - 7.4 provide homotopy elements as follows 

Theorem 7.8 

(a) If 7.2 i holds, then the following elements are (not. 

necessarily nontrivial) permanent cycles . • 
: Bs.21/21 4t_a ° ~ 

for s > 0; a = 0, i; a = 0, i; j = 0, I, 2. 

(b) If 7.3 i holds, then the elements of (a) with s = i are 

permanent cycles. 
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(c) If 7.4. holds, all of the elements of (b) except 
i 

and a1~2 i /2  i ,  a r e  permanent  c y c l e s .  
B2i/2 i' 

Proof: 

(a) Let ~: Z6"2i 12 2i) ~ 2i) M , v I ÷ M , v I be the map of 7.2, 

Then 6 is the composition 
s.2i/2 i 

÷ -<s 2i) ~ s (2 2ii ÷ $2+2i+I S 6"2i Z 6"2i M 2, v I --> M , v I 

The other elements are obtained by composing the elements of ~j4(2) 

given by Theorem 5.13 with the map 

6s'2i ~ 6s'2i M , v I ÷ S . M(2) ÷ M , v I 

(b) Compose the elements of Theorem 5.13 with the extension 

of B2i/2 i to M(2). 

(c) The indicated elements with a = I can be obtained by 

composing the extension of ~2i/2i_ 1 with the appropriate elements 

given by the mod 4 analogue of Theorem 5.13. The element ~$2i/2 i 

is 2B2i/2i I by the proof of Proposition 7.7(b); oB2i/2i 

and 62i/2i_ 4 can be realized as homotopy elements of order 2 by 

the Toda brackets [69] < . . v q> and { 3 2, q> 
~21/21_i, , 62i/2i_ I, q , 

respectively. (The latter bracket is defined because q3~ . . = 
21/21-I 

4v~2i/2i_ I = 0.) Then the remaining elements can be obtained 

by composing the extensions of these two to M(2) and composing 

with the elements of Theorem 5.13. 
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The above theorem does not assert that the indicated elements 

are nontrivial, and some of them are likly to be trivial, such 
2 ~ < 2i-2 • " ~i . . with 2 i-3 t (since 

as ~iBs.2!/21_4t , Bs.21/21_4t 

in this is divisible by 2 by Theorem 6.5). The 
s.2i/2i-4t 

possible nontriviality is the subject of work in progress which 

will be reported elsewhere. At the moment, we can offer the 

following. 

Theorem 7.9 The elements 

2 c Ext 4 BP, 
~l~s.2i/2i_4t_ 1 ~= 

s.2i/2i-4t-i ~s.2i/2i_4t 

Novikov E2-term. 

for 

~I " e Ext3 BP~. 
~s.2i/21 4t_l 

0 ~ t < 2 i-2 (as well as 

and 

Ext 2 BP,) are nontrivial in the 

Corollary 7.10 If the elements of Theorem 7.9 are permanent 

cycles, then the corresponding homotopy elements are nontrivial. 

Proof: By sparseness (Corollary 3.17) a Novikov differential 

hitting any of these elements would have to originate on the 0-line 

or the l-line. The former is trivial in positive dimensions, and 

all differentials originating on the latter were accounted for in 

theorem 5.8. 

We cannot resist commenting on how hard it would be to prove 

similar results using only the Adams spectral sequence. The proof 

of Theorem 7.9 is based on methods (see ~8) which have no counter- 

part in the Adams spectral sequence. Even if somehow one could 

prove that the corresponding elements are nontrivial in the Adams 

E2-term, they would have such high filtration that it would be 

extremely difficult to show that they are not hit by nontrivial 
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Adams differentials. The low filtration of elements in the Novikov 

spectral sequence makes it a very effective detecting device. 

We remind the reader that none of the Hypotheses 7.2 - 7.4 

are currently known to be true for all i. This is unfortunate in 

view of the following 

Theorem 7.11 If for some i _> 2 

(i) M , v I is a ring spectrum, 

(ii) B2i+i/(2i 2 ) is a permanent cycle and 

(iii) the corresponding homotopy element has order 4, then 

k for s > O; and ~I ~ the elements Bs- 2i+I/(4j , 2) s- 2i+l/4j -I 

k 0, i, 2; i e 2 and 0 < j < 2 i-2 = are nontrivial permanent 

cycles. 

Proof: The nontriviality follows from Corollary 7.10. Let 

4 4 
B: 548 M(4, Vl) ÷ M(4, Vl) be the map of Theorem 7.5 and 

~: ~8 M(4) ÷ M(4) a map which realizes multiplication by v~. 

Then consider the following commutative diagram. 

6 2 i+l i , 2 i- 2 

a2i-l_l 

~22+1/(22 , 2) 

> ~M(4) 
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All of the maps except f and ~ are obvious; the last 

two maps of the two top rows are cofibre sequences, i.e. 

._ 2i-i 
~oj = ~ ok = 0. The map f exists because ~2i+i/(2i 2 ) 

has order 4. The commutativity of the diagram implies that 

2i-i 
of = 0, so g exists. The multiplicative structure of 
2 i 

M(4, v I )can be used to extend s to ~ 6"2i+I MI4, v~i). Thus 

we obtain a map 

2 i+ 1 
which realizes multiplication by v 2 We can then obtain the 

desired homotopy elements by composing 

2i+I / 2i' 6s (4) ÷ $2+2i+i 6s.2 i+l ÷ ~6s. M~4,Vl J 2 i M(4) > M ,v 1 

with the appropriate elements of ~, N(4)~ 0 

Hence the hypotheses of Theorem 7.11 imply that a large 

collection of elements in Ext2Bp, are permanent cycles. Mahowald 

has an argument for the first hypothesis [77], but the status of 

the others is less clear. Theorem 7.11 has the following analogue. 

Theorem 7.12 Let p -> 5. If for some i -> i 

(i) M , v - is a ring spectrum, 

(ii) . . is a permanent cycle and 6pl/pl_ 1 

(iii) the corresponding homotopy element has order p, then 

i . is a permanent cycle (and the corresponding homotopy 
sp /J 

i 
element of order p) for all s > 0, i ~> i and 0 < j < p . 
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Proof: We argue as in Theorem 7.11, replacing Theorem 7.5 

with the assertion that there is a map 

realizing multiplication by v~. This map has been constructed 

by Smith [64] and Oka [45] in the proof of Theorem 6.6(b). 

We hope to extend this result to p = 3 in [52]° Oka has 

recently announced [78] a proof of the first hypothesis for all 

The second is likely to follow from an odd primary analogue of 

Mahowald's Theorem 2~12. The third hypothesis, however, could 

be quite difficult to prove. 

i. 
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~8 Morava stabilizer Algebras and the Chromatic Spectral Sequence 

(the inner mysteries of the Novikov E2-term) 

The reader may well wonder how it is possible to prove results 

such as Theorems 5.7, 5.9, 5.10, 5.14(a) and 7~9, which state 

that various systematic families of elements in the Novikov E2-term 

are nontrivial. The basic technique in each case is to study 

the map Ext BP. ÷ Ext BP./I n (where n = 1 for the results 

of ~5 and n = 2 for Theorem 7.9). The latter group is surprisingly 

easy to compute due to two startling isomorphisms (Theorems 8.4 

and 8.7 below) originally discovered by Jack Morava [42]. It was 

this computability that motivated us to do the work that led to 

[39]. Morava's work implies that there is a deep, and previously 

unsuspected connection between algebraic topology and algebraic 

number theory. Where it will eventually lead to is anybody's guess. 

After describing how to compute Ext Vn I BP./In, we will set 

up the chromatic spectral sequence (and explain why it is so named), 

which is a device for feeding this new found information into the 

Novikov E2-term in a most systematic way. We will see that it 

reveals patterns of periodicity (which may carry over to stable 

homotopy itself; see [53]) hitherto invisible. In particular, 

we will define nth order phenomena in the Novikov spectral sequence. 

In order to get at Ext BP./I n, we need to define some 

auxillary objects. Let K(n). = Q for n = 0 and IFp Iv n, --vnl ] 

for n > 0, and make it a BP.-module by sending v i to zero for 

i # n (where v o = p). For n > 0, K(n). is a graded field 

in the sense that every graded module over it is free. Next, define 

(8.1) K(n)~. K(n) = K(n).~ fiBP~. BP'BP~BP~ K(n) , 

where the tensor products on the left and right are with respect 

to the BP.-module structures on BP.BP induced by q L and n R 

respectively (see ~3). K(n). K(n) where a coassociative, non- 

cocommutative coproduct A from BP.BP. Theorem 3.14 allows us 
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to describe its algebra structure very explicitly. 

Theorem 8.2 [58] K(0). K(0) = Q and for n > 0, 

(vnn in) K(n).[tl, t2--.]/ t~ v~ t . 

~F A(ti ) = ~F ti~t~ i, where 
i~0 i,j~0 

group law over K(n). given by the map BP. ÷ K(n). 

3.10). 

K(n). K(n) = 

The coproduct A is given by 

t = 1 and F is the formal 
o 

(see Theorem 

Proof: By definition (8.1) K(n).~K(n),, = v-IBp...BP/n ,, (vi'nRVi: i#n)- 

In K(n).K(n). nRV n = v n and Theorem 3.14 reduces to 

n i 
(8.3) ~F v t~ = ~F vp t. 

ie0 n l ie0 n l 

Each side of (8.3) has at most one formal summand in each dimension, 
pn i 

so we can formally cancel and get Vnt'~ = vPn t.l by induction 

on i. The formula for A follows from Theorem 3.12. 

Now K(n).K(n) is a Hopf algebra over K(n)., so we can 

define its cohomology EXtK(n).K(n ) (K(n).. K(n).) in the usual 

manner. We now come to our first surprise. 

Theorem 8.4 [37] 

Ext v-ln BP*/In, -~ EXtK(n).K(n) (K(n)j.,,. K(n).)., D 

Since K(n). K(n) is much smaller than BP.BP, this result 
v~ 1 simplifies the computation of Ext BP./I n considerably. In 

~3 of [58] we filter K(n).K(n) in such a way that the associated 

bigraded object is the dual of the universal enveloping algebra 

of a restricted Lie algebra. In [51] we use this filtration to 

construct a May spectral sequence [32] converging to the desired 
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Ext group. We use this device then to compute Ext vnlBp./In- 

for n = 0, i, 2, and Ext s Vn I BP./I n for all n and s = 0, 1,2. 

However, deeper insight into the structure of K(n).K(n) 

is gained as follows. Forgetting the grading, make ~p into 

a K(n). module by sending v to i, and let 
n 

(8.5) S(n). = K(n).K(n)~K(n) * ]Fp. 

The S(n). is a commutative, noncocormnuative Hopf algebgra over 

with algebra structure 
P 

n 

(8.6) S(n). ~ ~p[t I, t2..-]/(t ~ ti). 

Its dual S(n) (defined in the appropriate way in [58]) is called 

the nth Morava stabilizer algebr@ S(n). This brings us to our 

second surprise. 

Theorem 8.7 [58] S(n)~pn ~ ~pn [S n], the group algebra 

over ~pn of a certain pro-p group S n, to be described below. 0 

v - l B p . ( i n ) ~ K ( n )  * * Corollary 8.8 [58] Ext ~ ~ Hc(Sn; ~p) , n p 

where the latter is the continuous cohomoiogy of S with constant 
N 

mod p coefficients. 

In ~2 of [58] we also show how it is possible to recover 

the bigrading of Ext Vn I BP./I n from H~(Sn; Fp ). For continuous 

cohomology of p-adic groups, see Lazard [24]. 

Let Z denote the p-adic We will now describe the group S n. p 

integers, and IF n the field with pn elements. There is a 
P 

complete local ring W(IF n ) (called the Witt ring of IF n ) 
P P 

which is a degree n extension of Zp obtained by adjoining an 
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element ~ satisfying ~ pn-I = i. The residue field of W(F n ) 
P 

is F n and the extension W(~ n): Zp is a lifting of the 
P P 

extension ~pn : IFp. The Frobenius automorphism (which sends 

x to x p) of the latter lifts to an automorphism of W(F n ) 
P 

over Z which sends ~ to ~P. 
P 

Let E n = W(~ n) <<T}}/(T n - p), i.e. the power series 
P 

ring over ~ n on one noncommuting variable T with T n = p 
P 

and T~ = ~PT. Then E is a noncommutative complete local ring 
n 

with maximal ideal (T) and residue field ~ n" It is a simple 
P 

algebra over Z with rank n 2 with Z -basis {~XT3: 0~i, j<n}. 
P P 

Tensoring it with the p-adic numbers Qp (the field of fractions 

of Zp) gives D n which is a division algebra with center Qp and 

1 
Hasse invariant -. (The latter is an invariant in Q/Z which 

n 

classifies such division algebras). 

Definition 8.9 The group S is the group of units in E 
n n 

which are congruent to 1 modulo (T). 

Details of the above description can be found in [58]. 

Examples 8 i0 For p = 2 S = Z x the group of units in 
• .~I 2' 

Z 2, Hence S 1 ~ Z/2 • Z 2 and H~(SI; IF 2) = ]F2[x, y]/(y2) with 

x, y ¢ H I. Corollary 8.8 leads to Ext Vl I BP,/2 = IF2[Vl,Vll,~l,O]/(o ~. 

8.11 For p > 2, Z xp ~ IF xp ~ Zp-- Z/(p-l) ¢ Zp and 

Hc(SI; IFp) = IFp[X]/(x 2) with x ~ H I . Corollary 8.8 leads to 

Ext Vl I BP,/p -- IFp [Vl, vll , ~i]/(~) 
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8.12 For p e 5, 

dim H~(S2; Fp) 

I for i = O, 4 

3 for i = i, 3 
= 

4 for i = 2 

0 for i > 4 

so Ext BP,/I 2 contains a free Fp [v 2] module on 12 generators. 

8.13 For p =2, S 2 contains the quaternion group G of 

order 8 and the restriction map Hc(S2; ~2) + H (G; S 2) is onto. 

8.14 For all primes p, Sp_ 1 contains a subgroup of order 

p and the restriction map H (Sp_l; ~p) ÷ H (Z/(p); ~p) is onto. 

In [56] we use this map to show that for p > 2 all monomials in 

the elements ~pi/pi are nontrivial. This fact is used in the 

proof of Theorem 6.7. 

Details of Examples 8.10 - 8.13 can be found in [51]. A use- 

ful reference for the continuous cohomology of p-adic Lie groups 

is Lazard [24], from which Morava has extracted 

Theorem 8.15 [41] If (p-l)~n, Hc(Sn; IFp) is a Poincare 

duality algebra of dimension n 2. If (p-l) In, there is an 

element b E H*(SI; ~p) such that H c(Sn; ~Fp ) is a finitely 

generated free module over IFp [b]. 0 

You may well ask why Theorems 8.4 and 8.7 are true. We will 

try to give a heuristic explanation. Recall that a groupoid is 

a small category in which every morphism is an equivalence. The 
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relevant example of such is the category F(R) of p-typical form 

group laws (Definition 3.8) over a commutative Z(p)-algebra R, 

and strict isomorphisms between them. (A strict isomorphism f 

is one with f(x) ~ x mod x2.) Landweber [22] has shown that 

the set of ring homomorphisms from BP.BP to R is in one-to-one 

correspondance with the set of morphisms in F(R), and the various 

structure maps of BP.BP correspond to the various structures of 

the groupoid. Hence BP.BP is a cogroupoid object in the algebras, 

and Haynes Miller [36] has christened such objects HoBf - algebroids 

(a Hopf algebra being a co-group object). 

Loosely speaking. Ext BP. can be thought of as the cohomology 

of the groupoid of formal group laws over BP. which are strictly 

isomorphic to the universal one. The map BP...~ + vnl BP~/I n,~ induces 

a formal group law F n over the latter by Theorem 3.10. and 

Ext Vn I BP./I n can be regarded as ~e cohomology of the groupoid 

-I BP~/in which are strictly isomorphic of formal group laws over v n ,, 

to F n. It can be shown (e.g. 519.4 of [18]) that any such 

formal law is canonically strictly isomorphic to the one F n 

-i BPJin An argument similar to induced by BP. ÷ K(n). ~ v n .. . 

Landweber's shows that HOmRing s (K(n). K(n). R) is the groupoid 

of strict isomorphisms between formal group laws over the Z(p)- 

algebra R induced from the one over K(n).. It follows that 

BP./I n EXtK (n).K (n) Ext vnl and (K(n)., K(n).) are the cohomology 

groups of equivalent (in the sense of equivalence of categories) 

groupoids and are therefore isomorphic. This argument is the idea 

behind Theorem 8.4. The proof given in [37] is less abstract and 

less enlightening. * 

For Theorem 8.7 we set v = 1 and get the Hopf algebra S(n).. 
n 

(Note that K(n).K(n) is a Hopf algebra over K(n)., but a Hopf 

algebroid over IF .) We are now dealing with the groupoid of strict 
P 

isomorphisms of formal group laws over R induced by maps ]Fp+ R. 

* The heuristic proof of Theorem 8.4 described in the second para- 

graph will be made precise in a forthcoming paper by Jack Morava. 
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Since there is at most one such map (there are none unless R is 

an F -algebra) our groupoid is actually the strict automorphism 
P 

group of the induced formal group law over R. In the case 

R = F n' this group is known (~III. 2 of [17] or §20.4 of [18]) 

P 
to be S , whence Theorem 8.7. 

n 

We now turn to the chromatic spectral sequence which was 

first introduced in ~3 of [39]. For the reader's amusement, we 

will try to reconstruct the line of thought which led to its 
i 

formulation. In §5, we observed that all elements of order p 

in ExtlBp. are in the image of the connecting homomorphism for 

the short exact sequence 

i > p i 
(8.16) 0 ÷ BP. P > BP. B ./p > 0. 

We would like to obtain all elements of finite order, and hence 

all of ExtlBp. from a single short exact sequence. We have maps 

of short exact sequences 

i 
> --> p i 

0 ÷ BP. p BP. B ./p + 0 

II +p 

0 ÷ BP~... pi+I>Bp.,... .... > BP~/p i+l~ + 0. 

Taking the direct limit over increasing i we get 

(8.17) 0 ÷ BP. ÷ p-IBp. + BP./p ~ ÷ 0 

i.e. the tensor product of BP. with the short exact sequence 

0 + Z ÷ Q + Q/Z ÷ 0. Since ExtlBp is a torsion group and 

Ext p-IBp. = Q concentrated in dimension 0, we see that the 

o 
connecting homomorphism Ext BP./p + ExtlBp. is an isomorphism 

in positive dimensions. 
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In ~6, we saw that all of Ext2Bp. (unless p = 2, in which 

case we get all of Ext2Bp. not accounted for in ~5) comes from 

o p (pl+i i+j 
Ext B ./ , v~ ) by composing the connecting homomorphisms 

of (8.16) and 
i+j 

~qpi+j pi+j 
(8.18) 0 ÷ BP,/pl+i v~ > BP,/p l+i ÷ BP./(p l+i, v I ) ÷ 0 

Moreover, there are maps 

0 ÷ BP,~p l+i ~li+j i+j . ...... ~-qP BP~p i+l 
, ~r~ i~j " . ÷ I~ -~ BP./(pl+i i+j ) ÷0 

~ii l+i+j 
0 ÷ BP~JP l+i ) ÷ 0. 

v~P-l)p i+j 

_qpl+i+j BPjpi+ I ~-qpl+i+J BPJ (pl+i, ~l+i+j 

We can take the direct limit over increasing i and j and get 

~iBp./p~ (8.19) 0 ÷ BP./p ~ ÷ v • ÷ BP./(p~, v I) ÷ 0 

and it can be shown that for p > 2 the map (composition of 
o ~ Ext2Bp. connecting homomorphisms of 8.17 and 8.19 Ext BP./(p ~, Vl) ÷ 

is also an isomorphism in positive dimensions. Computing an 

Ext ° is easier than computing an Ext 2 because there are no 

coboundaries to worry about. 

We can splice 8.17 and 8.19 together to get a 4-term exact 

sequence 

÷ p-iBp . .. P (8.20) 0 ÷ BP. ÷ VlIBp.~÷ B ./(p~, Vl)= ÷ 0. 

Then Ext BP. can be computed in terms of the Ext groups of the 

other comodules by means of a baby spectral sequence. Moreover, 
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Ext p-IBp, and Ext vllBp./p- can be computed by the theory of 

Morava stabilizer algebras discussed above. The latter Ext group 

is closely related to 

sequence 

(8.21) 0 ÷ vllBp./p 

Ext vllBp./p ~ since there is a short exact 

IBp~/D~p_+ -I ÷ v~ ~ . v I BP./p > 0 . 

Hence the Ext groups for the two middle terms of 8.20 are known, 

and we are left with computing Ext BP./(p , Vl). Unfortunately, 

this seems to be just as difficult as computing Ext BP. itself, 

so we have gained very little unless we iterate the procedure as 

follows. 

Define BP.BP-comodules 

N ° = BP., M n = VnlN n (where 

in the short exact sequence 

(8.22) 

M n and N n inductively as follows. 

v ° = p) and N n+l is the quotient 

0 ÷ N n + M n + N n+l ÷ 0 

For n = 0, i this sequence is 8.17 and 8.19 respectively, and one 

could write N n = Be./(p ~, v~ "''Vn_l) and M n = v~IBp./(p =, v[" "Vn_l)- 

We can splice together the short exact sequences 8.21 to get a long 

exact sequence 

(8.23) 0 ÷ BP. + M ° ÷ M I ÷ M 2 --" 

Theorem 8.24. The long exact sequence 8.23 leads to a first 

quadrant cohomology spectral sequence converging to Ext BP. with 

E~ 't = ExttMSo 0 

We call this the chromatic spectral sequence. We should warn 

the reader that it is not at all suited for computing the Novikov 

E2-term through a given range of dimensions. We have other devices 

for that [54], [55]. Its purpose rather is to highlight certain 

structural patterns in Ext BP., as will be explained below. 
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s, t have actually been computed. Very few of the groups E 1 

In [39], we compute ~l-0't (which is just one copy of Q in 

l,t for all primes, and 2,0 for 0,0 in dimension 0) and E 1 E 1 E 1 
p > 2. (We also found the corresponding groups ES't.) It would 

oo 

_2,0 for p = 2) 2,t (especially Sl be interesting to know all of E 1 

and E~ '0. It is certainly possible (but not easy) to compute 

these groups with existing techniques. Our knowledge of 

Extv21Bp,/12, which originally motivated the whole program, has 

hardly been exploited, 

To relate Ext M n to Ext vnlBp,/In, we need to define some 

more comodules M~. -i which we do by induction on i by setting 
i ' 

~O = Mn and ~i+l -I is the kernel of the short exact sequence 

• n-i-I Mn_i v. + Mn._ i l ÷ 0 (8.25) 0 ÷ ~i+l + i l " 

For n = I and i = 0, this is the sequence 8.21, and one could 

write 

M~-i = v~iBp~/(p Vl' V~, ~ -. i ~, ' "''Vi-l' Vi+l "Vn-l)" 

In particular, M 0 IBp,/I n. n = Vn Each sequence 8.25 gives a long 

exact sequence of Ext groups and a Bockstein type spectral sequence 
.n-i-i Mn-i going from Ext ~i+l to Ext ~" . Hence, once can in principle 

compute Ext M n in terms of Ext vnlBp,/!n, which is accessible 

through the theory described earlier in this section. In particular, 

Theorem 8.15 gives a vanishing parabola (instead ofavanishing line), 

i.e. 

if 

s,t Corollary 8.26 In the chromatic spectral sequence, E 1 

(p-l)~s and t > s 2. D 

= 0 

We will now explain how one can use this apparatus to prove 

Theorems 5.10 and 5.14(a). One can set up chromatic spectral sequences 
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converging to Ext BP./I n by making a long exact sequence 

(8.26) 0 ~ BP/I n ÷ M 0 ÷ M l ÷ ~ "-" 
n n 

where the M i are defined by 8.25. One gets 
n 

Theorem 8.27 The long exact sequence 8.26 leads to a first 

quadrant cohomology spectral sequence converging to Ext BP./I n 
s,t = ExttM s. with E 1 n 

In the case n = I, we know E~ 't = ExttvllBp./p (Examples 

8.10 and 8.11). The image of Ext BP./p in this group is simply 

the subgroup of elements which are permanent cycles in the chromatic 

spectral sequence. The differentials originating in E 0't are 
. . . . .  0,t n0 t r 

easily computed in this case ana one ~inas m2 = m ' . 

Finally, we will explain our use of the word 'chromatic' and 

define nth order phenomena in the Novikov E2-term. Both terms refer 

to various types of periodicity. Ext vnlBp./In is Vn-periodic, 

i.e. multiplication by v n induces an isomorphism between 

ExtS'kvnlBp./In and ExtS'k+2(pn-l)vnlBp./In • Moreover, M n can 

be shown to be a direct limit of comodules in which increasinly 

large powers of v n give similar isomorphisms. Specifically, 

p2i p (n-l)i 
Proposition 8.28 Let Mn(i) = vnlB~/(p l+i, v~ i,n v2 ,'''Vn_l ). 

Then multiplication by P(VlV~ '" "vn-l)n-i (P-I)pi gives a comodule 

map Mn(i) + Mn(i+l) and M n = lim Mn(i). Moreover, 
ni 

v p e Ext°Mn(i) and multiplication by it gives an isomorphism 
n 

ExtS,kMn(i) = + ExtS,k+2pni(pn-l)Mn(i). 

Since Ext M n = l!m Ext Mn(i), the former is a direct limit 

of periodic groups under periodic maps, or weakly periodic. Each 

element of Ext ~(i) can be multiplied nontrivially by v~ nl and 
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we call this property nth order periodicity. 

Hence by nth order phenomena in the Novikov spectal sequence 

we mean the subquotient of Ext BP. isomorphic to E n'* (the nth 

column) of the chromatic spectral sequence, and related homotopy 

elements. 

We see then that the filtration of Ext BP. for which the 

chromatic E -term is the associated trigraded group, is the 

filtration by order of periodicity. The chromatic spectral sequence 

is like a spectrum in the astronomical sense that it resolves the 

Novikov E2-term Ext BP. into various 'wavelengths' or orders 

of periodicity. Hence the adjective 'chromatic'. 
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