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On the nonexistence of elements of
Kervaire invariant one

By M. A. HiL, M. J. HopkiNs, and D. C. RAVENEL

Dedicated to Mark Mahowald

Abstract

We show that the Kervaire invariant one elements 6; € my;+1_5S° exist
only for 7 < 6. By Browder’s Theorem, this means that smooth framed
manifolds of Kervaire invariant one exist only in dimensions 2, 6, 14, 30,
62, and possibly 126. Except for dimension 126 this resolves a longstanding
problem in algebraic topology.
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1. Introduction

The existence of smooth framed manifolds of Kervaire invariant one is
one of the oldest unresolved issues in differential and algebraic topology. The
question originated in the work of Pontryagin in the 1930’s. It took a definitive
form in the paper [43] of Kervaire in which he constructed a combinatorial 10-
manifold with no smooth structure, and in the work of Kervaire-Milnor [44]
on h-cobordism classes of manifolds homeomorphic to a sphere. The question
was connected to homotopy theory by Browder in his fundamental paper [13],
where he showed that smooth framed manifolds of Kervaire invariant one exist
only in dimensions of the form (2/*! — 2) and that a manifold exists in that
dimension if and only if the class

n? e Ext¥ " (2/2,2/2)
in the Es-term of the classical Adams spectral represents an element
9]' S 7T2j+1,250

in the stable homotopy groups of spheres. The classes h? for j < 3 represent
the squares of the Hopf maps. The element 6; € 730S° had been observed
in existing computations [54], [59], [62], and was constructed explicitly as a
framed manifold by Jones [41]. The element 05 € 70 S® was constructed by
Barratt-Mahowald and Barratt-Jones-Mahowald; see [9] and the discussion
therein.

The purpose of this paper is to prove the following theorem

THEOREM 1.1. For j > 7, the class h? € Exti{QjH(Z/Q,Z/Q) does not

represent an element of the stable homotopy groups of spheres. In other words,
the Kervaire invariant elements 0; do not ewist for j > 7.

Smooth framed manifolds of Kervaire invariant one therefore exist only
in dimensions 2, 6, 14, 30, 62, and possibly 126. At the time of writing, our
methods still leave open the existence of 6.

Many open issues in algebraic and differential topology depend on knowing
whether or not the Kervaire invariant one elements 6; exist for j > 6. The
following results represent some of the issues now settled by Theorem 1.1. In
the statements, the phrase “exceptional dimensions” refers to the dimensions
2, 6, 14, 30, 62, and 126. In all cases the situation in the dimension 126 is
unresolved. By Browder’s work [13] the results listed below were known when
the dimension in question was not 2 less than a power of 2. Modulo Browder’s
result [13] the reduction of the statements to Theorem 1.1 can be found in the
references cited.

THEOREM 1.2 ([44], [48]). Exzcept in the siz exceptional dimensions, every
stably framed smooth manifold is framed cobordant to a homotopy sphere.
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In the first five of the exceptional dimensions it is known that not ev-
ery stably framed manifold is framed cobordant to a homotopy sphere. The
situation is unresolved in dimension 126.

THEOREM 1.3 ([44]). Let M™ be the manifold with boundary constructed
by plumbing together two copies of the unit tangent bundle to S***1 (so m =
4k +2), and set X1 = OM™. Unless m is one of the siz exceptional dimen-
sions, the space M™ /%™t is a triangulable manifold that does not admit any
smooth structure, and the manifold X1 (the Kervaire sphere) is homeomor-
phic but not diffeomorphic to S™ 1.

In the first five of the exceptional cases, the Kervaire sphere is known to
be diffeomorphic to the ordinary sphere, and the Kervaire manifold can be
smoothed.

THEOREM 1.4 ([44], [48]). Let ©,, be the group of h-cobordism classes of
homotopy n-spheres. Unless (4k + 2) is one of the siz exceptional dimensions,

N 0
Opt2 ~ Tap42S

and

|O4k41] = ax ‘71'4k+150

)

where ag, is 1 if k is even, and 2 if k is odd.

THEOREM 1.5 ([8]). Unless n is 1, or one of the siz exceptional dimen-
sions, the Whitehead square [Lni1,tni1] € Tont1S™ T is not divisible by 2.

1.1. OQOutline of the argument. Our proof builds on the strategy used by
the third author in [72] and on the homotopy theoretic refinement developed
by the second author and Haynes Miller (see [75]).

We construct a multiplicative cohomology theory 2 and establish the fol-
lowing results.

THEOREM 1.6 (The Detection Theorem). If 0; € majt1_5S° is an ele-
ment of Kervaire invariant 1, and j > 2, then the “Hurewicz” image of 0; in
Q22" (pt) is nonzero.

THEOREM 1.7 (The Periodicity Theorem). The cohomology theory € is

256-fold periodic: For all X,
OF (X) ~ Q*+256(X).

THEOREM 1.8 (The Gap Theorem). The groups Q(pt) are zero for 0 <
1< 4.

These three results easily imply Theorem 1.1. The Periodicity Theorem
and the Gap Theorem imply that the groups Q¢(pt) are zero for i = 2 mod 256.
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By the Detection Theorem, if 6; exists, it has a nonzero Hurewicz image in
Q22 (pt). But this latter group is zero if j > 7.

1.2. The cohomology theory ). Write C), for the cyclic group of order n.
Our cohomology theory (2 is part of a pair (2, Q) analogous to the orthogonal
and unitary K-theory spectra KO and KU. The role of complex conjugation
on KU is played by an action of Cg on (g, and {2 arises as its fixed points. It
is better to think of Qg as generalizing Atiyah’s Co-equivariant Kg-theory [7],
and in fact Qg is constructed from the corresponding real bordism spectrum,
as we now describe.

Let MUy be the Cy-equivariant real bordism spectrum of Landweber [45]
and Fujii [26]. Roughly speaking one can think of MUg as describing the
cobordism theory of real manifolds, which are stably almost complex manifolds
equipped with a conjugate linear action of Co, such as the space of complex
points of a smooth variety defined over R. A real manifold of real dimension
2n determines a homotopy class of maps

S MUR,

where nps is the direct sum of n copies of the real regular representation of
C5, and S™2 is its one point compactification.
Write

MU((CS)) = MUr AMUr AN MUg N MUy

for the Cg-equivariant spectrum gotten by smashing four copies of MUy to-
gether and letting Cs act by

(a7 b7 C? d) H (J’ a? b7 C)'

Very roughly speaking, MU(®8) can be thought of as the cobordism theory
of stably almost manifolds equipped with a Cg-action, with the property that
the restriction of the action to Cy C Cg determines a real structure. If M is a
real manifold, f then M x M x M x M with the Cg-action

(a,b,c,d) v+ (d,a,b,c)

is an example. A suitable Cg-manifold M of real dimension 8n determines a
homotopy class of maps

gnes _y MU((CS)),

where npg is the direct sum of n copies of the real regular representation of
Cs, and S™8 is its one point compactification.
To define 2 we invert an equivariant analogue

D strs s p(Cs)
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of the Bott periodicity class and form the Cg-equivariant spectrum Qg =
D 'MUCs), (In fact £ works out to be 19.) The cohomology theory € is
defined to be the homotopy fixed point spectrum of the Cg-action on g.

There is some flexibility in the choice of D, but it needs to be chosen in
order that the Periodicity Theorem holds, and in order that the map from
the fixed point spectrum of Qg to the homotopy fixed point spectrum be a
weak equivalence. It also needs to be chosen in such a way that the Detection
Theorem is preserved (see Remark 11.14). That such an D can be chosen with
these properties is a relatively easy fact, albeit mildly technical. It is specified
in Corollary 9.21. It can be described in the form M x M x M x M for a
suitable real manifold M, though we do not do so.

1.3. The Detection Theorem. Since the nonequivariant spectrum (g un-
derlying Qg is complex orientable, the inclusion of the unit S° — Q induces a
map

Extf\’jU*MU(MU*, MU,) = m_sS°

| |

HS(Cg;T('tQ@) = 7Tt_SQ

from the Adams-Novikov spectral sequence to the Cs homotopy fixed point
spectral sequence for m,€2. In Section 11.3.3 we give an ad hoc construction of
this spectral sequence, conveniently adapted to describing the map of Es-terms.
It gives the horizontal arrow in the diagram of spectral sequences below:

Cg homotopy
fixed point
spectral sequence

Adams-Novikov
spectral sequence

|

Classical Adams
spectral sequence.

The Detection Theorem is proved by investigating this diagram and follows
from a purely algebraic result.

THEOREM 1.9 (Algebraic Detection Theorem). If

2,20+1

T e EXtMU*(MU

) (MU, MU,)

is any element mapping to h? in the Eo-term of the classical Adams spectral
sequence, and j > 2, then the image of x in H?(Cg; mei+1€00) is nonzero.
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The restriction j7 > 2 is not actually necessary, but the other values of j
require separate arguments. Since we do not need them, we have chosen to
leave them to the interested reader.

To deduce the Detection Theorem from the Algebraic Detection Theorem
suppose that ¢; : S22 60 g map represented by h? in the classical
Adams spectral sequence. Then 6; has Adams filtration 0, 1 or 2 in the Adams-
Novikov spectral sequence, since the Adams filtration can only increase under
a map. Since both

Ext)? v (MU, MU.) and  Ext}2 7t (MU., MU,)

are zero, the class 6; must be represented in Adams filtration 2 by some element
x that is a permanent cycle. By the Algebraic Detection Theorem, the element
z has a nontrivial image b; € H?(Cg; my+1(20), representing the image of 6; in
moi+1_9€). If this image is zero, then the class b; must be in the image of the
differential

ds : HO(Cg;TI'Qj-H,lQ@) — H2(08;7T2j+19@).

But 750420 = 0, so this cannot happen.

The proof of the Algebraic Detection Theorem is given in Section 11. The
method of proof is similar to that used in [72], where an analogous result is
established at primes greater than 3.

1.4. The slice filtration and the Gap Theorem. While the Detection The-
orem and the Periodicity Theorem involve the homotopy fixed point spectral
sequence for €2, the Gap Theorem results from studying g as an honest equi-
variant spectrum. What permits the mixing of the two approaches is the
following result, which is part of Theorem 10.8.

THEOREM 1.10 (Homotopy Fixed Point Theorem). The map from the
fized point spectrum of Qg to the homotopy fized point spectrum of Qg is a
weak equivalence.

In particular, for all n, the map
71'589@ — WnQ%CS = 7,5

is an isomorphism, in which the symbol WSS Qo denotes the group of equivariant
homotopy classes of maps from S™ (with the trivial action) to Qg.

We study the equivariant homotopy type of (lg using an analogue of the
Postnikov tower. We call this tower the slice tower. Versions of it have ap-
peared in work of Dan Dugger [22], Hopkins-Morel (unpublished), Voevodsky
[81], [82], [83], and Hu-Kriz [37].
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The slice tower is defined for any finite group G. For a subgroup K C G,
let px denote its regular representation and write

~

S(m,K):GJrI/}SmpK, m € Z.
Definition 1.11. The set of slice cells (for G) is
{S(m,K),>"'S(m,K) | m e Z, K C G}.

Definition 1.12. A slice cell S is free if it is of the form G4 A S™ for some
m. An isotropic slice cell is one that is not free.

We define the dimension of a slice cell S by
dim S(m, K) = m|K]|,
dim X715 (m, K) = m|K| — 1.

Finally the slice section P™X is constructed by attaching cones on slice cells
S with dim S > n to kill all maps S — X with dim S > n. There is a natural
map

P"X — P"lX.

The n-slice of X is defined to be its homotopy fiber P X.

In this way a tower { P" X}, n € Z is associated to each equivariant spec-
trum X. The homotopy colimit holi%mn P"X is contractible, and hoyLnn P*X
is just X. The slice spectral sequence for X is the spectral sequence of the slice
tower, relating m. P X to m.X.

The key technical result of the whole paper is the following.

THEOREM 1.13 (The Slice Theorem). The Cg-spectrum PPMU(C8) s
contractible if n is odd. If n is even, then P,?MU((CS)) is weakly equivalent
to HZ AW, where HZ is the Eilenberg-Mac Lane spectrum associated to the
constant Mackey functor Z, and W is a wedge of isotropic slice cells of dimen-
ston n.

The Slice Theorem actually holds more generally for the spectra MU (Con))
formed like MU(C8) using the smash product of 25~1 copies of MUg. The
more general statement is Theorem 6.1

The Gap Theorem depends on the following result.

LEMMA 1.14 (The Cell Lemma). Let G = Con for somen # 0. If S is an
isotropic slice cell of even dimension, then the groups W]?HZ A S are zero for
—4 <k <O.

This is an easy explicit computation, and it reduces to the fact that the
orbit space S™P¢ /G is simply connected, being the suspension of a connected
space.



8 M. A. HILL, M. J. HOPKINS, and D. C. RAVENEL

Since the restriction of pg to a subgroup K C G is isomorphic to (|G/K|)pk,
there is an equivalence

SMPG A (G+ I/}Snpk) ~ Gy I/}S(ner'G/K')pK.

It follows that if S is a slice cell of dimension d, then for any m, S™PG A S
is a slice cell of dimension d + m|G|. Moreover, if S is isotropic, then so is
S§mpc A §. The Cell Lemma and the Slice Theorem then imply that for any m,
the group

ﬂiCsSmpcg A MU(Cs)

is zero for —4 < ¢ < 0. Since
7 * Qg = lim S0 MU (),

this implies that
7TZC 8o =mN=0
for —4 < i < 0, which is the Gap Theorem.

The Periodicity Theorem is proved with a small amount of computation
in the RO(Cy)-graded slice spectral sequence for Q. It makes use of the fact
that Qg is an equivariant commutative ring spectrum. Using the nilpotence
machinery of [17], [34] instead of explicit computation, it can be shown that the
groups .{) are periodic with some period that is a power of 2. This would be
enough to show that only finitely many of the 6; can exist. Some computation
is necessary to get the actual period stated in the Periodicity Theorem.

All of the results are fairly easy consequences of the Slice Theorem, which
in turn reduces to a single computational fact: that the quotient of MU (Cs)
by the analogue of the “Lazard ring” is the Eilenberg-Mac Lane spectrum
HZ associated to the constant Mackey functor Z. We call this the Reduction
Theorem, and its generalization to Cyn appears as Theorem 6.5. It is proved
for G = C in Hu-Kriz [37], and the analogue in motivic homotopy theory
is the main result of the (unpublished) work of the second author and Morel
mentioned earlier, where it is used to identify the Voevodsky slices of MGL.
It would be very interesting to find a proof of Theorem 6.5 along the lines of
Quillen’s argument in [71].

During the long period between revisions of this paper, Haynes Miller’s
Bourbaki talk on this material has appeared [63]. We refer the reader there
for an incisive overview.

1.5. Summary of the contents. We now turn to a more detailed summary
of the contents of this paper. In Section 2 we recall the basics of equivariant
stable homotopy theory, establish many conventions, and explain some simple
computations. One of our main new constructions, introduced in Section 2.2.3,
is the multiplicative mnorm functor. We merely state our main results about
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the norm, deferring the details of the proofs to the appendices. Another useful
technique, the method of twisted monoid rings, is described in Section 2.4.
It is used in constructing convenient filtrations of rings, and in forming the
quotient of an equivariant commutative ring spectrum by a regular sequence,
in the situation in which the group is acting nontrivially on the sequence.

Section 4 introduces the slice filtration and establishes many of its ba-
sic properties, including the strong convergence of the slice spectral sequence
(Theorem 4.42), and an important result on the distribution of groups in the
Es-term (Corollary 4.43). The notions of pure spectra, isotropic spectra, and
spectra with cellular slices are introduced in Section 4.6.2. In these terms, the
Slice Theorem states that MU(C2") is both pure and isotropic. Most of the
material of these first sections makes no restriction on the group G.

From Section 5 forward, we restrict attention to the case in which G
is cyclic of order a power of 2, and we localize all spectra at the prime 2.
The spectra MU(E) are introduced, and some of the basic properties are
established. The groundwork is laid for the proof of the Slice Theorem. The
Reduction Theorem (Theorem 6.5) is stated in Section 6. The Reduction
Theorem is the backbone of the Slice Theorem and is the only part that is not
“formal” in the sense that it depends on the outcome of certain computations.

The Slice Theorem is also proved in Section 6, assuming that the Reduc-
tion Theorem holds. The proof of the Reduction Theorem is in Section 7. The
Gap Theorem in proved in Section 8, and the Periodicity theorem in Section 9.
The Homotopy Fixed Point Theorem is proved in Section 10 and the Detection
Theorem in Section 11.

The paper concludes with two appendices devoted to foundations of equi-
variant stable homotopy theory. Two factors contribute to the length of this
material. One is simply the wish to make this paper as self-contained as possi-
ble and to collect material central to our investigation in one place. The other
reason is that our methods rely on multiplicative aspects of equivariant stable
homotopy theory that do not appear in the existing literature. Establishing
the basic properties of these structures involve details of the foundations and
cannot be done at the level of user interface. Because of this, a relatively
complete account of equivariant orthogonal spectra is required.

1.6. Acknowledgments. First and foremost the authors would like to thank
Ben Mann and the support of DARPA through the grant number FA9550-07-1-
0555. It was the urging of Ben and the opportunity created by this funding that
brought the authors together in collaboration in the first place. Though the
results described in this paper were an unexpected outcome of our program, it is
safe to say they would not have come into being without Ben’s prodding. As it
became clear that the techniques of equivariant homotopy theory were relevant
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to our project, we drew heavily on the paper [37] of Po Hu and Igor Kriz. We
would like to acknowledge a debt of influence to that paper and to thank
the authors for writing it. We were also helped by the thesis of Dan Dugger
(which appears as [22]). The second author would like to thank Dan Dugger,
Marc Levine, Jacob Lurie, and Fabien Morel for several useful conversations.
Early drafts of this manuscript were read by Mark Hovey, Tyler Lawson, and
Peter Landweber, and the authors would like to express their gratitude for
their many detailed comments. We also owe thanks to Haynes Miller for a
very thoughtful and careful reading of our earlier drafts and for his helpful
suggestions for terminology. Thanks are due to Stefan Schwede for sharing
with us his construction of MU, to Mike Mandell for diligently manning the
hotline for questions about the foundations of equivariant orthogonal spectra,
to Andrew Blumberg for his many valuable comments on the second revision,
and to Anna Marie Bohmann and Emily Riehl for valuable comments on our
description of “working fiberwise.”

Finally, and most importantly, the authors would like to thank Mark
Mahowald for a lifetime of mathematical ideas and inspiration and for many
helpful discussions in the early stages of this project.

2. Equivariant stable homotopy theory

We will work in the category of equivariant orthogonal spectra [56], [55]. In
this section we survey some of the main properties of the theory and establish
some notation. The definitions, proofs, constructions, and other details are
explained in Appendices A and B. The reader is also referred to the books of
tom Dieck [19], [18], and the survey of Greenlees and May [28] for an overview
of equivariant stable homotopy theory and for further references.

We set up the basics of equivariant stable homotopy theory in the frame-
work of homotopical category in the sense of [23]. A homotopical category is a
pair (C,) consisting of a category C and a collection W of morphisms in C
called weak equivalences containing all identity maps, and satisfying the “two
out of six property” that in the situation

u v w
.—).—).,—)0

if vu and wv are in W, then so are u, v, w, and vwu. Any class W defined
as the collection of morphisms u taken to isomorphisms by some fixed functor
automatically satisfies this property. This holds, in particular, when WV consists
of the weak equivalences in a model category structure. In this situation we
will say that the model structure refines the homotopical category structure
and that the homotopical category is completed to a model category structure.



KERVAIRE INVARIANT ONE 11

Associated to a homotopical category (C,W) is the homotopy category
hoC and the functor C — hoC, characterized uniquely up to unique isomor-
phism by the following universal property: for every category D, and every
functor F': C — D taking the stable weak equivalences as isomorphisms, there
is a unique functor hoC — D making the diagram

C ——hoC

N

D

commute. See Section B.1 for more on the theory of homotopical categories,
for a description of the issues that arise when doing homotopy theory in a
homotopical category, the techniques for dealing with them, and for an expla-
nation of the notion of left (L) and right (R) derived functors appearing in the
discussion below.

2.1. G-spaces. We begin with unstable equivariant homotopy theory. Let
G be a finite group and T¢ the topological category of pointed compactly
generated, weak Hausdorff left G-spaces and spaces of equivariant maps. The
category TC is a closed symmetric monoidal category under the smash prod-
uct operation. The tensor unit is the O-sphere S° equipped with the trivial
G-action.

We call a category enriched over T¢ a G-equivariant topological category.
Since it is closed monoidal, 7¢ may be regarded as enriched over itself. We
denote the enriched category by Tg. Thus 7Tq is the G-equivariant topological
category of G-spaces and G-spaces of continuous, not necessarily equivariant
maps, on which G acts by conjugation. There is an isomorphism

TEX,Y) = Ta(X,Y)C.

See Sections A.1.3 and A.2.1 for further background and discussion.

The homotopy set (group, for n > 0) 72(X) of a pointed G-space is
defined for H C G and n > 0 to be the set of H-equivariant homotopy classes
of pointed maps

S" — X.

This is the same as the ordinary homotopy set (group) m,(X ) of the space
of H fixed-points in X.

Amap f: X — Y in T is a weak equivalence if for all H C G, the map
XH 5 YH of H-fixed point spaces is an ordinary weak equivalence. Equiv-
alently, f : X — Y is a weak equivalence if for all H C G and all choices of
base point xg € X the induced map 7 (X, z0) — 7X (Y, f(20)) is an iso-
morphism. Equipped with the weak equivalences, the category underlying 7¢
becomes a homotopical category. It can be completed to a topological model
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category in which a fibration is a map X — Y that for every H C G is a Serre
fibration on fixed points X¥ — Y#. The smash product of G-spaces makes
7€ into a symmetric monoidal category in the sense of Schwede-Shipley [77,
Def. 3.1] and T¢ into an enriched model category.

Every pointed G-space is weakly equivalent to a G-CW complex con-
structed inductively from the basepoint by attaching equivariant cells of the
form G/H x D™ along maps from G/H x S"~ 1.

We will write both

ho7%(X,Y) and [X,Y]%

for the set of maps from X to Y in the homotopy category of 7¢. When X is
cofibrant and Y is fibrant this can be calculated as the set of homotopy classes
of maps from X to Y in 7¢

(X, Y] =m TEX,Y) = 7§ Ta(X,Y).

We will make frequent use of finite dimensional real orthogonal represen-
tations of G. 'To keep the terminology simple these will be referred to as
representations of G.

An important role is played by the equivariant spheres SV arising as the
one point compactification of representations V of G. When V is the trivial
representation of dimension n, SV is just the n-sphere S™ with the trivial
G-action. We combine these two notations and write

gV+n _ gVeR"

Associated to SV is the equivariant homotopy set
ixX =V, x]¢

defined to be the set of homotopy classes of G-equivariant maps from SV to X.
The set w‘(/;X is a group if dimV > 0 and an abelian group if dim V¢ > 1,
where V& is the space of G-invariant vectors in V.

Also associated to the sphere SY one has the equivariant suspension
YW X =SV A X and the equivariant loop space Q¥ X = T¢(SY, X).

Now suppose that V7 and V5 are two orthogonal representations of G and
that for each irreducible representation U of G occurring in Vi, one has

(2.1) dim hom® (U, V4) > dim hom%(U, V).

Then one may choose an equivariant linear isometric embedding ¢ : V3 — V5
and form

(2.2) 1) (X),

in which V5 — ¢(V7) denotes the orthogonal complement of the image of Vj in
Va. The groups (2.2) form a local system over the Stiefel manifold O(Vy, V3)%
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of equivariant linear isometric embeddings. If instead of (2.1) the one has
Vo > V7 in the sense of Definition 2.3 below, then the Stiefel manifold O(Vy, V2)
is simply connected and one may define

T vy (X)

to be the group of global sections of this local system. For any t € O(V;, V3)%,
the restriction map gives a canonical isomorphism w‘% (X)) = W% _ t(Vl)(X ).

Definition 2.3. Let Vi and V5 be two nonzero G-representations. We write
V1 < Vy if for every irreducible G-representation U,

dim hom® (U, V) < dim hom® (U, V5) — 1.

This relation makes the set of G-representations into a (large) partially
ordered set.

We will shortly (Section 2.2.4) be interested in the special case in which
V1 is a trivial representation of dimension k. As above we will write

w1 (X)

for this group. In this way, for any n € Z, there is a well-defined group

7-‘-‘C/T‘Jrn (X)
provided dim V& > —n + 2.

2.2. Equivariant stable homotopy theory. There is a choice to be made
when stabilizing equivariant homotopy theory. If one only seeks that fibration
sequences and cofibration sequences become weakly equivalent, then one stabi-
lizes in the usual way, using suspensions by spheres with trivial G-action. But
if one wants to have Spanier-Whitehead duals of finite G-CW complexes, one
needs to stabilize with respect to the spheres SV where V is a finite dimensional
representation of G.

We will do equivariant stable homotopy theory in the category of equivari-
ant orthogonal spectra, equipped with the stable weak equivalences. In order
for this to be considered viable, some properties must be established that
guarantee computations made with equivariant orthogonal spectra ultimately
reduce to computations in ho 7 in the expected manner. We therefore begin
by discussing the equivariant Spanier-Whitehead category and formulate six
properties an equivariant stable homotopy should satisfy in order that it faith-
fully extend the Spanier-Whitehead category. These properties are not enough
for all of our purposes, so after establishing them for equivariant orthogonal
spectra we turn the more refined structures (indexed products, coproducts,
and smash products) that we require.
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2.2.1. Spanier- Whitehead stabilization. The G-equivariant Spanier- White-
head category SWC is the category whose objects are finite pointed G-CW
complexes and with maps

{X,Y}9 =1lim[SV A X,5Y A Y],
Vv

in which the colimit is taken over the partially ordered set of G-representations.
For an informative discussion of this category, the reader is referred to [5].

There is a direct analogue [5], [84] of Spanier-Whitehead duality in SWY,
in which a finite based G-CW complex embedded in a representation sphere
SV is “V-dual” to the unreduced suspension of its complement.

Ezample 2.4. Suppose that X is a finite pointed G-set B. If there is an
equivariant embedding B C SV (for instance, when V is the G-representation
with basis B), then the V-dual of B works out to be SV A B.

If one wants finite G-CW complexes to have actual duals, in the sense of
objects in a symmetric monoidal category, then one must enlarge the category
SWY by formally adding, for each finite G-CW complex Y and each finite
dimensional representation V of G, an object STV AY defined by

(2.5) {X,S7VAY}Y ={SV A X,V}C.

Since {SV A (—),Y}% is a functor on SWY, this amounts to simply working
in an enlargement of the Yoneda embedding of SWY. One checks that for
any Z, the map Z — S~V A SV A Z corresponding to the identity map of
SV A Z under (2.5) is an isomorphism and that symmetric monoidal structure
given by the smash product extends to this enlarged category. If X and Y are
V-duals in SWY, then X and S~V A'Y are duals in the enlarged equivariant
Spanier-Whitehead category.

Example 2.6. From Example 2.4, B is self-dual in the enlarged equivariant
Spanier-Whitehead category.

As in the nonequivariant case, the equivariant Spanier-Whitehead cate-
gory still suffers the defect that it is also not quite set up for doing stable
homotopy theory. What one wants is a complete closed symmetric monoidal
category 8¢ of G-equivariant spectra, equipped with the structure of a homo-
topical category (or even a Quillen model category), and related to TC by a
pair of adjoint (suspension spectrum and zero space) functors

¥ . 7Y 589 0%,
In order to know that computations made in this category reduce in the ex-

pected manner to those in classical stable homotopy theory, one would like this
data to satisfy
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Sp§: The functors £°>° and Q> induce adjoint functors
LE% :hoT% S ho8 : RQ™

on the homotopy categories.

Sp$: The symmetric monoidal structure on 8¢ induces a closed symmetric
monoidal structure on the homotopy category ho 8%, and the functor
L>° is symmetric monoidal.

Spg’: The functor LY extends to a fully faithful, symmetric monoidal em-
bedding of SW® into ho 8C.

Spf’: The objects SV are invertible in ho 8¢ under the smash product so,
in particular, the above embedding of SWY extends to an embedding
of the extended Spanier-Whitehead category.

Spg;: Arbitrary coproducts (denoted V) exist in ho 8% and can be computed
by the formation of wedges. If {X,} is a collection of objects of 8§
and K is a finite G-CW complex, then the map

Pho8%(K, Xa) — ho8® (K \/ Xa)

is an isomorphism.
Spgr Up to weak equivalence, every object X is presentable in 8¢ as a
homotopy colimit

"'—>;S'7V"/\_van—)Siv"”rl/\XVVM_1 — e

in which {V},} is a fixed increasing sequence of representations eventu-
ally containing every finite dimensional representation of GG, and each
Xy, is weakly equivalent to an object of the form ¥*Ky; , with Ky,
a G-CW complex.

These properties are not meant to constitute a characterization of 8¢,
though they nearly do. The first five insist that 8¢ not be too small, and
the last that it not be too big. Combined, they show that, any computation
one wishes to make in ho 8% can, in principle, be reduced to a computation in
SWE.

In all of the common models and, in particular, in equivariant orthog-
onal spectra, the presentation Sp§ is functorial. We call this the canonical
homotopy presentation. It is described in detail in Section B.4.3. For many
purposes one can ignore most of the technical details of equivariant spectra
and just think in terms of the canonical homotopy presentation.

Finally, unless the emphasis is on foundations, we will drop the L and
R and implicitly assume that all of the functors have been derived, unless
otherwise specified.
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2.2.2. Equivariant orthogonal spectra. An orthogonal G-spectrum consists
of a collection of pointed G-spaces Xy indexed by the finite dimensional or-
thogonal representations V' of G, an action of the orthogonal group O(V') (of
nonequivariant maps) on Xy, and for each (not necessarily G-equivariant) or-
thogonal inclusion ¢ : V€ W, a map SW V) A Xy, — Xy, in which W —¢(V)
denotes the orthogonal complement of the image of V in W. These maps are
required to be compatible with the actions of G and O(V'). Maps of equivari-
ant orthogonal spectra are defined in the evident manner. For a more careful
and detailed description, see A.2.4.

Depending on the context, we will refer to orthogonal G-spectra as “equi-
variant orthogonal spectra,” “orthogonal spectra,” “G-spectra,” and some-
times just as “spectra.”

As with G-spaces, there are two useful ways of making the collection
of G-spectra into a category. There is the topological category 8¢ just de-
scribed, and there is the G-equivariant topological category Sg of equivariant
orthogonal spectra and G-spaces of nonequivariant maps. Thus for equivariant
orthogonal spectra X and Y, there is an identification

$Y(X,Y) = 8¢(X,Y)C.

We will use the abbreviated notation 8§ to denote 8¢ when G is the trivial
group.

If V and W are two orthogonal representations of G the same dimension
and O(V,W) is the G-space of (not necessarily equivariant) orthogonal maps,
then

O(V, W)+ Of\V) XV — XW

is a G-equivariant homeomorphism. In particular, an orthogonal G-spectrum
X is determined by the Xy with V a trivial G-representation. This implies
that the category 8C is equivalent to the category of objects in 8 equipped
with a G-action (Proposition A.19).
Both 8¢ and ¢ are tensored and cotensored over G-spaces:
(X/\K)V:Xv/\K,
K K
(X )V = (XK.
Both categories are complete and cocomplete.
Definition 2.7. The suspension and 0-space functors are defined by
(2®°K)y =SV AK,
QOOX — X{O},

where {0} is the zero vector space.
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The suspension spectrum functor is left adjoint to the 0-space functor.
One has YK = S A K and, more generally, ¥°°(K A L) = (Y*°K) A L. The
functors £ and Q> may be regarded as topological functors between 7¢ and
8C or as T%-enriched functors relating 7¢ and S¢.

For each G-representation V, there is a G-spectrum S~" characterized by
the existence of a functorial equivariant isomorphism

(2.8) 8a(S™V,X) ~ Xy

(see Section A.2.4). By the enriched Yoneda Lemma, every equivariant orthog-
onal G-spectrum X is functorially expressed as a reflexive coequalizer

(2.9) V STWASa(S™™, ST )AXy = \/STV AXy = X.
V.wW \%

We call this the tautological presentation of X.

The category 8 is a closed symmetric monoidal category under the smash
product operation. The tensor unit is the sphere spectrum S°. There are
canonical identifications

STVASW o g VeW

and, in fact, the association
Vi SV

is a symmetric monoidal functor from the category of finite dimensional repre-

sentations of G' (and isomorphisms) to 8¢. Because of the tautological presen-

tation, this actually determines the smash product functor (see Section A.2.5).
Regarding the adjoint functors

ZOO:TG:SG:QOO,

the left adjoint 3°° is symmetric monoidal. We will usually drop the »*°
and either not distinguish in notation between the suspension spectrum of a
G-space and the G-space itself, or use SY A K.

2.2.3. Change of group and indexed monoidal products. The fact that the
category 8¢ is equivalent to the category of objects in 8 equipped with a
G-action has an important and useful consequence. It means that if a con-
struction involving spectra happens to produce something with a G-action, it
defines a functor with values in G-spectra. For example, if H C G is a sub-
group, there is a restriction functor 77 : 8¢ — 8 given by simply restricting
the action to H. This functor has both a left and a right adjoint. The left
adjoint is given by

XHG+]/;>X
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and may be written as a “wedge”
\/ Xia
i€G/H
where X; = (H;)+ I/} X with H; C G the coset indexed by ¢. Similarly, the
right adjoint is given by the H-fixed points of the internal function spectrum
from G to X and may be written as a kind of product
I x'~ JI X
icH\G ieG/H
where X’ = hom! (H*, X) and H' is the left H-coset with index i. The
identification of the two expressions is made using the map g — ¢g~'. There is
also an analogous construction involving the smash product
NiX = J\ X.
i€G/H
These are special cases of a more general construction.

Suppose that G is a finite group and J is a finite set on which G acts.
Write B ;G for the category with object set J, in which a map from j to j’ is
an element g € G with ¢g-j = j'. We abbreviate this to BG in case J = pt.
Given a functor

X :B;G =8,

define the indexed wedge, indexed product and indexed smash product of X to

be

\/ Xj, H Xj, and /\ Xj

jeJ jeJ jedJ
respectively. The group G acts naturally on the indexed wedge and indexed
smash product, and so they define functors from the category of B ;G-diagrams
of spectra to 8. For more details, see Section A.3.2.

Suppose that H is a subgroup of G and J = G/H. In this case the
inclusion B,y H — B;G of the full subcategory containing the identity coset
is an equivalence. The restriction functor and its left Kan extension therefore
give an equivalence of the category of B;G-diagrams of spectra with 8. Under
this equivalence, the indexed wedge works out to be the functor

G A (—).

PA (=)

The indexed smash product is the norm functor
NG .8t - 8¢

sending an H-spectrum X to the G-spectrum

A X

jEeG/H
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Remark 2.10. When the context is clear, we will sometimes abbreviate
the Ng simply to N in order to avoid clustering of symbols.

The norm distributes over wedges in much the same way as the iterated
smash product. A precise statement of the general “distributive law” appears
in Section A.3.3.

The functor Ng is symmetric monoidal, commutes with sifted colimits,
and so filtered colimits and reflexive coequalizers (Proposition A.53). The fact
that V — S~V is symmetric monoidal implies that

(2.11) NGS™V = g—imdf vV,
where ind% V is the induced representation. From the definition, one also
concludes that for a pointed G-space T',

NG (S™VAT) =5 MGV ANGT,

where NgT is the analogous norm functor on spaces.

The norm first appeared in group cohomology (Evens [25]) and is often
referred to as the “Evens transfer” or the “norm transfer.” The analogue in
stable homotopy theory originates in Greenlees-May [29].

2.2.4. Stable weak equivalences. The inequality of Definition 2.3 gives the
collection of finite dimensional orthogonal G-representations the structure of
a (large) partially ordered set. When V; is the trivial representation of dimen-
sion k, the condition V5 > V| means that

(2.12) dim Vs > k +1,

and instead we will use the abbreviation V5 > k. Using (2.12) we extend this
to all k € Z.

Suppose we are given X € 8¢, K € T¢, and two representations V; < V.
Choose an equivariant isometric embedding ¢ : Vi — V5, and let W be the
orthogonal complement of t(V}) in V5. Define
(2.13) (S A K, Xy ]9 =[SV A K, Xy,)¢
by using the identification S A SV1 ~ S and the structure map S A Xy,
— Xy, to form the composite

V' A K, X1, )¢ = [SWASYT A K, SV A Xy )¢ = [SV2AK, Xy,]C.

This map depends only on the path component of ¢ in O(Vl,Vg)G, so the
condition V; < V4 implies that (2.13) is independent of the choice of t.

Definition 2.14. Let X be a G-spectrum and k € Z. For H C G, the
H -equivariant k' stable homotopy group of X is the group

(2.15) T X = lim i Xy,
V>—k
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in which the colimit is taken over the partial ordered set of orthogonal G-repre-
sentations V satisfying V' > —k.

The poset of G-representations is a class, not a set, so one must check
that the colimit (2.15) actually exists.

Definition 2.16. An increasing sequence V,, C V11 C -+ of finite dimen-
sional representations of G is exhausting if any finite dimensional representation
V of G admits an equivariant embedding in some V/,.

Any exhausting sequence --- C V,, C V41 C -+ is final in the poset of
G-representations, so the map
lim7{/ 4 Xy, — lim il Xy
n V>—k
is an isomorphism. This gives the existence of the colimit (2.15) and shows
that W,?X can be computed as

H - H
7Tk X = h ﬂ-Vn—‘rkXVn
g
in which --- C V,, C Vj,41 C --- is any choice of exhausting sequence.

Definition 2.17. A stable weak equivalence (or just weak equivalence, for
short) is a map X — Y in 8¢ inducing an isomorphism of stable homotopy
groups 7 for all k € Z and H C G.

Equipped with the stable weak equivalences, the category 8¢ becomes a
homotopical category in the sense of [23], and so both the homotopy category
ho 8¢ and the functor 8¢ — ho 8 are defined. As with G-spaces, we will often
employ the notation

(X, Y]¢

for ho8%(X,Y). See Section B.1 for more on the theory of homotopical cat-
egories and for an explanation of the notion of left (L) and right (R) derived
functors appearing in the discussion below.

2.2.5. Properties Spf‘ —Spg’. We now describe how properties Spf’—Spg’
are verified, deferring most of the technical details to Appendix B. The first
five properties assert things only about the homotopy category and, save the
fact that the symmetric monoidal structure is closed, they can be established
using only the language of homotopical categories.

For Spf’7 one checks directly from the definition that the functor »*°
preserves weak equivalences between GG-spaces with nondegenerate base points,
so that LYX*°X can be computed as X°°X if X has a nondegenerate base point,
or as ¥®°X in general, where X is formed from X by adding a whisker at the
base point. The right derived functor RQ* is given by choosing any exhausting



KERVAIRE INVARIANT ONE 21

sequence and forming
RQ*X = holim Q" Xy .

see Proposition B.24. Verifying that LX°° and R{)*° are adjoint functors makes
use of formula (2.18) below.

Regarding the symmetric monoidal structure (Sp$'), the smash product
is not known to preserve weak equivalences between all objects, but it does so
on the full subcategory of 8¢ x 8¢ consisting of pairs (X,Y) for which one of
X or Y is cellular in the sense that it constructed inductively, starting with
% and attaching cells of the form G4 I/j\[ SV A D7, with V' a representation

of H. Every G-spectrum receives a functorial weak equivalence from a cellular
object, so this is enough to induce a symmetric monoidal smash product on
ho 8%; see Section B.3.7. The fact that the symmetric monoidal structure is
closed is best understood in the context of model categories. See Section B.4.2,
and especially Corollary B.80.

For Sp§, there is a useful formula for maps in ho 8¢ in good cases. Choose
an exhausting sequence {V,,}. For K a finite G-CW complex, ¢ € Z, and any
Y € 8%, the definition of stable weak equivalence and some elementary facts
about homotopical categories lead to the formula (Proposition B.44)

(2.18) ho8(S A K, Y) = lim[S""** A K, Y,,]%.

Using this one easily checks that the functor K — S°A K extends to a symmet-
ric monoidal functor SW — ho 8. A little more work gives the generalization
(Proposition B.49)

(2.19) ho8“(S™V A K,Y) = lim[S"" A K, Yvev,]%,

in which V is a representation of G.
For any representations V, W of G, and any X € 8%, the map

STVASYAX 5 X

is a weak equivalence (Proposition B.30). This ultimately implies that SV is
invertible in ho 8% (Corollary B.48). This establishes Sp$.

The fact that the formation of arbitrary wedges preserves weak equiva-
lences gives the first part of Property Sp$ (Corollary B.23). The second part
follows from (2.18).

The canonical homotopy presentation of Spg' is constructed by choosing
an exhausting sequence V = {V,,} and letting X,, be an equivariant CW ap-
proximation to Xy, . Since it involves more than just the homotopy category,
the construction is easier to describe with a model category structure in place.
For the details, see Section B.4.3.
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Indexed monoidal products have convenient homotopy properties in 8€.
The formation of indexed wedges is homotopical (Definition B.7), in the sense
that it preserves weak equivalences. This means that it need not be derived.
The same is true of the formation of finite indexed products. The map

\/Xa—>HXa
o o

from a finite indexed wedge to a finite indexed product is always a weak equiv-
alence. This means, in particular, that for H C G, the map from the left to
the right adjoint of the restriction functor

8¢ — 8
is always a weak equivalence. Thus for X € 8% and Y € 8%, there are
isomorphisms
(2.20) X, Gy A Y9~ [X, ] ] [ X, Y],
i€G/H

The composite is the Wirthmiiller isomorphism. Because of it, the right adjoint
to the restriction functor tends not to appear explicitly when discussing the
homotopy category.

Up to weak equivalence, indexed smash products can be computed using
cellular approximations. Combining this with the properties of the norm listed
in Section 2.2.3 leads to a useful description of NgX in terms of the canonical
homotopy presentation

N§GX = holing §~ 4% Vs A N Xy, .

Finally, note that the formula (2.18) also implies that for any k € Z,
THX ~ho8M(S*, X) ~ ho8% (G, A S*. X),

where for k > 0, S is defined to be S “R* With R¥ the trivial representation.

2.2.6. The model structure. Not all of the functors one wishes to consider
have convenient homotopy theoretic properties.

Example 2.21. For a G-spectrum X, let
Sym"™ X = X"\"/%,

be the orbit spectrum of the n-fold iterated smash product by the action of
the symmetric group. The map

S~tast - 80
is a weak equivalence. However, the induced map

Sym™ (S~ A S1) — Sym" S°
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is not. The right side is S° since it is the tensor unit, while the left side works
out (Proposition B.116) to be weakly equivalent to the suspension spectrum of
classifying space for G-equivariant principal »,,-bundles, pointed by a disjoint
basepoint.

In order to go further it is useful to refine the homotopical category struc-
ture on 8¢ to a model category. Let Acor be the set of maps

(2.22) Acot = {G STVAST Gy A S~V AD"}

in which H C G is a subgroup of G and V is a representation of H containing
a nonzero invariant vector. The set Agof is the set of generating cofibrations
in the positive complete model structure on 8. The weak equivalences are
the stable weak equivalences, and the fibrations are the maps having the right
lifting property against the acyclic cofibrations. See Section B.4.1 for more
details.

It works out that the symmetric power construction is homotopical on the
class of cofibrant objects in the positive complete model structure (Proposi-
tion B.112).

Remark 2.23. The condition that V contains a nonzero invariant vector
is the positivity condition. It is due to Jeff Smith and arose first in the theory
of symmetric spectra. (See the paragraph following Corollary 0.6 in [56].) The
choice is dictated by two requirements. One is that symmetric power construc-
tion sends weak equivalences between cofibrant objects to weak equivalences.
This is the key point in showing that the forgetful functor from commutative
algebras in 8¢ to 8¢ creates a model category structure on commutative al-
gebras in 8¢ (Proposition B.129). The other is that the geometric fixed point
functor (Section B.10) preserves (acyclic) cofibrations. The first requirement
could be met by replacing “positive” with dimV' > 0. The second requires
dim V& > 0, once one is using a positive model structure on 8.

2.2.7. Virtual representation spheres and RO(G)-graded cohomology. Us-
ing the spectra S~ and the spaces S0, one can associate a stable “sphere”
to each virtual representation V' of G. To do so, one first represents V as
difference [Vy] — [V1] of representations and then sets

SV =9 A%,

If (Vb, V1) and (Wy, W1) are two pairs of orthogonal representations represent-
ing the same virtual representation

V = [Vo] = 1] = [Wo] — [W1] € RO(G),
then there are a representation U and an equivariant orthogonal isomorphism

WieVoaeUrVieaWyaU.
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A choice of such data gives weak equivalences
SWi1 A gWo . g=W18WdU A gWodVodU

~ S*V1GBWOEBU A SWQ@VOGBU N SfVl A SVO.

Thus, up to weak equivalence,
SV =85 V1 g%

depends only on V. However, the weak equivalence between the spheres arising
from different choices depends on data not specified in the notation. This
leads to some subtleties in grading equivariant stable homotopy groups over
the real representation ring RO(G); see [5, §6] and [58, Ch. XIII]. The virtual
representation spheres arising in this paper always occur as explicit differences
of actual representations.

In the positive complete model structure, the spectrum S~ A SY0 will be
cofibrant if and only if the dimension of the fixed point space VIG is positive.

Definition 2.24. Suppose that V is a virtual representation of G. A pos-
itive representative of V' consists of a pair of representations (Vp, V1) with
dim V,¢ > 0 and for which

V = [Vo] — 1] € RO(G).

Associated to every subgroup H C G and every representation V €
RO(H) is the group
(X)) =[SV, x)".
An equivariant cohomology theory is associated to every equivariant orthogonal
spectrum E by

E¥(X) =[X,S* A E)9,

Ex(X) =[S*, EAX]E =al(EAX).
There is also an RO(G)-graded version, defined by
EV(X)=1[X,SV A E°,
Ey(X)=[SY,EnX]¢ =x(E A X).
2.3. Multiplicative properties.

2.3.1. Commutative and associative algebras.

Definition 2.25. An equivariant commutative algebra (or just commutative
algebra) is a unital commutative monoid in 8% with respect to the smash
product operation. An equivariant associative algebra (associative algebra) is
a unital associative monoid with respect to the smash product.

There is a weaker “up to homotopy notion” that sometimes comes up.
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Definition 2.26. An equivariant homotopy associative algebra (or just ho-
motopy associative algebra) is an associative algebra in ho8%. An equivariant
homotopy commutative algebra (or just homotopy commutative algebra) is a
commutative algebra in ho 8¢.

The category of commutative algebras in 8¢ and spaces of equivariant
multiplicative maps will be denoted Comm&. The T %-enriched category of G-
equivariant commutative algebras and G-spaces of nonequivariant multiplica-

¢ and Commyg

tive maps will be denoted Commg. The categories Comm
are tensored and cotensored over 7 and T¢ respectively. The tensor product

of an equivariant commutative algebra R and a G-space T' will be denoted
ReT
to distinguish it from the smash product. By definition,
Commg(R®T,E) =Te(T,Commeg(R, E)).

We make Comm¢ into a homotopical category by defining a map to be
a weak equivalence if the underlying map of orthogonal G-spectra is. The free
commutative algebra functor

X = Sym(X) = \/ Sym" X
n>0

is left adjoint to the forgetful functor. It takes weak equivalences between
cofibrant spectra to weak equivalences (Proposition B.112). This is the key
point in showing that the forgetful functor

Comm¢ — 8¢

creates a (7 -enriched) model category from the positive complete model struc-
ture on 8¢ (Proposition B.129) and that

Commg — 3¢

creates a 7Tg-enriched model structure. For H C G, the forgetful functor
Comm© — Comm?” and its left adjoint form a Quillen morphism. A similar
set of results applies to associative algebras.

Modules over an equivariant commutative ring are defined in the evident
way using the smash product. The category of left modules over R and equi-
variant maps will be denoted Mpg. A map of R-modules is defined to be a
weak equivalence if the underlying map of spectra is a weak equivalence. The
adjoint “free module” and “forgetful” functors

X RAX:8S Mp:M— M
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create a model category structure on Mp. It becomes an enriched symmetric
monoidal model category under the operation

M AN,
R
where M is regarded as a right R-module via

MARIER, RAM > M,

and M /1% N is defined by the coequalizer diagram
M/\R/\N:{M/\N—>M/I;N.

There are also the related notions of F, and A, algebras. It can be shown
that the categories of E, and commutative algebras are Quillen equivalent, as
are those of Ay, and associative algebras.

2.3.2. Commutative algebras and indexed monoidal products. Because it is
symmetric monoidal, the functor NV take commutative algebras to commutative
algebras, and so induces a functor

N = N§ : Comm — Comm©.

The following result is proved in the appendices as Corollaries A.56 and B.133.

PRrROPOSITION 2.27. The functor

N : Comm! — Comm¢®

is left adjoint to the restriction functor i*. Together they form a Quillen mor-
phism of model categories.

COROLLARY 2.28. There is a natural isomorphism
N$(i%R) - R® (G/H)
under which the counit of the adjunction is identified with the map
R® (G/H) — R® (pt)
given by the unique G-map G/H — pt.

Proof. Since both R®(G/H ) and the left adjoint to restriction co-represent
the same functor, this follows from Proposition 2.27 O

A useful consequence of Corollary 2.28 is that the group N(H)/H of
G-automorphisms of G/H acts naturally on N (i% R). The result below is
used in the main computational assertion of Proposition 5.50.
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COROLLARY 2.29. For vy € N(H)/H, the following diagram commutes:

N§ (i3 R) —— NS (i R)
NS

Proof. Immediate from Corollary 2.28. O

At this point a serious technical issue arises. The spectra underlying
commutative rings are almost never cofibrant. This means that there is no
guarantee that the norm of a commutative ring has the correct homotopy
type. The fact that it does is one of the main results of Appendix B. The
following is a consequence of Proposition B.146.

PRroOPOSITION 2.30. Suppose that R is a cofibrant commutative H-algebra
and that R — R is a cofibrant approximation of the underlying H -spectrum. If
Z — 7 is a weak equivalence of G-spectra, then

NS(RYANZ - NS(R)ANZ

is a weak equivalence.

We refer to the property exhibited in Proposition 2.30 by saying that
cofibrant commutative rings are very flat.

2.3.3. Other uses of the norm. There are several important constructions
derived from the norm functor that also go by the name of “the norm.”

Suppose that R is a G-equivariant commutative ring spectrum and X is
an H-spectrum for a subgroup H C G. Write

Ry (X) = [X, iy R
There is a norm map
N§ : RY%(X) — RL(NFX)
defined by sending an H-equivariant map X — R to the composite
NGX — N5(iyR) — R,

in which the second map is the counit of the restriction-norm adjunction.
This is the norm map on equivariant spectrum cohomology and is the form in
which the norm is described in Greenlees-May [29]. For an explicit comparison
with [29], see [11].

When V is a representation of H and X = SV, the above gives a map

_nG . H G
N—NH 'ﬂ-VR—>ﬂ-indVR

in which ind V' is the induced representation. We call this the norm map on
the RO(G)-graded homotopy groups of commutative rings.



28 M. A. HILL, M. J. HOPKINS, and D. C. RAVENEL

Now suppose that X is a pointed G-space. There is a norm map

Nij : Rjy(X) — R (X)

sending
z e RY(X)=[S"AX,i5 R
to the composite
SOANX - SOAN(X)~ N(SAX) = N(i5;R) = R,
in which the equivariant map of pointed G-spaces
X — N§(X)

is the “diagonal”

X— I x5,—- A X;
jEG/H jJEG/H

whose j™ component is the inverse to the isomorphism

Xj=Hj)+ pX = X

given by the action map. That this is actually equivariant is probably most
easily seen by making the identification

X; ~ homp (H; ', X)

in which H i ! denotes the left H-coset consisting of the inverses of the elements
of Hj;, and then writing

Il X =homy(G,X).
jeG/H
Under this identification, the “diagonal” map is the map
X — hompy (G, X)
adjoint to the action map

GxX— X,
H

which is clearly equivariant.
One can combine these construction to define the norm on RO(G)-graded
cohomology of a G-space X

Nfi : Rp(X) = REY (X)
sending
SOANX S SY AR
to the composite

SOAX — SOANX Ny gindV A Njx Ry gdV AR
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2.4. The method of twisted monoid rings. In this section we describe the
method of twisted monoid rings. The basic constructions are categorical, and
in Sections 2.4.1-2.4.2 we do not make any homotopy theoretic considerations.
In Section 2.4.3 we take up the homotopy theoretic aspects of our constructions.

2.4.1. Twisted monoid rings. We start with a subgroup H of G, and a

positive representative (Vp, V1) of a virtual representation V' of H. Let
SO[SV] — \/ (SV)/\k
k>0
be the free H-equivariant associative algebra generated by SV = §~V1 A 0,
and
z eSSy

the homotopy class of the generating inclusion. When |Z| = 0, the spec-
trum S°[SV] is the monoid ring of the free monoid on one generator and is in
fact commutative. For general Z, it is the Thom spectrum of an associative
monoid map from the free monoid on one generator to the classifying space
for H-equivariant real vector bundles, hence a twisted monoid ring. It is not
typically a commutative algebra, though the RO(H)-equivariant homotopy
groups make it appear so, since 77S°[SV] is a free module over 77S° with
basis {1,Z,72,...}. It will be convenient to use the notation

S0z) = SO[SV].
Using the norm functor we can form the G-equivariant twisted monoid
ring

Ni(8°[8Y]) = S°[G1 A 8"].

This spectrum can also be described as a Thom spectrum over the free com-
mutative monoid generated by G/H. Things will look cleaner and will better
resemble the (polynomial) algebras we are modeling if we use the alternate
notation
SUIG - SV] and S°[G - 7).

Though the symbol H is omitted in this notation, it is still referenced. The
representation V' is representation of H, and T is an H-equivariant map with
domain SV.

By smashing examples like these together we can make associative algebras
that are twisted forms of free commutative monoid algebras over S, in which
the group G is allowed to act on the monoid. More explicitly, suppose we are
given a sequence (possibly infinite) of subgroups H; C G and for each i, a
positive representative ((V;)o, (Vi)1) of a virtual representation V; of H;. For
each 4 form

S°1G - 7]
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as described above, smash the first m together to make
SUIG - Z1,...,G - Ty,
and then pass to the colimit to construct the G-equivariant associative algebra
T=25G %,G Zo,...].

The twisted monoid ring 7' can also be described as a Thom spectrum
over the free commutative monoid generated by the G-set

o
J =[] G/H:.
i=1
By construction, it is an indexed smash product of an indexed wedge

(2.31) =AYV s,

j€J n=0

1

where for j = gH;, V(j) is the virtual representation of gH;g~" with positive

representative
((Vi)o, (Vi)

All of this can be done relative to an equivariant commutative algebra R
by defining

V(i) = (V@) V(in) = (gHi) x

RIG-71,G - Zg,...]
to be
RASYG-21,G - To,...].
Because they can fail to be commutative, these twisted monoid rings do
not have all of the algebraic properties one might hope for. But it is possible
to naturally construct all of the equivariant monomial ideals. Here is how.

Applied to (2.31), the distributive law of Section A.3.3 gives an isomor-
phism of T" with the indexed wedge

T=1\ s%
fenyg
in which f is running through the set of functions
J—No=1{0,1,2,...}

taking nonzero values on only finitely many elements (finitely supported func-
tions). The group G acts on the set N()] through its action on J, and V; is the
virtual representation

Vi=> f()-V(Q)

jeJ
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of the stabilizer H; of f, with the evident positive representation

(@V( @V f(J)

jeJ jeJ

The G-set N{ is a commutative monoid under addition of functions, and
the ring structure on 7' is the indexed sum of the obvious isomorphisms

SVENSYs n §ViOVe n §Vi4g

Recall (for example, from [15]) that an ideal in a commutative monoid L
is a subset I C L with the property that L + I C I. Given a G-stable ideal
I C N{, form the G-spectrum

T =\/ s
fel
The formula for the multiplication in 7" implies that 77 is an equivariant sub-
bimodule of T and that the association I — 717 is an inclusion preserving
function from the set of ideals in N to the set of sub-bimodules of 7. For a
more general and systematic discussion, see Section A.3.6.

Ezample 2.32. The monomial ideal corresponding to the set I of all nonzero
elements of N{ is the augmentation ideal. (Up to homotopy it is the fiber of the
map T — SY.) Tt is convenient to denote this T bimodule as (G -Z1,G T2, ... ).
More generally, for an integer n > 0, the set nl = I + --- + I of n-fold sums
of elements of I is a monoid ideal. It corresponds to the monomial ideal given
by the nt* power of the augmentation ideal.

Ezxample 2.33. Let dim : Ng — Ny be the function given by

dim f = dim Vy = Zf ) dim V.
JjeJ

If for all 4, dim V; > 0, then the set {f | dim f > d} is a monoid ideal in N and
corresponds to the monomial ideal M C T consisting the wedge of spheres of
dimension greater than d. The quotient bimodule My/My_1 can be identified
with the indexed coproduct

Vs

dim f=d
on which T is acting through the augmentation 77 — S°. These monomial
ideals play an important role in the proof of the Slice Theorem in Section 6.

2.4.2. The method of twisted monoid rings.
Definition 2.34. Suppose that
ﬁ :Bi— R, i=1,...m



32 M. A. HILL, M. J. HOPKINS, and D. C. RAVENEL

are algebra maps from associative algebra B; to a commutative algebra R. The
smash product of the f; is the algebra map

m m m
Nfi: A\Bi— \R— R,
in which the right most map is the iterated multiplication. If B is an H-

equivariant associative algebra, and f : B — i}; R is an algebra map, we define
the norm of f to be the G-equivariant algebra map

NYB — R
given by
N§$B — N§(i3R) — R,

in which the rightmost map is the counit of the adjunction described in Propo-
sition 2.27.

These constructions make it easy to map a twisted monoid ring to a com-
mutative algebra. Suppose that R is a fibrant G-equivariant commutative
algebra and we are given a sequence

ZemPR,  i=12....

A choice of positive representative ((Vp);, (V1);) of V; and a map
SYi 5 R
representing z; determines an associative algebra map
S%(z;] — R.
Applying the norm gives a G-equivariant associative algebra map
SUG - z;] — R.

By smashing these together we can make a sequence of equivariant algebra
maps

SG-#1,...,G - %p] = R.
Passing to the colimit gives an equivariant algebra map

(2.35) S°G-7,,G - ,...] > R

representing the sequence z;. We will refer to this process by saying that the
map (2.35) is constructed by the method of twisted monoid rings. The whole
construction can also be made relative to a commutative algebra S, leading to
an S-algebra map

(2.36) S[G'.Tl,G-.fQ,...]%R

when R is a commutative S-algebra.
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2.4.3. Quotient modules. One important construction in ordinary stable
homotopy theory is the formation of the quotient of a module M over a com-
mutative algebra R by the ideal generated by a sequence {x1,zo,...} C m.R.
This is done by inductively forming the cofibration sequence of R-modules

(2.37) Sl M/, 1) = M) (1, 1) = M/ (21, .. 2,)
and passing to the homotopy colimit in the end. There is an evident equivalence

M/(:Cl,...)%M/I%R/(xl,...)

in case M is a cofibrant R-module. The situation is slightly trickier in equivari-

ant stable homotopy theory, where the group G might act on the elements x;

and prevent the inductive approach described above. The method of twisted

monoid rings (Section 2.4.1) can be used to get around this difficulty.

Suppose that R is a fibrant equivariant commutative algebra and that

ziemp(R), i=1.2,...

is a sequence of equivariant homotopy classes. Using the method of twisted

monoid rings, construct an associative R-algebra map

(2.38) T=R|G %,G%,...] > R.

Using this map, we may regard an equivariant R-module M as a T-module.
In addition to (2.38) we will make use of the augmentation € : 7' — R sending
the Z; to zero.

Definition 2.39. The quotient module M /(G - Z1,...) is the R-module
L
MAR
T

in which T" acts on M through the map (2.38) and on R through the augmen-
tation.

L

The symbol A denotes derived smash product. By Proposition B.138 it
can be computed by taking a cofibrant approximation in either variable.

Let us check that this construction reduces to the usual one when the
group acting is the trivial group and M is a cofibrant R-module. For ease of
notation, write

T = R[xl,...],
T, = Rlx1,...,x,].

Using the isomorphism

Rlzq,...] %R[xl,...,xn]/I%R[xnﬂ,...]
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one can construct an associative algebra map

T — Rlzpt1,-. -]
by smashing the augmentation

Rlzy,...,zn) = R

sending each z; to 0, with the identity map of R[zy+1,...]. By construction,
the evident map of T-algebras

lim R[zn41,...] = R
is an isomorphism, and hence so is the map
hgnM/T\R[an,...] — MQR.

In fact this isomorphism is also a derived equivalence. To see this, con-
struct a sequence

— +++Npy1 = Npgo - -
of cofibrations of cofibrant left T-module approximations to
— - R[zpt1,...] = R[Tpto,...] = -
We have
o lim Ny, ~ lim 7, N, ~ liﬂ(ﬂ‘*R)[lL‘k, ...]=R
from which one concludes that the map
liﬂNk — ligR[xk, ..
is a cofibrant approximation. It follows that
M/(z1,...) ~ holim M/(x1, ..., zn).

To compare M/(x1,...,xp—1) with M/(z1,...,2,) let T, — R[z,] be
associative algebra map constructed from the isomorphism

Ty~ Toer £y Rl

by smashing the augmentation of T,,_; with the identity map of R[z,]. We
have

M/(x1,...,2p—1)~M N R=MAT, N Rx~M A R[z,].
Tnl Tn n—1 Tn

By Proposition B.138, M%\ RJz,] is a cofibrant R[z,]-module. The cofibration

sequence (2.37) is now constructed by applying the functor

(2.40) M/(@1,...,Zn-1) o (—)
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to the pushout diagram of R[z,] bimodules

(2.41) (xn) — Rlxy,]
N
* R

and appealing to Corollary B.139.
A similar discussion applies to the equivariant situation, giving

M/(Ga?l,)%h%mM/(Gil,,an),
a relation

M/(G-Z1,...,G5p) = M)(G-T1,...,GFn1) A R,

and a cofibration sequence

(G- Zn) M/G-Z1,...,G Tn-1) > M/(G-Z1,...,GTn_1)
- M/(G-Zi1,...,G - Zy),

derived by applying the functor
M/(G'.fl,...,G-.’Z'n_1>R/\ (—)

[G-zr]
to
(G-Z,) = R|G - z,) — R.
One can also easily deduce the equivalences
(2.42) R/(G-Z1,...,G - ZTp) = R/(G - 1) /];L - -/éR/(G - T1)
and
(2.43) R/(G-El,...)%hﬂR/(GJfl)/}%--J}%R/(G-En).

These expressions play an important role in the proof Lemma 7.7, which is a
key step in the proof the Reduction Theorem.

2.5. Fixed points, isotropy separation and geometric fixed points.

2.5.1. Fized point spectra. The fized point spectrum of a G-spectrum X is
defined to be the spectrum of G fixed points in the underlying, nonequivariant
spectrum ¢X. In other words, it is given by

X = (igX)9.
The notation 75X G can get clumsy, and we will usually abbreviate it to X©.

The functor of fixed points has a left adjoint that sends S™V A Xy € 8§ to
S=VAXy € 8¢, where in the latter expression V is regarded as a representation
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of G with trivial G-action and Xy is regarded as a space with trivial G-action.
It can be computed for general X in terms of the tautological presentation

V VW) ASVAXy 2SSV AXy - X
V.w |4

for the trivial group (see (A.15)), once one observes that

VW) = JZa(V,W)
when V and W have trivial G-action.

Under the equivalence between 8¢ and the category of objects in 8 equipped
with a G-action, the fixed point spectrum functor is formed by passing to ob-
jectwise fixed points, and its left adjoint is given by regarding a nonequivariant
spectrum as a G-object with trivial G-action.

The fixed point functor and its left adjoint form a Quillen morphism in
the positive complete model structures. Neither the fixed point functor nor its
left adjoint is homotopical, and so both need to be derived. As one can easily
check from the definition, if X is fibrant (or more generally has the property
that for some exhausting sequence {V},}, the map Xy, — QVer1=Vo Xy, L 1sa
weak equivalence), then there is an isomorphism

T (X9 ~ 70X,

The (derived) fixed point functor on spectra does not always have the
properties one might be led to expect by analogy with spaces. For example,
even though the composition of the fixed point functor with its left adjoint is
the identity, the composition of the derived functors is not. The derived fixed
point functor does not generally commute with smash products, or with the
formation of suspension spectra.

2.5.2. Isotropy separation and geometric fixed points. A standard approach
to getting at the equivariant homotopy type of a G-spectrum X is to nest X
between two pieces, one an aggregate of information about the spectra i7; X
for all proper subgroups H C G, and the other a localization of X at a “purely
G” part. This is the isotropy separation sequence of X.

More formally, let P denote the family of proper subgroups of G, and EP
the “classifying space” for P, characterized up to equivariant weak equivalence
by the property that the space of fixed points EP® is empty, while for any
proper H C G, EPH is weakly contractible. For convenience, we will assume
that E'P has been chosen to be a G-CW complex. Such a model can be con-
structed as the join of infinitely many copies of G/H with H ranging through
the proper subgroups of G. It can also be constructed as the unit sphere in
the sum of infinitely many copies of the reduced regular representation of G.
Any G-CW complex EP admits an equivariant cell decomposition into cells of
the form (G/H)y A D} with H a proper subgroup of G.
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Let EP be the mapping cone of EP — pt, with the cone point taken
as base point. The G-CW complex EP is characterized up to equivariant
homotopy equivalence by the property

0 —
x  H#G.

The important isotropy separation sequence is constructed by smashing a G
spectrum X with the defining cofibration sequence for EP

(2.44) EP,AX - X - EPAX.

The term on the left can be described in terms of the action of proper subgroups
H C G on X. The homotopy type of the term on the right is determined by
its right derived fixed point spectrum

o¢(X) = (EP A X);)",

in which the subscript f indicates a functorial fibrant replacement. The functor
®Y(X) is the geometric fived point functor and has many remarkable proper-
ties.

PROPOSITION 2.45.

(i) The functor ®F sends weak equivalences to weak equivalences.

(i) The functor ®F commutes with filtered homotopy colimits.

(iii) For a G-space A and a representation V' of G, there is a weak equivalence
PE(STVAA) ~ SV NAC where VG C V is the subspace of G-invariant
vectors.

(iv) For G-spectra X and Y, the spectra

PE(XAY) and ®Y(X) A DY (Y)

are related by a natural chain of weak equivalences.

Remark 2.46. Note that in terms of the canonical homotopy presentation

X = holi STV A Xy,
1%4

properties (i)—(iii) of Proposition 2.45 imply that
(2.47) ®¢X ~ holim 5V A X,
|4

Sketch of proof. The first assertion follows from the fact that smashing
with EP is homotopical (Section B.3.7), so it need not be derived, and that
the fixed point functor is homotopical on the full subcategory of fibrant objects.
The second is straightforward. Part (iii) is Corollary B.185. By the remark
above, the canonical homotopy presentation reduces part (iv) to the case X =



38 M. A. HILL, M. J. HOPKINS, and D. C. RAVENEL

SVANA'Y =SWAB, with A and B G-CW complexes. One easily checks
the assertion in this case using part (iii). O

Remark 2.48. When G = Cn, the space EP is the space ECs with G
acting through the epimorphism G — Cy. Taking S°° with the antipodal
action as a model of ECy, this leads to an identification

EP ~ lim S"°,
n—oo

in which S™ denotes the one point compactification of the direct sum of n
copies of the real sign representation of G.

Remark 2.49. The isotropy separation sequence often leads to the situa-
tion of needing to show that a map X — Y of cofibrant G-spectra induces a
weak equivalence

EPAX - EPAY.
Since for every proper H C G, WfEP ANX = W,{{EP AY = 0, this is equivalent
to showing that the map of geometric fixed point spectra ®¢X — ®CY is a
weak equivalence.

Remark 2.50. Since ﬂfEP AN X = 0 for every proper H C G, it is also
true that

[T,EPAX]S =0
when T' a G-CW complex, built entirely from G-cells of the form G/H x D™
with H a proper subgroup of G. Similarly, if T" is gotten from a G-space Ty by
attaching G-cells induced from proper subgroups, then the restriction map

[T, EP A XS — [Ty, EP A X]¢
is an isomorphism. This holds, in particular, when Ty C T is the subcomplex

of G-fixed points.

Remark 2.51. For a subgroup H C G and a G-spectrum X, it will be
convenient to use the abbreviation

D'

for the more correct ® i7;X. This situation comes up in our proof of the
“homotopy fixed point” property of Theorem 10.8, where the more compound
notation becomes a little unwieldy.

We end this section with a simple result whose proof illustrates a typical
use of the geometric fixed point spectra.

PROPOSITION 2.52. Suppose that X is a G-spectrum with the property
that for all H C G, the geometric fized point spectrum ®HX is contractible.
Then X is contractible as a G-spectrum.
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Proof. By induction on |G| we may assume that for proper H C G, the
spectrum 77, X is contractible. Since both G A (—) and the formation of

mapping cones are homotopical, it follows that T' A X is contractible for any
G-CW complex built entirely from cells of the form G4 }/L\I D" with H C G

proper. This applies, in particular, to 7' = EP,. The isotropy separation
sequence then shows that

X 5> EPAX

is a weak equivalence. But Remark 2.49 and our assumption that ®¢X is
contractible imply that EP A X is contractible. O

2.5.3. Monoidal geometric fized points. For some purposes it is useful to
have a version of the geometric fixed point functor that is lax symmetric
monoidal. For example, such a functor automatically takes (commutative)
algebras to (commutative) algebras. The geometric fixed point functor defined
in [55, §V.4] has this property. We denote it @% and refer to it as the monoidal
geometric fized point functor in order to distinguish it from ®“. The following
is a compendium of results from [55, §V.4]. The construction and proofs are
described in Section B.10.

PROPOSITION 2.53. The monoidal geometric fized point functor has the
following properties:

(i) it preserves acyclic cofibrations;
(ii) it is lax symmetric monoidal,
(iii) if X and Y are cofibrant, the map

B X)A DG, (YV) = B (X AY)

18 an isomorphism;
(iv) it commutes with cobase change along a closed inclusion;
(v) it commutes with directed colimits.

Property (iii) implies that ®¢, is weakly symmetric monoidal in the sense
of the definition below.

Definition 2.54 (Schwede-Shipley [77]). A functor F' : C — D between
(symmetric) monoidal model categories is weakly (symmetric) monoidal if it is
lax (symmetric) monoidal, and the map

FX)NF(Y)—= F(XAY)
is a weak equivalence when X and Y are cofibrant.

The next result is [55, Prop. V.4.17], and it is discussed in more detail as
Proposition B.201.
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PROPOSITION 2.55. The left derived functor of ®, is ®¢. More specifi-
cally, there are natural transformations

(X)) = BF(X) = 2 (X)

i which the rightmost arrow is a always weak equivalence and the leftmost
arrow is a weak equivalence when X is cofibrant.

Because ®C is lax monoidal, it determines functors
%, : Alg¥ — Alg,
@f/l : Comm? — Comm,
and for each associative algebra R, a functor
Y, Mp — M‘I’%R'

In addition, if R is an associative algebra, M a right R-module and N a left
R-module, there is a natural map

(2.56) G (M AN) = oG M A DY N.

M
The argument for [55, Prop. V.4.7] shows that (2.56) is a weak equivalence
(in fact an isomorphism) if M and N are cofibrant and R is “cellular.” See
Proposition B.203. (Recently, Blumberg and Mandell [10, App. A] have shown
that one need only require one of M or N to be cofibrant in order to guarantee
that this map is an isomorphism.)

While these properties of @% are very convenient, they must be used with
caution. The value CI)%(X ) is only guaranteed to have the “correct” homotopy
type on cofibrant objects. The spectrum underlying a commutative algebra
is rarely known to be cofibrant, making the monoidal geometric fixed point
functor difficult to use in that context. The situation is a little better with
associative algebras. The weak equivalence (2.56) leads to an expression for
the geometric fixed point spectrum of a quotient module that we will use in
Section 7.3. In order to do so, we need criteria guaranteeing that the monoidal
geometric fixed point functor realizes the correct homotopy type. Such criteria
are described in Section B.10.4.

2.5.4. Geometric fized points and the norm. The geometric fixed point
construction interacts well with the norm. Suppose H C G is a subgroup and
that X is an H-spectrum. The following result is proved as Proposition B.209.
Our original version merely concluded that the transformation in question was
a weak equivalence on cofibrant objects. Andrew Blumberg and Mike Mandell
pointed out that it is in fact an isomorphism on cofibrant objects, and at their
request we have included a proof of the stronger statement.
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PROPOSITION 2.57. There is a natural map
H G G
Oy X — O (NgX)
that is an isomorphism, hence a weak equivalence, on cofibrant objects.

Because of Proposition 2.55 and the fact that the norm preserves cofibrant
objects (Proposition B.89), the above result gives a natural zig-zag of weak
equivalences relating ®(X) and ®“(N§X) when X is cofibrant. In fact
there is a natural zig-zag of maps

PIX & dY(NGX)

that is a weak equivalence not only for cofibrant X, but for suspension spectra
of cofibrant G-spaces and for the spectra underlying cofibrant commutative
rings. The actual statement is somewhat technical and is one of the main
results of Appendix B. The condition is described in the statement of Propo-
sition B.213. See also Remarks B.215 and B.216.

COROLLARY 2.58. For the spectra satisfying the condition of Proposi-
tion B.213, the composite functor

P o NG : 87 5 8

preserves, up to weak equivalence, wedges, directed colimits along closed inclu-
sions and cofiber sequences.

Proof. The properties obviously hold for ®#. O

There is another useful result describing the interaction of the geometric
fixed point functor with the norm map in RO(G)-graded cohomology described
in Section 2.3.3. Suppose that R is a G-equivariant commutative algebra, X is
a G-space, and V € RO(H) a virtual real representation of a subgroup H C G.
In this situation one can compose the norm

N : RY(X) — RBV(X)
with the geometric fixed point map
o%: RV (X) — (9 R)V" (X ),

where VH < V is the subspace of H-fixed vectors and X© is the space of
G-fixed points in X.

PROPOSITION 2.59. The composite
%o N : RY(X) — (2°R)V"(X€)

s a ring homomorphism.
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Proof. Multiplicativity is a consequence of the fact that both the norm
and the geometric fixed point functors are weakly monoidal. Additivity follows
from the fact that the composition ®“ o N preserves wedges (Corollary 2.58).

O

3. Mackey functors, homology and homotopy

3.1. Mackey functors. In equivariant homotopy theory, the role of “abe-
lian group” is played by the notion of a Mackey functor (Dress [20]). The fol-
lowing is the summary of Dress’ definition as it appears in Greenlees-May [28].

Definition 3.1 (Dress [20]). A Mackey functor consists of a pair M =
(M., M*) of functors from the category of finite G-sets to the category of
abelian groups. The two functors have the same object function (denoted M)
and take disjoint unions to direct sums. The functor M, is covariant, while
M* is contravariant, and together they take a pullback diagram of finite G-sets

5*6>A
L
T——B
B

to a commutative square

where o = M*(«), . = M.(p), etc.

The contravariant maps M*(«) are called the restriction maps and the
covariant maps M, (f3), the transfer maps.

A Mackey functor can also be defined as a contravariant additive functor
from the full subcategory of 8¢ consisting of the suspension spectra B,
of finite G-sets B. It is a theorem of tom Dieck that these definitions are
equivalent. See [28, §5].

The equivariant homotopy groups of a G-spectrum X are naturally part
of the Mackey functor 7, X defined by

(m, X)*(B) = [S" A By, X%,
(7, X)«(B) = [S", X A B4]°.
The identification of the two object functors

[S" A By, X% ~ [S", X A B,]¢
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comes from the self-duality of finite G-sets (Example 2.6). For B = G/H, one
has
7,X(B) =71HlX.

The Mackey functor m,S° is the Burnside ring Mackey functor A. It is
the free Mackey functor on one generator. For a G-set B, the value A(B)
is the group completion of the monoid of isomorphism classes of finite G-sets
T — B over B under disjoint union. The restriction maps are given by pullback
and the transfer maps by composition. The group A(G/H) works out to be
isomorphic to the abelian group underlying the Burnside ring of finite H-sets.

Just as every abelian group can occur as a stable homotopy group, every
Mackey functor M can occur as an equivariant stable homotopy group. In fact
associated to each Mackey functor M is an equivariant Eilenberg-Mac Lane
spectrum H M, characterized by the property

M n =0,
M =1 £0
n .

See [28, §5] or [49].
The homology and cohomology groups of a G-spectrum X with coeflicients
in M are defined by

HE(X;M)=7SHM A X,
HE(X; M) = [X, SV HM]
For a pointed G-space Y, one defines
HE(Y; M) = HF (S®Y; M),
HE (Y M) = H3 (S M).
We emphasize that the equivariant (co)homology groups of pointed G-spaces
Y we consider will always be reduced (co)homology groups.
We will have need to consider the ordinary, nonequivariant homology and

cohomology groups of the spectrum ¢;X underlying a G-spectrum X. It will
be convenient to employ the shorthand notation

H(X;Z) = Hn(igX; Z),
HI(X:Z) = H(i5X:2)
for these groups.
3.2. Constant and permutation Mackey functors. The constant Mackey
functor Z is the functor represented on the category of finite G-sets by the

abelian group Z with trivial G-action. The value of Z on a finite G-set B is
the group of functions

Z(B) = hom“(B,Z) = hom(B/G, Z).
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The restriction maps are given by precomposition, and the transfer maps by
summing over the fibers. For K C H C G, the transfer map associated by Z
to

G/K - G/H
is the map Z — Z given by multiplication by the index of K in H.

Definition 3.2. Suppose that S is a G-set, and write Z{S} for the free
abelian group generated by S and Z° for the ring of functions S to Z. The
permutation Mackey functor Z{S} is the Mackey functor

Z{S}<B) = hOHlG(B, Z{S})v

whose restriction maps are given by precomposition and transfer maps by
summing over the fibers.

The permutation Mackey functor Z{S} is naturally isomorphic to the
Mackey functor myHZ N S4+. To see this note that restricting to underlying
nonequivariant spectra gives a map

7oHZ A Sy (B) = [By,HZA S{|% — [By,HZ A S,],
whose image lies in the G-invariant part. Since
[By,HZ N S4] = hom(B,Z{S}),
this gives a natural transformation
noHZ N S+ — Z{S}.

Since both sides take filtered colimits in S to filtered colimits, to check that it
is an isomorphism, it suffices to do so when S is finite. In that case we can use
the self duality of finite G-sets to compute

[By, HL A S4]° ~ [By A Sy, HZI®

and then observe that by definition of the constant Mackey functor Z, the
forgetful map

(B4 A Sy, HZ)® — By A Sy, HZ
is an isomorphism with the G-invariant part of the target. The claim then
follows from the compatibility of equivariant Spanier-Whitehead duality with
the restriction functor to nonequivariant spectra.

The properties of permutation Mackey functors listed in the lemma below
follow immediately from the definition. They are used in Section 4.6.2 to
establish some of our basic tools for investigating the slice tower. To formulate
part (ii), note that every G-set B receives a functorial map from a free G-set,
namely G x B and the group of equivariant automorphisms of G' x B over B is
canonically isomorphic to G. For instance, one can give G x B the product of
the left action on G and the trivial action on B, and take the map G x B — B
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to be the original action mapping. With this choice the automorphisms G x B
over B are of the form (g,b) — (gz, 2 1b) with z € G.
LEMMA 3.3. Let M be a permutation Mackey functor and B finite G-set.
(i) If B' — B is a surjective map of finite G-sets, then
M(B) = M(B") = M(B' X B
s an equalizer.
(ii) Restriction along the action map G X B — B gives an isomorphism
M(B) — M(G x B)“.
(iii) The restriction mapping M(G/H) — M(G) gives an isomorphism
M(G/H) — M(G)"
of M(G/H) with the H-invariant part of M(G).

(iv) A map M — M’ of permutation Mackey functors is an isomorphism if
and only if M(G) — M'(G) is an isomorphism.

3.3. Equivariant cellular chains and cochains. The Mackey functor ho-
mology and cohomology groups of a G-CW complex X can be computed from
a chain complex analogous to the complex of cellular chains (see, for example,
28, §5]). Write X (™ for the n-skeleton of X so that

XM/ xr=b ~ x,, AS"
with X,, a discrete G-set. Set
CMNX M) =7CHM A XM /XM=Y = 28 HM A X,
Clan(X: M) = (X" /XD ST HM]E = [ X, HM].
The map
myx =1 oy px (=) x(n=2)
defines boundary and coboundary maps
ceel(X: M) — O (X; M),
Cran (X; M) = Cn(X; M).

The equivariant homology and cohomology groups of X with coeflicients in M
are the homology and cohomology groups of these complexes. By writing the
G-set X, as a coproduct of finite G-sets X<, one can express C<°!'(X; M) and
Cly(X; M) in terms of the values of the Mackey functor M on the Xg.

C

Ezample 3.4. Write p¢ for the (real) regular representation of G and pg—1
for the reduced regular representation. The groups

1 (571 1)
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play an important role in equivariant stable homotopy theory. To describe
them we need an equivariant cell decomposition of SP¢~1. Since SP¢~! is the
mapping cone of the map
S(pe —1) = pt

from the unit sphere in (pg — 1), it suffices to construct an equivariant cell
decomposition of S(pg — 1). Write g = |G|. Think of RY as the vector
space with basis the elements of G. The boundary of the standard simplex
in this space is equivariantly homeomorphic to S(pg — 1). The simplicial
decomposition of this simplex is not an equivariant cell decomposition, but the
barycentric subdivision is. Thus S(pg — 1) is homeomorphic to the geometric
realization of the poset of nonempty proper subsets of G. This leads to the
complex

(3.5) M(G/G) = M(So) = M(S1) = -+ — M(Sg—1)

in which Sy is the G-set of flags Fy C --- C Fy, C G of proper inclusions
of subsets of GG, with G acting by translation. The coboundary map is the
alternating sum of the restriction maps derived by omitting one of the sets in
a flag.

COROLLARY 3.6. For any Mackey functor M, the group
7% _HM = H(SPs™1; M)

PG
s given by
M ker (M(G/G) — M(G/H)).
HCG
Proof. Using the complex (3.5) it suffices to show that the orbit types
occurring in Sy are precisely the transitive G-sets of the form G/H with H
a proper subgroup of G. The set Sy is the set of nonempty proper subsets
S C G. Any proper subgroup H of GG occurs as the stabilizer of itself, regarded
as a subset of G. Since the subsets are proper, the group G does not occur as
a stabilizer. O

Ezample 3.7. Let X be the sphere S9! with the action of Con given by
the antipodal map and pointed by adding a disjoint base point. The usual cell
decomposition into hemispheres is equivariant for the action of Can, and for
this cell structure, one has X0 /XU~1) = (Cyn /Cyn-1)4 A S?. The complex of
cellular chains C¢'(X; M) works out to be the complex of length d

M(Cyn) — - 05 M(Con) =2 M(Con)
in which v € Con is the generator.

Ezxample 3.8. Let G = Can, and let o the sign representation of G. Sus-
pending the cell decomposition of Example 3.7 gives an equivariant cell decom-
position of S% whose k-skeleton is S** and whose set of k-cells is Co x D¥, in
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which G acts on Cy through the unique surjective map G — Cs. The complex
of cellular chains C¢"'(8%; M) works out to be the complex of length (d + 1)

M(Cy) — - == M(Cy) — M(pt)
in which v € G is the preferred generator.

If M is the constant Mackey functor Z, then CS*(X; M) is the permu-
tation Mackey functor Z{X,} and associates to a finite G-set B the group of
equivariant functions

B — Z{X,} = Cc°X.
In this way the entire Mackey functor chain complex C!'(X;Z) is encoded in
the ordinary cellular chain complex Ciell(X ) for i{.X, equipped with the action
of G. The equivariant homology group HY(X;Z) are just the homology groups
of the complex
homg(G/G, CN (X)) = CeN(X)C
of G-invariant cellular chains. Similarly, the equivariant cohomology groups

H} (X Z) are given by the cohomology groups of the complex

cell

of equivariant cochains. The equivariant homology and cohomology groups
depend only on the equivariant chain homotopy type of these complexes of
permutation Mackey functors.

Example 3.9. If X is a G-space admitting the structure of a G-CW com-
plex, then the cohomology groups H¢ (X;Z) are isomorphic to the cohomology
groups

H*(X/G;Z)
of the orbit space. Indeed, the equivariant cell decomposition of X induces a
cell decomposition of X/G and one has an isomorphism

. (X)G cell(X/G)

cell

Example 3.10. Suppose that V' is a representation of G of dimension d,
and consider the equivariant cellular chain complex

CcsN(sYiz) — s (SViz) — - — CgN SV 2,
associated to an equivariant cell decomposition of SY'. The underlying homol-
ogy groups are those of the sphere SV. In particular, the kernel of
Ccell(SV ) N Ccell (SV )
is isomorphic, as a G-module, to HY(SV;Z). If V is orientable, then the

G-action is trivial, and one finds that the restriction map

Hg (SV3Z) — H(S";Z)
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is an isomorphism. A choice of orientation gives an equivariant isomorphism
HY(SV:7Z) ~ 7.
Thus when V is oriented there is a unique isomorphism
HY(SV;2)~7Z
extending the nonequivariant isomorphism given by the orientation.
3.4. Homology and geometric fized points. In addition to the Mackey func-

tor homotopy groups 7, X, there are the RO(G) graded homotopy groups 7&X
defined by

9 X =[SV, X]°, V € RO(G).
Here RO(G) is the Grothendieck group of real representations of G. The use of
 for the wildcard symbol in 7& is taken from Hu-Kriz [37]. The RO(G)-graded
homotopy groups are also part of a Mackey functor z,(X) defined by

myX(B) =[SV A By, X]¢.
As with Z-graded homotopy groups, we will use the abbreviation
X = (zy X)(G/H).

In this section we will make use of RO(G)-graded homotopy groups to describe
the geometric fixed point spectrum ®“HZ when G = Cy» (Proposition 3.18
below).

There are a few distinguished elements of RO(G)-graded homotopy groups
we will need. Let V be a representation of G and S° — S" the one point
compactification of the inclusion {0} C V.

Definition 3.11. The element
ay € n%,5°

is the element corresponding under the suspension isomorphism W?VSO R
758" to the map S < SV described above.

The element ay is the Euler class of V' in RO(G)-graded equivariant stable
cohomotopy. If V contains a trivial representation, then ay = 0. For two
representations V' and W, one has

G 0
ayow = ayaw € W—V—W‘S’ .

Example 3.10 gives a preferred generator of Hg(S V.. Z) when V is oriented.
We give the corresponding RO(G)-graded homotopy class the following name.

Definition 3.12. Let V be an oriented representation of G of dimension d.
The element
uy € w(?_VH YA
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is the element corresponding to the preferred generator of
mgHZ NSV = HS (SV;7)
given by Example 3.10.

If V is trivial, then uyy = 1. If V and W are two oriented representations
of G, and V & W is given the direct sum orientation, then

Uy W = UV UW .

Among other things this implies that the class uy is stable in V' in the sense
that uy 41 = uy.
For any V, the representation V & V has a canonical orientation, giving

G
uyev € oy oy HZ.

When V is oriented this class can be identified, up to sign, with u%/
The elements ay and uy behave well with respect to the norm. The
following result is a simple consequence of the fact (2.11) that NSV = §rdV,

LEMMA 3.13. Suppose that V is a d-dimensional representation of a sub-
group H C G. Then

Nay = aijpav,

Uindd * NUy = Uinq v,

where indV = indg V' is the induced representation and d is the trivial repre-
sentation.

Remark 3.14. Asis standard in algebra, we will adopt the convention that
the operation of multiplication by an element of a ring on a module is denoted
by the element of the ring. We will also use it in closely related contexts. For
example, for a G-spectrum X, we will refer to the to the maps

av ANlx: STV AX 5 X,
wy Alx : STV AX 5 HZAX

as multiplication by ay and wuy respectively and, when no confusion is likely,
denote them simply by ay and uy. Note that X might be a virtual repre-
sentation sphere. This means that we will not usually distinguish in notation
between these maps and their suspensions. Similarly, if R is any equivariant
algebra, and = € W‘(;SO, then the product of x with 1 € 7§’ R will be denoted
T € W‘(;R. In accordance with this, at various places in this paper the sym-
bol ay might refer to a map S~V — S°, or its suspension S° — SV or the
Hurewicz image S° — HZ A SV or equivalently an element of 7§’ HZ A SV
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Example 3.15. Let SV be the colimit of the spaces S™ under the stan-
dard inclusions. Each of these inclusions is “multiplication by ay.” Smashing
with a G—spectrum X we find that >V A X is the colimit of the sequence

GV AX L SV AX . B VA X B
Using the suspension isomorphism to replace 7¢S™ A X with 71'97 2vX, the
sequence of the RO(G)-graded groups becomes
7r*GX AN WS_VX" AN Wf_nVX---
from which one gets an isomorphism
7SV A X & aVIWGX
Under this isomorphism the effect in RO(G)-graded homotopy groups induced

by the inclusion
SVAX = SV AX

sends x € 79X ~ 78, |, SV A X to ay"z € ay m¢X.

Example 3.16. Specializing Example 3.8, let G = Con» and o the sign
representation. Consider the equivariant homology of S% with coefficients in
the constant Mackey functor Z. The complex of cellular chains works out to
be (Example 3.8) the complex of length (d + 1)

z— - --23572%72%7.

Our conventions provide nomenclature for the homology classes. When d is odd
the group Hy(S%;Z) is zero. When d is even, the representation do acquires
a canonical orientation, the group HgQ(Sd”;Z) is canonically isomorphic to
the integers, and the preferred generator is the class ug, (Remark 3.14). For
every even 0 < k < d, the group H ,? (8. 7) is cyclic of order 2 generated
by the image of ug, € H E (S*e.Z) under the map induced by the inclusion
Sko < 897 As explained in Remark 3.14 this induced map is multiplication
by a(q—r)s, and so this generator corresponds to the element

A(d—k)o * Uko € T gy (HZ)
under the suspension isomorphism
o-ao(HZ) =~ m (HL A S™) = HE (SY; ).

Ezxample 3.17. Passing to the limit as d — oo and using the last part of
Example 3.15 we find that a(g_)s - uge is sent to

agal “O(d—k)o " Uko = a,;alu;w S ﬂ_ksooa'
Writing b = a2_0.1U20— we find that the homogeneous component
TSPHZ A S®° € nC2HZ A 877 = a3 n > HZ

is cyclic of order 2, generated by b".
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We now explicitly describe the geometric fixed point spectrum of HZ
when G = Con. The computation plays an important role in the proof of the
Reduction Theorem.

PROPOSITION 3.18. Let G = Con. For any G-spectrum X, the RO(G)-
graded homotopy groups of EP N X are given by

T9(EPAX) =a;'7%(X).
The homotopy groups of the commutative algebra ®EHZ are given by
T (DO HZ) = 7./2[b],
where b = ugga;? € my(® HZ) = 7§ (EP A HZ) C a; 'S HZ.
Proof. As mentioned in Remark 2.48, the space EP can be identified with
lim S™.
n—oo
The first assertion therefore follows from Example 3.15. The second assertion

follows from Example 3.17 and the fact that the map a;'7¢X — ¢ EPAX
is a ring homomorphism when X is an equivariant algebra. O

3.5. A gap in homology. We conclude Section 3 with some further obser-
vations about SP¢~!. Proposition 3.20 below constitutes the computational
part of the Gap Theorem and contains the Cell Lemma as a special case.

Ezxample 3.19. Suppose that G is not the trivial group. In Section 4.6.2
we will encounter the group

w6 HL ~ HE(577 L)

which, by Example 3.9, is isomorphic to
HY(SPe™1 )G 7).

The G-space SP¢~! is the unreduced suspension of the unit sphere S(pg — 1),
and so the orbit space is also a suspension. If |G| > 2, then S(pg — 1) is
connected, hence so is the orbit space. If G = Cy, then S(pg — 1) ~ G and
the orbit space is still connected. In all cases then, the unreduced suspension
Src=1/@G is simply connected. Thus

7§ G HZ~ HE(S'¢; L) ~ HE(SP ™1 2) = 0.

In fact the same argument shows that for n > 0, the orbit space S™rc—1) /G
is simply connected, and hence

HE(5™PeY: 2) = HE(5" o™i 2) =0

or, equivalently,

G G
ﬂn(pgfl)HZ = ﬂ-TL( 1HZ =0.

pc—1)—
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Building on this, we have

ProproSITION 3.20. Let G be any nontrivial finite group and n > 0 an
integer. Fxcept in case G = C3, 1 =3, n =1, the groups

HE (5™ Z)
are zero for 0 < i < 4. In the exceptional case one has
HE(SP95;2) = Z.

Proof. Since
Hé'(snpc; 7) ~ Hé-"(s”(ﬁcfl); 7),
connectivity and Example 3.19 show that H}(S™¢;Z) = 0 for i < n+ 1. This
takes care of the cases in which n+1 > 3, leaving only n = 1, and in that case
only the group
HE(SP™ 1 2),
which is isomorphic to
H*(SPe=1)G 7).
Since the orbit space SP6~!/G is simply connected, the universal coefficient
theorem gives an inclusion

H*(SPe™1)G,z) — H?*(S¢7 1G5 Q).
It therefore suffices to show that
H?(5°¢7'/G;Q) = 0.
But since G is finite, this group is just the G-invariant part of
H?(8P971Q),

which is zero since G does not have order 3. When G does have order 3
the group is Q. The claim follows since the homology groups are finitely
generated. O

4. The slice filtration

The slice filtration is an equivariant analogue of the Postnikov tower, to
which it reduces in the case of the trivial group. In this section we introduce the
slice filtration and establish some of its basic properties. We work for the most
part with a general finite group G, though our application to the Kervaire
invariant problem involves only the case G = Can. While the situation for
general G exhibits many remarkable properties, the reader should regard as
exploratory the apparatus of definitions at this level of generality.

From now until the end of Section 11 our focus will be on homotopy theory.
Though it will not appear in the notation, all spectra should be replaced by
cofibrant or fibrant approximations where appropriate.
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4.1. Slice cells.

4.1.1. Slice cells and their dimension. For a subgroup K C G, let pg
denote its regular representation, and write

~

S(m,K):GJrI/}SmpK, m € Z.
Definition 4.1. The set of slice cells is
{S(m,K), 27 'S(m,K) |m e Z,K C G}.

This brings two notions of “cell” into the story: the slice cells and the
cells of the form G/H A D™ or G4 I/} S=V A D™, used to manufacture G-CW

complexes or cellular spectra (Definition B.57). We will refer to these latter
types of cells cells as “G-cells” in order to distinguish them from the slice cells.

Definition 4.2. A slice cell is regular if it is of the form §(m, K).
Definition 4.3. A slice cell is induced if it is of the form
G+ ]/,_} Sa
where S is a slice cell for H and H C G is a proper subgroup. It is free if H
is the trivial group. A slice cell is isotropic if it is not free.
Since
Gy p S, X9~ [S,i%X]7  and
[Xv G+ ;-\I S]G ~ [’L*HXv S]Ha
induction on |G| usually reduces claims about cells to the case of those that

are not induced. The slice cells that are not induced are those of the form
Smpc and §mec—l,

Definition 4.4. The dimension of a slice cell is defined by

dim S(m, K) = m|K]|,
dim27'5(m, K) = m|K| — 1.
In other words, the dimension of a slice cell is that of its underlying
spheres.

Remark 4.5. Not every suspension of a slice cell is a slice cell. Typically,
the spectrum %725(m, K) will not be a slice cell, and will not exhibit the
properties of a slice cell of dimension dim S(m, K) — 2.

The following is immediate from the definition.
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PROPOSITION 4.6. Let H C G be a subgroup. If S is a G-slice cell of
dimension d, then i3S is a wedge of H-slice cells of dimension d. If S is an
H-slice cell of dimension d, then G4 I/} S is a G-slice cell of dimension d.

The regular slice cells behave well under the norm.

PROPOSITION 4.7. Let H C G be a subgroup. Ifﬁ\/ is a wedge of reqular
H-slice cells, then NgW is a wedge of regular G-slice cells.

Proof. The wedges of regular H-slice cells are exactly the indexed wedges
(in the sense of Section 2.3.2) of spectra of the form S™Pk for K C H, and
m € Z. Since regular representations induce to regular representations, the
identity (2.11) and the distribution formula (Proposition A.37) show that the
norm of such an indexed wedge is an indexed wedge of S"PK with K C G and
m € Z. The claim follows. g

4.1.2. Slice positive and slice null spectra. Underlying the theory of the
Postnikov tower is the notion of “connectivity” and the class of (n — 1)-
connected spectra. In this section we describe the slice analogues of these ideas.
There is a simple relationship between “connectivity” and “slice-positivity, ”
which we will describe in detail in Section 4.4.

Definition 4.8. A G-spectrum Y is slice n-null, written
Y<n or Y<n-1
if for every slice cell S with dim S > n, the G-space
$c(S,Y)
is equivariantly contractible. A G-spectrum X is slice n-positive, written
X>n or X>n+1
if
8¢ (X,Y)
is equivariantly contractible for every Y with Y < n.

We use the terms slice-positive and slice-null instead of “slice 0-positive”
and “slice 0-null.” The full subcategory of 8¢ consisting of X with X > n will
be denoted Sgn or Sgn 41. Similarly, the full subcategory of 8% consisting of

X with X < n will be denoted 8, or Sgn_l.
Remark 4.9. The category Sgn is the smallest full subcategory of 8¢ con-
taining the slice cells S with dim S > n and possessing the following properties:

(i) if X is weakly equivalent to an object of 87, then X is in 8% ;
(ii) arbitrary wedges of objects of 8¢, are in 89, ;
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(iii) if X - Y — Z is a cofibration sequence and X and Y are in Sgn, then
so is Z;

(iv) if X =Y — Z is a cofibration sequence and X and Z are in 8%, then
sois Y.

More briefly, these properties are that Sgn is closed under weak equivalences,

homotopy colimits (properties (ii) and (iii)), and extensions.

Remark 4.10. The fiber of a map of slice n-positive spectra is not assumed
to be slice n-positive, and need not be. For example, the fiber of * — 5P¢ is
SPG=1 which is not slice (|G| — 1)-positive, even though both * and S°¢ are.

For n =0, —1, the notions of slice n-null and slice n-positive are familiar.
PROPOSITION 4.11. For a G-spectrum X, the following hold:
(i) X >0 < X is (—1)-connected, i.e., ;;;X =0 for k < 0;
(i) X > -1 <= X is (—2)-connected, i.e., m;, X =0 for k < —1;
(iii) X <0 <= X is 0-coconnected, i.e., 7, X =0 for k > 0;
(iv) X < =1 <= X is (—1)-coconnected, i.e., m;;X =0 for k > —1.

Proof. These are all straightforward consequences of the fact that S is a
slice cell of dimension 0 and S~ is a slice cell of dimension (—1). O

Remark 4.12. It is not the case that if Y > 0, then npY = 0. In Propo-
sition 4.15 we will see that the fiber F' of S — HZ has the property that
F > 0. On the other hand, myF' is the augmentation ideal of the Burnside
ring. Proposition 4.48 below gives a characterization of slice-positive spectra.

The classes of slice n-null and slice n-positive spectra are preserved under
change of group.

PROPOSITION 4.13. Suppose H C G, that X is a G-spectrum, and Y 1is
an H-spectrum. The following implications hold:
X >n = igX >n,
X <n = iygX <n,
Y>n = G4 1/} Y > n,

Y<n = G+I/}Y<n.

Proof. The second and third implications are straightforward consequences
of Proposition 4.6. The fourth implication follows from the Wirthmiiller iso-
morphism and Proposition 4.6, and the first implication is an immediate con-
sequence of the fourth. O

We end this section with a mild simplification of the condition that a
spectrum be slice n-null.
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LEMMA 4.14. For a G-spectrum X, the following are equivalent:
(i) X <n;
(ii) for all slice cells S with dim S > n, [S, X]¢ = 0.

Proof. The first condition trivially implies the second. We prove that the
second implies the first by induction on |G|. By the induction hypothesis we
may assume that the G-space N

§G (57 X)
is contractible for all induced slice cells S with dim S > n and that for all slice
cells S with dim S > n, and all proper H C G, the space

‘;SG (§7 X)H
is contractible. We therefore also know that the G-space
Sa(T AS,S' A X)
is contractible for all slice cells S with dim S > n and all G-CW complexes
T that are built entirely from G-cells of the form G/H x D™ with H C G a
proper subgroup, and m > 0. This condition on a 7' is equivalent to requiring

that T¢ = % and that for all proper H C G, the space TH be connected.
We must show that for each ¢ > 0, the groups

[StASsmPe—t X190 m|G|—1>n,
(St A S™Pe X9 m|G| >n

are zero. They are zero by assumption when ¢ = 0. For ¢ > 0, the first case
is a special case of the second, since S' A §™P6~1 ig a slice cell of dimension
m|G|. Let T be quotient G-CW complex

T = S'¢ /St
and consider the exact sequence
[Stre A S0 XG5 [SEA ST XG5 [T A S™PG, ST A X]C.
The leftmost group is zero since the slice cell S¢ A S™PG has dimension
(t + m)|G|, which is at least n. The rightmost group is zero by the induc-

tion hypothesis as T is easily checked to be a have the fixed point properties
described above. It follows from exactness that the middle group is zero. [

4.2. The slice tower. Let P"X be the Bousfield localization, or Dror Far-
joun nullification ([21], [32]) of X with respect to the class 85, , and P, 1 X
the homotopy fiber of X — P"X. Thus, by definition, there is a functorial
fibration sequence

P X - X — P*'X.
The functor P"X can be constructed as the colimit of a sequence of func-

tors
WoX - WX —---.
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The W; X are defined inductively starting with Wy X = X and taking Wi X to
be the cofiber of

\/ 28 — Wi X,
I

in which the indexing set I is the set of maps $tS — Wi_1X with S>n
a slice cell and ¢ > 0. By Lemma 4.14 the functors P" can also be formed
using the analogous construction using only slice cells themselves, and not
their suspensions.

PROPOSITION 4.15. A spectrum X is slice n-positive if an only if it admits
(up to weak equivalence) a filtration

XoC X1 C---

whose associated graded spectrum \/ Xi/Xk—1 is a wedge of slice cells of di-
mension greater than n. For any spectrum X, P, 11X is slice n-positive.

Proof. This follows easily from the construction of P"X described above.
O

The map P,+1X — X is characterized up to a contractible space of choices
by the properties
(i) for all X, P11 X € 89, ;

(ii) for all A € Sgn and all X, the map 8¢ (A, P,+1X) — 8c(A4, X) is a weak
equivalence of G-spaces.

In other words, P,+1X — X is the “universal map” from an object of Sgn
to X. Similarly, X — P"X is the universal map from X to a slice (n + 1)-null
G-spectrum Z. More specifically,

(iii) the spectrum P"X is slice (n + 1)-null;
(iv) for any slice (n + 1)-null Z, the map

Sq(P"X,Z) — 8¢(X, 2)
is a weak equivalence.
These conditions lead to a useful recognition principle.
LEMMA 4.16. Suppose X is a G-spectrum and that
ﬁnﬂ -~ X — P"

is a fibration sequence with the property that P" < n and ]5n+1 > n. Then the
canonical maps Py11 — Ppy1X and P"X — P™ are weak equivalences.

Proof. We show that the map X — P™ satisfies the universal property of
P™X. Suppose that Z < n, and consider the fibration sequence of GG-spaces

8a(P",Z) = 8a(X,Z) = 8a(Put1, 2).



58 M. A. HILL, M. J. HOPKINS, and D. C. RAVENEL

The rightmost space is contractible since an > n, so the map
§G(Pn7z) - §G(X7 Z)
is a weak equivalence. O

The following consequence of Lemma 4.16 is used in the proof of the
Reduction Theorem.

COROLLARY 4.17. Suppose that X — Y — Z is a cofibration sequence
and that the mapping cone of P"X — P™Y s slice (n + 1)-null. Then both

P*"X —» P'Y - P"Z
and
Pn+1X — Pn+1Y — Pn+1Z

are cofibration sequences.

Proof. Consider the diagram

Poi X —= P —= P Z

i i |

X Y Z
| i N
pPrX Py Pz

in which the rows and columns are cofibration sequences. By construction,
P17 is slice n-positive (Remark 4.9). If P"Z < n, then the right column
satisfies the condition of 4.16, and the result follows. O

Since 8¢, ¢ 8¢, _,, there is a natural transformation

PrX — prlx,

Definition 4.18. The slice tower of X is the tower {P"X },cz. The spec-
trum P"X is the n slice section of X.

When considering more than one group, we will write P*"X = P2X and
P,X = PSX.
Let P'X be the fiber of the map

P"X —» P lx.

Definition 4.19. The n-slice of a spectrum X is P'X. A spectrum X is
an n-slice if X = P'X.

The spectrum P, 1 X is analogous to the n-connected cover of X, and for
two values of n, they coincide. The following is a straightforward consequence
of Proposition 4.11.
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PROPOSITION 4.20. For any spectrum X, PyX is the (—1)-connected
cover of X and P_1X s the (—2)-connected cover of X. The (—1)-slice of
X s given by

P !X =Y"'Hr_,X.

The formation of slice sections and therefore of the slices themselves be-

have well with respect to change of group.

PRrROPOSITION 4.21. The functor P" commutes with both restriction to a
subgroup and left induction. More precisely, given H C G there
ig(PaX) — Pp(igX) and Gi I/} (PpX) — Pa(Gy I/L\IX)
Proof. This is an easy consequence of Lemma 4.16 and Proposition 4.13.
0

Remark 4.22. When G is the trivial group, the slice cells are just ordinary
cells and the slice tower becomes the Postnikov tower. It therefore follows from
Proposition 4.21 that the tower of nonequivariant spectra underlying the slice
tower is the Postnikov tower.

4.3. Multiplicative properties of the slice tower. The slice filtration does
not quite have the multiplicative properties one might expect. In this section
we collect a few results describing how things work. One important result is
Corollary 4.32, asserting that the slice sections of a (—1)-connected commu-
tative or associative algebra are (—1)-connected commutative or associative
algebras. We will show in Section 4.7 that the slice filtration is multiplicative
for the special class of “pure” spectra, defined in Section 4.6.2.

LEMMA 4.23. Smashing with S™C gives a bijection of the set of slice cells
S with dim S = k and those with dim S = k + m|G)|.

Proof. Since the restriction of pg to K C G is |G/K|pk, there is an
identity
PG MPK Y Ay PG A QMPKY oy (IG/K[+m)pr
S /\(G+I/}S ) G+I/}(S A STPK) G+I/}S .
The result follows easily from this. O
COROLLARY 4.24. Smashing with S™¢ gives an equivalence
G G
COROLLARY 4.25. The natural maps
STPG N Pip1 X = Prymiaer (59 A X)),
§mec \ PREX — pREmIGl(gmea A X)

are weak equivalences.

PROPOSITION 4.26. If X > n, Y > m, and n is divisible by |G|, then
XAY >n+m.
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Proof. By smashing X with S(—"/I6Drc and using Corollary 4.25 we may
assume n = 0. Suppose that Z < m. Since Y > m, the zero space of function
spectrum Z¥ is contractible, and so ZY is 0-coconnected. Since X is (—1)-
connected (Proposition 4.11),

Sa(X NY,Z) ~ 8a(X,2")

is contractible and so X AY > m. O

Definition 4.27. A map X — Y is a P"-equivalence if P" X — P™Y is an
equivalence. Equivalently, X — Y is a P"-equivalence if for every Z < n, the
map

8c(Y,Z) = 8a(X, Z)
is a weak equivalence.

LEMMA 4.28. If the homotopy fiber F of f : X — Y isin Sgn, then f is
a P™ equivalence.

Proof. Immediate from the fibration sequence

Sg(Y,Z)—)gc(X,Z)—)ég(F,Z) O

Remark 4.29. The converse of the above result is not true. For instance,
x — S0 is a P~l-equivalence, but the fiber S~! is not in Sg_l.

LEMMA 4.30.

(1) If Y — Z is a P"-equivalence and X > 0, then X NY — X ANZ is a
P"-equivalence.

1) ror Xqi,...,Xp € , the map

(ii) For X Xy, € 8%, th

X AN ANXp =P X AN NP Xy,
1s a P™-equivalence.

Proof. Since P, 1 X and P,4+1Y are both slice n-positive, the vertical map
in the square below are P"-equivalences by Lemmas 4.28 and 4.26:

XANY XNZ

| |

XNANPY — X NP"Z.

The bottom row is a weak equivalence by assumption. It follows that the top
row is a P™-equivalence. The second assertion is proved by induction on k, the
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case k = 1 being trivial. For the induction step, consider

X1 A AXp g AXp P*Xy N - ANP" X1 N Xg

|

PPX; A+ AP"Xj_1 A PPX.

The first map is a P™-equivalence by the induction hypothesis and part (i).
The second map is a P™-equivalence by part (i). d

Remark 4.31. Lemma 4.30 can be described as asserting that the functor
P" : {(—1)-connected spectra} — {Sgn -null spectra}

is weakly monoidal.

COROLLARY 4.32. Let R be a (—1)-connected G-spectrum. If R is a ho-
motopy commutative or homotopy associative algebra, then so is P"R for alln.

The following additional results are proved in Section B.9. The first two
are Propositions B.170 and B.176, and the third is easily deduced from Propo-
sition B.178.

PRrROPOSITION 4.33. Suppose that n > 0 is an integer. If A is a slice
(n — 1)-positive H-spectrum, then NG A is a slice (n — 1)-positive G-spectrum.

PROPOSITION 4.34. Suppose that n > 0 is an integer. If A is a slice
(n—1)-positive G-spectrum, then for every m > 0, the symmetric smash power
Sym™ A is slice (n — 1)-positive.

PROPOSITION 4.35. Suppose that n > 0 is an integer. If R is a (—1)-
connected equivariant commutative ring, then the slice section P"R can be
given the structure of an equivariant commutative ring in such a way that
R — P"R is a commutative ring homomorphism. Moreover, this commutative
ring structure is unique.

4.4. The slice spectral sequence. The slice spectral sequence is the homo-
topy spectral of the slice tower. The main point of this section is to establish
strong convergence of the slice spectral sequence and to show that for any X,
the Es-term is distributed in the gray region of Figure 1. We begin with some
results relating the slice sections to Postnikov sections.

4.4.1. Connectivity and the slice filtration. Our convergence result for the
slice spectral sequence depends on knowing how slice cells are constructed from
G-cells. We will say that a space or spectrum X decomposes into the elements
of a collection of spectra {T,} if X is weakly equivalent to a spectrum X
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admitting an increasing filtration
XoCXqjC---
with the property that X,,/X,,_1 is weakly equivalent to a wedge of Tj,.

Remark 4.36. The suspensions spectrum of a G-CW complex decomposes
into the collection of spectra {G/H. A S™ | H C G,m > 0}. More generally,
an (n — 1)-connected G-spectrum X decomposes into the collection of spectra

{G/H, AS™ | H C G,m > n).

Remark 4.37. To say that X decomposes into the elements of a collec-
tion of compact objects {T,} means that X is in the smallest subcategory of
8¢ closed under weak equivalences, arbitrary wedges, and the formation of
mapping cones and extensions (i.e., the properties listed in Remark 4.9).

LEMMA 4.38. Let S be a slice cell. If dim S =n > 0, then S decomposes
into the spectra G/Hy A S* with |n/|G|] <k <n. IfdimS =n < 0, then S
decomposes into G/Hy A S¥ with n < k < |n/|G|].

Proof. The cell structure of SP¢~1 described in Example 3.4 has G-cells
ranging in dimension from 0 to |G| — 1 and suspends to a cell decomposition
of SP¢ with G-cells whose dimension ranges from 1 to |G|. The cases S =
SmPG and S = §™Pa—1 with m > 0 are handled by smashing these together
and passing to suspension spectra. For m < 0, Spanier-Whitehead duality
gives an equivariant cell decomposition of S™*¢ into cells whose dimensions
range from m|G| to m and of £715™P¢ into cells whose dimensions range
from n = m|G| — 1 to m — 1 = |n/|G||. Finally, the case in which S is
induced from a subgroup K C G is proved by left inducing its K-equivariant
cell decomposition. O

COROLLARY 4.39. LetY € Sgn. Ifn >0, thenY can be decomposed into
the spectra G/H ANS™ with m > |n/|G||. If n <0, then'Y can be decomposed
into G/Hy N S™ with m > n.

Proof. The class of G-spectra Y that can be decomposed into G/H A S™
with m > |n/|G|] is closed under weak equivalences, homotopy colimits, and
extensions. By Lemma 4.38 it contains the slice cells S with dim S > n. It
therefore contains all Y € 8(>;n by Remark 4.9. A similar argument handles
the case n < 0. - 0

PROPOSITION 4.40. Write g = |G].
(i) If n >0 and k > n, then (G/H)+ A S* > n.
(ii) If m < —1 and k > m, then (G/H)1 A S¥ > (m +1)g — 1.
(iii) If Y > n withn >0, then m;Y =0 fori < [n/g].
(iv) If Y > n with n <0, then m;Y =0 for i < n.
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Proof. We start with the first assertion. We will prove the claim by induc-
tion on |G|, the case of the trivial group being obvious. Using Proposition 4.13
we may assume by induction that (G/H); A S* >n whenn > 0and H C G
is a proper subgroup. This implies that if T is an equivariant CW-spectrum
built from G-cells of the form (G/H), A S* with k > n and H C G a proper
subgroup, then 7' > n. The homotopy fiber of the natural inclusion

Sk — ghee

can be identified with the suspension spectrum of S(kpg — k) A S* and so is
such a T Since S¥*¢ > k|G| > kg > n, the fibration sequence

T — Sk — Gkec

exhibits S* as an extension of two slice n-positive spectra, making it slice
n-positive. The second assertion is trivial for & > 0 since in that case G/H1 A
Sk >0and (m+1)g—1 < —1. The case k < —1 is handled by writing

(G/H)4 AS* =S"YG/H)y A SEHDra p g= (e —1)

Since —(k + 1) > 0, the spectrum S—(k+1)(pa=1) ig o suspension spectrum and
SO

(G/H)x ANSF > (k+1)g—1> (m+1)g— 1.
The third and fourth assertions are immediate from Corollary 4.39. O
Remark 4.41. We have stated part (ii) of Proposition 4.40 in the form

in which it is most clearly proved. When it comes up, it is needed as the
implication that for n < 0,

k>|(n+1)/g] = G/HyAS*>n.
To relate these, write m = |(n+ 1)/g], so that
m+1>(n+1)/g
and by part (ii) of Proposition 4.40,
G/H  NS*>(m+1)g—1>n.

4.4.2. The spectral sequence. The slice spectral sequence is the spectral
sequence associated to the tower of fibration {P" X}, and it takes the form

Eyt =78 PIX — 7% X,

t—s

It can be regarded as a spectral sequence of Mackey functors, or of individual
homotopy groups. We have chosen our indexing so that the display of the
spectral sequence is in accord with the classical Adams spectral sequence: the
E3'-term is placed in the plane in position (¢ — s, s). The situation is depicted
in Figure 1. The differential d, maps E>!' to E:*"*+7=1 or in terms the
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display in the plane, the group in position (¢ — s, s) to the group in position
(t—s—1,s+7r).

The following is an immediate consequence of Proposition 4.40. As there,
we write g = |G|.

THEOREM 4.42. Let X be a G-spectrum. The Mackey functor homotopy
groups of P"X satisfy
k> ifn >0,
1. P"X =0 for " ifn=
k>|(n+1)/g] if n <0,

and the map X — P"X induces an isomorphism

~ k 1 ifn >0
£ X S DX for { <ln+1/gl  ifnz0,

k<n ifn < 0.
Thus for any X,
lim P" X
I
is contractible, the map
X = lim P"X
o

is a weak equivalence, and for each k, the map
{m(X)} = {m P" X}

from the constant tower to the slice tower of Mackey functors is a pro-isomor-
phism.

COROLLARY 4.43. If M is an n-slice, then

if n >0 and k lies outside of the region |n/g] <k <n, orifn <0 and k lies
outside of the regionn <k < [(n+1)/g].

Theorem 4.42 gives the strong convergence of the slice spectral sequence,
while Corollary 4.43 shows that the Es-term vanishes outside of a restricted
range of dimensions. The situation is depicted in Figure 1. The homotopy
groups of individual slices lie along lines of slope —1, and the groups contribut-
ing to 7, P" X lie to the left of a line of slope —1 intersecting the (¢ — s)-axis at
(t — s) = n. All of the groups outside the gray region are zero. The vanishing
in the regions labeled 14 correspond to the four parts of Proposition 4.40.

Proposition 4.40 also gives a relationship between the Postnikov tower and
the slice tower.

COROLLARY 4.44. If X is an (n — 1)-connected G-spectrum with n > 0,
then X > n.
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slope |G| — 1

contribution from
an individual P’ X

Figure 1. The slice spectral sequence

Proof. The class of (n—1)-connected spectra is exactly the class of spectra
that decompose into terms of the form G/H A S™ with m > n. By part (i)
of Proposition 4.40, these are in Sgn. O

We end this section with an application. The next result says that if a
tower looks like the slice tower, then it is the slice tower.

PROPOSITION 4.45. Suppose that X — {P™} is a map from X to a tower
of fibrations with the properties

(i) the map X — lim F:’” 18 a weak equivalence;
(ii) the spectrum lim P" is contractible;
(iii) for all n, the fiber of the map P™ — P""1 is an n-slice.

Then P™ is the slice tower of X.
Proof. We first show that P™ is slice (n41)-null. We will use the criteria of

Lemma 4.14. Suppose that S is a slice cell with dim S > n. By condition (iii),
the maps
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are all monomorphisms. Since S is finite, the map

lim[S, P*% — [S, lim P¥|<

k<n k<n
is an isomorphism. It then follows from assumption (i) that [S, P"]¢ = 0.
This shows that P" is slice (n 4 1)-null. Now let P, 1 be the homotopy fiber
of the map X — P". By Lemma 4.16, the result will follow if we can show
P41 > n. By assumption (iii), for any N > n + 1, the spectrum

P11 UCPy

admits a finite filtration whose layers are m-slices, with m > n + 1. It follows
that

pn+1UCﬁN>TL

In view of the cofibration sequence
Py — Ppy1 — Puy1 UCPy,

to show that ]5”+1 > n it suffices to show that Py > n for some N > n.
Let Z be any slice (n + 1)-null spectrum. We need to show that the
G-space

8c(Px, Z)

is contractible. We do this by studying the Mackey functor homotopy groups
of the spectra involved and appealing to an argument using the usual equivari-
ant notion of connectivity. By Theorem 4.42, there is an integer m with the
property that for k > m,

. Z = 0.
By Corollary 4.43 and assumption (iii), for N > 0 and any N’ > N,
gkIsN UCPN =0, k<m,
SO
EkPN’ — E}JNDN

is an isomorphism for & < m. Since ho&nw Py is contractible, this implies
that for N > 0,

Thus for N >> 0, Py is m-connected in the usual sense, and so

8c(Pn, Z)

is contractible. O



KERVAIRE INVARIANT ONE 67

4.5. The RO(G)-graded slice spectral sequence. Applying RO(G)-graded
homotopy groups to the slice tower leads to an RO(G)-graded slice spectral
sequence

sV _ G pdimV a
Ey" =7y _sFimy X = my_X.

The grading convention is chosen so that it restricts to the one of Section 4.4.2
when V is a trivial virtual representation. The 7" differential is a map

. s,V s+r,V+(r—1)
dr : By — E, .

The RO(G)-graded slice spectral sequence is a sum of spectral sequences, one
for each element of RO(G)/Z. We will call the spectral sequence corresponding
to the coset V + Z € RO(G)/Z the slice spectral sequence for 7, X. This
spectral sequence can be displayed on the (z,y)-plane, and we will do so fol-
lowing Adams conventions, with the term ES’VH displayed at a position with
x-coordinate (V +t — s) and y-coordinate s. For an example, see Figures 2, 3
and 4 in Section 9.

4.6. Special slices. In this section we investigate special slices of spectra,
and introduce the notion of a spectrum with cellular slices and of a pure G-
spectrum. Our main result (Proposition 4.59) asserts that a map X — Y of
G-spectra with cellular slices is a weak equivalence if and only if the underlying
map of nonequivariant spectra is. This result plays an important role in the
proof of the Reduction Theorem in Section 7. We also include material useful
for investigating the slices of more general spectra.

4.6.1. Slice positive spectra, 0-slices and (—1)-slices. In this section we will
describe methods for determining the slices of spectra and introduce a conve-
nient class of equivariant spectra. Our first results make use of the isotropy
separation sequence (Section 2.5.2) obtained by smashing with the cofibration
sequence of pointed G-spaces

EP, — S° — EP.

The space EPy is an equivariant CW-complex built from G-cells of the form
(G/H)+ AS™ with H C G a proper subgroup. It follows that if W is a pointed
G-space whose H-fixed points are contractible for all proper H C G, then
Ta(EPL, W) is contractible.

LEMMA 4.46. Fiz an integer d. If X is a G-spectrum with the property
that i; X > d for all proper H C G, then EPL AN X > d.

Proof. Suppose that Z < d. Then
SG(EP+ NX, Z) ~ IG(EP+a §G(X7 Z))
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By the assumption on X, the G-space 8(X, Z) has contractible H fixed points
for all proper H C GG. The lemma now follows from the remark preceding its
statement. O

LEMMA 4.47. Write g = |G|. The suspension spectrum of E'P is in Sngl.

Proof. The map EP A S° — EP A SP¢~1 is a weak equivalence (Proposi-
tion 2.45 and Remark 2.49). The suspension spectrum of EP is in 5§0, since
it is (—1)-connected (Proposition 4.11). So EP A §/¢=1 > g — 1 by Proposi-
tion 4.26. O

PROPOSITION 4.48. A G-spectrum X is slice positive if and only if it is
(—1) connected and mi X = 0 (i.e.,the nonequivariant spectrum i X underlying
X is 0-connected).

Proof. The “only if” assertion follows from the fact that the slice cells
of positive dimension are (—1)-connected and have 0O-connected underlying
spectra. The “if” assertion is proved by induction on |G|, the case of the
trivial group being trivial. For the induction step, we may assume X is (—1)-
connected and has the property that i7; X > 0 for all proper H C G. Consider
the isotropy separation sequence for X,

EP.ANX - X - EPAX.

The leftmost term is slice-positive by Lemma 4.46, and the rightmost term is
by Propositions 4.11 and 4.26, and Lemma 4.47. It follows that X is slice-
positive. ]

Ezxample 4.49. Suppose that f : S — S’ is a surjective map of G-sets.
Proposition 4.48 implies that the suspension spectrum of the mapping cone of
f is slice positive. This implies that if HM is an Eilenberg-MacLane spectrum
that is a zero slice, then for every surjective S — S’, the map M (S") — M (S)
is a monomorphism. The proposition below shows that this is also a sufficient
condition.

PROPOSITION 4.50.

(i) A spectrum X is a (—1)-slice if and only if it is of the form X = X~'HM,
with M an arbitrary Mackey functor.

(ii) A spectrum X is a 0-slice if and only if it is of the form HM with M a
Mackey functor all of whose restriction maps are monomorphisms.

Remark 4.51. The condition on M in (ii) is that if S — S’ is a surjective
map of finite G-sets, then M (S’) — M(S) is a monomorphism. Let G act on
G x S and G x S’ through its left action on G. Then G x S — G x S’ has a
section, so M (G x S") — M(G x S) is always a monomorphism. Using this one
easily checks that this condition is also equivalent to requiring that for every
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finite G-set S’, the map M (S") — M (G x S’), induced by the action mapping
G x 8" — S’, is a monomorphism.

Proof. The first assertion is immediate from Proposition 4.20 which, com-
bined with part (i) of Proposition 4.40, also shows that a O-slice is an Eilenberg-
MacLane spectrum. Example 4.49 gives the “only if” part of the second as-
sertion. For the “if” part, suppose that M is a Mackey functor all of whose
restrictions maps are monomorphisms, and consider the sequence

PHM — HM — P°HM.

Since PLHM > 0, it is (—1)-connected, and so Py HM is an Eilenberg-MacLane
spectrum. For convenience, write

M' =7y Pl HM,
M" = ryP°"HM
so that there is a short exact sequence
M — M — M".
Suppose that S is any finite G-set, and consider the following diagram:
M'(S) M(S) M"(S)

| | |

M(Gx8S)—= M(GxS)— MG x5S)

in which the rows are short exact and the vertical maps are induced by the
action mapping, as in Remark 4.51. The bottom right arrow is an isomorphism
since it HM — i3 P°HM is an equivalence. Thus M'(G x S) = 0. (This also
follows from Proposition 4.48.) The claim now follows from a simple diagram
chase. O

Remark 4.52. The second assertion of Proposition 4.50 can also be de-
duced directly from Corollary 3.6.

COROLLARY 4.53. If X = HM s a zero slice and m§ X = 0, then X is
contractible.

COROLLARY 4.54. The (—1)-slice of S~! is X"YHA. The zero slice of S°
is HZ.

Proof. The first assertion follows easily from Part (i) of Proposition 4.50.
For the second assertion, note that the S° — HA is a P%-equivalence, so the
zero slice of S? is POHA. Consider the fibration sequence

HI - HA — HZ,
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in which I = ker A — Z is the augmentation ideal. The leftmost term is slice
positive by Proposition 4.48, and the rightmost term is in Sgo by Proposi-
tion 4.50. The claim now follows from Lemma 4.16. O

COROLLARY 4.55. For K C G, the m|K|-slice of 5(m, K) is
HZ A S(m, K)
and the (m|K| — 1)-slice of £~28(m, K) is
HAAY'S(m, K).

Proof. Using the fact that G A (—) commutes with the formation of the

slice tower (Proposition 4.21), it suffices to consider the case K = G. The
result then follows from Corollaries 4.25 and 4.54. g

4.6.2. Cellular slices, isotropic and pure spectra.

Definition 4.56. A d-slice is cellular if it is of the form HZ A W, where
W is a wedge of slice cells of dimension d. A cellular slice is isotropic if W
can be written as a wedge of slice cells, none of which is free (i.e., of the form

G4+ N S™). A cellular slice is pure if W can be written as a wedge of regular
slice cells (those of the form S(m, K), and not ¥~1S(m, K)).

Definition 4.57. A G-spectrum X has cellular slices if P} X is cellular for
all d and is isotropic or pure if its slices are isotropic or pure.

LEMMA 4.58. Suppose that f : X — Y is a map of cellular d-slices and
g f is an isomorphism. Then f is a weak equivalence.

Proof. The proof is by induction on |G|. If G is the trivial group, the
result is obvious since X and Y are Eilenberg-MacLane spectra. Now suppose
we know the result for all proper H C G, and consider the map of isotropy
separation sequences

EP.ANX —>X—>FEPAX

o

EP.ANY —=Y —= EPAY.

By the induction hypothesis, the left vertical map is a weak equivalence. If d is
not congruent to 0 or —1 modulo |G|, then the rightmost terms are contractible,
since every slice cell of dimension d is induced. Smashing with S™¢ for suitable
m, we may therefore assume d = 0 or d = —1. Smashing with S! in case
d = —1, we reduce to the case d = 0 and therefore assume that X = H My and
Y = HM; with My and M; permutation Mackey functors. The result then
follows from part (iv) of Lemma 3.3. O
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PROPOSITION 4.59. Suppose that X and Y have cellular slices. If f :
X — Y has the property that wlf is an isomorphism, then f is a weak equiv-
alence.

Proof. 1t suffices to show that for each d, the induced map of slices
(4.60) PixX — Ply

is a weak equivalence. Since the map of ordinary spectra underlying the slice
tower is the Postnikov tower, the map satisfies the conditions of Lemma 4.58,
and the result follows. O

For certain slices, the condition on Y in Proposition 4.59 can be dropped.

LEMMA 4.61. Suppose that f : X — Y is a map of 0-slices and X 1is
cellular. If my f is an isomorphism, then f is an equivalence.

Proof. Write X = HM and Y = HM’, and let S be a finite G-set.
Consider the diagram

o~

M(S) M'(S)

Nl lm

M(G x 8)¢ —= M'(G x 8)¢

in which the vertical maps come from the action mapping G x S — S. (See
the discussion preceding Lemma 3.3.) The bottom arrow is an isomorphism by
assumption. The vertical maps are monomorphisms by Proposition 4.50. The
left vertical map is an isomorphism since M is a permutation Mackey functor
(part (ii) of Lemma 3.3). The result follows. O

PROPOSITION 4.62. Suppose that f : X — Y is a map of d-slices, X 1is
cellular, and d # —1 mod p for any prime p dividing |G|. If 74X — 7Y is
an isomorphism, then f is a weak equivalence.

Proof. Let C' be the mapping cone of f. We know that C' > d. We will

show that
1S, 019 =0

for all slice cells S with dim S > d. This will show (Lemma 4.14) that C < d
and hence must be contractible since its identity map is null. The assertion is
obvious when G is the trivial group. By induction on |G| we may assume S is
not induced. If d is divisible by |G|, we may smash with S~%I¢1P¢ and reduce
to the case d = 0, which is Lemma 4.61. It remains to show that 7& C =0

mpG

when m|G| > d and that ﬂgpgflC = 0 when m|G| — 1 > d. Since
d#0,—-1 mod |G|,



72 M. A. HILL, M. J. HOPKINS, and D. C. RAVENEL

the condition implies m|G| — 1 > d. So we are in the situation m|G| —1 > d,
and we need to show that both ﬂﬁp C and wa —1C are zero. The exact
sequence

ﬂ'ngY — ﬂngC — 7TnG¢pg—1X

G

gives the vanishing of 7,

quence

C. For the remaining case consider the exact se-

G

G G G
7TmpG_1Y — meG_lc — meG_2X — meG_QY
As above, the left group vanishes since Y is a d-slice and S™¢—1 > (.

Lemma 4.63 below implies that the left vertical map in

G G
ﬂmpG72X . ﬂmpG72Y

| |

u u
Tmg—2X —< > Tmg—2Y

is monomorphism, and therefore so is the top horizontal map. Thus wgp o—1C
= 0 by exactness. ]

LEMMA 4.63. Suppose S is a slice cell of dimension d. If m|G| —1>d,
then the restriction mapping

GHZNS — 7, JHLAS

G
Tmpe
18 a monomorphism.

Proof. When G is trivial the map is an isomorphism. By induction on |G|
we may therefore assume G is not the trivial group and that S is not induced,
in which case S = S*°¢ or § = S§*¢—1 Note that

§mra=2 — gm=Drc—1 A gra=1l > (1 — 1)|G| — 1 > (m — 2)|G]

so that both ngG,QHZ A SkPG and ngG,QHZ A Skra=1 are trivial unless
k =m — 1. The group ngG_QHZ A Sm=Dre=1 is zero since it is isomorphic
to

ngg—lHZ/\ §(m=1)pc
and S™¢~1 > m|G| — 1 > (m — 1)|G|. This leaves the group

ﬂng_QHZ A Sm=Dpg o, WEG_QHZ,

whose triviality was established in Example 3.19. O

4.6.3. The special case in which G is a finite 2-group. In this section we
record some results that are special to the case in which G has order a power of
2. The results about even slices are used in the proof of the Reduction Theorem
in Section 7.2. The results on odd slices were used in an earlier approach to
the main results of this paper but are no longer needed. We include them here
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because they provide useful tools for investigating slices of various spectra.
Throughout this section the group G will be a finite 2-group.

Suppose that X is a G-spectrum with the property that 77X is a free
abelian group. In Section 5.3 we will define a refinement of 7 X to be a map

c:W—= X
in which W is a wedge of slice cells of dimension d, with the property that the

map mgW — 77X is an isomorphism.

PROPOSITION 4.64. Ifﬁ\/ — X is a refinement of w5, X, then the canon-
ical map

HZAW — P¥X
s an equivalence.

Proof. By Corollary 4.55 (and the fact that the formation of slices com-
mutes with the formation of wedges), the map

W — HZLAW
induces an equivalence
P¥W — HZAW.
Applying Pg,f to W — X then leads to a map
HZAW — P¥X

which, since the slice tower refines the Postnikov tower, is an equivalence of un-
derlying nonequivariant spectra. The result now follows from Proposition 4.62,
since the only prime dividing |G| is 2. O

Proposition 4.64 gives some control over the even slices of a G-spectrum
X when G is a 2-group. The odd slices are something of a different story, and
getting at them requires some knowledge of the equivariant homotopy type of
X. Note that by Proposition 4.50, any Mackey functor can occur in an odd
slice. On the other hand, only special ones can occur in even slices.

COROLLARY 4.65. If§ 1s a slice cell of odd dimension d, then for any X,
(5, X]9 =[S, P{X].
Proof. Since the formation of PgX commutes with the functors i7;, induc-
tion on |G| reduces us to the case when S is not an induced slice cell. So we may

assume S = §mPG1, Smashing S and X with S~™P¢ and using Corollary 4.25
reduces to the case m = 0, which is given by Proposition 4.20. O

The situation of most interest to us in this paper is when the odd slices
are contractible. Proposition 4.66 below gives a useful criterion.
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PROPOSITION 4.66. For a G spectrum X and an odd integer d, the fol-
lowing are equivalent:

(i) the d-slice of X is contractible;
(ii) for every slice cell S of dimension d, [S, X]% = 0.

Proof. By Corollary 4.65 (which requires d to be odd), there is an isomor-
phism

(S, X]% =[S, P{X]C.

By Lemma 4.14, the vanishing of this group implies that leX < d and hence
must be contractible, since it is also > d. O

COROLLARY 4.67. Suppose that d is odd. If X —Y — Z is a cofibration
sequence and the d-slices of X and Z are contractible, then the d-slice of Y is
contractible.

Proof. This is immediate from Proposition 4.66 and the long exact se-
quence of homotopy classes of maps. O

Remark 4.68. Using the slice spectral sequence one can easily show that
a pure spectrum always admits a refinement of homotopy groups. Thus the
results above say that a spectrum X is pure if and only if the even homo-
topy groups admit an equivariant refinement, and the “slice homotopy groups”
ﬂ'ngle are all zero whenever H C G is nontrivial.

4.7. Further multiplicative properties of the slice filtration. In this section
we show that the slice filtration has the expected multiplicative properties for
pure spectra. Our main result is Proposition 4.69 below. It has the consequence
that if X and Y are pure spectra and E3*(—) is the slice spectral sequence,
then there is a map of spectral sequences

EXNX) @ BY(Y) = EXF(XOAY)

representing the pairing 7, X A7, Y — m,(X AY). In other words, multipli-
cation in the slice spectral sequence of pure spectra behaves in the expected
manner. We leave the deduction of this property from Proposition 4.69 to the
reader.

PROPOSITION 4.69. If X > n is pure and Y > m has cellular slices, then
XAY >n+m.

Proof. We need to show P"t™~1(X AY) is contractible. By Lemma 4.30
the map
X AY — prmmix g prim-ly

is a P"t~lequivalence, so we may reduce to the case in which the slice
filtrations of X and Y are finite. That case in turn reduces to the situation in
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which
X = HZ A S(m, K),
Y =HZAS

in which §” is any slice cell. By induction on |G|, the assertion further reduces
to the case in which neither S nor S’ is induced. Thus we may assume

X = HZ A ke,
Y = HZ A S%¢ or HZAX LS,

in which case the result follows from Proposition 4.26. O

5. The complex cobordism spectrum

From here forward we specialize to the case G = Can and, for convenience,
localize all spectra at the prime 2. Write

9=1G|,
and let v € G be a fixed generator.

5.1. The spectrum MU(G) . We now introduce our equivariant variation
on the complex cobordism spectrum by defining

MU@) — N&MUR,

where MUy is the Ca-equivariant real bordism spectrum of Landweber [45] and
Fujii [26] (and further studied by Araki [6] and Hu-Kriz [37]). In Section B.12
we will give a construction of MUg as a commutative algebra in §“2. The
norm is taken along the unique inclusion C5 C G. Since the norm is symmetric
monoidal, and its left derived functor may be computed on the spectra under-
lying cofibrant commutative rings (Proposition B.146), the spectrum MU (&)
is an equivariant commutative ring spectrum. For H C G, the unit of the
restriction-norm adjunction (Proposition 2.27) gives a canonical commutative
algebra map

(5.1) MU o o (ED,
By analogy with the shorthand i for restriction along the inclusion of the
trivial group, we will employ the shorthand notation
i] =ic,
for the restriction map 8¢ — 82 induced by the unique inclusion Co C G.
Restricting, one has a Cs-equivariant smash product decomposition

g/2—1
(5.2) GMU@D = N\ 4 MU,
j=0
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5.2. Real bordism, real orientations and formal groups. We begin by re-
viewing work of Araki [6] and Hu-Kriz [37] on real bordism.

5.2.1. The formal group. Consider CP™ and CP* as pointed Ca-spaces
under the action of complex conjugation, with CPY as the base point. The
fixed point spaces are RP" and RP*°. There are homeomorphisms

(5.3) CP"/CP" ! = "2
and, in particular, an identification CP! = §°2.

Definition 5.4 (Araki [6]). Let E be a Cs-equivariant homotopy commu-
tative ring spectrum. A real orientation of E is a class T € Eg; (CP>) whose
restriction to

El (CP') = EZ2(5%) ~ E2, (pt)

is the unit. A real oriented spectrum is a Ca-equivariant ring spectrum F
equipped with a real orientation.

If (F,z) is a real oriented spectrum and f : E — FE’ is an equivariant
multiplicative map, then

fo(@) € (E")>(CP™)

is a real orientation of E’. We will often not distinguish in notation between
z and f,Z.

Ezample 5.5. The zero section CP* — MU(1) is an equivariant equiva-
lence and defines a real orientation

T € MUE (CP*),
making MUy into a real oriented spectrum.

Ezample 5.6. From the map
MUg — i MU(@)

provided by (5.1), the spectrum i{MU(%) gets a real orientation, which we
will also denote by

z € (MU©yez(cP™).

Ezample 5.7. If (H,Zy) and (E,Zg) are two real oriented spectra, then
H A E has two real orientations given by

Tp=2g®land 2p =1Q Tg.

The following result of Araki follows easily from the homeomorphisms (5.3).
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THEOREM 5.8 (Araki [6]). Let E be a real oriented cohomology theory.
There are isomorphisms

E*(CP™) ~ E*[z],
E*(CP* x CP®) = F*[z® 1,1 ® Z].

Because of Theorem 5.8, the map CP> x CP* — CP* classifying the
tensor product of the two tautological line bundles defines a formal group
law over 7¢E. Using this, much of the theory relating formal groups, complex
cobordism, and complex oriented cohomology theories works for Cs-equivariant
spectra, with MUy playing the role of MU. For information beyond the dis-
cussion below, see [6], [37].

Remark 5.9. A real orientation Z corresponds to a coordinate on the corre-
sponding formal group. Because of this we will use the terms interchangeably,
preferring “coordinate” when the discussion predominantly concerns the for-
mal group and “real orientation” when it concerns spectra.

The standard formulae from the theory of formal groups give elements in
the RO(Cy)-graded homotopy groups 72 E of real oriented E. For example,
there is a map from the Lazard ring to WEQE classifying the formal group
law. Using Quillen’s theorem to identify the Lazard ring with the complex
cobordism ring this map can be written as

MU, — n©2E.
It sends MUs, to W%QE. When F = MUg, this splits the forgetful map
(5.10) w$2 MU — w4, MUg = w2 MU,

which is therefore surjective. A similar discussion applies to iterated smash
products of MUy giving

PROPOSITION 5.11. For every m > 0, the above construction gives a ring
homomorphism

(5.12) ! AMUg — P, A MU
J
splitting the forgetful map
(5.13) P52 \MUg — 7 \ MUg.
J

In particular, (5.13) is a split surjection.

It is a result of Hu-Kriz[37] that (5.13) is in fact an isomorphism. This
result and a generalization to MU can be recovered from the slice spectral
sequence.
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The class
Ty € HE, (CP™; L)
corresponding to 1 € Hg, (pt, Z)) under the isomorphism
HE (CP™; L)) ~ HEL(CP? L)) ~ HE, (bt L)

defines a real orientation of HZy). As in Example 5.7, the classes T and Ty
give two orientations of E'= HZy A MUg. By Theorem 5.8 these are related
by a power series

Ty = logp(Z)

=z+y mizt
1>0

with c
m; € ﬂ-inQHZ(Q) VAN MUR

This power series is the logarithm of F'. Similarly, the invariant differential on

F gives classes (n+1)m, € Tr%QM Ur. The coefficients of the formal sum give

_ c
ajj € ﬂ-(iijfl)ngUR‘
Remark 5.14. Since the generator of Cy acts by (—1)" on
Hyy,igS™? = my, HZ N\ S™"2,

it acts also acts by (—1)" on the nonequivariant class m,, underlying m,, and
by (—=1)" on 7, A™ MUg = mo, N MU.

If (E,zg) is a real oriented spectrum, then E A MUy has two orientations
Tp=2ITp®]l1,
Tr=1®x.
These two orientations are related by a power series
(5.15) Tr=Y b
defining classes
by =bf € w2 E A MUg.
The power series (5.15) is an isomorphism over 7¢2E A MU,
Fr — FR,
of the formal group law for (E,Zg) with the formal group law for (MU, Z).
THEOREM 5.16 (Araki [6]). The map
E,[b1,by,...] = 72E A MUg

is an isomorphism.
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Araki’s theorem has an evident geometric counterpart. For each j, choose
a map

5P — BN MUR
representing Bj. As in Section 2.4, let
Slbj) = \/ s+
k>0
be the free associative algebra on $772 and
Sb;j] — E A MUg

the homotopy associative algebra map extending (5.39). Using the multiplica-
tion map, smash these together to form a map of spectra

(5.17) Elb1,by,...] » EAMU@),

where

E[El,gg,...] :E/\holigS[i)l] /\S[i)ﬂ /\~"/\S[bk].
k

The map on RO(C3)-graded homotopy groups induced by (5.17) is the isomor-
phism of Araki’s theorem. This proves

COROLLARY 5.18. If E is a real oriented spectrum, then there is a weak
equivalence
EAMUg =~ E[by, b, ...].

Remark 5.19. If E is strictly associative, then (5.17) is a map of associative
algebras, and the above identifies E A MUy as a twisted monoid ring over E.

As in Section 2.4, write

SOb1,ba, ... ] = holim S7[b1] A S°[ba] A -+ A SO[By]
k

and
S°IG - b1,G - b,...] = NG, S°b1, b, ... ].

Using Proposition 4.7 one can easily check that S°[G - b1, G - b, ...] is a wedge
of isotropic regular slice cells. Finally, let

MU@IG by, G by,...] = MU ASOIG - by, G by, ...

COROLLARY 5.20. For H C G of index 2, there is an equivalence of H -
equivariant associative algebras

i MU ~ MU H by H - by, .. ]

Proof. Apply Ng2 to the decomposition of Corollary 5.18 with £ = M Ug.
O
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5.2.2. The unoriented cobordism ring. Passing to geometric fixed points

from
z: CP® — X2 MU
gives the canonical inclusion
a:RP>*=MO(1) - XMO,
defining the M O Euler class of the tautological line bundle. There are isomor-
phisms
MO*(RP*) = MO*[a],
MO*(RP* x RP®) =~ MO*[a® 1,1 ®d],

and the multiplication map RP* x RP>* — RP gives a formal group law
over MO,. By Quillen [70], it is the universal formal group law F' over a ring
of characteristic 2 for which F(a,a) = 0.

As described by Quillen [71, p. 53], the formal group can be used to give
convenient generators for the unoriented cobordism ring. Let

e € H'(RP>;Z/2)

be the HZ/2 Euler class of the tautological line bundle. Over 7, HZ/2 N MO
there is a power series relating e and the image of the class a

e=/{(a)=a+ Z apa™
LEMMA 5.21. The composite series
-1 .
(5.22) <a+2a2j_1a2j) ol(a) =a+ Zhja]'H
j>0

has coefficients in m . MO. The classes h; with j +1 = 2% are zero. The
remaining h; are polynomial generators for the unoriented cobordism ring
(5.23) MO = 7./2[h;, j # 2% —1].

Proof. The assertion that h; =0 for j + 1 = 2F is straightforward. Since
the sequence

(5.24) MO — 7. HZ/2 N MO = 1, HZ/2 N HZ/2 N MO

is a split equalizer, to show that the remaining h; are in m, MO it suffices to
show that they are equalized by the parallel maps in (5.24). This works out to
showing that the series (5.22) is invariant under substitutions of the form

(5.25) e—e+ Z (e

The series (5.22) is characterized as the unique isomorphism of the formal group
law for unoriented cobordism with the additive group, having the additional
property that the coefficients of a2" are zero. This condition is stable under the
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substitutions (5.25). The last assertion follows from Quillen’s characterization
of m,.MO. O

Remark 5.26. Recall the real orientation Z of it MU(S) of Example 5.6.
Applying the RO(G)-graded cohomology norm (Section 2.3.3) to Z, and then
passing to geometric fixed points, gives a class

PN (z) € MOY(RP™).

One can easily check that ® N (z) coincides with the MO Euler class a defined
at the beginning of this section. Similarly one has

PN (zy) =e.

Applying ®“N to log 7 and using the fact that it is a ring homomorphism
(Proposition 2.59) gives

e=a+y ®YN(my)a"t.
It follows that
DEN (1my,) = ay.

5.3. Refinement of homotopy groups. We begin by focusing on a simple
consequence of Proposition 5.11.

PROPOSITION 5.27. For every m > 1, every element of

m
T2k (/\ MU)
can be refined to an equivariant map

SkP2 — N\ MU.

This result expresses an important property of the Cs-spectra given by
iterated smash products of MUg. Our goal in this section is to formulate a
generalization to the case G = Con.

Definition 5.28. Suppose X is a G-spectrum. A refinement of mj X is a

map
c:W—=X
in which W is a wedge of slice cells of dimension k, inducing an isomorphism
W — X,
A refinement of the homotopy groups of X (or a refinement of homotopy of X))
is a map
W=\/W,—X

whose restriction to each Wj, is a refinement of 7.
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Remark 5.29. Let og(Z) be the sign representation of G on Z. There is
an G-module isomorphism 7r‘“G|SPG ~ 0¢(7Z) and, more generally,

T (G 1y S™°1) = indf o (Z)°".

This implies that when £ is even, a necessary condition for 7 X to admit a
refinement is that it be isomorphic as a G-module to a sum

@ MH,ka

HcG

where My j, is zero unless | H| divides k and is a sum of copies of ind% (UH(Z)W)
when k = ¢|H|. We get a sufficient condition by requiring additionally that for
every such subgroup H, each element in 7}/ X transforming in o1 (Z)®* refines
to an element of WZH. A similar analysis describes the case in which k is odd.

Remark 5.30. Using Remark 5.29 one can check that a refinement of 7! X
consists of isotropic slice cells if and only if 7}!X does not contain a free
G-module as a summand.

The splitting (5.12) used to prove Proposition 5.27 is multiplicative. This
too has an important analogue.

Definition 5.31. Suppose that R is an equivariant associative algebra. A
multiplicative refinement of homotopy is an associative algebra map W — R
which, when regarded as a map of G-spectra, is a refinement of homotopy.

PROPOSITION 5.32. For every m > 1, there exists a multiplicative refine-
ment of homotopy

m
W — A\ MU,
with W a wedge of regular isotropic slice cells.
Two ingredients form the proof of Proposition 5.32. The first, Lemma 5.33
below, is a description of 7*MU(E) as a G-module. The computation is of
interest in its own right and is used elsewhere in this paper. It is proved in

Section 5.4. The second is the classical description of 7(A™ MUY, m > 1,
as a m MU () -module.

LEMMA 5.33. There is a sequence of elements r; € i MU(G) with the
property that

(5.34) MU = 7,(G - r1,G - 19,...],
in which G - r; stands for the sequence
(riy.. .fy%*lri)

of length g/2.
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We refer to the condition (5.34) by saying that the elements r; € 73, MU ()
form a set of G-algebra generators for waU((G)).

Remark 5.35. Lemma 5.33 completely describes 7 MU(E) as a represen-
tation of G. To spell it out, recall from Remark 5.14 that the action of the
generator of Cy on 74, MU is by (—1)". The elements r; € 7% MU(E) there-
fore satisfy vgm = (—1)%r; and transform in the representation induced from
the sign representation of CY if 7 is odd and in the representation induced from
the trivial representation of CY if i is even. Lemma 5.33 implies that the map
from the symmetric algebras on the sum of these representations to 7% MU (&)
is an isomorphism.

Remark 5.36. The fact that the action of Cy on 7 MU(E) is either a
sum of sign or trivial representations means that it cannot contain a summand
that is free. The same is therefore true of the G-action. By Remark 5.30 this
implies that only isotropic slice cells may occur in a refinement of &, MU (&),

Over w MU (&) A MU(G) | there are two formal group laws, Fr, and Fr
coming from the canonical orientations of the left and right factors. There is
also a canonical isomorphism between them, which can be written as

TR = Z bjxfrl.
Write
G-b;
for the sequence
bi7 ’Ybla s 779/27161"
The following result is a standard computation in complex cobordism.
LEMMA 5.37. The ring WLLMU«G)) A MU s given by
MU A MUCED) = 72 MU G by, G - by, .. ]

Form > 1,
m—1

o 7\ MU — (@ AN MU©)
is the polynomial ring
e MU@q o),
with

The element bgj) is the class b; arising from the j" factor of MU(G) in
N MU(©),
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Proof. The second assertion follows from the first and the Kiinneth for-
mula. If not for the fact that G' acts on both factors of i§MU(C) | the first
assertion would also follow immediately from the Kiinneth formula and the
usual description of MU, MU. The quickest way to deduce it from the appa-
ratus we have describe so far is to let G C G’ be an embedding of index 2 into
a cyclic group, write

MU A MU w i MU(ED

and use Corollary 5.20. O

Remark 5.38. As with Lemma 5.33, the lemma above actually determines
the structure of 7¢MUGE) A MU(E) as a G-equivariant 7¢MU(G)-algebra.
See Remark 5.35.

Proof of Proposition 5.32, assuming Lemma 5.33. This is an easy appli-
cation of the method of twisted monoid rings of Section 2.4. To keep the nota-
tion simple we begin with the case m = 1. Choose a sequence r; € ngMU((G))
with the property described in Lemma 5.33. Let

(5.39) i 82— MU (@)

be a representative of the image of r; under the splitting (5.12). Since MU (&)
is a commutative algebra, the method of twisted monoid rings can be used to
construct an associative algebra map

(5.40) UG-, G T, .. ] = MU,

Using Proposition 4.7 one can easily check that S°[G 71, G - 79, ...] is a wedge
of regular isotropic G-slice cells. Using Lemma 5.33 one then easily checks
that (5.40) is multiplicative refinement of homotopy. The case m > 1 is similar
using, in addition, Lemma 5.37 and the collection {r;, b;(j)}. O

5.4. Algebra generators for miMU (). In this section we will describe
convenient algebra generators for 7¢MU(E). Our main results are Propo-
sition 5.45 (giving a criterion for a sequence of elements r; to “generate”
7t MU(G) as a G-algebra, as in Lemma 5.33) and Corollary 5.49 (specifying
a particular sequence of r;). Proposition 5.45 directly gives Lemma 5.33.

We remind the reader that the notation HY*X refers to the homology
groups H,(i§X) of the nonequivariant spectrum underlying X.

5.4.1. A criterion for a generating set. Let

m; € Hy MU = ri HZ A MUg
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be the coefficient of the universal logarithm. Using the identification (5.2) —

g/2-1
GMU@D = N\ A MU
7=0

— and the Kiinneth formula, one has
H!MUD = Z) [y my),
where
k=1,2,...,
j=0,...,9/2—1

By the definition of the 47my, and Remark 5.14, the action of G on H*MU()
is given by

, A <g/2—1
(5.41) ,yﬁ]mk:{v my, j<9/2-1,

(=1)Fmy j=9/2-1
Let
I =Xkern! MU = 7,,),
Iy =ker HXMU(@) — 7,5,
denote the augmentation ideals and
Q. =1I/1%,
QH, = In/I}

the modules of indecomposable, with Q2,, and QHs,, indicating the homoge-
neous parts of degree 2m (the odd degree parts are zero). The module QH,
is the free abelian group with basis {y/m;}, and from Milnor [67], one knows
that the Hurewicz homomorphism gives an isomorphism

Q2r — QHay,
if 2k is not of the form 2(2¢ — 1), and an exact sequence
(5.42) Q2(2f—1) — QH2(2€—1) — L2

in which the rightmost map is the one sending each v/m;, to 1.

Formula (5.41) implies that the G-module QHay, is the module induced
from the sign representation of Cs if k is odd and from the trivial representation
if k£ is even.

LEMMA 5.43. Let r = Zaj'yjmk € QHsy,. The unique G-module map

Z)|G] — QHag,
l—r
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factors through a map
Z)Gl/ (" = (=1)*) = QHa,
which is an isomorphism if and only if " a; =1 mod 2.

Proof. The factorization is clear, since 49/ acts with eigenvalue (—1)% on
QHay. Use the unique map Z9)[G] — QHay, sending 1 to my, to identify QHoy,
with A = Zs) [G]/(v9/% — (=1)¥). The main assertion is then that an element
r =Y ajy € Ais a unit if and only if Y a; =1 mod 2. Since A is a finitely
generated free module over the Noetherian local ring Z ), Nakayama’s lemma
implies that the map A — A given by multiplication by r is an isomorphism
if and only if it is after reduction modulo 2. So 7 is a unit if and only if it is

after reduction modulo 2. But A/(2) = Z/2[y]/(v9/> — 1) is a local ring with
nilpotent maximal ideal (y — 1). The residue map

A)(2) = A2,y = 1) = Z/2
sends 3" a;7/my to 3" a;. The result follows. 0

LEMMA 5.44. The G-module Q¢ _yy s isomorphic to the module induced
from the sign representation of Ca. For y € QHyge_yy, the unique G-map

Z2)|Gl = QHagae_yy,
11—y
factors through a map
A =7 [G]/ (9% +1) — QRa2¢-1);

which is an isomorphism if and only if y = (1 — y)r, where r € QHyge_y)
satisfies the condition Y~ a; =1 mod 2 of Lemma 5.43.

Proof. Identity QHy e ;) with A by the map sending 1 to mge_;. In this
case A is isomorphic to Z[¢], with ¢ a primitive ¢'"" root of unity and, in
particular, is an integral domain. Under this identification, the rightmost map
in (5.42) is the quotient of A by the principal ideal (¢ — 1). Since A is an
integral domain, this ideal is a rank 1 free module generated by any element
of the form (1 —v)r with » € A a unit. The result follows. O

This discussion proves
PROPOSITION 5.45. Let
{r1,r9,...} c at MU
be any sequence of elements whose images

s, € QHyy
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have the property that for k # 2 — 1, sp = a;jyimy with

Zaj =1 mod 2,
and sye_y = (1 —7) (X ajymge_y), with

Zaj =1 mod 2.

Then the sequence

{Th te 7%717‘17 T2, .. 7’7%717"2, e }
generates the ideal I, and so
Z(Z) [7"1, e ”y%_l?"l’ 9, ... ’7%_172’ . ] N ,ﬂ_;l:MU((G))

is an isomorphism.

5.4.2. Specific generators. We now use the action of G on i*{MU((G)) to
define specific elements 7; € W%M U(G) refining a sequence satisfying the
condition of Proposition 5.45.

Write _
F(z,7)
for the formal group law over 7¢2 MU() and
logp(Z) =7+ Z mpztt
>0

for its logarithm. This defines elements

Mg € T2 HZ gy A MU,
We define the elements
(5.46) 7 € w2, MU(©)

to be the coefficients of the unique strict isomorphism between F and the
2-typification of F'. The Hurewicz images

P € T2 HZ oy A MU(S)

are given by the power series identity

-1
(5.47) Sorat = (34 Y v(my_1)7* ) ologp(a).
Modulo decomposables this becomes
T — YT E=20—1,
(5.48) Fe= kT T .
an otherwise.

This shows that the elements 7, satisfy the condition of Proposition 5.45, hence

COROLLARY 5.49. The classes 1, = T form a set of G-algebra genera-
tors for Tt MU,
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These are the specific generators with which we shall work. Though it does
not appear in the notation, the classes 7; depend on the group G. In Section 9
we will need to consider the classes 7; for a group G and for a subgroup H C G.
We will then use the notation

7

=G
- and 7

to distinguish them.

The following result establishes an important property of these specific 7.
In the statement below, the symbol N is the norm map on the RO(G)-graded
homotopy groups of commutative rings.

PRrRoOPOSITION 5.50. For all k,
DEN(7y,) = hy, € mp MO,
where the hy, are the classes defined in Section 5.2.2. In particular, the set
{®CN(rp) | k #£2" 1}
is a set of polynomial algebra generators of m MO, and for all £,
BEN (Fye_y) = hoe_y = 0.
Proof. From Remark 5.26 we know that
PNz = a,
Nz =e,
PNy, = an.
Corollary 2.29 implies that
&Y N~ym, = ®“Nm,,
so we also know that
q)GN’Y’I”TLn = ayp.

Since the Hurewicz homomorphism

T MU —— 7 8 (HZL gy N MU

~ ~
~ =~

MO T HZ/2[b] A MO
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is a monomorphism, we can calculate ®¢ N7, using (5.47). Applying PN
to (5.47) and using the fact that it is a ring homomorphism gives

a+ Z:((PGka)akJrl
= (a + Z(@Gnymze,l)aﬂ) o (a + Z(@GNmk)ak"'l)

= (a + Z age_laﬂ)_l o (a + Z akakH) .

But this is the identity defining the classes hy. O

-1

In addition to
hi, = ®CN(7,) € mp®C MU = 1, MO
there are some important classes fi attached to these specific 7.
Definition 5.51. Set
fi = ab_N7 € 1IMU®),
where pg = pg — 1 is the reduced regular representation.

The relationship between these classes is displayed in the following com-
mutative diagram:

Sk

R

skoe _NTE (@) o e A MUG),

6. The Slice Theorem and the Reduction Theorem

Using the method of twisted monoid rings one can show the Slice Theorem
and the Reduction Theorem to be equivalent. In Section 6.1 we formally
state the Reduction Theorem, and assuming it, prove the Slice Theorem. In
Section 6.2 we establish a converse for associative algebras R that are pure and
that admit a multiplicative refinement of homotopy by a polynomial algebra.
Both assertions are used in the proof of the Reduction Theorem in Section 7.

6.1. From the Reduction Theorem to the Slice Theorem. We now state the
Slice Theorem, using the language of Section 4.6.2.

THEOREM 6.1 (Slice Theorem). The spectrum MU (&) s an isotropic
pure spectrum.

For the proof of the slice theorem, let
A=S8%G -7,G Fy,...] = MU®)
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be the multiplicative refinement of homotopy constructed in Section 5.3 using
the method of twisted monoid rings and the specific generators of Section 5.4.2.
Let J be the left G-set defined by

J=]]G/Co.
i
As described in Section 2.4, the spectrum A is the indexed wedge
A= \/ SPf
feng

in which py is the unique multiple of the regular representation of the stabilizer
group of f having dimension
dim f =2 j f(j)-
JjEJ

As in Example 2.33, let

My C A
be the monomial ideal consisting of the indexed wedge of the S*f with dim f >d.
Then Msyy;_1 = Msy, and the Moy fit into a sequence

o> Magro = Mag — Mag—o — -+ .

The quotient

Maq/Mag o
is the indexed wedge
(6.2) Wog= \/ 8%
dim f=2d

on which A is acting through the multiplicative map A — S° (Examples 2.33
and A.49). The G-spectrum (6.2) is a wedge of regular isotropic slice cells of
dimension 2d.

Replace MU(E) with a cofibrant A-module, and form

Koy = MU(©) A Mag.
The Ky4 fit into a sequence

Kogro — Kog — -+ .

LEMMA 6.3. The sequences
Koara = Kog — Koi/Kaay2,
Ki/Kaarz — MU [Kgps = MU /Ky

are weakly equivalent to cofibration sequences. There is an equivalence
(6.4) Koq/Kaasa = R(00) A Waq

in which

R(c0) = MU A 50,
A
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Proof. Since the map Kojio — Koy is the inclusion of a wedge sum-
mand, it is an h-cofibration of spectra, and the first assertion follows from
Proposition B.20 and Corollary B.139. The second assertion follows from the
associativity of the smash product

MU((G)) {4} (MQd/MQd-i-l) ~ (MU((G)) Q SO) A W2d ~ R(OO) A WQd-
This completes the proof. ]

The Thom map
Mmu@) HZy

factors uniquely through an MU()-module map
R(00) = HZ).
The following important result will be proved in Section 7.3.
THEOREM 6.5 (The Reduction Theorem). The map
R(00) — HZy)
1$ a weak equivalence.

The case G = O3 of the Reduction Theorem is Proposition 4.9 of Hu-Kriz
[37]. Its analogue in motivic homotopy theory appears in unpublished work of
the second author and Morel.

To deduce the Slice Theorem from Theorem 6.5 we need two simple lem-
mas.

LEMMA 6.6. The spectrum Kagyo s slice 2d-positive.

Proof. The class of left A-modules M for which M {4} Moo > 2d is closed

under homotopy colimits and extensions. It contains every module of the
form ©*G/H, A A, with k > 0. Since A is (—1)-connected, this means it
contains every (—1)-connected cofibrant A-module. In particular, it contains
the cofibrant replacement of MU (G), ]

LEMMA 6.7. If Theorem 6.5 holds, then MU /Ky, o < 2d.
Proof. This is easily proved by induction on d, using the fact that
R(o0 )/\ng—>MU /K2d+2—>MU /Kgd
is weakly equivalent to a cofibration sequence (Lemma 6.3). O

Proof of the Slice Theorem assuming the Reduction Theorem. Note that
the fibration sequence

Kaga = MU — MU /Ky,
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Lemmas 6.6 and 6.7 above, and Lemma 4.16 imply that
P2 (@) & PANUCED) & MU Koy .

Thus the odd slices of MU(%) are contractible and the 2d-slice is weakly
equivalent to
R(00) A Wag ~ HZ) A Wag.

This completes the proof. ]

6.2. A converse. The arguments of the previous section can be reversed.
Suppose that R is a (—1)-connected associative algebra that we know in ad-
vance to be pure, and suppose that A — R is a multiplicative refinement of
homotopy, with

A:SO[G-fl,...]

a twisted monoid ring having the property that |zZ;| > 0 for all i. Note that this

implies that 7§ R = Z and that Pé)R = HZ. Let Myy1 C A be the monomial
ideal consisting of the slice cells in A of dimension > d, and write

Pis1R =My AR
and
PR =R/P; R~ (A/My) AR
Then the PR form a tower. Since Mgyq > d and R > 0 (Proposition 4.20),
the spectrum P;i1 R is slice d-positive. There is therefore a map
(6.8) PR — PR,
compatible with variation in d.

PROPOSITION 6.9. The map (6.8) is a weak equivalence. The tower { PR}
is the slice tower for R.

By analogy with the slice tower, write Pg,R for the homotopy fiber of the
map
PR — PY7IR,
when d’ < d.
We start with a lemma concerning the case d = 0.

LEMMA 6.10. Let n > 0. If the map
PR — P°R
becomes an equivalence after applying P™, then for every d > 0, the map
PIR — PR

becomes an equivalence after applying P,
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Proof. Write Wd = My/Mgy41. Then there are equivalences
PijWdﬁRdeA(SOQR) ~ Wy A BPJR.
Since A — R is a refinement of homotopy and R is pure, the analogous map
Wy APYR — PIR

is also a weak equivalence. Now consider the following diagram:

~

Wy A P"(PYR) Wy A P(PYR)

| |

P (W4 A PIR) — P (W, A POR)

Nl lw

P (PYR) P4 (PIR).

The top map is an equivalence by assumption. The bottom vertical maps are
the result of applying P to the weak equivalences just described. Since
I//I\/d is a wedge of regular slice cells of dimension d, Corollary 4.25 implies that
the upper vertical maps are weak equivalences. It follows that the bottom
horizontal map is a weak equivalence as well. ]

Proof of Proposition 6.9. We will show by induction on k that for all d,
the map
Pd+k(de) N Pd+l<:(PdR)
is a weak equivalence. By the strong convergence of the slice tower (Theo-
rem 4.42) this will give the result. The induction starts with & = 0 since
Pd+1R > d, and so R — PIR is a Pé-equivalence. For the induction step,
suppose we know the result for some k& > 0, and consider

PdJrkp;lR Pd+k(de) Pd+k(pd71R)

pa+k (PgR) Pd+k(PdR) Pd+k(Pd_1R).
The bottom row is a cofibration sequence since it can be identified with
PYR — PR — PR,

The middle vertical map is a weak equivalence by the induction hypothesis,
and the left vertical map is a weak equivalence by the induction hypothesis
and Lemma 6.10. It follows that the cofiber of the upper left map is weakly
equivalent to PT*(PI=1R) and hence is (d + k + 1)-slice null (in fact d slice
null). The top row is therefore a cofibration sequence by Corollary 4.17, and so
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the rightmost vertical map is a weak equivalence. This completes the inductive
step and the proof. O

7. The Reduction Theorem

We will prove the Reduction Theorem by induction on g = |G|. The case
in which G is the trivial group follows from Quillen’s results. We may therefore
assume that we are working with a nontrivial group G and that the Reduction
Theorem is known for all proper subgroups of G. In the first subsection below
we collect some consequences of this induction hypothesis. The proof of the
induction step is in Section 7.3.

7.1. Consequences of the induction hypothesis. This next result holds for
general G.

LEMMA 7.1. Suppose that X is pure spectrum and Wisa wedge of regular
slice cells. Then W A X is pure. If X is pure and isotropic and W is reqular
isotropic, then WAX is pure and isotropic.

Proof. Using Proposition 4.21 one reduces to the case in which W = §mec,
In that case the claim follows from Corollary 4.25. O

PROPOSITION 7.2. Suppose H C G has index 2. If the Slice Theorem
holds for H, then the spectrum ij‘qMU((G)) 18 an isotropic pure spectrum.

Proof. This is an easy consequence of Corollary 5.20, which gives an as-
sociative algebra equivalence

i MU ~ MU H by H by, .. ]

This shows that i3, M UG is a wedge of smash products of even dimensional
isotropic slice cells with MU and hence (by Lemma 7.1), an isotropic pure
spectrum since MU ) i, O

ProprosSITION 7.3. Suppose H C G has index 2. If the Slice Theorem
holds for H, then the map

s an equivalence.

Proof. By Proposition 7.2 we know that i3 MU () is pure. The claim
then follows from Proposition 6.9. O

7.2. Certain auziliary spectra. Our proof of the Reduction Theorem will
require certain auxiliary spectra. For an integer k > 0, we define

R(k) = MU /(G -7,...,G 7)) = MU«G»QA’,
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where
A= SO[G-fl,G-fQ,...],
A, == SO[G 7:]§+1,G"I:k+2,...].

The spectrum R(k) is a right A’-module, and as in the case of MU (%) described
in Section 6, the filtration of A’ by the “dimension” monomial ideals leads to
a filtration of R(k) whose associated graded spectrum is

R(co) N A

Thus the reduction theorem also implies that R(k) is a pure isotropic spectrum.
By the results of the previous section, the induction hypothesis implies that
i3y R(k) is pure and isotropic.
We know from Proposition 4.64 that when m is even, the slice P)?R(k) is
given by
PR(k) ~ HZ gy A Wi,

where W C A’ is the summand consisting of the wedge of slice cells of dimen-
sion m. When m is odd, the above discussion implies that 7" A P'R(k) is
contractible for any G-CW complex T built entirely from induced G-cells. In
particular, the equivariant homotopy groups of EP, AR(k) may be investigated
by smashing the slice tower of R(k) with EP,, and we will do so in Section 7.3,
where we will exploit some very elementary aspects of the situation.

7.3. Proof of the Reduction Theorem. As mentioned at the beginning of
the section, our proof of the Reduction Theorem is by induction on |G|, the
case of the trivial group being a result of Quillen. We may therefore assume
that G is nontrivila and that the result is known for all proper subgroups
H C G. By Proposition 7.3 this implies that the map
becomes a weak equivalence after applying i7;.

For the induction step, we smash the map in question with the isotropy
separation sequence (2.44)

EP4 A R(x0) R(0) EP A R(c0)

L
EP+ N HZ(Q) _—> HZ(Q) _— E~P A HZ@)

By the induction hypothesis, the map f is an equivalence. It therefore suffices

to show that the map h is one. As discussed in Remark 2.49, this is equivalent
to showing that

(7.4) mh MY R(00) = B HZ )

is an isomorphism.
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We first show that the two groups are abstractly isomorphic.
ProrosiTION 7.5. The ring W*QGHZ(Q) is given by
@S HZ o) = Z/2[b),
with
b= uzga;Q € 7T2(I>GHZ(2) C a;lﬂfHZ(z).
The groups m,®%R(c0) are given by
Z]2 n >0 even,

0 otherwise.

Tn®C R(00) = {

Proof. The first assertion is a restatement of Proposition 3.18. For the
second, we will make use of the monoidal geometric fixed point functor @%.
The main technical issue is to take care that at key points in the argument we
are working with spectra X for which ®¢X and <I>]C\;4X are weakly equivalent.

Recall the definition

R(c0) = MU A S0,
where for emphasis we have written M UC((G)) as a reminder that MU(E) has

been replaced by a cofibrant A-module (see Section 2.4). Proposition B.208
implies that R(c0) is cofibrant, so there is an isomorphism

1. ®C R(00) & 1,8 R(c0)

(Proposition B.201). For the monoidal geometric fixed point functor, Propo-
sition B.208 gives an isomorphism

05 (R(00)) = @5 (MUL) 7 5% ~ &G MULD A 50,

A
¢ A
We next claim that there are associative algebra isomorphisms

PG A = SU[OYNF, BCNTy, ... ] = SO[@%2F, %27, ... ].

For the first, decompose A into an indexed wedge and use Proposition B.192.
For the second, use the fact that the monoidal geometric fixed point func-
tor distributes over wedges, and for V and W representations of Cs, can be
computed in terms of the isomorphisms

NYe) . 4G
5 (NE(S™W ASY)) m 0§ (57 MW A 5MIEY) x 02 (57 A SY).
By Proposition B.202, CID%MU,E(G)) is a cofibrant @%A—module, and so

G MU A S0 oG MUD J(@F NPy, BF N, ).
oG A
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Since M Ué(G)) is a cofibrant A-module, and the polynomial algebra A has the

(@)

property that S™'AA is cofibrant, the spectrum underlying MU~ is cofibrant

(Corollary B.207). This means that
G, MU

and
MULE) ~ o MUE) ~ MO

are related by a functorial zig-zag of weak equivalences (Proposition B.201).
Putting all of this together, we arrive at the equivalence

PYR(00) ~ MO/ (D27, 27y, .. ).
By Proposition 5.50,

B — hi i#2F—1,
o =2k 1.

From this is an easy matter to compute W*MO/(@Gﬂ, PGy, .. .) using the
cofibration sequences described at the end of Section 2.4.3. The outcome is as
asserted. O

Before going further we record a simple consequence of the above discus-
sion, which will be used in Section 9.1.

PROPOSITION 7.6. The map
@MU =7, MO — 7,8 HZ
is zero for x > 0.

A simple multiplicative property reduces the problem of showing that (7.4)
is an isomorphism to showing that it is surjective in dimensions that are a power
of 2.

LEMMA 7.7. If for every k > 1, the class b2"" s in the image of
(7.8) m @MU /(G - Ty _) = mp @ HZ o),
then (7.4) is surjective and hence an isomorphism.

Proof. By writing

_ uU©@ s @ )(c .7
R(oc) = MUD /(G -70) A MUD)G ) A

we see that if for every k > 1, b2 ' is in the image of (7.8), and then all
products of the »2"" are in the image of

(7.9) T P9 R(00) = m P HZ 5.

Hence every power of b is in the image of (7.9). O
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In view of Lemma 7.7, the Reduction Theorem follows from
ProprosITION 7.10. For every k > 1, the class V2" s in the image of
1o ®G (MU /(G - Fy_y)) = 7o Y (HL).
To simplify some of the notation, write
cp=2F-1
and
My, = MU )G - 7).

Since S°P¢ is obtained from S° by attaching induced G-cells, the restriction

map

is an isomorphism (Remark 2.50). The element of interest in this group (the
one hitting kail) arises from the class

N7, € chpG MU(©)
and the fact that it is zero for two reasons in 7Tck pe EPAMj. (It has been coned
off in the formation of My, and it is zero in WCCI’;p EP AMUG) = e, MO by

Proposition 5.50.) We make this more precise and prove Proposition 7.10 by
chasing the class N7, around the sequences of equivariant homotopy groups
arising from the diagram

(7.11) EP, AMUG) - MU©@) = Ep A MU
EP+ N M;, M;. EP A My,

| |

EP+ A HZ(Q) E—— HZ(Q) I EVP VAN HZ(Q)

We start with the top row. By Proposition 5.50 the image of N7, in
75 o EP AMUD ~ 78 EPp A MU ~ 7, MO

Terpa

is zero. There is therefore a class

ye €78 EP, AMU©)

CkPG

lifting Nv,,. The key computation, from which everything follows, is
ProroSITION 7.12. The image under

EPy AMUE) — 78 EP_AHZLgy),

CkPG

of any choice of yi above, is nonzero.
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Proof of Proposition 7.10 assuming Proposition 7.12. We continue chas-

ing around the diagram (7.11). By construction the image of y;, in 75 EP, A

CkPG

M, maps to zero in 7& M. Tt therefore comes from a class

CkPG

ik € 78 i1 EP A My

The image of g, in 7€ 1E77 N HZ3) is nonzero since it has a nonzero image

CrPGT
n

EPy A HZy,

cwc
by Proposition 7.12. Now consider the commutative square below, in which
the horizontal maps are the isomorphisms (Remark 2.50) given by restriction
along the fixed point inclusion §2° C §erPe+1;

78 i1 EP A M, TG EP A M,

| |

78 o1 EP NHZ gy —= 75 EP N HL).

2k 1 We
have just shown that the image of ¢, under the left vertical map is nonzero.
It follows that the right vertical map is nonzero and hence that b2 is in its
image. O

The group on the bottom right is cyclic of order 2, generated by b

The remainder of this section is devoted to the proof of Proposition 7.12.
The advantage of Proposition 7.12 is that it entirely involves G-spectra that
have been smashed with EP, and that (as discussed in Section 7.2) therefore
fall under the jurisdiction of the induction hypothesis. In particular, the map

(7.13) EP+ AMU) — EPL ANHZy,

can be studied by smashing the slice tower of MU(E) with EP,.
We can cut down some the size of things by making use of the spectra
introduced in Section 7.2. Factor (7.13) as

EP+ AMU) — EPL AR(cy, — 1) = EP A HZ ),
and replace y; with its image
EP+ VAN R(Ck - ].)

Yk € WCk P

LEMMA 7.14. For 0 < m < ¢g,

Teppa EP+ NPl R(c, — 1) = 0.
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There is an exact sequence

EP+ A\ R(Ck - 1)

l

EPy AHLZy) = Z/2.

EP4 A PegR(c, — 1) ——7¢

ckpG kPG

CkPG

Proof. Because of the induction hypothesis, we know that the spectrum
EPL ANPR(c — 1)
is contractible when m is odd and that when m is even, it is equivalent to
EPy ANHZ AWy,

where W c S°[G- Teps - - - | 1s the summand consisting of the wedge of slice cells
of dimension m. Since 1 < m < ¢gg, all of these cells are induced. This implies
that the map

EPL ANHZ AW, — HZ AWy,

is an equivalence, since
EP+ — SO

is an equivalence after restricting to any proper subgroup of G. But

HZ AWy = 7§ HZ N S~ AW, =0

Ck PG

since
HZ A S~rc AW,

is an (m— cgg)-slice and m —cgg < 0. This proves the first assertion. It implies
that the map

EPL A PckgR( r— 1) — & EP+ NPiR(c, — 1)

CkPG CkPG

is surjective. As mentioned in Section 7.2, Proposition 4.64 implies that
PYR(cy, — 1) = HZ), and so the second assertion follows from the exact
sequence of the fibration

EPy AP R(c;, —1) = EPy+ AR(cy — 1) — EP. A P{R(cx — 1). O

The exact sequence in Lemma 7.14 converts the problem of showing that

y has nonzero image in 7¢ EP, A H L2y to showing that it is not in the

kPG
image of

EP+ A PckgR(Ck — 1)

CkPG
We now isolate a property of this image that is not shared by y;. Recall that
v is a fixed generator of G.
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PrOPOSITION 7.15. The image of

EP. APoyR(ck —1) = 7S R(ci —1) 25 7% R(c, — 1)

Ck PG CkPG Ckg

is contained in the image of (1 — ).

The class y, does not have the property described in Proposition 7.15.

Its image in 7 R(cx — 1) is igN Fck, which generates a sign representation of

Ck9g

G occurring as a summand of 7 R(cy — 1). Thus once Proposition 7.15 is

kg
proved the proof of the Reduction Theorem is complete.
The proof of Proposition 7.15 makes use of the RO(G)-graded Mackey

functor

Terpa (X)

and the transfer map

(716) Eckpg( )(02) — Teype (X)(pt)a

in which Cs is regarded as a finite G-set through the unique surjective map
G — Ca. By definition (Section 3.1) of the covariant part x,, , . of the Mackey
functor, the map (7.16) is given by the map of equivariant homotopy groups

XANCyy) =8

cepc (X)

Terpc
induced by the unique surjective map Cy — pt.
There are two steps in the proof of Proposition 7.15. First it is shown
(Corollary 7.19) that the image of
EPy APeyR(cr, —1) = 78 R(c, — 1)

CkPG CkPG

is contained in the image of the transfer map just described. We then show
(Lemma 7.20) that the image of the transfer map in 7% R(cx — 1) is in the

image of (1 — 7).

kg

LEMMA 7.17. Let M > 0 be a G-spectrum, and regard Cy as a finite G-set
using the unique surjective map G — Csy. The image of

S EPL AM — n§ M
is the image of the transfer map

Proof. As mentioned in Remark 2.48, the space EP, can be taken to be
the space S7° on which v acts through the antipodal action. The standard cell
decomposition in this model has 0-skeleton Cy,. Since M is (—1)-connected
(Proposition 4.11), this implies that 7§'Co A M — 7§ EP, A M is surjective,
and the claim follows. U
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COROLLARY 7.18. The image of
EPy A PuyR(cr, —1) —» 78 P R(ck — 1)

Ck e CkPG

is contained in the image of the transfer map.
Proof. This follows from Lemma 7.17 above, after the identification
78 o PengR(cr — 1) = mf S™#PG A Py g R(cp — 1)
and the observation that
S=HPG N P, gR(cr — 1) & Py(S™%P5 A R(c¢y, — 1))
is > 0. O
COROLLARY 7.19. The image of

EPy A PegR(cr, —1) — 75 R(c, — 1)

CkPG CkPG

is contained in the tmage of the transfer map.

Proof. Immediate from Corollary 7.18 and the naturality of the transfer.
O

The remaining step is the special case X = P, R(cy — 1), V = ¢ppg of
the next result.

LEMMA 7.20. Let X be a G-spectrum, V a virtual representation of G
of virtual dimension d, and regard Co as a finite G-set through the unique
surjective map G — Co. Write € € {1} for the degree of

v:igSY —igsY.
The image of
THX ACyy) = 70X — 74
is contained in the image of
(1+ey):mgX — mg
Proof. Consider the diagram
TI(X A Cyy) —= 78X
| |
TH X N Cyy) — i X.
The nonequivariant identification
Coyp = S%v S0
gives an isomorphism of groups of nonequivariant stable maps

[SV, X ACyy ]~ [SY, X]®[SY, X],
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and so an isomorphism of the group in the lower left-hand corner with
g X @y X
under which the generator v € G acts as
(a,b) — (eyb, eya).

The map along the bottom is (a,b) — a+b. Now the image of the left vertical
map is contained in the set of elements invariant under v which, in turn, is
contained in the set of elements of the form

(a, eva).
The result follows. O

Proof of Proposition 7.15. As described after its statement, this is a con-
sequence of Corollary 7.19 and Lemma 7.20. O

8. The Gap Theorem

The proof of the Gap Theorem was sketched in the introduction, and
various supporting details were scattered throughout the paper. We collect
the story here for convenient reference.

Given the Slice Theorem, the Gap Theorem is a consequence of the fol-
lowing special case of Proposition 3.20.

PROPOSITION 8.1. Suppose that G = Caon is a nontrivial group and that
m > 0. Then

HE(S5™%; L)) = 0 for 0 <i < 4.

LEMMA 8.2 (The Cell Lemma). Let G = Con for some n > 0. If S is an

isotropic slice cell of even dimension, then the groups WEHZ(Q) A S are zero

for —4 < k < 0.

Proof. Suppose that
g = mpH
S=G¢ I/} S ,
with H C G nontrivial. By the Wirthmiiller isomorphism,
W,?HZ(Q) AN ,§ ~ WEHZ(Q) A STPH

so the assertion is reduced to the case § = $™°6 with G nontrivial. If m > 0,
then WEHZ(Q) AS =0 for k < 0. For the case m < 0,

WEHZ(Q) NS = Hék(s_mpG;Z(Q))-

The result then follows from Proposition 8.1. O
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THEOREM 8.3. If X is pure and isotropic, then
9 X =0, —4<i<0.

Proof. Immediate from the slice spectral sequence for X and the Cell
Lemma. ]

COROLLARY 8.4. If Y can be written as a directed homotopy colimit of
1sotropic pure spectra, then

¥ X =0, —4<i<0.

THEOREM 8.5 (The Gap Theorem). Let G = Can with n > 0, and let
D e ngGMU((G» be any class. Then for —4 <1 <0,

7D MU@) = .
Proof. The spectrum D~*MU() is the homotopy colimit
holim y—itrc (@)
J

By the Slice Theorem, MU (G) is pure and isotropic. But then the spectrum
y—itec pry(@)
is also pure and isotropic, since for any X,
P"YrPe X ~ EPGP:Z__;X
by Corollary 4.25. The result then follows from Corollary 8.4. O

9. The Periodicity Theorem

In this section we will describe a general method for producing periodic-
ity results for spectra obtained from MU(E) by inverting suitable elements of
7¢ MUE) . The Periodicity Theorem (Theorem 9.19) used in the proof of The-
orem 1.1 is a special case. The proof relies on a small amount of computation
of ¢ MU,

9.1. The RO(G)-graded slice spectral sequence for MU(G), Let 0 = o¢
be the real sign representation of G, and let

U= Uy € wg_QUHZ(Q)
be the element defined in Definition 3.12. Since
PIMUS) = HZ,
the powers u™ define elements

u" e ByPTTIN — nl PYMUS)

2m—2mo
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s=(g—1)((t—s)+2mo) +2m

.‘. s=(g— 1)((1‘ —s)—(2m — 2mr7))

[ ] .
T

- [l
T T

—2mo 2m — 2mo
Figure 2. The slice spectral sequence for 7%, M U@

in the Fs-term of the RO(G)-graded slice spectral sequence
Eyt =x¢ pimtpU(@) — 1 MU

with ¢ € —2mo 4+ Z. Our periodicity theorems depend on the fate of these

elements. To study them it is convenient to consider odd negative multiples of

o as well and to investigate the slice spectral sequences for m,_p, for k > 0.
It turns out to be enough to investigate the groups ES’t with

52 (9 D((t — )~ (k — ko)),

where g = |G|. The situation is depicted in Figures 2-4. We have, in fact,
already described all of the groups in this range. To see this write ¢’ = dim ¢,
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s=(g—1)(t—s)+@2m+1)o) + (2m+1)

s=(g—1)(t—s) = (2m+1) = (2m+1)0))

2, .
a2m +1f1 °

o uafy

+— +—
—(2m+1)o 2m — (2m + 1)o

Figure 3. The slice spectral sequence for 7& MU(G)

(2m+1)o+x

so that t =t' + (k — ko), and
Eyt =n8 Sk A PY MU,

Since S* A Ptt,/M UG > ¢ part (iii) of Proposition 4.40 tells us that this
group vanishes if

t'—s+k<|t'/g]
and hence if
s> (g—l)((t—s)—l—ka)—l—k.
This gives the vanishing line depicted in Figures 2-4. Now Ptt,lM U@ g
contractible unless ¢’ is even, in which case it is a wedge of G-spectra of the
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s=(g— 1)(@ — )+ 2/!LU) +2m

s=(g—1)((t—s)— (2m - 2mo))

\ @ fifs

umfy

Figure 4. Differentials on u™

form HZ A S , Where S is a slice cell of dimension #. Since the restriction of
o to any proper subgroup is trivial, when S = G }/L\I S¥rH s an induced slice

cell, there are isomorphisms
SR ANHZAS ~ Gy A (S* AHZAS“P) ~ Gy A (S*AHZ A S"PH)
and so 7rtG,_s+kSk" NHZ A S is isomorphic to
rit JHZ A SPPH.
This group vanishes if
t'—s<l =t/ (h=|H)),

so certainly when
t'—s<t/g
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or, equivalently when

s> (g—1)((t—s) = (k—ka)).
Thus in this range only the noninduced slice cells contribute.

The only even dimensional slice cells that are not induced are those of the
form S%¢. We are therefore studying the groups

TS HZ A SM A Stee
with j < /4 k and k,¢ > 0.
LEMMA 9.1. For k,£ >0 and j < {4+ k, the group
TS HZ A SM A Stee

s given by
0 if (j—42) <0 or(j—¥) is odd,
7 HZASY NS ~ { 7/2 - {abal=?™ugl}  if (j —€) = 2m > 0 and £ > 0,
Ly - {usy } if (j—0)=2m >0 and £ = 0.

Proof. This computation reduces to the one described in Example 3.16.
To see this, write

Gko A glra — gkt+O)o A gl A S£(pc:—a—1),
and consider the map

(9.2) a5 o 7S HLZASET7 A SE— 7§ HZ A Sk A Stec

given by multiplication by af;_g. When ¢ = 0, this map is an isomorphism.
When ¢ > 0, the space S{Pc==1) hag the structure of a G-CW complex with
one 0-cell and all other G-cells of positive dimension and induced from proper

(k+07 and using the fact that the restriction of o to

subgroups. Smashing with S
every proper subgroup of G is trivial, one finds that S*@ A .S%¢ is obtained from
Sh+0o A S by attaching induced G-cells of dimension greater than (k+20).
This implies that the map a%,a is an isomorphism for j < k + 2¢, and so
certainly for j < k4 ¥ since £ > 0. Thus in the range of interest, multiplication

by afj_o is isomorphism, and the computation reduces to the evaluation of
TSHZ A SHEHI7 A S
These groups were described in Example 3.16. ]

To complete the description of the Es-term of the RO(G)-graded slice
spectral sequence in this range, we need to identify the summand of noninduced
slices of MU(S) . From the associative algebra equivalence

\/ PEMUCD) ~ HZ A SU(G 7, ],
keZ
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this is equivalent to identifying the summand of noninduced slice cells in the
twisted monoid ring

SOG -7,

Since the smash product of an induced spectrum with any spectrum is induced,
we can do this by identifying the summand of noninduced slice cells in each

SUIG - 7]

and smashing them together.
Take the generating inclusion

7i 0 S0 — SO,
apply Ng2 to obtain
N7 876 — SU[G - 7],
and extend it to an associative algebra map
(9.3) SOINF] — S°[G - 7).

LEMMA 9.4. The map (9.3) is the inclusion of the summand of nonin-
duced slice cells.

Proof. The distributive law expresses SU[G - 7;] = Ng2 SO[7;] as an indexed
wedge (see Section 2.4)

SlG-ml~ ) SV,
f:G/Ca—Nyg

and Vy = @fﬁ Y f(¥)pc,. We now decompose the right-hand side into an
ordinary wedge over the G-orbits. Since an indexed wedge over a G-orbit
is induced from the stabilizer of any element of the orbit, the summand of
noninduced slice cells consists of those f that are constant. If f : G/C5 is the
constant function with value n, then V; = npq, so the summand of noninduced

\/ s,

n

slice cells is

The result follows easily from this. 0

Smashing these together gives
COROLLARY 9.5. The associative algebra map
SOINF,...] = S°[G - 71,...]

is the inclusion of the summand of noninduced slice cells.
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To put this all together, consider the Z x RO(G)-graded ring
Z 2) [a'a fi7 u]/(2a, 2fz)

with
la| = (1,1 —0),
|fil = (i(g — 1), ig),
lu| = (0,2 — 20).
Define a map
(9.6) Zeyla, fi,ul/(2a,2f;) = P B3
$,k>0,
te*fkcr

by
fi aijﬂ- e E;(g_l)’ig = WfPijU«G)),
aa, € By =71_,PloMU(©)

and by sending u to the element u € Eg 2727 Jescribed at the beginning of this
section. The combination of Lemmas 9.1 and 9.4 gives

PROPOSITION 9.7. The map

(9.8) Zela, fiul/(2a,2f;) = P Ey
$,k>0
te*fkcr

is an isomorphism in the range
s 2 (9 —1)((t =) — (k- ko)).

We now turn to the differentials. By construction, the f; are the repre-
sentatives at the Fo-term of the slice spectral sequence of the elements defined
in Definition 5.51 (and also called f;). They are therefore permanent cycles.
Similarly, the element a is the representative of a, and also a permanent cycle.
This leaves the powers of u. The case G = C5 of the following result appears
in unpublished work of Araki and in Hu-Kriz [37].

THEOREM 9.9 (Slice Differentials Theorem). In the slice spectral sequence
for ﬂfMU((G)), the differentials dz~u2k_1 are zero fori <r =1+ (2¥ —1)g, and
dru2k_l == a2kf2k71.

Remark 9.10. It follows from Proposition 9.7 that what lies on the “van-
ishing line”
s=(g—1)((t—s)+ko)+k
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is the algebra
Zyla, fil/(2a,2f;).
In Proposition 5.50 it was shown that the kernel of the map

Ziylao, fi]/(2a,2f;) = 78 MU - 760G MU = 7, MO[aF]

is the ideal (2, f1, f3, f7,...). The only possible nontrivial differentials into the
vanishing line must therefore land in this ideal.

For the proof of Theorem 9.9, the reader may find it helpful to consult
Figure 4.

Proof of Theorem 9.9. We establish the differential by induction on k. As-
sume the result for ¥ < k. Then what is left in the range s > (¢ —1)(t —s—k)
after the differentials assumed by induction is the sum of two modules over
Z[fil/(2fi). One is generated by a?" and is free over the quotient ring

Z/2fil/(f1s f3s- - s far11)-

The other is generated by u2"™". Since the differential must take its value in
the ideal (2, a, f1, f3,...), the next (and only) possible differential on w2 s
the one asserted in the theorem. So all we need do is show that the classes
42" do not survive the spectral sequence. For this it suffices to do so after

inverting a. Consider the map
a;lﬂ'*GMU((G)) — a;lﬂfHZ(Q).

We know the Z-graded homotopy groups of both sides, since they can be
identified with the homotopy groups of the geometric fixed point spectrum. If
w? s a permanent cycle, then the class a=2"u? " s as well, and it represents
a class with nonzero image in 7&®CH Zzy- This contradicts Proposition 7.6.

0

Remark 9.11. After inverting a,, the differentials described in Theorem 9.9
describe completely the RO(G)-graded slice spectral sequence. The spectral
sequence starts from

Z)2[fi, o™, ul.
The class «2°" hits a unit multiple of for_;, and so the Ey-term is

Z)2[fi,i # 28 = 1][a*!] = MO, [a™"],

which we know to be the correct answer since @MU = MO. This also
shows that the class u® ' is a permanent cycle modulo (Fye_;). This fact
corresponds to the main computation in the proof of Theorem 6.5 (which, of
course we used in the above proof). The logic can be reversed, and in [37] the

results are established in the reverse order (for the group G = C3).
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Write
5]4; = NFZk_l € W(C;k_l)pGMU((G)),
and note that with this notation
k_q—
f2k_1 = a% 1Dk.
In the proof of the corollary below we will make use of the identity
- k+1_1< - k—
(9.12) for+1 10 = a% 01k = f2k—10% Ok+1-

The map 0, : S =Dra _ pUG) g represented at the Fo-term of the
k—1
RO(G)-graded slice spectral sequence by a map S =Dpc 13((2,c 1))9MU(( ),

which we will also call 3. Multiplying, this defines elements d,u? in the
Es-term of the RO(G)-graded slice spectral sequence.

COROLLARY 9.13. The class 3u® is a permanent cycle in the RO(G)-
graded slice spectral sequence for MU()

Proof. Write
r=14 (2! —1)g.
Theorem 9.9 implies that differentials d; (5ku2k) = 5kdi(u2k) are zero for i < r,
and
- k - k+1 k+1 k—
dr(akUZ ) = ak(IQ f2k+171 = a2 f2k71a% Dk+1,
the second equality coming from (9.12) above. But from the earlier differential
dpu? " = a® for_y,
where 7/ = 14 (2F — 1)g < r, we also have
dT ( 2+~ 1a2ka2k0k+1) = G f2k 1a ak+1
so that, in fact ,d,«(ﬁkuy@) = 0. The target of the remaining differentials work
out to be in a region of the spectral sequence that is already zero at the Fo-
term. So once we check this, the proof is complete.

To check the claim about the vanishing region first note that with our
conventions, differential d;;1 of the RO(G)-graded slice spectral sequence maps
a sub-quotient of

e pPrx
to a sub-quotient of
o PUHX.
m—1- n+i

The class in question starts out at the Fo-term as

- G 2k 1
Dku2 € Tk (2—20)4 (25— l)pGP((Qk 1))gMU(( )

so we are interested in the groups

G (28 —1)g+i G
ok (2—20)+ (25— 1)pg—1 1 (2k 1)5+ZMU(( )
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or, equivalently,

TGy (82717 A 5@ v p pUET DI (@),
with i +1 > r =1+ (2¥! — 1)g. To simplify the notation, write

X; = §~(@"Drc 5 p(<22:_—11)>;:; MU©),
so that the group we are interested in is
(9.14) w51 (877 A X).
Now
X; >4,
so Proposition 4.40 implies that
7erXZ- =0

for j < |i/g]. Since §2 e g (—1)-connected, this means that if i > 2F+1g,
then the group (9.14) is trivial. The remaining values of i are strictly between
(251 —1)g and (2¥+1)g, and hence are not divisible by g. But since MU (%) is

k_ .
pure, when ¢ is not divisible by g, the spectrum P((;k_ll))ggi;M U() is induced

from a proper subgroup of G, hence so is X;. There is therefore an equivalence

§2Mo A X~ 52 A X,

and so

2k+1 2k+1

7T§€+1_1(S J/\Xvi) :ﬂ-gf"'l—l(S /\Xi) =0
since X; > 0. O

9.2. Periodicity theorems. We now turn to our main periodicity theorem.
As will be apparent to the reader, the technique can be used to get a much
more general result. We have chosen to focus on a case that contains what is
needed for the proof of Theorem 1.1, and yet can be stated for general G = Can.

Our motivating example is the spectrum Ky of “real” K-theory [7]. Mul-
tiplication by the real Bott class 7 € m,, Kg is an isomorphism, giving Kr
an SP2-periodicity. On the other hand, the representation 4p, admits a Spin
structure, and the construction of the K O-orientation of Spin bundles leads to
a “Thom” class u € 7r80 2Kr A S*2. This class is represented at the Ey-term of
the slice spectral sequence by u4,,. Multiplication by Fi‘u is then an equivari-
ant map S® A Kg — Kg whose underlying map of nonequivariant spectra is
an equivalence. It therefore gives an equivalence S® A KﬁCQ ~ K]gcz. Since the
map KO — KH%CQ is an equivalence, this gives the 8-fold periodicity of KO.

In our situation we begin with an equivariant commutative ring R, a
representation V' of GG, and an element D € ng. We manually create a
spectrum with SV -periodicity by working with the homotopy colimit, D™ R,
of the sequence

RESVAREZ S AR .
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The unit inclusion
S" - DR
gives a map
HZ = PS° - PPD™'R
and hence defines, for every oriented representation W of GG, elements
uw € Taimw-w Py R = By ™V W
in the Fa-term of the RO(G)-graded slice spectral sequence for 7D~ R. We
will show, under certain hypotheses on D, that there is an integer k > 0 with
the property that uyy is a permanent cycle. Let u € 7D~ R be any element
representing ugy . Then the equivariant map

ShAmV A DR 2 W A DR 24 IR

induces an equivalence of underlying, nonequivariant spectra, and hence an
equivalence of homotopy fixed point spectra

(554mV A D='R)" - (D7'R)".

This establishes a periodicity theorem for the homotopy fixed point spectrum
(D7IR)MC,

The exposition is cleanest when one exploits multiplicative properties of
the spectrum D~!'R. There are some easy general things to say at first. The
spectrum D™!R is certainly an R-module, and it inherits a homotopy commu-
tative multiplication (over R) from R. The technique of [24, §VIIL.4] can be
used to show that the nonequivariant spectrum underlying D! R has a unique
commutative algebra structure for which the map i$R — i3 D! R is a map of
commutative rings.

With an additional assumption on D, one can go further. Let H C G be
a subgroup, and suppose that there is an m > 0 for which the norm Ng (ZED)

divides D™. Write D™ = D' - Ng (ijZID), and to keep the notation compact,
abbreviate Ng (Z*HD> to NICjD. Then there is a commutative diagram

NSE(D) N{ (D)
NgR . NG(S™VAR)—>N§(S?AR) -
N&(D l NS (D ,J’
R i) SV AR—D _ geov R
1 lDI LDIQ
R b S~V AR b S=2mV AR ..
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in which V' = indg V. Passing to the colimit gives a map
Nfjiy(D™'R) - D'R
extending the iterated multiplication. This allows one to form norms of ele-
ments in 77 D7'R as if D™'R were an equivariant commutative ring.
A necessary condition for D™! R to actually be an equivariant commutative
ring is that for every H C G, the norm N§i% D divides a power of D. In fact

the condition is also sufficient. The proof of the result below is described
in [31].

PROPOSITION 9.15. Let R be an equivariant commutative ring and D €
7CR. If D has the property that for every H C G, the element Ngij‘gD divides
a power of D, then the spectrum D™'R has a unique equivariant commutative
algebra structure for which the map R — D™ 'R is a map of commutative rings.

We will not make use of Proposition 9.15, as the ad hoc formation of
norms from the nontrivial subgroups of G is sufficient for our purpose.

Suppose that ¢ € RO(G) and that u € 7fID7'R is represented at the
Es-term of the RO(H)-graded slice spectral sequence by the image of u' €
7 HZ under the map 7! HZ — nF P{D~'R induced by the unit. We then
have an H-equivariant commutative diagram

St

D'R<~—PD'R——=P)D'R<~—HZ.

The maps in the bottom row are maps of homotopy commutative ring spec-
tra. Since the formation of slice sections commutes with filtered colimits, if
NgD divides a power of D, then the spectra along the bottom row also come
equipped with maps N§(—) — (—) extending the iterated multiplication and
are compatible with the maps between them. This means we may apply the
norm to the whole diagram to produce

Sindg t

D'R<~—PRD'R—-=P)D'R<~——HZ,
showing that
Ngu'
is a permanent cycle representing the class Ngu € Mind¢ thlR.

We will take R to be the spectrum MU() . In order to specify the element
D, we need to consider all of the spectra MU for H ¢ G, and we will need
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to distinguish some of the important elements of the homotopy groups we have
specified. We use (5.1) to map

I pMu) — 2 Hppy Q)
and we make all of our computations in 77 MU (G), Let

Henl2 MU c 72 MU©)

be the element defined in Section 5.4.2, and let
o = NE(75 ) € w3y, MU
Finally, in addition to g = |G|, we will write h = |H| for H C G.

THEOREM 9.16. Let D € WE)GMU((G)) be any class having the property
that for every nontrivial H C G, the element Ngij‘gD divides a power of D, and

whose image in WFMU((G)) is divisible by 01 a/ht The class U%Z/GZ 18 a permanent

cycle in the RO(G)-graded slice spectral sequence for TFED_lMU((G)).

Proof. By Corollary 9.13, for each nontrivial subgroup H C G, the class

55/ hu%iﬁj is a permanent cycle in the RO(H )-graded slice spectral sequence for

rH MU(G) . Since i%, D is divisible by 65,1, the class u%i/hh is then a permanent

cycle in the RO(G)-graded slice spectral sequence for 77 D=1MU() . From
this inventory of permanent cycles, and the ad hoc norm described above, we
will show that u%Z/GQ is also a permanent cycle.
To begin, note that if H C G has index 2, then indg 1 =1+40¢. It follows
from Lemma 3.13 that
2
U2pe = ug(/,GNgmpH.
This leads to the formula
kh/2
e = T N,
0£HCG
When k = 29/2, we have kh/2 = 29/2h/2 > 29/" for every h # 1 dividing g, so
every term in the product is a permanent cycle. (The inequality is an equality
only when h = 2.) This completes the proof. O

Write AY = ug,, (0§)2.
COROLLARY 9.17. In the situation of Theorem 9.16, the class

/2 /2 =099/
(9.18) (A9)* = w3, (07)*

is a permanent cycle. Any class in ©& D 'MUE) represented by (9.18)

2.9-29/2
restricts to a unit in ﬂ'ij_lMU((G)).
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Proof. The fact that (9.18) is a permanent cycle is immediate from Theo-
rem 9.16. Since the slice tower refines the Postnikov tower, the restriction of an
element in the RO(G)-graded group 7¢ D MU(E) to 7D MUE) is de-
termined entirely by any representative at the Es-term of the slice spectral se-

quence. Since us,,, restricts to 1, the restriction of any representative of (9.18)

(05>

is equal to the restriction of , which is a unit since 6? divides D. [

This gives

THEOREM 9.19. With the notation of Theorem 9.16, if M is any equivari-
ant D*MUE) -module, then multiplication by (AG)QQ/2 is a weak equivalence

.q-29/2 . .
$EI2ENM — i M
and hence an isomorphism
G\29/? hG hG
(AT o mM™ = 9 002 MM

For example, in the case of G = Cy, the groups (D 'MU ((G)))hG are
periodic with period 2 x 2 x 2 = 8, and for G = (Y, there is a periodicity of
2% 4 %22 = 32. For G = Cg, we have a period of 2 * 8 * 2* = 256.

Remark 9.20. Suppose that D € 7¢R is of the form
D = N§,x.
Then for Co C H C G, one has
N§ity, D = D",
Indeed,
N§iyyD = N§iyy NG« = NG (NE)I/M = N§ a9/ = D9/h,

Since each 6kH has this form, any class D that is a product of NgﬁkH has the
property required for Theorems 9.16 and 9.19.

COROLLARY 9.21 (The Periodicity Theorem). Let G = Cg and
D = (NG3of?) (NG;05*) (31) € el MU,
Then multiplication by (A%)' gives an isomorphism
Te(DT MU NG s 7 oo (DTEMUENRE,

Remark 9.22. For a periodicity theorem, one gets a sufficient inventory
of powers of uy,, as permanent cycles as long as for each H, some 55-{ is
inverted. This is also enough to prove the Homotopy Fixed Point Theorem.
Our particular choice of 5;% is dictated by the requirements of the Detection
Theorem.
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10. The Homotopy Fixed Point Theorem

Until now we have not had occasion to refer to the function G-spectrum
of maps from a pointed G-space S to a G-spectrum X, which exists as part of
the completeness of 8¢ as a topological G-category. We will write X for this
object, so that

892, X%) =8%(Z NS, X).
Definition 10.1. A G-spectrum X is cofree if the map
(10.2) X — xBCG+
adjoint to the projection map FG+ A X — X is a weak equivalence.
If X is cofree, then the map
18X - 78 XEC+ =, xC

is an isomorphism. The main result of this section (Theorem 10.8) asserts that
any module over D MU() is cofree.

The map (10.2) is an equivalence of underlying spectra and hence becomes
an equivalence after smashing with any G-CW complex built entirely out of
free G-cells. In particular, the map

(10.3) EG, NX & EG, A (XEGH)

is an equivariant equivalence. One exploits this, as in [14], by making use of
the pointed G-space EG defined by the cofibration sequence

(10.4) EG, — S° = EG.
LEMMA 10.5. For a G-spectrum X, the following are equivalent:

(i) for all nontrivial H C G, the spectrum ®H X is contractible;
(ii) the map EG4+ N X — X is a weak equivalence;
(iii) the G-spectrum EG A X is contractible.

Proof. The equivalence of the second and third conditions is immediate
from the cofibration sequence defining EG. Since EG. is built from free
G-cells, condition (ii) implies condition (i). For H C G nontrivial, we have

PH(EG A X) =~ o (EG) Ao (X) = SO A 0 (X).

Since the nonequivariant spectrum underlying EG is contractible, condition
(i) therefore implies that @ (EG A X) is contractible for all H C G. But this
means that EG A X is contractible (Proposition 2.52). O

COROLLARY 10.6. If R is an equivariant ring spectrum satisfying the
equivalent conditions of Lemma 10.5, then any module over R is cofree.
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The condition of Corollary 10.6 requires R to be an equivariant ring spec-
trum in the weakest possible sense, namely that R possesses a unital multipli-
cation (not necessarily associative) in ho 8. Similarly, the “module” condition
is also one taking place in the homotopy category.

Proof. Let M be an R-module. Consider the diagram
(10.7) EG ANM M EGAM

| | |

EG, N MEG+ — MEG+ -~ EG A MPG+

obtained by smashing M — M¥%+ with the sequence (10.4). The fact that R
satisfies the condition (i) of Lemma 10.5 implies that any R-module M’ does
since ®H (M) is a retract of @ (R A M) ~ ®H(R) A &7 (M). Thus both M
and MFC+ satisfy the conditions of Lemma 10.5, and the terms on the right
in (10.7) are contractible. The left vertical arrow is the weak equivalence (10.3).
It follows that the middle vertical arrow is a weak equivalence. O

Turning to our main purpose, we now consider a situation similar to the
one in Section 9.2, and we fix a class

D e rf MU

with the property that for all nontrivial H C G the restriction of D to
mH MU is divisible by 5,? for some k that may depend on H.

THEOREM 10.8 (Homotopy Fixed Point Theorem). Any module M over
DIMUG) s cofree, and so

M — m M
s an isomorphism.

Proof. We will show that D~*MU(S) satisfies condition (i) of Lemma 10.5.
The result will then follow from Corollary 10.6. Suppose that H C G is
nontrivial. Then

7 (D MUy = o (D)1 (MUED).
But D is divisible by 01, and so ®* (D) is divisible by
o (df) = @ (NH, (75 1))y = @2 (7)),
which is zero by Proposition 5.50. This completes the proof. ([l

COROLLARY 10.9. In the situation of Corollary 9.21, the map “multipli-
cation by AC” gives an isomorphism

WE(D_lMU((G))) N 7T§+256(D_1MU((G ))
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Proof. In the diagram
#S(D-1MU(©)) 7C, 356(D-IMU())

| |

T (DTIMUENRG o 7G (DI MUE) )G

the vertical maps are isomorphisms by Theorem 10.8 and the bottom horizontal
map is an isomorphism by Corollary 9.21. U

11. The Detection Theorem

11.1. Outline of the proof. We now turn to the proof of the Detection
Theorem. For the convenience of the reader, we restate the result.

THEOREM 11.1 (The Detection Theorem). If 0; € my+1_55° is an ele-
ment of Kervaire invariant 1, and j > 2, then the image of 0; in moj+1_58) is
nonzero.

To recapitulate, we are working with the group G = (g, and the spec-
trum Q is the spectrum of G-fixed points in Qo = D MU, with D ¢
T19p MU (&) the element specified in Corollary 9.21.

THEOREM 11.2 (Algebraic Detection Theorem). If
2’2j+1
T € EX‘EMU*(MU) (MU,, MU,)
is any element mapping to
2,20+1
h € Exty”  (Z/2,Z/2)

in the Eo-term of the classical Adams spectral sequence, and j > 2, then the
mmage of T in H2(Cg;7772‘j+1 Qo) is nonzero.

We will prove the Algebraic Detection Theorem by establishing the fol-
lowing.

ProproSITION 11.3. For j > 2, there is a map
(11.4) HQ(CS;’]TZ]'+1Q@) —>@/Z

making the diagram
(11.5) Ext2) v (MU, MU,) — H?(Cs; mpi+1Q0)
Ext3? " (2/2,2/2) ——— Q/Z

commaute.
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In (11.5), the bottom row is the Kervaire invariant homomorphism sending
hjz to 1/2. Since the vector space

ExtZ? " (2/2,2/2)

has dimension 1, with basis hjz (Adams [3, Th. 2.5.1]), the Kervaire invariant
homomorphism is completely specified by this property and is a monomor-
phism. In plain language, Proposition 11.3 asserts that the Kervaire invariant
homomorphism, thought of as a map

Extiiysaro (MU, MU.) = Q/Z,
factors through H?(Cg, m9j+1€0). This directly implies Theorem 11.2.

Remark 11.6. All three of these results (Theorems 11.1 and 11.2 and
Proposition 11.3) remain true without the restriction j > 2. The other cases
j < 2 require separate arguments, and are not needed for the proof of Theo-
rem 1.1, so we do not include them.

We now describe the proof of Proposition 11.3, deferring the details to
later subsections. In order to construct the map (11.4) we use the theory
of formal A-modules to construct a Cg-equivariant ring homomorphism from
Qo to a much smaller ring. Let A = Zs[(] be the 2-adic completion of the
ring obtained by adjoining an 8" root of unity to the ring of integers, and
let Fy be the Lubin-Tate formal A-module over A associated to any choice of
power series f(z) € A[z] satisfying (see Section 11.2)

f(z) =7z mod (2?),
f(z)=2? mod (7),
with uniformizer # = ( — 1. By construction, there is an isomorphism
A Z End(Fy),
a — [a)(x)
satisfying [a]’(0) = a. Using the map v + ¢ to identify the group of 8" roots
of unity with Cg gives an action of Cg on Fy extending the canonical action of

Cs by formal multiplication by —1. As described in Section 11.3.4 below, this
data is classify by a Cg-equivariant map of graded rings

(11.7) e MU(©s) 5 A,
in which A, = A[u™], |u| = 2, and in which the action of the chosen generator
v € Cy is the A-algebra map sending u to (u. The first thing to check about
this map is
ProproSITION 11.8. The image of D € ngpMU((Cs)) under
7ngp]wU((Cg)) — ml, MU(CS) 5 45,
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is a unit, hence (11.7) factors uniquely through a Cs-equivariant map
(11.9) Qo — A
Let
X Hz(CS;ngHQ@) — H?(C; Agiin)

be the map of cohomology groups induced by (11.9). Using x, form the right-
most arrow in the diagram below:

(11.10) Ext?2, (MU, MU,) — H*(Cs; 74, Q0)

|

EXti{Qj+1 (FQ, Fg) > H2(08§ Aot )

3 I

X

For the bottom arrow, note that Exti{Zﬁl(Z/ZZ/Q) and H'(Cg; Agji1 /(7))
both are cyclic of order 2 and hence isomorphic by a unique isomorphism.
The bottom arrow in (11.10) is defined to be the map corresponding to the
connecting homomorphism

H'(Cs; A1 /(m)) — H?(Cs; Agin)
under this isomorphism. For j > 2, the action of v on u? is trivial, and so
H?(Cs, Agj+1) ~ Agj+1/(8), and one easily checks that this map is a monomor-
phism.
The main point is the commutativity of the diagram. Once that is estab-
lished, the map (11.4) can be taken to be the composition of the right vertical
arrow in (11.10) with any map (dashed arrow)

HQ(Cg; A2j+1)
/ :
Y
H(Cg; Agii /(7)) ——— Q/Z

factoring the inclusion through the connecting homomorphism.
Checking the commutativity of (11.10) involves some technical details

about the groups Ext?\/‘,’z[J;LU(M U., MU,). The following lemma can be read
off from [80, Th. 1.5] (see Section 11.6).

LEMMA 11.11. For j > 1, the map
Extyiy vy (MUs, MU, /(2)) = Ext3% (MU, MU.)

is surjective after localizing at 2.
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Lemma 11.11 enables us to replace the upper left corner of (11.10) with
the group Ext}féﬁ&(] (MU,,MU,/(2)) and to verify the commutativity of

27+1

(11.12) Extyr o (MUs, MU, /(2)) — H?*(Cs; 74190)

| |

Ext’? " (2/2,2/2) ——— H?(Cs; Agin).

3o

X

The key technical point in doing this is
PrRoPOSITION 11.13. The maps
Exty?) o (MU, MU,/ (2)) = Ext}® " (2/2,2,/2),
Ext}fo aro (MUs, MU. /(2)) — H'(Cs; Ay (7))
are surjective and have the same kernel.

Proposition 11.13 gives the commutativity of the left square in

1.2i+1

Extyry, mo (MU, MU, /(2)) > H'(Cs; 71511 Q0/(2)) — H?*(Cs;7111.Q0)

Tk

Ext?? " (2/2,2,/2) HY(Cg; Agini /(1)) s H*(Cg; Ags).

The commutativity of the right-hand square follows from the naturality of the
connecting homomorphism. The outer square is (11.12). This completes our
summary of the proof of the Proposition 11.3 and the Detection Theorem.

Remark 11.14. The argument of this section can be easily adapted to
prove a detection theorem for MU(C2") as long as n > 3. The result does not
hold in the cases n < 3. What fails is the assertion in Proposition 11.13 that
the two maps have the same kernel. This assertion makes essential use of the
fact that the reduction of the Lubin-Tate group over A/(7) has height greater
than 2.

The remainder of this section is devoted to filling in the details of this out-
line. We begin in Section 11.2 by recalling the Lubin-Tate formal A-module [51]
and some simple but useful results relating the power series [a](x) to the
m-adic valuation of a. We turn in Section 11.3 to the ideas connecting the
Adams-Novikov Es-term to group cohomology. In Section 11.3.4 we describe
the “conjugation action” and prove Proposition 11.28, which describes the
functor co-represented by 7¢*MU(E) on the category of G-equivariant graded
commutative rings. Setting all of this up brings us as far as the statement of
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Proposition 11.8, which is proved in Section 11.4. Proposition 11.13 is proved
in Section 11.5. The proof relies heavily on the computations in [66] and [80],
in the form of Proposition 11.34. An addendum to this section discusses how
these computations are made and how they lead to Lemmas 11.11 and Propo-
sition 11.34.

The reader may also wish to consult [63] for another presentation of these
ideas.

11.2. Formal A-modules and the Lubin-Tate group. Let A and R be com-
mutative rings, and let e : A — R be a ring homomorphism. A (1-dimensional)
formal A-module over R is a formal group law F over R, equipped with a ring
homomorphism

A — End(F),

a — la](z)
with the property that [a]'(0) = e(a). In the case of interest to us, e is a
monomorphism (in fact the identity map), and we will not distinguish in no-
tation between a and e(a).

Formal A-modules were introduced by Lubin and Tate in their work [51]

on local class field theory. For A the ring of integers in a local field with finite
residue field, they constructed a formal A-module over A itself, unique up to

isomorphism. Their construction starts with a choice of uniformizer 7 € A and
a power series

f(z) € Ala]

intended to be the endomorphism [7](z). Writing g for the order of the residue
field, the power series f is required to satisfy

f(z) =7z mod (z2),
f(x) =27 mod ().
For example, f(x) could be taken to be 7wz 4+ 9. Lubin and Tate showed that

such an f determines a formal A-module in which the formal sum is the unique
power series Fy(x,y) € A[x] satisfying

Fe(z,y) =z +y mod (z,y)?
Ff(f(.%’), f(y)) = f(Ff(.%’, y))>
and for a € A, the power series [a](x) is the unique power series satisfying
[a](z) = ax mod (z)?,
[a](f(2)) = f([a](x))-

In particular, one does indeed have [r](z) = f(z).
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Continuing with the Lubin-Tate formal A-module, for a € A, write
[a)(z) = age®+--- mod (),
with 0 # a4 € A/(m). One easily checks that the function v(a) = log,(d)
defines a valuation on A. The fact that [r](z) = f(z) implies that v is the

unique valuation for which v(mr) = 1.
We are interested in the case

A = Zo|d],
with 7 = ¢ — 1, and any fixed choice of f(z). Since v(¢( —1) =1, v(¢*—1) =2
and v((* — 1) = 4, and since any unit in A is congruent to 1 modulo =, this
means that modulo (7),

[C—1@) =2+,
2 = 1(@) =a + -
¢ = 1) =04
and so

@)= Fa2*+--

Fy
=z4+a24.--,
[Plz) =2 + a2t + -

(11.15) Fy
=ztat+---,

() =a o’

=z4+a2%4+... .
These congruences play an important role in the proof of Proposition 11.8.

Remark 11.16. The formulae (11.15) are independent of the choice of f(x).
In particular, they hold for a choice of f leading to a 2-typical formal group law.

11.3. Group actions and homogeneous formal group laws. We now turn
to the relationship between group actions on formal group laws and group
cohomology. Our eventual goal involves some explicit formulas, so we begin
with a relatively detailed summary.

11.3.1. Homogeneous formal group laws. Suppose that R, = @ R, is a
graded commutative ring. By Quillen’s work [70], [4] the set of graded ring
homomorphisms

MU, — R,
is in one-to-one correspondence with the set of formal group laws F over R
that are homogeneous of degree —2 in the sense that the formal sum

F(x,y)
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is homogeneous of degree —2, when x and y are given degree —2. In terms of
the power series

Flz,y)=z+y+ Z aijxiyj,

this means that a;; has degree 2(i + j — 1).

The graded ring MU, MU = w,MU AN MU co-represents the functor as-
sociating to a graded ring R, the set of pairs (£}, F3) of homogeneous formal
group laws and an isomorphism g : F} — F5 between them that is strict in the
sense that it is given by a power series of the form

lg)(x) = = + O(a?).

More generally, the ring m, MU (n-fold smash product) co-represents the
functor associating to a graded ring R, the set of chains

- = F,

of homogeneous formal group laws and strict isomorphisms over K. The stan-
dard convention is that the homogeneous formal group law F; is the one clas-
sified by the map

MU = . MU AN --- ANMU

induced from the inclusion of the i*® factor
SON-- AMUAN---NS = MUAN---AMU.

Taken together, the pair (MU,, MU, MU) forms the Hopf algebroid that
co-represents the functor associating to a graded commutative ring R, the
groupoid of homogeneous formal group laws over R, and strict isomorphisms.
For the definition of Hopf algebroid, the reader is referred to [73, Def. A1.1.1].

11.3.2. Group actions. Let Mpg be the category of pairs (R, F), with F
a formal group law over a commutative ring R, and in which a morphism

(f,) : (R1, F1) — (R, F»)

consists of a ring homomorphism f : Ry — R and an isomorphism of for-
mal group laws ¢ : F» — f*F;. Morphisms can also be described as ring
homomorphisms
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that are compatible with the formal sum in the sense that the diagram

Rifz] —"— R[]

| |7

Riw,y] —— Rol,4]

commutes. Let M;‘;G be the analogous category of homogeneous formal group
laws over graded rings and strict isomorphisms.
The categories M pg and M%G are related by the strictification functor

MFG — M}FL*G,
(R, F) — (R., F").

The ring R, = RJ[u] is obtained from R by adjoining a polynomial variable u
with |u| = 2, and F" is the unique formal power series satisfying

(11.17) uFMz,y) = F(uz,uz).
The strictification of a map (f,v) : (R, F) — (R, F') is the pair
(f" 0"« (Re, F) = (R, (F)"),
with f(u) = ¢/(0)u and ¢"(z) = ¢ (uz)/u the unique power series satisfying

wiph(z) = P(uz)
A (left) action of a group G on a pair (R, F') € Mpg is a map of monoids

G — Mpc((R,F), (R, F)),
and a strict (left) action of a group on (R, F) € M%, is a map

The strictification functor converts a group action into a strict one.
A left action of G on (R, F') corresponds to a left action of G on R[x].
We will use the notation

r—gr, reR,
z— [g](z)

for this action.

Ezxample 11.18. Suppose that E is a complex oriented, homotopy com-
mutative ring spectrum and that a finite group G acts on E by homotopy
multiplicative maps. Let F denote the corresponding homogeneous formal
group law over m,E. Then the action of G on E*(CP) gives a strict action
of Gon (m.E, F).
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Ezample 11.19. The group Cs acts on any (R, F') € Mpq as the identity
map on R and formal multiplication by (—1) on F.

11.3.3. Group cohomology and the Adams-Novikov spectral sequence. When
(R, F) is a homogeneous formal group law equipped with a strict action of a
group G, there is a map

Exty ap (MU, MUL) — H*(G; Ry).

Conceptually, it arises from the inclusion functor of the subcategory of M%G
whose only object is (R, F') and whose monoid of self maps is given by the ac-
tion of G. For the purposes of explicit computation, it is conveniently described
as derived from a map of Hopf algebroids

(11.20) (MU, MU.MU) — (R, C(G; Ry)),

in which C(G; R.) is the ring of (set-theoretic) functions from G to R,.
The Hopf algebroid (R., C(G; R.)) is the one expressing the group action
of G on R,. The “source” map

nr : R« — C(G; Ry)

sends r € R, to the constant function with value r, and the “target” map
nr : R« — C(G; Ry) is the transpose of the action mapping. It associates to
r € R, the function sending g € G to g - r. The coproduct

A: C(G;R,) — C(G;R,) 1%@ C(G; Ry)

is the composition of the map
C(G;R.) — C(G x G,Ry)
dual to multiplication in G and the isomorphism

C(G; R.) @ C(G; R.) = C(G % G, )

given by setting

(f1® f2)(91,92) = f1(91) - 91f2(g2).
The map (11.20) consists of the map MU, — R, classifying the homogeneous
formal group law F, and the map MU, MU — C(G, R,), defined by declaring
the composition

evy

MUMU — C(G, R.) — R
to be the map classifying the strict isomorphism
lg](z): F — g*F.
When the G-action on (R, F') arises, as in Example 11.18, from an action

of G on a complex oriented homotopy commutative ring spectrum F, the
map (11.20) is the Fs-term of a map of spectral sequences abutting to the
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homomorphism .59 = 1. E"G. We could not quite find this result in the
literature (though [16, Prop. 6.7] is close). To see it, let

C*(G; E) = Map®(EG,, E)

be the cosimplicial spectrum of G-maps from the bar construction model for
FEG,e into E. Thus

C'(G;E)=]]E
G’n

and Tot C*(G; E) is the homotopy fixed point spectrum E". The cosimplical
ring [n] — m.C(G", E) is the nerve of the Hopf-algebroid (m.E,C(G,mE))
and forms the cobar complex for calculating H*(G, 7. E). The homotopy fixed
point spectral sequence is the homotopy spectral sequence of this cosimplicial
spectrum.

Choose a complex orientation for E, and for every n > 0, let

(11.21) MUY — C™"(G;E) € ho$

be a representative of the unique homotopy class of homotopy multiplicative
maps whose restriction to the i smash factor of MU™*Y is the composition
of the complex orientation

MU — E = C°(G; E),

with the cosimplicial structure map C°(G; E) — C™(G; E) corresponding to
the inclusion of the i!-vertex of A[n]. The maps (11.21) fit into a homotopy
commutative map of cosimplicial resolutions

(11.22)  S° MU MUANMU —= MUAMUAMU ---

L | |

EMN —~ C9G; E) —= C'(G;E) C*(G;E)---.

If this were an actually commutative diagram, the desired spectral sequence
would be the one derived from the induced map of “Tot towers.” Even though
it is only homotopy commutative, the fact that the top row is an MU Adams
resolution and the spectra in the bottom row are complex oriented means that
it can still be refined to a map of towers.

This result does not quite seem to appear in the literature, though an
assertion along these lines is made in [64, pp. 289-290], and the case in which
MU is replaced by E,, is [16, Prop. 6.2]. To spell out the details, we begin
with some generalities about the Tot tower of a cosimplical spectrum X°. Let
NX"™ be the iterated mapping cone of the coface maps

d: Xt X" i=1,...,n
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The spectrum N X" is a retract of X™. (It is split by the inclusion of the iter-
ated homotopy fiber of the co-degeneracy maps.) By construction it depends,
as a retract of X™, functorially on X*. The spectra N X" fit into a sequence

0 0
NXO L Nxt Lo

which is a “complex” in the sense that the composition of any two maps is null
homotopic.

The homotopy spectral sequence of the cosimplicial spectrum X*® is de-
rived from the tower {Tot,, X*}. For our purposes, it is easier to work with
the fibers of the map from Tot X*. Write FX? = Tot X°, and define FX"
to be the homotopy fiber of the map Tot X®* — Tot,,_1 X°®. Then there is a
functorial fibration sequence

(11.23) FX" - FX" ! 5 n-(=) N x (-1,

Of course the homotopy spectral sequence can also be derived from the tower
{FX"}, for example by using it to reconstruct the Tot-tower.

To simplify the notation, write X® = MU**! and Y* = C*(G; E) for the
cosimplicial spectra occurring in the top and bottom rows of (11.22). The
complex NX* is the standard MU-Adams resolution for SY, and in this case
the fibration sequence (11.23) is equivalent to

FX" 5 FX" ! 5 MUAFX™ !,

The consequence we need of this is the characterizing property of an Adams
tower: if R is any M U-module, then the connecting homomorphism

(11.24) [FX™ R] — [ " 'NX" R]

is a monomorphism.
Our aim is to construct a map of towers

(11.25) {FX"} - {FY"}.
Suppose by induction we have produced a homotopy commutative diagram
FXnl— sy yxn-t
| |
Fyn—! 5 »-(=1) yyn-1
and choose any map F X" — FY"™ making
LPNXl - X s X

| L

Y "NY" ! — Fy" —— Fyn-!
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commute up to homotopy. We claim that the diagram

FX" —=Y""NX"

L

FY" —= ¥""NY™"
also commutes up to homotopy. The claim completes the induction step and
gives (11.25).
To verify the claim, consider

(11.26) LrNXT! FX" STPNX™
SNy Fy™ STINY™

The outermost square commutes since it is a retract of a suspension of one
of the squares in (11.22). The spectrum X~ "D NY"+1 admits the structure
of an MU-module since it is a retract of a suspension of C"T1(G; E) that is
complex orientable. Taking it for R in the monomorphism (11.24) shows that
the commutativity of the outer square in (11.26) implies the commutativity of
the right-hand square. This verifies the claim.

11.3.4. The conjugation action. Applying the strictification functor to Ex-
ample 11.19, one is led to the “conjugation action” of C2 on homogeneous
formal group laws over graded rings.

Let F' be a homogeneous formal group law over a graded commutative ring
R,, and let ¢ : R, — R, be any ring homomorphism with the property that
¢ : Roy, — Ray, is the map given by multiplication by (—1)™. The homogeneous
formal group law F¢ := ¢*F is given by

FC(.’L‘,y) = —F(—ZL‘,—y).

The power series

o(z) = —[-1]r(x)
has the property that ¢ o ¢(z) = z and provides both a strict isomorphism
F — F,. and its inverse F° — F. These combine to give an action of Cy on
(R, F), which we call the conjugation action associated to ¢ : R, — R,.

The map c is completely specified on the even degree elements in R, and,
in general, there are as many conjugation actions as there are ways of extending
c to all of R,. In the examples of interest to us, R, will be evenly graded, and
so there is exactly one conjugation action.

Ezxample 11.27. If E is a real-oriented spectrum, then the underlying Co
action on (iyE)*[[CP*] is the conjugation action. The case E = MUy is
universal in the sense that the map MU, — R, classifying a homogeneous
formal group law is equivariant for any choice of conjugation action.
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We now generalize Example 11.27. Let G = Can, and give i MU (&) the
real orientation coming from the unit

MUg — i;MU(@)

of the norm-restriction adjunction on equivariant commutative algebras (Ex-
ample 5.6). Examples 11.18 and 11.27 then equip (7*MU(E) F) with a
G-action extending the conjugation action of Cs.

PROPOSITION 11.28. The pair (r*MUE) | F) equipped with its G-action
is universal in the sense that map associating to a G-equivariant

(11.29) fomtMU(©@ 5 R,

the pair (Rx, f*F) with its induced G-action, is a bijection between the set
of equivariant maps (11.29) and the set of (R, F) equipped with a G-action
extending the one on R, and the conjugation action of Cy C G.

Proof. Suppose that (R, F') is a homogeneous formal group law over a
graded ring, equipped with a G-action extending the conjugation action of Cs.
Choose a generator v € G. This data is equivalent to an isomorphism

T:F1—>F0

having the property that the composite of the chain of isomorphisms
Fpyg 228 Fp = - 1 Ry,
ri= ()
is the conjugation isomorphism c¢. The claim then follows from the decom-
position (5.2) and the description of m, MU A --- A MU in terms of chains of
composable strict isomorphisms. ]

11.4. The fundamental representation. As described in Section 11.1 these
ideas can be used to construct a Cg-equivariant ring homomorphism from 7¥€q
to much smaller ring. Let A = Zy[(] be as in Section 11, and let Fy be the
Lubin-Tate formal A-module over A associated to a power series series f(x)
leading to a 2-typical formal group law. Using ¢ to identify the group of 8-
roots of unity with Cys, we get a Cg action on (A, Fy). From this apply the
strictification functor to get a strict action of Cg on (A, F }L) With an eye to-
ward Proposition 11.8, we invert the class u and re-define A, to be Afu,u™1].
The underlying Cs-action is the conjugation action, so Proposition 11.28 pro-
vides a Cg-equivariant map

(11.30) e MU(©s) 5 A,

classifying (A, F’ }L) with its Cg-action.
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ProPOSITION 11.31. The image of D under
D e ngpMU((CS)) — W%52MU((CS)) — A152
is a unit, hence (11.30) factors through a Cs-equivariant map

ﬂ':fﬂ@ — A,.

Proof. We must show that the classes r?s, rg 4 and 7“1%2 all map to units in

A,. It suffices to show that they do so in A, /(7). By definition (Section 5.4.2)
the image of 7% in Ay /() is the coefficient of 22 in the isomorphism of 'y*F]’}
with the 2-typification of F Ji‘ Since F' J}} is already 2-typical, this is just the
coefficient of 22 in the power series [(] Fl (x) in the homogeneous formal group
law. By (11.15) this coefficient is congruent to u modulo 7, hence a unit.
Equation (11.15) similarly shows that rg * maps to u3, and 7,1052 to u!® modulo
(). This completes the proof. O

11.5. Technical results. In this section we describe explicitly the maps

Exty2, o (MU, MU./(2)) — Ext}® " (2/2,7,/2),

27+1

(11.32) X
Ext . v (MU, MU,/ (2)) = H'(Cs; Ags+1 /()

occurring in the statement of Proposition 11.13. The results are Proposi-
tions 11.36 and 11.38 below. Combined with Lemma 11.11 and Proposi-
tion 11.34 they directly imply Proposition 11.13.

11.5.1. Preliminaries. We remind the reader that everything has been
localized at the prime p = 2. The 2-typification Fﬁzv of the universal formal

group law Fypv is classified by a map BP, — MU,. This map extends to an
equivalence of Hopf algebroids

(BP,, BP,BP) = (MU., MU,MU),
giving an isomorphism
(11.33) Extys pp(BPy, BP.) = Extyy (MU, MU,).

Our proofs depend heavily on the computations in [66] and [80], which are
stated for BP. Because of the above isomorphism they apply equally well to
MU.

In order to describe explicit computations, we fix the identification

BP*BP = Z(Q)[Ul,vg, . ,tl,tg, .. ]
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in which the v; are the Hazewinkel generators, and the elements ¢t; € BP.BP
are the coefficients of the universal isomorphism

P F®) S F@) e pl®)

univ univ univ?

F®

T +— Z univ tna?

We will not distinguish in notation between the v; and t; in BP,BP and their
images in MU, MU.

An important role in the proof of 11.3 is played by the element ¢;. Since
any coordinate x is 2-typical modulo 23, the class ¢; is also given by the
coefficient of the universal isomorphism of np Funiy with 07 Funiy

x»—>x+t1m2+---.

With the standard conventions this is the inverse of the universal strict iso-
morphism over m,MU A MU, which goes from 07 Funiv to N Funiv-

11.5.2. The Adams-Novikov 2-line. Let
5y Exth? o (MU, MUL/(2)) = Ext22 (MU, MU,)

and
51 Exth2 o (MU, MU, /(2,05%)) = ExtL2) ) (MU, MU, /(2))

be the connecting homomorphisms associated to the short exact sequences of
MU,MU co-modules

0 — MU, 2 MU, — MU,/(2) = 0
0— MU,/2 — v ' MU, — MU, /(2,v5°) — 0.

Our description of the maps (11.32) relies on the following computation, whose
proof is discussed in Section 11.6. We employ the standard “cobar construc-
tion” notation for elements (see, for example, [73, Def. A1.2.11]).

PROPOSITION 11.34 ([66, 80]). For j > 1, the Z/2-vector space
1,24+
Extyry, wi (MU, MU./(2))
has a basis consisting of the elements
v ), oF 2]
and the image under 81 of certain elements of the form
v ot € BxtSE L (MU, MU, /(2,07°)),
with s odd.
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We will also need
LEMMA 11.35. For k > 2, the connecting homomorphisms d1 and o sat-
isfy the following congruences modulo the ideal (2,v?):

sk k s—1)2k . ok+1
o1 (vs2" o) = wf T

= Q}2 y
(521)1 [t1] =0,
Sov? [ =0,
8 k
(S R Sl - -

Proof. This is a straightforward (and long-known) computation using the
structure formulae

nr(vi) = v1 + 2ty
nr(v2) = vy + v1ts +v3t; mod 2.

The assertion about d; is easy to check. The structure formulae imply that
nr(v?) = v? modulo 4, so one may work modulo (4,v?) when computing .
The terms v%k[tl] and v%k [t?] are already in this ideal, giving the first two
assertions about d9. The last makes use of the congruences

Sl =1 16'] mod 2,
nrvy = vyt mod (4,v%).
Since s is odd and k > 1, (s — 1)2¥ is divisible by 4. This means that
—1)2F [ ok —1)2k k —1)2k . ok, ok
S0 AT ) =0T () =TT A E] mod (2,4).
This completes the proof. ]

11.5.3. The proof of Proposition 11.13. Given Lemma 11.11 and Propo-
sition 11.34, Proposition 11.13 is an immediate consequence of the two results
below.

ProprosSITION 11.36. For j > 1, the map
Ext)yf v (MU MU,) — Ext%® " (2/2,2/2)
is given by
o2 *1[t1
2J 242
d1(v3 3 /Ul

J =

t1] =

)0 (s>1),
A 1)l—>h2.
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Proof. This follows directly from Lemma 11.35 and the fact that the map
from MU, MU to the dual Steenrod algebra given by
v; — 0,
t; — X(fi)Z. O

Remark 11.37. The map from the Adams-Novikov Es-term to the classical
Adams Es-term has been completely determined for s < 2 and all t. For a
comprehensive discussion, the reader is referred to [73, Ch. 5].

We next turn to the second map in Proposition 11.13. When j > 2 the
action of Cg on Ayj+1 is trivial, and the group H'(Cs; Agj+1/(7)) is cyclic of
order two, generated by the cohomology class of the cocycle whose value on ~y
is u?. Let us denote this class v.

ProrosiTIiON 11.38. For j > 2, the map
Exty?2) o (MU, MU, /(2)) = H"(Cy; Agie1 /(7))
is given by
27 l[tl]
2J 2[ ]
( /Ul
oy ot

) = (s >1),
) =
Proof. Let v be the valuation on A normalized so that v(mw) = 1. Since
v(2) =4,
[Q]th(a:) =2 +... modm,

and v and vy both map to zero in A,/(w). This gives the first line and makes
the second a consequence of Lemma 11.35. Lemma 11.35 also gives the identity

0103 Jo¥) = 17,

so to determine the image of ; (v%j / v%j) we need to work out the image of ;
under the map of Hopf-algebroids

(11.39) (MU,, MU,MU) — (A,/(x), C(Cs, A, /(7))

As explained at the end of 11.5.1, the element ¢; occurs as the coefficient of

22 the isomorphism nRF( ) F( ) inverse to the universal strict isomor-

univ univ’
phism. Since we have chosen a 2-typical coordinate on FJ’}, the element ¢; is
therefore sent, under the map of Hopf-algebroids (11.39), to the 1-cocycle on
Cg whose value on 7 is the coefficient of z2 in the inverse of the power series
[¢](z). By (11.15) and the formula for strictification (11.17) this is —u* = u*

modulo (7). O
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11.6. Addendum. Lemma 11.11 and Proposition 11.34 do not quite appear
literature in a readily accessible form, and the purpose of this addendum is to
outline their proofs, explaining how the key points can be read off from the
results of [66] and [80]. To conform with the notation of these references, we
will use BP rather that MU in this section.

The paper [66] introduced the chromatic approach to studying the groups

Extg;*BP(BP*, BP,).
The computation begins with the fact that for s > 0, one has
Ext}p gp(BP:, BP,) ® Q =0.

This means that the connecting homomorphism

1.2i+1

Extlyy p(BP., BP./2%) — Ext%% p(BP., BP.)

is an isomorphism. The assertion of Proposition 11.34 is that the map

1,29t1

EXt}é?;;P(BP*v BP,/2) — Extgp pp(BPs, BP./2%)

induced by the inclusion

BP./2 % BP, /2>

is surjective and that the left-hand group is spanned by the elements listed.
Continuing with the chromatic approach, one is led to the following diagram
(in which, to manage the size, we have abbreviated Extg}* pp(BP, M) to
Ext®{(M)):

(11.40)

j 1 j i
Ext””" (BP./(2,08%)) = Ext"”""(BP./(2)) — Ext"*" (v;'BP./(2))

| | |

Ext””" (BP./(2%,0%)) = Ext'”"(BP./(2%)) = Ext"”" (v;'BP./(2%)).

The rightmost column is analyzed using the Miller-Ravenel change of rings
theorem (see [65] or [73, Ch. 6, §1]), which identifies it with the map

HY(Z53 Ty 011/ (2) = HY(Z3 ) [0771]/(2%))

in which A € ZJ acts on v with eigenvalue A. This is easily calculated, and one
finds that the map is indeed surjective and that Extgi;P(BP*, v 'BP,/(2))
has dimension 2, with basis the image of v¥ ' [t;] and v’ “[t2]. This reduces
Proposition 11.34 to the assertion that the left vertical arrow is surjective
(hence an isomorphism) and that the upper left group has a basis consisting of
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the elements of the form v§2k / v%k. For this, one first appeals to the invariant
prime ideal theorem ([68], [46], or see [73, Th. 4.3.2]) for the fact that

Ext}p, pp(BPs, BP./(2,01)) = Z/2[va].

It follows that any invariant element in BP,BP/(2°°,v{°) has the form

k
052 +r

with 7 € (2,v1) C BP,. We now come to the key point. It turns out that a
necessary (but not sufficient) condition that such an element be invariant is
that the indices satisfy the inequality

(11.42) ¢ < okt g ghminl

This can be extracted from the stronger conditions of [80, Th. 3.3], in which the
symbol x,, is an explicitly defined element, congruent to v2" modulo (2,v1) and
y; is an explicitly defined element congruent to v%i modulo 2. From (11.42) it
follows that for an element of the form (11.41) to be invariant and have degree
2/+1 the numbers 4, j, k, and ¢ must satisfy

652F — 2(2F1 4 2k < 927H < 652k,

2k+1

Expanding, and dividing both sides by , gives

3s— 27— 97"t < 9i7k < 3.
Since s > 1 and ¢ > 0, one has
35 —271— 271 > 35 _3/2> 1,

and so k < j. This implies that 27" is even and so must equal 3s — 1. This in
turn means that 27" + 27" > 1, and so ¢ must be 0.

It thus follows from the inequality (11.42) that the invariant elements of
degree 2911 in BP,/(2°°,v{°) have the form

U§2k +r
U%kQ
Thus the left vertical map in (11.40) is surjective. Since

k
052

k
v2°2

is already invariant, a simple induction shows that the elements stated form a
basis.
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Appendix A. The category of equivariant orthogonal spectra

In this appendix we recall the definition and some basic properties of
the theory of equivariant orthogonal spectra. For further details and refer-
ences, the reader is referred to Mandell-May [55] and to Mandell-May-Schwede-
Shipley [56].

One of the reasons we have chosen to use equivariant orthogonal spectra
is that it has many convenient category theoretic properties. These are inde-
pendent of the homotopy theory of equivariant orthogonal spectra, and so we
make two passes through the theory, one focused on the category theory, and
the other on the homotopy theory.

Our main new innovation is the theory of the norm (Section A.4). Most
of the category theoretic aspects apply to any symmetric monoidal category,
and things work out much cleaner at that level of generality.

A.1. Category theory preliminaries.

A.1.1. Symmetric monoidal categories.

Definition A.1. A symmetric monoidal category is a category V equipped
with a functor

R: VXV -V,
a unit object 1 € V, a natural associativity isomorphism

aapc: (A®B)@C~A® (B (),
a natural commutativity isomorphism
$sAB: AR B~B® A,

and a unit isomorphism

1A~ A
This data is required to satisfy the associative and commutative coherence
axioms, as well as the strict symmetry axiom.

The two coherence axioms express that all of the ways one might get
from one iterated tensor product to another using the associativity and com-
mutativity transformations coincide. The strict symmetry axiom is that the
square of the commutativity transformation is the identity map. See [52], or
Borceux [12, §6.1].

Even though it requires six pieces of data to specify a symmetric monoidal
category, we will usually indicate one with a triple V = (Vp, ®,1).

A symmetric monoidal category is closed if for each A, the functor A®(—)
has a right adjoint ( —)#, which one can think of as an “internal hom.” Note
that

V(1, X4 = V(A X)
so that one can recover the usual hom from the internal hom.
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A.1.2. Sifted colimits, commutative and associative algebras. In a closed
symmetric monoidal category, the monoidal product commutes with colimits
in each variable. It follows easily that the iterated monoidal product

X — X®n

commutes with all colimits over indexing categories I for which the diagonal
I — I™ is final in the sense of [52, §IX.3]. If I — I x I is final, then for all
n > 2, I — I is also final.

Definition A.2. A category I is sifted the diagonal embedding I — I x [
is final.

Equivalently (see [27, 15.2 (¢)] or [2, Th. 2.15]), a small category I is
sifted if and only if the formation of colimits over I in sets commutes with
finite products.

Definition A.3. A sifted colimit is a colimit over a sifted category.

Examples of sifted colimits include reflexive coequalizers and directed col-
imits. In fact the class of sifted colimits is essentially the smallest class of
colimits containing reflexive coequalizers and directed colimits; see, for exam-
ple, [1], [27].

Let V = (W, ®,1) be a closed symmetric monoidal category.

Definition A.4. An associative algebra in V is an object A equipped with
a multiplication map A ® A — A that is unital and associative. A commu-
tative algebra is an associative algebra for which the multiplication map is
commutative.

The categories of associative and commutative algebras (and algebra maps)
in V are denoted assV and comm V), respectively.

The following straightforward result holds more generally for algebras over
any operad. The existence of colimits in the algebra categories is proved by
expressing any algebra as a reflexive coequalizer of a diagram of free algebras.
There is an even more general result for algebras over a triple [12, Prop. 4.3.1].

PROPOSITION A.5. Suppose that V is a closed symmetric monoidal cate-
gory. The forgetful functors

assV — V,
commY — VY
create limits. If V is cocomplete, these functors have left adjoints
X —T(X) =[] x®",
n>0
X = Sym(X) = [] X®*"/%,,
n>0



KERVAIRE INVARIANT ONE 141

the categories assV and comm V are cocomplete, and the “free” functors above
commute with all sifted colimits.

A left module over an associative algebra A is an object M equipped with
a unital and associative left multiplication

A M — M.

Similarly, a right module is an object N equipped with a unital, associative
right multiplication N ® A — N. Given a left A-module M and a right A-
module N, one defines N % M by the (reflexive) coequalizer

N®A®M:§N®M—>N§)M.

When A is commutative, a left A-module can be regarded as a right A-module
by the action

MeAT Ag M — M.
Using this, the formation M (§A§) N makes the category of left A-modules into a
symmetric monoidal category.
A.1.3. Enriched categories. In this section we briefly describe the basic
notions of enriched categories. The reader is referred to [42] or [12, Ch. 6] for

further details.
Suppose that V = (Vy, ®,1) is a symmetric monoidal category.

Definition A.6. A V-category C consists of a collection obC called the
objects of C, for each pair X, Y € obC a morphism object C(X,Y) € ob)),
for each X an identity morphism 1 — C(X, X), and for each triple X,Y, Z of
objects of C a composition law

CY,Z)®C(X,Y)—C(X,2).
This data is required to satisfy the evident unit and associativity properties.

As is customary, we write X € C rather than X € ob(C. Most of the
notions of ordinary category theory carry through in the context of enriched
categories, once formulated without reference to “elements” of mapping ob-
jects. For example, a functor F' : C — D of V-categories consists of a function

F:0bC —obD
and for each pair of objects X,Y € C a V-morphism
F:C(X,Y)—>D(FX,FY)

compatible with the unit and composition. A natural transformation between
two functors F' and G is a function assigning to each object X € C a map
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Tx : 1 — D(FX,GX) that makes the diagram

(A7) C(X,Y)— 2" p(FY,GY)® D(FX, FY)

lam i

D(GX,GY)® D(FX,GX) D(FX,GY)

commute for each Y.
There is an ordinary category Cp underlying the enriched category C. The
objects of Cy are the objects of C, and one defines

Co(X,Y) = Vo(1,C(X,Y)).

If V itself underlies a W-enriched category, then any V-category C has an
underlying W-category, whose underlying ordinary category is Cy.

When V is a closed symmetric monoidal category, the internal hom defines
an enrichment of V over itself, with underlying category V.

When V is closed, a natural transformation F' — G can be described as a
map

1— [[ D(FX,GX)

XeC
that equalizes the two arrows
(A.8) [[ p(Fx.Gx)= [] D(FX,GY)cEY)
Xec X,Yec

describing the two ways of going around (A.7).

We will write €aty, for the 2-category of V-categories and denote the cat-
egory of enriched functors C — D as Caty(C,D)y. When V is closed and
contains products indexed by the collection of pairs of objects of C, the cate-
gory €aty(C, D)o underlies an enriched category Caty,(C, D) in which the object
of natural transformations from F' to G is given by the equalizer of (A.8).

A.2. Equivariant orthogonal spectra.

A.2.1. Equivariant spaces. Let T be the category of pointed, compactly
generated weak Hausdorff spaces (in the sense of [61]). The category T is
symmetric monoidal under the smash product, with unit SY. A topological
category is a category enriched over (T, A, S°).

Remark A.9. Working with compactly generated weak Hausdorff spaces
has many benefits, but it does create some technical issue. Colimits are com-
puted by forming the colimit in topological spaces, replacing the topology by
the compactly generated topology, and then forming the universal quotient
that is weak Hausdorff. This last step can alter the underlying point set, how-
ever it does not in the case of pushouts along closed inclusion. More precisely,
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given a pushout diagram
A——sX

L

B——Y
of topological spaces in which A — X is a closed inclusion, if A, X, and B are
compactly generated and weak Hausdorff, then so is Y. This follows from [61,
Prop. 2.5] and the remark about adjunction spaces immediately preceding its
statement. Among other things this means that the smash product of two
compactly generated weak Hausdorff spaces can be computed as the smash
product of the underlying compactly generated spaces.

Now suppose that G is a group. Let (TG, A, S?) be the topological sym-
metric monoidal category of pointed spaces with a left G-action and spaces
of equivariant maps. With this structure 7¢ is a closed symmetric monoidal
category, with internal mapping spaces T¢(X,Y) = Y X given by the space of
nonequivariant maps, with the conjugation action of G.

A word about notation. The expression “category of G-spaces” can rea-
sonably refer to three objects, depending on what is meant by a map. It can
be an ordinary category, a category enriched over topological spaces, or a cat-
egory in which the hom objects are the G-spaces of nonequivariant maps. As
indicated above we will use 7T to denote the category enriched over G-spaces,
with 7(X,Y) denoting the G-space of nonequivariant maps, and 7¢ for the
topological category of G-spaces, and spaces of equivariant maps.

We will be making use of categories enriched over 7¢. As in [55], we will
refer to them as topological G-categories (or just G-categories for short). Let
Catg denote the collection of topological G-categories, and write Catg(C, D) for
the enriched category of functors and left G-spaces of natural transformations.
The symbol Catg(C, D) will denote the topological category of functors and
spaces of equivariant natural transformations.

A.2.2. Change of group. Suppose that H C G is a subgroup. The restric-
tion functor

T¢ —»T"
has continuous left and a right adjoints given by
Y Y,
= G+ I/-> )
Y TH(G,,Y).

These two constructions are basic examples of indexed monoidal products (see
Section A.3). Because T is pointed there is a canonical equivariant map

G+ é\l Y — TH(G+, Y)
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A.2.3. The basic indexing categories. For a real orthogonal representation
V of G, let O(V) be the orthogonal group of nonequivariant linear isometric
maps V' — V. The group G acts on O(V) by conjugation, and the group
of fixed points is the orthogonal group of equivariant maps. Given orthogonal
representations V and W, we define O(V, W) to be the Stiefel manifold of linear
isometric embeddings of V into W, with the conjugation action of G. The G
fixed points in O(V, W) are the equivariant orthogonal embeddings. The group
O (W) acts transitively on O(V, W) on the left. A choice of embedding V' — W
identifies O(V, W) with the homogeneous space O(W)/O(W — V).

Definition A.10. The category #q is the topological G-category whose
objects are finite dimensional real orthogonal representations of GG, and with
morphism G-space Zq(V, W) the Thom complex

Fa(V,W) = Thom(O(V,W);W — V)
of the “complementary bundle” W —V over O(V, W).

We will denote the topological category underlying #g with the symbol
FY Thus 9V, W)= Za(V,W)C.
The G-space Zq(V,W) can be thought of as the topologically indexed

wedge
\/ sV
VoW
When dim W < dimV, it reduces to the one point space *. When dim W >
dim V', one can get a convenient description by choosing an orthogonal G-
representation U with dimU + dim V' = dim W (for example, the trivial rep-
resentation). With this choice one has

VIV)~OWVaeUW). A SY.
/G(a ) ( @ ; )+O(U)

The fixed point space Zg(V, W)€ is given by
(A.11) JaV.W = (v we nowtwhy,

in which V& denotes space of invariant vectors in V, and V' its orthogonal
complement. The space O(V+, W) in turn decomposes into the product

[ToWVa, Wa)

in which « is running through the set of nontrivial irreducible representations
of G, and V, C V and W, C W indicate the a-isotypical parts.

When G is the trivial group we will denote the category _#g simply by
#. For any G, there is an inclusion ¢ C _Z¢ identifying ¢ with the full
subcategory of objects with trivial G-action. There is also a forgetful functor
FJa — 7 that refines in the evident manner to a functor from _Z to the
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G-category of objects in ¢ equipped with a G-action. One can easily check
that this is an equivalence. For later reference, we single this statement out.

PRrROPOSITION A.12. The forgetful functor described above gives an equiv-
alence of ¢ with the topological G-category of objects in # equipped with a
G-action. Passage to fized points gives an equivalence of /G with the topo-
logical category of objects in # equipped with a G-action.

Proposition A.12 plays an important role in establishing one of the basic
properties of the norm (Proposition A.59).
A.2.4. Orthogonal spectra.

Definition A.13. An orthogonal G-spectrum is a functor
Fa—Ta

of topological G-categories.

Informally, an orthogonal spectrum X consists of a collection of spaces
{Xv}, and for each V'— W, an equivariant map

SW=VA Xy — Xw.

These maps are required to be compatible with composition in _#q, the action
of G, and to vary continuously in V' — W. More formally, one has equivariant
maps

Thom(O(V,W); SW V) A Xy — Xy
compatible with composition.

Definition A.14. The topological G-category of orthogonal G-spectra is
the category

8q = Catq( La, Ta).
The (topological) category of G-spectra is

8¢ = ¢atq( fa, Ta)C.

We will use the notation

§="Cate( 7, T)

to denote the category 8¢ for the case of the trivial group.

The (G-)category of orthogonal G-spectra is complete and cocomplete (in
the sense of enriched categories). Both limits and colimits in 8¢ are computed
objectwise:

(lig X )y = lim X,
(lim X)y = lim X¢.
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Certain orthogonal G-spectra play a fundamental role. For V € Zg, let
SV go—Ta
be the functor co-represented by V. By the Yoneda lemma,
Sc(S7V,X) = Xy.
For a pointed G-space A, let S~V A A be the orthogonal G-spectrum with
-V _ (o-V
(S7VAA), =(5T),, AA
Again, by Yoneda,
8a(S™V NA,X) = Ta(A, Xy).
It also follows from the Yoneda lemma that every X is functorially expressed
as a reflexive coequalizer
(A.15) \V SWA 26(V,W)AXy =\ STV A Xy = X,
V,W 1%

We call this the tautological presentation of X and for ease of typesetting,
sometimes indicate it as

(A.16) X =lim S~ A Xy.
\%

A.2.5. Smash product. The symmetric monoidal structures on #Zs and
T¢ combine to give 8 a symmetric monoidal structure (the Day convolution),
denoted A. The smash product of two orthogonal G-spectra X and Y is defined
to be the left Kan extension of

(VW) = Xy AYw : fax fa—Ta

Jax Ja— Fa
sending (V,W) to V @& W. The smash product is thus characterized by the
fact that it commutes with enriched colimits in both variables and satisfies

S_V A S_W _ S_(V$W).

along the map

In terms of the tautological presentations
X = lim STV A Xy,
v
Y = lig S A Y
w
one has
XAY =lim S~V A Xy AY
v
= @S*V A Xy A@S*W A Yy,

\%4 w
= llg S=VEW A Xy AYw.
v

The above expression is, of course, an abbreviation for the reflexive coequalizer
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diagram

\V  Ze(Vo, Vi) A _Fa(Wo, Wi) A S™VEWLA Xy A Yy,

Vo,V1,
Wo,W1

= \/ S=VeW A Xy AYw.
VW

PROPOSITION A.17. The category 8¢ is a closed symmetric monoidal cat-
egory with respect to A.

Smashing the tautological presentation of a general spectrum X with S~
gives a presentation of S~V A X as a (reflexive) coequalizer

\V AaWo, Wi) ASTVEWA Xy, =\ STV A Xy - STV AKX
Wo, W1 w

This is not the tautological presentation of S~ A X, but from it, one can read
off the formula of the following lemma

LEMMA A.18. If dimW < dimV, then (S™V A X)w = . If dimW >
dim V', then there is a natural isomorphism of G-spaces

SVAX)\w~O0OVaUW), A X
( w (Veu, >+O(U) Us

where U is any orthogonal G-representation with
dimU 4+ dimV = dim W.

A.2.6. Variations on the indexing category. There is a lot of flexibility in
defining 8. In this section we describe a variation that is especially convenient
for certain category theoretical properties and will be used in our construction
of the norm. We learned of the result below from Lars Hesselholt and Mark
Hovey. It is due to Mandell-May ([55, Th. V.1.5]).

PROPOSITION A.19. Leti: ¢ — _Zq be the inclusion of the full subcat-
egory of trivial G-representations. The functors

i Catg( Lo, Ta) — Cata( 2 Ta)
and
i : Cata( 7 Ta) — Cata( Lo, Ta)
given by restriction and left Kan extension along i are inverse equivalences of

enriched symmetric monoidal categories.

In other words, the symmetric monoidal (topological) category 8¢ can
simply be regarded as the symmetric monoidal (topological) category of objects
in 8§ equipped with a G-action.
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The proof of Proposition A.19 requires a simple technical lemma ([55,
Lemma V.1.1)).

LEMMA A.20. Suppose that V' and W are orthogonal G-representations
with dim V' = dim W. Then for any U,

OV, U)xO(V)xOW,V)=0(V,U) x OW,V) = O(W,U)
is a (reflexive) coequalizer in TC.

Proof. Since the forgetful functor 7¢ — T preserves colimits and reflects
isomorphisms, it suffices to prove the result in 7, where it is obvious, since the
coequalizer diagram can be split by choosing an orthogonal (nonequivariant)
isomorphism of V' with W. 0

Proof of Proposition A.19. Since i : 7 — fq is fully faithful, the left
Kan extension 4 is fully faithful (see, for example, [52, Cor. X.3]). To show
that it is essentially surjective, let W € _#g be any object, and let V € ¢ be
a vector space of the same dimension as W. Define X by the coequalizer

OW, V) xO(V): ASTV =2 O0W, V), ASTY — X.
Since Zq(W,V)=O(W,V), i.X is given by the coequalizer of
(JeW, V) x Zg(V,V)4 AS™V = Ja(W, V)4 AS™V =i X.
There is thus a natural map
(A.21) X -5V

Evaluating at U € _#¢ and using Lemma A.20 shows that (A.21) is an iso-
morphism. Thus S~W is in the image of .. It then follows easily that i, is
essentially surjective.

Finally, the fact that ¢, is symmetric monoidal is immediate from the fact
that left Kan extensions commute. It follows that ¢* is as well, since it is the
inverse equivalence. O

A.2.7. Equivariant commutative and associative algebras. Using the no-
tions described in Section A.1.2 one can transport many algebraic structures
to 8¢ using the symmetric monoidal smash product.

Definition A.22. A G-equivariant commutative (associative) algebra is a
commutative (associative) algebra with unit in 8.

The conventions of Section A.1.2 would dictate that we refer to the topo-
logical categories of G-equivariant commutative and associative algebras as
comm 8¢ and ass8®. To ease some of the typesetting it will be convenient
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to employ the slightly abbreviated notation

Comm® = comm SG,
Alg® = ass 8¢

and to write Commg and Alg. for the corresponding G-equivariant topolog-
ical categories of not necessarily equivariant algebra maps.

Since 8¢ is a closed symmetric monoidal category under A, Proposi-
tion A.5 implies that both Comm¢® and AlgG are complete and cocomplete,
and that the forgetful functors

Comm% — SG,
Alg® — 8¢

create enriched limits, sifted colimits, and have left adjoints

Sym : 8¢ — Comm?,

T:8% — Alg®.

Similarly, there are categories of left and right modules over an associative
algebra A. We will use the symbol M 4 for the category of left A-modules. As
described in Section A.1.1, when A is commutative, the category M 4 inherits
a symmetric monoidal product M {4} N defined by the reflexive coequalizer
diagram

M/\A/\N:;MAN—>MQN.

A.3. Indexed monoidal products.

A.3.1. Covering categories and fiberwise constructions. We begin with an
example. Suppose that (C,®,1) is a symmetric monoidal category and that
is a finite set. Write C! for the I-fold product of copies of C. For notational
purposes and subsequent generalization, it will be useful to think of an object
of C! as a functor X : I — C, with I regarded as a category with no nonidentity
morphisms. The iterated monoidal product

®'X =) Xi
el
defines a functor
ol cl = .

The functor ®’ is natural in isomorphisms in I. (This is just the symmetry of
the symmetric monoidal structure.) In this section we make use of the notion
of a covering category to exploit this naturality in a systematic way.

Let Getsiso be the groupoid of sets and isomorphisms. Suppose that J is a
category and that P : J — Getsig, is a functor with the property that each Pj
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is finite. Then P defines a J-diagram of finite sets, and the iterated monoidal
product defines for each j a functor

(A.23) ot ¢l - .

These vary functorially in j. This functoriality is expressed most cleanly using
the Grothendieck construction [30, §VL.8]. (See also [40, §B.1], or [53, p. 44],
where the special case in which €at is replaced with Gets is attributed to
Yoneda.)

Suppose that J is a category and that P : J — C€at is a functor. The
Grothendieck construction associates to P the category

I:/P

of pairs (j,s) with j € J and s € P(j). The set of maps from (j,s) to (j/,5)
is the set of pairs (f,h) with f:j — 7/ amap in J, and h: Pf(s) — s’ a map
in Pj’. By regarding a finite set as a category with no nonidentity morphisms,
the Grothendieck construction also applies to functors P : J — Getsigo.
A functor p : I — J arises from the Grothendieck construction of the
functor P : J — Gets;y, if and only if it is satisfies the following two conditions:
(i) for every morphism f :i — j in J, and every a € I with pa = i, there is a
unique morphism g with domain a, and with pg = f;
(ii) for every morphism f :4 — j in J, and every b € I with pb = j, there is a
unique morphism g with range b, and with pg = f.
If p: I — J satisfies the above conditions, then j — p~!(j) defines a functor
p_1 1 J — Getsigo-
This structure is analogous to the notion of a covering space, and we name it
accordingly.

Definition A.24. A functor I — J satisfying properties (i) and (ii) above
is called a covering category.

A covering category p : I — J in which each of the fibers p~1(j) is finite
will be called a finite covering category.
The aggregate of the functors (A.23) is a functor

p@.ct—c’

given in terms of p by

PPX() = @ X().
p(i)=j
We will have much more to say about this in the next few sections. For now
we focus on the general process that led to its construction.
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Suppose we are given a formation of a category depending functorially on
a set I, or in other words, a functor

C : Getsigo — Cat.

Given a covering category p : I — J, let Ct — J be the category obtained by
applying the Grothendieck construction to the composite

J — Getsiy, S5 Cat

in which the first functor is the one classifying I — J. Let C(p) be the cate-
gory of sections of C; — J. We will say that C(p) is constructed from C by
working fiberwise. For example, the category constructed from C(S) = C° by
working fiberwise is C!. The category constructed from the constant functor
C'(S)=CisC’.

A natural transformation C' — C’ leads, via the same process, to a functor
C(p) — C'(p), which we will also describe as being constructed by working
fiberwise.

A.3.2. Indexed monoidal products. When (C, ®, 1) is a symmetric monoidal
category, the diagram category C! can be regarded as a symmetric monoidal
category using the objectwise monoidal structure.

Definition A.25. Let p: I — J be a finite covering category and (C,®,1)
a symmetric monoidal category. The indexed monoidal product (along p) is the
functor
p@.ct—c’
constructed fiberwise from the iterated monoidal product.

For some purposes the notation X®(/7) is preferable to p®X. When J
is the one point G-set this can be further abbreviated to X®!/. We use this
alternate notation systematically when ® is the smash product A.

The properties of iterated monoidal products listed in the following propo-
sition are straightforward.

PROPOSITION A.26. The functor @' : C! — C is symmetric monoidal. If

®:C*—=C
commutes with colimits in each variable, then so does ®'. In this situation @
commutes with sifted colimits.

Applying Proposition A.26 fiberwise to a finite covering category p : I — J
gives

PROPOSITION A.27. The indexed monoidal product p® : CT — C” is sym-
metric monoidal. If
®:C*=C

commutes with colimits in each variable, then p¥ commutes with sifted colimits.
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Remark A.28. Though it plays no role in this paper, it can be useful to
observe that the class of colimits preserved by p? is slightly larger than the
class of sifted colimits. For example, p@ will commute with objectwise reflexive
coequalizers, which are diagrams of the form

X=3Y =2
with the property that for each j € J, there is a map Yj — Xj completing
Xj=Yy
to a reflexive coequalizer diagram. The maps Y j — X j are not required to be
natural in j.

The following is also straightforward.

PROPOSITION A.29. Suppose thatp: I — J and q : J — K are covering
categories. Then qop is a covering category, which is finite if p and q are. In
that case there is a natural isomorphism

qZ o pf =~ (qop)?

arising from the symmetric monoidal structure. This natural isomorphism is
compatible with composition in the sense that if

15745 K5 L
is a composition of finite covering categories categories, the diagram
rPoqlopl —=rPo(qop)?
i l
(roq)?opl ——(rogqop)?
(in which the associativity isomorphisms have been suppressed) commutes.
The following results are also proved by working fiberwise.

PROPOSITION A.30. Suppose that (C,®,1¢) and (D, A\, 1p) are symmetric
monoidal categories and that

F:.C—>D,
T:FXANFY - F(X®Y),
gb:lp—)FlD

form a lax monoidal functor. If p: I — J is a finite covering category, then T
gives a natural transformation

p*T:pi\oFI—>F‘]op§)
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between the two ways of going around

cl —-=1p!
pi@l J{pﬁ
c/ ——~= 1/,
FJ

If T is a natural isomorphism, then so is p' .

The association p — p! of Proposition A.30 is compatible with the com-
position isomorphism of Proposition A.29 in the evident sense.

Suppose that p: I — J is a covering category and f J — J is a functor.
Let I be the “rigid pullback” category of pairs (j/,4) € J x I with f(i') = p(j),
and in which a morphism is a pair (g, ¢’) with f(g) = p(¢’). Then the functor
p: I — J defined by (j/,4) — j' is a covering category.

ProrOSITION A.31. In the situation described above, if p : I — J 1is
finite, then the following commutes up to a natural isomorphism given by the
symmetric monoidal structure

o —]

p¥ l lp‘?

[ ——
Iz
The categories I and J used in this paper arise from a left action of a
group G on a finite set A. Given such an A, let BoG be the category whose
set of objects is A and in which a map a — o’ is an element g € G with the
property that ga = a’. When A = pt we will abbreviate B4G to just BG. For
any finite map A — B of G-sets, the corresponding functor

BaG — BpG

is a covering category.

In the following series of examples we suppose H C G is a subgroup,
take A = G/H to be the set of right H-cosets, and write p : A — pt for the
unique equivariant map. In this case the inclusion of the identity coset gives
an equivalence

BH — B4G

and hence an equivalence of functor categories

CBAG N CBH

An inverse is provided by the left Kan extension.
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Example A.32. Suppose C is the category of abelian groups, with & as
the symmetric monoidal structure. Then CBAC is equivalent to the category
of left H-modules, and the functor p? is left additive induction. If the sym-
metric monoidal structure is taken to be the tensor product, then p® is “norm
induction.”

Example A.33. Now take (C,®,1) to be the category (8, A, S?) of orthog-
§BaG g
equivalent to the category of orthogonal H-spectra, and 8B% is equivalent to
the category of orthogonal G-spectra. In this case p/ defines a multiplicative
transfer from orthogonal H-spectra to orthogonal G-spectra. This is the norm.

It is discussed more fully in Sections A.4 and B.5.

onal spectra. From the above and Proposition A.19, the category

Remark A.34. When C has all colimits and the tensor unit 1 is the initial
object one may form infinite “weak” monoidal products, and the condition
that p : I — J be finite may be dropped. If I is an infinite set and {Xi} a
collection of objects indexed by ¢ € I, set

' Xi= lm ®"Xi
I'CI finite
in which the transition maps associated to I’ C I"” are given by tensoring with
the unit
o' Xi~ (@' Xi)® (@ '1) - & Xi.
The functor p? is constructed by working fiberwise.

Remark A.35. The results of this section apply, with the obvious modifi-
cations, in the setting of enriched categories.

A.3.3. Distributive laws. Continuing with the same notation, we now as-
sume that the category C comes equipped with two symmetric monoidal struc-
tures, ® and @, and that ® distributes over @ in the sense that there is a
natural isomorphism

A (BaC)~(A®B)® (Ax ()

compatible with all of the symmetries. For a precise definition, see [47], or the
definition of bipermutative category in [60, Ch. VI]. In all of our examples, &
will be the categorical coproduct and A ® (—) will commute with all colimits.
Givenp: I — J and q: J — K, we can form
g7 o .
Our goal is to express this in the form
2 0p% =1%o nf.

We start with the case in which K is the trivial category and p : I — J
is a map of finite sets. Let I' = I'(I/J) be the set of sections s : J — I of p.
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Write ev : J x I' — I for the evaluation map, 7 : J x I' = I" for the projection,
and with an eye toward generalization, r : I' — {pt} for the unique map. The
following lemma expresses the usual distributivity expansion

(8)}( (G?Xz) w@ <®1X5(j))

LEMMA A.36. The following diagram of functors commutes, up to a canon-
ical natural isomorphism given by the symmetries of the symmetric monoidal
structures:

in functorial terms.

CI ev* CJ><F

P?L LW?
c’/ cr
C.

Working fiberwise, it is now a simple matter to deal with the more general
case in which p: I — J and ¢ : J — K are covering categories. Let I' be the
category of pairs (k,s), with & € K and s a section of (gop)~'k — ¢ k.
A morphism (k,s) — (k,s') in " is a map f : k — k' making the following
diagram commute:

(gop) 1 (f)

(gop) 'k (gop) 'K
-1, =1
b p~ () P

Write I x J for the fiber product,
K
ev:I'xJ—=1T
K

for the “evaluation,” and 7 : I' x J — J for the projection. By naturality in [
K

and J in Lemma A.36, we have

ProproOSITION A.37. The following diagram of functors commutes, up to
a canonical natural isomorphism given by the symmetries of the symmetric
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monoidal structures:

CI ev* CJ;F
p?l

:
¢’ cr
K.

This formula is used in showing that the norm of a wedge of regular slice
cells is a wedge of regular slice cells (Proposition 4.7), in the construction of
monomial ideals (Section A.3.6), and in describing the structure of equivariant
twisted monoid rings and their monomial ideals (Section 2.4).

A.3.4. Indexed monoidal products and pushouts. The homotopy theoretic
properties of the norm depend on a formula for the indexed monoidal product
of a pushout. We describe here the absolute case. The fiberwise analogue is
spelled out in Section B.8.2.

Suppose that (C,®) is a closed symmetric monoidal category with finite
colimits, and let I be a finite set. For X € C!, write X®! for the iterated
monoidal product. Suppose we are given a pushout diagram

(A.38) A——=B

L

X—Y
in C!. We wish to express Y®! as an iterated pushout. Since the coequalizer
diagram
XITAOB=XIB—-Y

can be completed to a reflexive coequalizer, the sequence
(XTAUB)® = (X1 B)® - vy®!
is a coequalizer (Proposition A.26). By the distributivity law of Section A.3.3,

this can be re-written as
[I x®PeA®heB®= [ X9 eB®" —vel
I=IoI11L 111, I=IoI1I;
The horizontal arrows do not preserve the coproduct decompositions, but the

sequence can be filtered by the cardinality of the exponent of B. Define fil,, Y
by the coequalizer diagram

[T x®eaA®*hep®2= [ X®0eB®" - fil,Y.

I=Ig1II1 1115 I VE
[I1|+[12|<n [T1]<n
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Thus fily Y = X®! and filY = Y®!. There is an evident coequalizer diagram

H X®h @ A®T @ B — fi], | Y 1T ( H X®h g B®[1> — fil,, Y,

I=Ig11I1 1115 I=Ip1lI;
11|+ I2|=n [I1|=n

which can be re-written as a pushout square

H X®Io ® A®11 ® B®I2 5 H X®Io ® B®11

I=I>111; 111, I=I11Io
[Ho|=1]=n [I1|=n

i :

fil,1 Y fil, Y.

The upper left term may be replaced by its effective quotient
[T x®P®o,B%"
[1|=n
in which 94B®9 is defined by the coequalizer diagram

(A.39) H A®So ® A®S1 ® B®52 = H A®So ® B®S1 — 8AB®S,

S=801151 115 S=So1LS;
So#0 So#0D

leading to a pushout square

(A.40) [1 x®°®oaB*" — [ x®P°wB®h
I=Iy11; I=Io1111
‘Il|:n |Il\:n
fil,,_, Y®! fil,, Y1,

The object 94B%° can also be computed as the coequalizer of

(Ad1) [ A% @A®ieB® = [ A® @ BP — 04B%5.
S=SplLS;11S S=SplLS
Sol=lS1=1 Sol=1
We call the map
94B®> — B®°

the indexed corner map, since in the absolute case with |I| = 2 it reduces to
the “corner map” in

A@B][B®A—=A® A

| |

A®B B® B

from the pushout of the top and left arrows to the bottom right term.
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Remark A.42. The category of arrows in C becomes a closed symmetric
monoidal category with

(A1 — Bl) & (Ag — Bg)
taken to be the corner map in

Al ®Ay —— A1 ® By

i !

By ® Ay — B1 ® Bs.
If A— Bisamap in C%, then (A — B)®° works out to be 94B®° — B®%.

By working fiberwise, one obtains a similar iterated pushout describing
p2Y, involving the evident analogue Oap®B — p®B of 94 B®S — B®S,

Taking A = X and B = Y in (A.38) gives a filtration of the indexed
monoidal product of any map. In the case of a pushout square (A.38) the two
filtrations in fact coincide. We describe the absolute case. The relative case
follows easily by working fiberwise.

PROPOSITION A.43. Let

(A.44)

A——2DB
X—Y
be a pushout square in C'.

(i) The square
aAB®I B®I
3Xy®l y eI

is a pushout square.
(ii) The filtrations of Y®! arising from (A.44) and

(A.45) X—X
Y —Y
coincide.

Proof. The proof is by induction on n = |I|, the case in which n = 1 being
trivial. Let fil,, Y ®/ be the filtration computed from the pushout square (A.44),
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and let fil], Y® be the one computed from (A.45). The evident map of squares
gives a natural map fil,, Y®/ — fill, Y®!. Consider the diagram

H X®Io ® aAB®I1 X H X®Io ® B@h

]:Ioﬂfl ]:IOHII
|11|:m |[1|=m

| i

H X®Io ® 8}(Y®Il 5 H X®Io ® Y®11

I=Ipl1I4 I=Ioll;
[I1]=m [I1|=m
fil,,_, Y®I fil,, Y®I.

If m < n, then the induction hypothesis and part (i) imply that the upper

square is a pushout square. This shows that the map fil,, Y&/ — fill, Y®! is

an isomorphism m < n. The case m = n — 1 then gives an identification
fil,—1 YO = OxY®!

which, when combined with the pushout square

d4B®! B®!

N

fil, 1 Yo — y®Il

gives part (i) for . O

By working in the category of arrows (as in Remark A.42) one can see
that the formation of d4(¢¥B) is compatible with the isomorphism coming
from the distributive law. More explicitly, let I 2 T4 K be a sequence of
covering categories, and recall the basic diagram

C[ ev* CJ;;F
piel

:
c’ cr
qi@\ »/r?
ck.
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Suppose that A — B is a map in C!. The distributivity isomorphism in the
arrow category is given by

(pEB)#IE —— (pP B)=/K

~ ~
~ =~

790y 4)TE (ev* B) ——= rPn? (ev* B).

92 )

The fact that the left vertical arrow is an isomorphism is what expresses the
compatibility of 94(¢¥ B) with the distributive law.

A.3.5. Commutative algebras and indexed monoidal products. By Propo-
sition A.5, if C is a co-complete closed symmetric monoidal category, then
commC( is cocomplete. The restriction functor p* : commC’ — commC’
then has a left adjoint p, given by left Kan extension.

ProprOSITION A.46. If p : I — J is a covering category, the following
diagram commutes up to natural isomorphism:

comm(C! —= ¢!

P

comm(C’/ ——= (/.

Proof. For a commutative algebra A € commC’, and j € J, the value of
pA at j is calculated as the colimit over the category I/j of the restriction of
p. Since p : I — J is a covering category, the category I/j is equivalent to the
discrete category p—'j, and so

(pA)j =@ I A,
and the result follows. O
A.3.6. Monomial ideals. Let I be a set, and consider the polynomial al-

gebra

A= Z[l’z], iel.
As an abelian group, it has a basis consisting of the monomials z/, with

f:1—-{0,1,2,...}
a function taking the value zero on all but finitely many elements, and

af = H xf 2
jedJ

The collection of such f is a monoid under addition, and we denote it Nj. If

D C N} is a monoid ideal, then the subgroup Mp C A with basis {2/ | f € D}
is an ideal. These are the monomial ideals, and they can be formed in any
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monoidal product of free associative algebras in any closed symmetric monoidal
category.

Let (C,®,1) be a closed symmetric monoidal category. Fix a set I that
we temporarily assume to be finite. Given X € C!, let

TX =[] x*"

n>0

be the free associative algebra generated by X. Write A = p®TX € C, where
p : I — pt is the unique map. Then A is an associative algebra in C. The
motivating example above occurs when C is the category of abelian groups and
X is the constant diagram Xi = Z.

Using Proposition A.37, the object A can be expressed as an indexed
coproduct

A= [ x®,
f:I—)No

where Ny = {0,1,2,...} and
x®f — ®X(i)®f(i).
i€l
The set
Nj={f:I—No}

is a commutative monoid under addition of functions. The multiplication map
in A is the sum of the isomorphisms

(A.47) X% @ X®9 n xO(f+9)

given by the symmetry of the monoidal product ®, and the isomorphism

XOM0) g x®90) o xOU0)+9(0).

For a monoid ideal D C N}, set

Mp =[] x/.
feb

The formula (A.47) for the multiplication in A gives Mp the structure of an
ideal in A. If D C D', then the evident inclusion Mp C Mps is an inclusion of
ideals.

When C is pointed (in the sense that the initial object is isomorphic to
the terminal object), the map

A—)A/MD
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is a map of associative algebras, where A/Mp is defined by the pushout dia-
gram

Mp A
¥ —— A/Mp,

with % denoting the terminal (and initial) object.

Definition A.48. The ideal Mp C A is the monomial ideal associated to
the monoid ideal D.

Ezample A.49. Suppose that dim : N} — Ny is any homomorphism. Given
d € Ny, the set

{f | dim £ > d}
is a monoid ideal. We denote the corresponding monomial ideal M;. The My
form a decreasing filtration

e C Mgy CMgC---C M CMy=A.
When C is pointed, the quotient
Ma/Maia
is isomorphic as an A bimodule to

Ao JI X®7,
dim f=d

in which A act through its action on the left factor.
Remark A.50. The quotient module is defined by the pushout square

Mgy ——— My

|

¥ — Md/Md+1.

The pushout can be calculated in the category of left A-modules, A bimodules,
or just in C.

Remark A.51. All of this discussion can be made to be covariant with
respect to inclusion in I. Suppose that Iy C I is an inclusion of finite sets and
Xy :I; — Cis an I;-diagram. Define Xy : Iy — C by

X () Xl(Z) iGIQ,
7 pry
0 * otherwise.

There is a natural map Xy — X;. Let Ap and A; be the associative algebras
constructed from the X; as described above. The algebra Ag coincides with
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the one constructed directly from the restriction of Xy to Ip. A monoid ideal
Dy C N(I]l defines ideals Mp, C Ap and Mp, C A;. The monoid ideal Dy is
the same as the one constructed from the intersection of Dy with Néo, where
Né‘) is regarded as a subset of Nél by extension by 0. There is a commutative
diagram

Mp, — Mp,

.

AO I Al.

Using this, the construction of monomial ideals can be extended to the case
of infinite sets I, by passing to the colimit over the finite subsets. As in the
motivating example, when the set [ is infinite, the indexing monoid Né is the
set of finitely supported functions.

By working fiberwise, this entire discussion applies to the situation of a
(possibly infinite) covering category p: I — J. Associated to X : I — C is

A=p2TX € assC’ = (assC)’.

In case I/J is infinite, the algebra A is formed fiberwise by passing to the
colimit from the finite monoidal products using the unit map, as described in
Remark A.34. As an object of C”/, the algebra A decomposes into

A= x%,
fer

where I is the set of sections of
N g
with Né/ 7 formed from the Grothendieck construction applied to

=Ny (I =p7).

The category Né/ I

monoid ideal D C Né/ 7 over J , is a monomial ideal Mp C A.
The situation of interest in this paper (see Section 2.4) is when I — J is
of the form

is a commutative monoid over J, and associated to any

BxG — BG

associated to a G-set K, and the unique map K — pt. In this case Né/ 7 s
the G-set NE of finitely supported functions K — Ng. The relative monoid
ideals are just the G-stable monoid ideals. A simple algebraic example arises
in the case of a polynomial algebra Z|[x;] in which a group G is acting on the
set indexing the variables.
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A.4. The norm. We now specialize the discussion of Section A.3 to the
case (C,®,1) = (8,7, S°) and define the norm functor.

Because of Proposition A.19 we may identify the category of G-equivariant
orthogonal spectra as the functor category 8$8¢. If H C G, then the functor

i: BH — Bg G

sending the unique object to the coset H/H is an equivalence of categories.
This leads to an equivalence

i §Be/nCG — §BH

with inverse

iy SBH — gBa/mnC

given by the left Kan extension. Write p : Bg/gG — BG for the functor
corresponding to the G-map G/H — pt.

Definition A.52. The norm functor Ng : 87 — 8¢ is the composite

§BH __"_ ¢Ba/uG
N
8B¢,
By Proposition A.27, we have

ProrosiTiON A.53. The functor Ng is symmetric monoidal and com-
mutes with sifted colimits.

Remark A.54. By Remark A.28, the norm also commutes with the forma-
tion of coequalizer diagrams in 87 whose underlying nonequivariant diagram
in 8 extends to a reflexive coequalizer.

Remark A.55. We have defined the norm on the topological categories of
equivariant spectra. Since it is symmetric monoidal, it naturally extends to a
functor of enriched categories

NG : 8y — Sc

compatible with the norm on spaces (and, in fact, spectra) in the sense that
for every X,Y € 8, it gives a G-equivariant map

By Proposition A.46, on equivariant commutative algebras the norm is
the left adjoint of the restriction functor.
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COROLLARY A.56. The following diagram commutes up to a natural iso-
morphism given by the symmetry of the smash product:

Comm? — = §#

"

Comm¢ —~ 8¢,

The left vertical arrow is the left adjoint to the restriction functor.

Remark A.57. Because of Corollary A.56, we will refer to the left adjoint
to the restriction functor

G H

Comm"~ — Comm

as the commutative algebra norm and denote it

N§ : Comm* — Comm©.

The Yoneda embedding gives a functor

TP =8,
Vi STV
By definition of A this is a symmetric monoidal functor, and we are in the

situation described in Proposition A.30. Thus if p : I — J is a covering
category, there is a natural isomorphism between the two ways of going around

(A.58) (7er) —=s!

pi‘al LPQ

(s7) —8".

Take I = Bg/pG and J = BG. Then the functor category ( I "p>1 is equiv-

alent to the category <jH)Op (Proposition A.12), and 8/ is equivalent to §
(Proposition A.19). By naturality, the functor

fHOP N SH
corresponding to

(7o) =8
is just the Yoneda embedding, and so sends an orthogonal H-representation
V to S~V. Similarly, ( I 0”)J is equivalent to _# G 87 is equivalent to the

category of orthogonal G-spectra, and the functor between them sends an or-
thogonal G-representation W to S~". One easily checks (as in Example A.32)
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that the functor p corresponds to additive induction. We therefore have a
commutative diagram

(S1)" ——s
ind% i LNg
(79)" — s8¢,
This proves
PROPOSITION A.59. There is a natural isomorphism
Ng GV ~ g-indfV
of functors (/H)Op — 8C.

A.5. h-cofibrations. Suppose that C is a complete topological category
(and, in particular, tensored and cotensored over 7).

Definition A.60. A map ¢ : A — X in C is an h-cofibration if it has
the homotopy extension property: given f : X — Y and a homotopy h : A ®
[0,1] — Y with h|sgq0y = foi, there is an extension of h to H : X®[0,1] — Y.

Example A.61. The mapping cylinder A — X LX A ® [0,1] of any map
A — X is an h-cofibration.

As is well known, a map 7 : A — X is an h-cofibration if and only if

li=X A 1 X 1
cyli ®{0}A@L){{O} ®[0,1] = X ®[0,1]

is the inclusion of a retract.

PRrROPOSITION A.62. The class of h-cofibrations is stable under composi-
tion, and the formation of coproducts and cobase change. Given a sequence

X1 £) —)XZ£>X1+1 —
in which each f; is an h-cofibration, the map

X1 —1i XZ
-

is an h-cofibration.

PrOPOSITION A.63. Any topological functor L that is a continuous left
adjoint preserves the class of h-cofibrations.

Now suppose that C has a symmetric monoidal structure ® that is com-
patible with the cartesian product of spaces, in the sense that for spaces S and
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T, and objects X,Y € C, there is a natural isomorphism
(X29)YT)~(XY)®(SxT)

compatible with the enrichment and the symmetric monoidal structures. Then
given i : A — X, we may form

QS AB 5 X

and regard it as a map in the category CB*» of objects in C equipped with a
Y n-action.

ProrOSITION A.64. If A — X is an h-cofibration in C, then for any Z,
A®Z — X ® Z is an h-cofibration.

PROPOSITION A.65. Ifi : A — X is an h-cofibration, then i®" is an
h-cofibration in CB>n.

Remark A.66. In the category of equivariant orthogonal spectra a version
of this result appears in [56, Lemma 15.8] (where the reader is referred to [24,
Lemma XII.2.3]).

Proof. The main point is to show that the diagonal inclusion
(A.67) cyl(A®™ — XO™) — cyl(A — X)®"

is the inclusion of a Y,-equivariant retract. Granting this for the moment, one
constructs a Y,-equivariant retraction of

cyl(A®™ — X®™) — X®" ®(0,1]
as the composition
X @ [0,1] 224% xen g 0,1]" ~ (X @ [0,1))%"
— cyl(A — X)®™ = cyl(A®" — X O,

For the retraction of (A.67), start with the pushout square

A® {0} A®[0,1]
X cyl(A = X)

and consider the last stage of the filtration of cyl(4 — X)®" constructed in
Section A.3.4

(A.68) da(A®|0,1])®" (A®[0,1])®m™

l l

fil,,_1 (cyl(A — X)®") — > eyl(A — X)®n.




168 M. A. HILL, M. J. HOPKINS, and D. C. RAVENEL

Form the X,,-equivariant map
fil,—1(cyl(A — X)®™) — X" = cyl(A®" — X®™)
using the map cyl(A — X) — X. To extend it to fil,(cyl(A — X)®") =

cyl(A — X)®" note that the top row of (A.68) can be identified with the
tensor product of the identity map of A®™ with

8{0}1 e
This identification is compatible with the action of the symmetric group. The

desired extension is then constructed using any ,-equivariant retraction of
I"™ to the diagonal that takes dyoy " to {0} O

Working fiberwise one concludes

PROPOSITION A.69. Suppose that C is as above and p : I — J is a cover-
ing category. The indexed monoidal product

p2 ¢l - ¢’
preserves the class of h-cofibrations.

We end with a technical result that is useful for establishing some of the ba-
sic homotopy theoretic properties of equivariant orthogonal spectra, especially
in connection with the monoidal geometric fixed point functor (Section B.10).
Though it does not appear explicitly in the literature in this form, it is a minor
variation of [50, Appendix, Prop. 3.9] and is proved in the same manner.

LEMMA A.70. An h-cofibration in 8 is an objectwise closed inclusion.

Proof. The assertion reduces immediately to showing that h-cofibrations
in the category of compactly generated weak Hausdorff spaces are closed inclu-
sions. For this latter fact, suppose that A C X is an h-cofibration of compactly
generated weak Hausdorff spaces. Then the mapping cylinder cyl(4 — X) is
an equalizer of two maps from X x [0,1] to itself. Since X x [0,1] is weak
Hausdorff, it is closed. But A C X is the inverse image of cyl(A — X) under
the inclusion X x {1} — X x [0,1]. See [50, pp. 488—-489]. O

Appendix B. Homotopy theory of equivariant orthogonal spectra

We now turn to the stable homotopy theory of equivariant orthogonal
spectra, the basis of which is the notion of stable weak equivalence defined in
Section 2.2.4. Our goal is to set up the infrastructure needed for the proofs of
properties Sp?fSpGG and for working with the formation of indexed wedges,
smash products, symmetric powers, and their compositions. These latter are
explicit constructions, and to work with them in homotopy theory means de-
termining, in each case, a full subcategory of 8¢ on which the construction
preserves weak equivalences, and which is homotopically wide in the sense that
it contains at least one object of each weak equivalence class.
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The standard way of doing this is to complete the set of weak equiva-
lences to a Quillen model category structure, in such a way that each of the
constructions takes weak equivalences between cofibrant objects to weak equiv-
alences. This can be done in this case, but a problem arises when composing
these operations. For example, in all of the standard model structures on 8¢,
the symmetric powers of a cofibrant object are not cofibrant (or at least not
known to be). The situation is reminiscent of the theory of unbounded oper-
ators, in which a domain of definition needs to be specified, and in which one
can run into trouble trying to compose operators. It might be possible to find
a model structure whose collection of cofibrant objects is preserved by all of
these constructions. But this is more than is really required.

This is a situation where the language of model categories tends to obscure
the basic task at hand. What is needed is to determine, for a given functor,
a homotopically wide full subcategory on which the functor preserves weak
equivalences. This problem depends only on the weak equivalences, and is
most naturally considered in the context of homotopical categories. With this
in mind we begin our work using homotopical categories, where the entire focus
is on weak equivalences and derived functors, and put off introducing a model
category structure until it is really needed.

Here is a summary of the contents of this appendix. In Section B.1 we
review the theory of homotopical categories. Section B.2 introduces various

" which depend only on the class of weak equivalences and

notions of “flatness,’
play an important role in determining the homotopical properties of various
functors. In Section B.3 we develop a considerable amount of the stable ho-
motopy theory of 8¢ using only the language of homotopical categories. This
includes most of the results used in Section 2.2.5 to verify Sp$-Sp$. Our
analysis is facilitated by an approximation %8¢ to ho 8%, which we study as
a homotopical category in its own right. To go further it is helpful to have
a model structure around, and in Section B.4 we define the positive complete
model structure on 8. This is a variation on the positive stable model struc-
ture of [55] having the convenient property that indexed wedges and smash
products of cofibrant objects are cofibrant. Sections B.5 and B.6 describe the
homotopy properties of indexed smash and symmetric powers. Section B.7
contains a proof that the forgetful functor comm 8% — 8 creates a model
structure. The proofs of this that appear in the literature are incomplete, and
it does not seem possible to give a complete proof without first analyzing the
homotopy properties of indexed smash products. Section B.8 contains the im-
portant result that the formation of indexed smash products is homotopical
on a subcategory of 8¢ containing both the cofibrant objects and the spec-
tra underlying cofibrant commutative rings. This result is crucial for making
use of the norm functor and is part of the reason that we work outside of
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the framework of model categories. Sections B.10 and B.11 contain results on
the geometric fixed point functor and its interaction with the constructions de-
scribed above. Finally, Section B.12 contains a construction of the real bordism
spectrum MUy on which all of the results of this paper are based.

B.1. Homotopical categories and model categories. We begin by reviewing
some notions from [23].

Definition B.1. A homotopical category is a category C equipped with a
class of morphisms called weak equivalences that contains all identity maps and
satisfies the two out of sixz property described below.

The two out of six property asserts that in the situation
u v w
o — 00— 0 —e
if vu and wv are in W, then so are u, v, w, and vwu. It implies the “two out of

three” property (that two of three maps in composition being weak equivalences
implies the third is) and that isomorphisms are weak equivalences.

Remark B.2. If the weak equivalences have the property that a map is
a weak equivalence if and only if some functor applied to the map becomes
an isomorphism, then identity maps are weak equivalences, the two out of
six property automatically holds, and retracts of weak equivalences are weak
equivalences.

Suppose that C is a homotopical category.

Definition B.3. A homotopy functor is a functor F' : C — D with the
property that F'(w) is an isomorphism whenever w € W.

There is a universal homotopy functor L : C — hoC called the the lo-
calization of C with respect to W. It is characterized uniquely up to unique
isomorphism by the following universal property: for every category D and ev-
ery homotopy functor F' : C — D, there is a unique functor hoC — D making
the diagram

¢ -t hoC

N

D

commute. While this characterization may seem stronger than is natural for
characterizing an arrow in a 2-category, it simplifies the presentation. The
difference between this and the 2-categorical formulation amounts to the con-
vention that the map C — hoC be the identity map on objects. The category
hoC is the homotopy category of C. Since the localization functor L is the
identity map on objects, it tends not to appear in notation.
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Two issues emerge when working with homotopical categories. One is to
find a description of hoC(X,Y’) and the other is to describe conditions under
which a functor F' : C — D between homotopical categories induces a functor
ho F': hoC — hoD. For the first question, the following can be helpful.

PROPOSITION B.4. The transformation C(X, —) — hoC(X, —) is the
universal natural transformation from C(X, —) to a homotopy functor.

Proof. This is one situation where it is clearer to actually make use of the
notation L : C — hoC. Spelled out, the assertion is that if F': C — Sets is a
homotopy functor and C(X, —) — F' a natural transformation, then there is
a unique dotted arrow making the diagram

(B.5) (X, -)

hoC(LX, L(—))

commute. Before describing the proof we make an observation about the prop-
erty characterizing the functor L : C — hoC. For homotopy functors F' and G
on C, this property supplies unique factorizations F = F o L and G = G o L.
It also implies that composition with L gives a bijection between the set of
natural transformations G — F and G — F.

With this in mind we now turn to the proof of the proposition. By the
Yoneda Lemma, the horizontal arrow in (B.5) is given by an element of F/(X).
By the remark above, the set of natural transformations

hoC(LX,L(—-)) = F
is in bijection with the set of natural transformations
hoC(LX, —) = F

which, again by Yoneda, is in one to one correspondence with the elements of

F(LX) = F(X). The map between these sets corresponding to the two ways
of going around (B.5) is the identity. O

COROLLARY B.6. Suppose that C is a homotopical category and that X €
C has the property that C(X, —) is a homotopy functor. Then the natural
transformation C(X, —) — hoC(X, —) is a bijection.

Proof. Immediate from Proposition B.4. O

For the second question, there is an apparatus of definitions to organize
the situation.

Definition B.7. A functor between homotopical categories is homotopical
if it sends weak equivalences to weak equivalences.
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By the universal property, a homotopical functor F : C — D induces
a functor hoF' : hoC — hoD. Furthermore, adjoint homotopical functors
induce adjoint functors on the homotopy categories. But there are more general
situations under which such a functor is induced. Suppose that F': C — D is
a functor between homotopical categories and that one can find a subcategory
C' C C on which F is homotopical (where the weak equivalences in C’ are taken
to be those morphisms that are weak equivalences in C). Then F induces a
functor

hoC’ — hoD.

If, in addition, hoC’ — hoC is an equivalence of categories, then one gets an
induced functor hoC — hoD by composing with an inverse to this equivalence.

The situation becomes more manageable when there is a pair (r, s) con-
sisting of a functor r : C — C with the property that F' o r is homotopical,
and a natural weak equivalence s : r — Id. In that case, C’ can be taken
to be the full subcategory generated by the image of r, the induced functor
LF :hoC — hoD can be computed as

LFX = For(X),

and because of s, comes equipped with a natural transformation between the
two ways of going around the diagram

F

C D

”|

T

|

hoC —— hoD.
LF

Together with this transformation, LF' is characterized by a universal property.
It is most easily stated if we overload some of the notation by using the symbol
F to denote the composite functor

cL D 5 hoD

and identify functors hoC — hoD with homotopy functors C — hoD. With
these conventions we may regard the transformation 7' as going from LF to F

T:LF — F.

The universal property is that if G : C — hoD is a homotopy functor and
S : G — F is a natural transformation, then there is a unique natural trans-
formation G — LF making

G ——LF

DN

F
commute. Put differently, LF is the closest homotopy functor to the left of F.
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The functor characterized by the above properties is the left derived func-
tor of F'. It is guaranteed to exist when F' is left deformable in the sense that
there is a pair (r,s) as above, and F o r is homotopical.

A common situation arises when the weak equivalences on C refine to a
model category structure, and F takes weak equivalences between cofibrant
objects to weak equivalences. In that case F is left deformable, and one may
take (7, s) to be a functorial cofibrant replacement.

There are evident dual notions of a right deformable functors F and a
right derived functor RF. For more on the definition of derived functors, the
reader is referred to [69] for the case of model categories and to [23, Ch. VII|
for the more general case of homotopical categories.

When

F:CsD: G
are adjoint functors between homotopical categories, and F' is left deformable
and G is right deformable, then the derived functors

LF :hoC S hoD: RG

are adjoint. See [23, Ch. VII, §44].

It is common, when there is no confusion likely, to drop the L from LF
and not distinguish in notation between a functor and its derived functors. We
follow this convention in the main body of the paper, where the emphasis is
on homotopy theory.

B.2. Flat maps. The notion of a flat map and a flat functor was introduced
in the unpublished manuscript [33] in order to isolate useful classes of maps
and objects on which left derived functors can be computed. Though the
original context involved model categories, the definitions involve only the
weak equivalences and belong most naturally to the theory of homotopical
categories. The dual notion was coined a “sharp map” by Charles Rezk and
used for a different purpose in [74].

Definition B.8. A functor F' : C — D between categories with weak equiv-
alences is flat if it is homotopical and preserves colimits.

Typically the functor F' will be a left adjoint, and so will automatically
preserve colimits.

Definition B.9. Suppose that C is a homotopical category possessing small
colimits. A map f: A — X in C is flat if for every A — B and every weak
equivalence B — B’, the map

XUB—->XUPB
A A

is a weak equivalence.
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In other words, a morphism f is flat if and only if “cobase change along
f7 preserves weak equivalences. Since cobase change is a left adjoint, this is
equivalent to the flatness of the cobase change functor.

Ezxample B.10. A model category is left proper if and only if every cofi-
bration is flat.

ProrosiTiON B.11.

(i) Finite coproducts of flat maps are flat.

(ii) Composites of flat maps are flat

(iii) Any cobase change of a flat map is flat.

(iv) If a retract of a weak equivalence is a weak equivalence, then a retract of
a flat map is flat.

ProprosiTION B.12. Suppose that

X|<— A —=1;

X2<;A24b>y2

is a diagram in which As — Yo and both maps in the top row are flat. If the
vertical maps are weak equivalences, then so is the map

X11%J1Y1—>X21%J2Y2

of pushouts.
Proof. First suppose that A1 = Ay = A. Then

Xlgyl _>X1Ljy2

is a weak equivalence since A — X is flat. The map X7 — X3 1L4J Y, is flat

since it is a cobase change of A i> Y5 along A — X;. But this implies that

X1 UYs X (X Y):X Y-
1% 2 — 2% 1LAJ2 2%2

1

is a weak equivalence. Putting these together gives the result in this case.
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For the general case, consider the following diagram:

X1 Ay Yi

.

XTUAy<~— Ay —— A UY;

Al 1

|

X2 AZ Y2-

The flatness of the maps A1 — X7 and A; — Y7 implies that the upper vertical
maps (hence all the vertical maps) are weak equivalences and that the maps
in the middle row are flat. It also implies that

Ai—-X1UYN
Ax
is flat. Since A1 — A is a weak equivalence, this means that
XiuUuYy = AU <X U Y>
Ly 2P (M hn

is a weak equivalence. But this is the map from the pushout of the top row to
the pushout of the middle row. By the case in which A; = As, the map from
the pushout of the middle row to the pushout of the bottom row is a also a
weak equivalence. This completes the proof. O

Remark B.13. If C has the property that every map can be factored into a
flat map followed by a weak equivalence, then the above result holds with the
assumption that only one of the maps in the top row is a weak equivalence.
Suppose for instance that it is the map A; — Xi, and factor Ay — Y; into a
flat map A; — Y/ followed by a weak equivalence Y{ — Y;. Now consider the
diagram

X1<;A14>)/1

|

X1<;A1*>Y1

XQ%AQ?YQ.

By Proposition B.12, the map from the pushout of the top row to the pushout
of the middle row is a weak equivalence, as is the map from the pushout of the
top row to the pushout of the bottom row. The map from the pushout of the
middle row to the pushout of the bottom row is then a weak equivalence by
the two out of three property of weak equivalences.
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Remark B.14. In the category 8¢ equipped with the stable weak equiva-
lences (B.3.1), the h-cofibrations will turn out to be flat. The mapping cylinder
construction then factors every map into a flat map followed by a weak equiv-
alence, so Remark B.13 applies.

Suppose that (C,®,1) is a closed symmetric monoidal category, equipped
with a class W of weak equivalences, making C into a homotopical category.

Definition B.15. An object X € C is flat if the functor X ® (—) is flat.

Showing that a symmetric monoidal structure on C induces one on hoC
essentially comes down to exhibiting enough flat objects in C. In Section B.3.7
we will show that the cellular objects of 8¢ are flat.

Remark B.16. Suppose that every object Z € C admits a weak equivalence
equivalence Z — Z from a flat object Z. If X — Y is a weak equivalence of
flat objects, sois X ® Z — Y ® Z for any Z. This follows from the diagram

X@Z-"sX®Z

|

Y®ZL—=Y®Z

B.3. Equivariant stable homotopy theory. The weak equivalences were de-
fined in Section 2.2.4 as the maps inducing isomorphisms of stable homotopy
groups. Equipped with them 8¢ becomes a homotopical category, and the
functor 8¢ — ho 8¢ is defined. In this section we establish many of the basic
properties of ho 8¢, including most of the results used in Section 2.2.5, to verify
Sp$-Sp§ of Section 2.2.1.

B.3.1. Stable weak equivalences and basic homotopical functors. We begin
with some basic homotopical functors.

ProproSITION B.17. The formation of filtered colimits along objectwise
closed inclusions is homotopical.

Proof. This is immediate from the fact that formation of homotopy groups
commutes with filtered colimits of closed inclusions. O

Since h-cofibrations are objectwise closed inclusions (Lemma A.70), Propo-
sition B.17 applies to the formation of filtered colimits along h-cofibrations.

The following three results, which are part of [55, Th IIL.3.5] (see also [56,
Th. 7.4(iv)]), imply that many basic functors are homotopical.
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PRroOPOSITION B.18. Suppose f : X — Y is a map, and let ' — X be the
homotopy fiber, defined by the pullback square

F—— PY

L

X —Y
f

in which PY is the path spectrum of Y. For every H C G, there is a long
exact sequence

-"—>7T]€{F—>7T,£{X—>7TEY—>7T£_1F—>"-.

Sketch of proof. This sequence is gotten by passing to the colimit from
the exact sequence

H H H H
”.*)Trk—‘,-VFV4)7Tk—|—VXV4)7rk+VYVi>7Tk—1+VFVi>.”' O

ProrosiTIiON B.19. For any X, any H C G, and any k € 7Z, the suspen-
ston map
X - Wf_i_lsl ANX

18 an isomorphism.

Sketch of proof. Choose an exhausting sequence {V,,} with the property
that V,,®R C V,,+1. Then the map 7Tk];—[+VnXVn — 771?+Vn+1XVn+1 factors through
the suspension map ﬂfﬂ +VnS1 A Xy, and so the sequence for computing
ﬂ,ﬂlS LA X threads through the sequence for computing 77,? X. O

ProprosiTION B.20. Let X — Y be an h-cofibration.

(i) The map Y UCX — Y/X is a weak equivalence.
(ii) There is a natural long exact sequence of stable homotopy groups

ool X sy sl v/ X)) s wl X —

in which the map 7Y — mY /X is induced by the evident quotient map,
and the connecting homomorphism W,?Y/X — 7T]€I_1X s induced by the
maps
Y/X+~YUCX - XX
and the suspension isomorphism of Proposition B.19
Sketch of proof. For the first part, since A — X is an h-cofibration, the
map X UCA — X/A is a homotopy equivalence and hence induces an iso-

morphism of stable homotopy groups. The result can then be deduced from
Proposition B.19 as in [50, III.2.1]. O

COROLLARY B.21. The h-cofibrations in 8¢ are flat.
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Proposition B.20 implies that the formation of mapping cones is homo-
topical as is the formation of quotients of h-cofibrations. It also gives parts
(i) and (iii) of the proposition below. Part (ii) follows from the fact that the
formation of unstable homotopy groups commutes with products and the fact
that filtered colimits commute with finite products.

PROPOSITION B.22.
(i) For any any set of spectra {X,}, the map

@WfXa —>7r*G\/Xa

is an isomorphism, hence the formation of wedges is homotopical.
(ii) For any any finite set of spectra {X,}, the map

ﬂfHXa — HﬂfXa

1 an isomorphism, hence the formation of finite products is homotopical.
(iii) For any finite set of spectra {X,}, the map

V Xo = [[Xa

1s a weak equivalence.

COROLLARY B.23. The category ho 8% is additive and admits finite prod-
ucts and arbitrary coproducts. The coproducts are given by wedges and the
finite products by finite products.

Proof. Let us begin with the case of coproducts. Let J be a set. The
adjoint functors

\/: (89)" 587 : diag
are homotopical by Proposition B.22. They therefore induce adjoint functors
V1 (h089)” S ho8C : diag

on the homotopy categories. This shows that arbitrary coproducts exist in
ho 8% and that they may be computed as wedges. A similar argument shows
that finite products exist, are computed as products in 8¢, and that the map
from a finite coproduct to a finite product is an isomorphism. This endows
the morphism sets in ho 8¢ with the structure of commutative monoids. That
they are in fact abelian groups can be seen by checking that for all X, the
“shearing map” X V X — X x X, with first component the projection to the
first summand and second component the coproduct of the identity map with
itself, is a weak equivalence. ]

The “indexed” analogue of Proposition B.22 is also true and appears as
Proposition B.56. It expresses a kind of “equivariant additivity” on ho8%.
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B.3.2. Suspension and zero space. The suspension and zero space functors
were defined in Definition 2.7. Formation of the suspension spectrum is nearly
homotopical.

ProOPOSITION B.24. The suspension spectrum functor is homotopical on
the subcategory of nondegenerately based G-spaces. The right derived functor
RO X may be computed as

RQ¥X = holin Q" Xy, |

where {V,,} is any choice of exhausting sequence and QV»(—) is the G-space
of monequivariant maps.

Proof. The assertion about suspension spectra follows from the fact that if
K — L is an equivariant weak equivalence of nondegenerately based G-spaces,
then so is

SYANK =SV AL

for any representation V. This reduces to the statement that for every H C G,
the map

SV AKH o sV A LH

is a weak equivalence, assuming K — L is. But this is a standard fact. The
functor RQ*X = holig QVe Xy is clearly homotopical, so what is needed for
the second assertion is to construct a functorial weak equivalence X — X', in
which X’ has the property that the map

RO®X' — Q*°X’

is a weak equivalence. One way to do this is to define X — X’ objectwise by
Xy — holi%mn Q" Xyay, = X{,. (One can also take X' to be the functorial
fibrant replacement coming from the small object construction in the positive
complete model structure of Section B.4.1.) 0

Adding a “whisker” provides a left deformation to 3°°, and the natural
transformation X — X’ appearing in the proof above gives a right deformation
of Q°°. The derived suspension spectrum and zero space functors therefore
induce adjoint functors on the homotopy categories

LY® :hoT% S ho8% : ROQ™.

B.3.3. An approximation to the homotopy category. Our further analysis
of ho 8¢ is facilitated by an approximation, '8¢,
Let

(B.25) ey : SV ASY » 80
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be the map adjoint to the identity map of SV. Associated to a linear isometric
embedding t : V — W is a map

(B.26) STWASY 587V ASY,

One way to describe it is to note that the space of such maps is the space of
equivariant maps

SV = (ST ASY)w
and that
(S™V'ASY)w & Thom(O(V,W); (W = V) & V) = O(V, W) A SW.

The map (B.26) corresponds to smashing the identity map of S with the
map S° — O(V, W)¥ sending the nonbase point to t. The map (B.26) can also
be expressed as Id Aeyy after rewriting the domain as

STVASYASTUASY,

with U = W — t(V). When V < W, the fixed point space O(V, W) is
connected, and so the homotopy class (B.26) is independent of the choice of ¢.
For X,Y € 8%, let

89X, Y) = limm8 (S A SV A X, Y),
14

in which the limit is taken over the partially ordered set of representations

of G (Section 2.2.4). We wish to make 7%'8%(X,Y") into the morphisms in a

category. For this we need to define the composition law. An element f € 75t8¢

is represented by a map fir : STV ASY AX — Y. Given f € 78%(X,Y) and
g € ™84 (Y, Z) represented by

fr:STVASYAX Y,

gW:S_W/\SW/\Y—>Z,

the composition g o f is defined to be the equivalence class of the map
(go Hlway : STVEVASVEV N X 5 7
constructed from the isomorphism
S—W@V A SWGBV ~ S_W A SW A S—V A SV
and the composite
STWASWASTV ASY AX LMY, g-W AW Ay DY, 7

Associativity of the composition follows from the associativity of the smash
product.
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Definition B.27. The category m**8C is the category whose objects are
those of 8¢, with morphisms 7%*8%(X,Y"), and the composition law described
above.

One thing that makes 75'8% so useful is that the hom sets are easy to
describe, and yet the functors ﬂf factor through it and are co-representable.

PrRopPoOSITION B.28. For all k € 7Z, there is a natural isomorphism
(B.29) 89 (G/H A SFY) ~ i (V).
Proof. Suppose k > 0. Then
w8 (G/Hy A SF,Y) = limm8(S™V ASY AG/Hy A SF,Y)
= lim w87 (§7 A SV A SF,Y)
= limmo 77 (SV A S*, Yv)
= li_n;wﬁvYV =rlly.
Similarly,
m8Y(G/Hy NSTRY) = ligmo8Y (S~ A SV AG/HL ASTRY)
= limm87 (57 A SV A STHY)
= limmo T (S, Yy11)

= lim 7/ Yoy = lim mp_, Yip = 71,y O
|4 W>k

Proposition B.28 implies that a map X — Y € 8% that becomes an
isomorphism in 7%*8¢ is a weak equivalence. An important example is

ProrosiTION B.30. Suppose that V' is a representation of G. For every
X, the map
(B.31) STVASVAX 5 X
is an isomorphism in 7'8% and hence a weak equivalence.
Proof. We will show that for all Y, the map
8Y(X,Y) —» 8¢SV ASY A X, Y)
is an isomorphism. By definition,

(B.32) 89X, Y) = lim(S~" A S AXY),
w

while

w8 STV ASY AX,Y) = limm8Y(STY ASYASTV ASY AXY).
U
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Writing W = U @ V and using the identification
STWASY S UANSUASTV ASY,
this last colimit may be replaced by
ling 71089 (STWASV A X, Y),
w>v

since the set {U | U @V > V'} is cofinal in the poset of all representations.
But this clearly coincides with (B.32), since {W | W > V'} is also cofinal in
the poset of representations. O

Remark B.33. The weak equivalence (B.31) is often written in the form
STVIWASYAX - STV AX.
This is gotten from (B.31) by writing S~V®" as S~V A S~W and writing the

map as
SWASYA(STVAX) = (STVAX).

COROLLARY B.34. Suppose that V is a representation of G. Smashing

with SV and S~V are inverse equivalences of w58 .

Remark B.35. Corollary B.34 does not directly imply the analogous state-
ment for ho 8. For that one needs to know that smashing with SV and S~V
are homotopical. This will be proved in Section B.3.5.

One consequence of Corollary B.34 is that 758% is tensored over the
equivariant Spanier-Whitehead category SWY defined in Section 2.2.1. The
main point is to show that a map K — L in SW¢ gives a natural map X AK —
X AL in 7%8%. For this, suppose that the map K — L is represented by a
map of spaces SV A K — SV A L. This latter map gives us an element of

™ 8YXANSYANK, X NSV AL)

and hence an element of 75'8%(X A K, Y A L) under the isomorphism of Corol-
lary B.34.

This fact leads to a form of Spanier-Whitehead duality in 758%. Suppose
that K is a finite G-CW complex and that L is a “V-dual” in the sense that
there is a representation V of G and maps in SWY

KAL—SY,
SV S LAK
with the property that the composites
SYANL—-LAKANL—LASY,
KASY - KANLASY - SYANK
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are the symmetry isomorphism. Then for X,Y € 7%8%, the composite
(B.36) 78U (X, Y AK) = 788“(X AL, Y AK A L)
S 18X ALY ASY) = n8Y(STVAX ALY)

is an isomorphism, by the standard duality manipulation.
Given X — Y € 8¢ and any Z, there is a long exact sequence

(B.37)
e 8G9 Z, S A X)) = 78G (2, SF A Y) = n8Y(Z, SF A (Y U CX))
— 789 (Z, S AX) = -

As in the proof of B.20, this is proved with the argument of [50, III.2.1], using
the analogue of Proposition B.19 given as the special case of Corollary B.34 in
which V is trivial.

There is also an easier long exact sequence in the other variable. Let
A — X be a map in 8¢ and Y any spectrum. Then there is a long exact
sequence
(B.38)
e m8Y(SEFA(XUCA),Y) — 7889 (SPAX,Y) — 7589 (SFAA Y ) — - - - .

Under the isomorphism given by Proposition B.28, this is the long exact se-
quence of Proposition B.18 associated to the fibration sequence of function
spectra

YXUCA N YX N YA

B.3.4. 7585 as a homotopical category. We now study 75'8¢ as a homo-
topical category, and in doing so establish the fact that the functor SWE —
ho 8% is fully faithful.

By Proposition B.28 the functors 77,? factor through 7%t8“. We make
75t8% into a homotopical category by defining a map to be a weak equivalence
if it induces an isomorphism in 775 for all H C G and all k € Z. Since a map in

8¢ is a weak equivalence if and only if it is so in 758, the canonical functor
(B.39) ho 8¢ — ho 7°t8¢

is an isomorphism. Corollary B.6 asserts that if X € 8% happens to have
the property that 7*8%(X, —) is a homotopy functor, then 78%(X, —) —
ho 8% (X, —) is an isomorphism. Combining this with the isomorphism
(B.39) gives

LEMMA B.40. If X € 8% has the property that 758 (X, —) is a homotopy
functor, then for all Y, the maps

(B.41) 8% (X,Y) = hom*'8%(X,Y) <~ ho8Y(X,Y)

are isomorphisms, and so ho8%(X,Y) may be computed as T5'8%(X,Y).
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PROPOSITION B.42. For k € Z, the maps (B.29) and (B.41) give isomor-
phisms

THX ~ n%'8%(G/H, A S*, X) ~ ho 8% (G/H, A S*, X).
Proof. The first isomorphism is given by Proposition B.28, and it implies

that 758%(G/H, A S*, X) is a homotopy functor of X. Lemma B.40 then
gives the second isomorphism. O

COROLLARY B.43. A map X — Y in 8% is a weak equivalence if and only
if it becomes an isomorphism in ho 8C.

PROPOSITION B.44. When X is of the form X = S* A K with K a finite
G-CW complex, and £ € Z, the functor FStSG(X, —) is a homotopy functor,
and so for all Y, ho8%(X,Y) may be computed as m5'8%(X,Y).

Proof. Working through the skeletal filtration of K and using the exact
sequence (B.38) reduces the claim to the case in which K = G/H, A S™. But
that case is Corollary B.28. g

Note that
w89 (YN K, SN L) =limmo TO(SY AK, SV AL).
When L is a finite G-CW complex, this is the definition of SW® (K, L). Thus

Proposition B.44 contains as a special case

PROPOSITION B.45. The functor X°° induces a fully faithful embedding
SWE — ho 8.

B.3.5. FEquivariant additivity. Our next goal is to show that the forma-
tion of indexed wedges in 8¢ is homotopical. We will do this, as in [5], via a
Spanier-Whitehead duality argument. To make this work we need to show that
smashing with SV and S~V are homotopical. As mentioned in Remark B.35,
this implies that they induce inverse functors on ho 8¢. It also lays the ground-
work for our investigation of the homotopical properties of the smash product
in Section B.3.7.

LEMMA B.46. For a map X —Y in n%8%, the following are equivalent:

(i) the map X —'Y is a weak equivalence;
(ii) for all H C G, and all k € Z, the map

T G/Hy ASE, X) = m{(G/H A SFY)

18 an isomorphism;
(iii) for some representation V of G, all H C G, and all k € Z, the map

o G/H NSNSV, X) = (G /Hy ASFASY,Y)

s an isomorphism;
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(iv) for all representations V of G, all H C G and all k € Z, the map
Y G/H NSNSV, X) = m8(G/Hy ASFASY,Y)
1 an tsomorphism.

Proof. The equivalence of the first two statements is Proposition B.42, and
they imply the fourth by Proposition B.44. The fourth statement obviously
implies the third. That the third statement implies the first two are proved
by induction on |G|, the assertion being trivial when G is trivial. We may
therefore assume that part (iii) holds, and that part (ii) holds for all proper
H C G. Let Vj C V be the subspace of invariant vectors. Using the long exact
sequence (B.38), and working by downward induction through an equivariant
cell decomposition of SV, one sees that for all k € Z and all H C G, our
assumptions imply that the map

NG /Hy ASEASY X)) = 8 (G/Hy ASEASYY)

is an isomorphism. But in 75'8 there is an isomorphism S* A S0 ~ Sk+¢
with ¢ = dim Vj, so this implies part (ii). O

We next show that both smashing with SV and smashing with S~V are
homotopical functors. Combined with Corollary B.34 this implies that they
induce inverse equivalences of ho 8¢.

PROPOSITION B.47. Let V be a representation of G. The following con-
ditions on a map X — 'Y € 798C are equivalent:
(i) the map X — 'Y is a weak equivalence;
(ii) the map SV A X — SV AY is a weak equivalence;
(iii) the map SV A X — S™V AY is a weak equivalence.

Proof. Since smashing with SV is the inverse equivalence of smashing with
S~V it suffices to establish the equivalence of the first two assertions. Now
for any X, smashing with S gives an isomorphism

NG /HLNSE, STV ANX) = 7Y G/HL NS ASY X,

so the equivalence of the first two assertions is a consequence of Lemma B.46.
O

COROLLARY B.48. Suppose that V' is a representation of G. Smashing
with SV and S~V are inverse equivalences of ho 8.

With Proposition B.47 in place, we have the following generalization of
Proposition B.44.

PROPOSITION B.49. When X is of the form X = S™V A K, with K a
finite G-CW complex, the functor 8% (X, —) is a homotopy functor, and
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hence
8% (X, =) = ho8Y(X, —)
s an isomorphism.
Proof. By Corollary B.34 there is an isomorphism.
w8 (STV AN K, (=)~ a8Y (K, SV A (—)).
But SV A (—) is a homotopy functor by Proposition B.47, and 78 (K, (—))
is a homotopy functor by Proposition B.44. O

FExpanded out, Proposition B.49 gives the formula
ho84(S™V A K,Y) = lim[S™ A K, Yyew]®
w

advertised in Section 2.2.4 as (2.19). Taking S~V AK tobe S™VASFAG/H,,
k € Z, this specializes to the isomorphism
(B.50) hoS9(S™V ASFAG/H, X) & lim 7 Xvew.
W>—k

In particular, the expression liglw>_ ) TI'II/‘{/ 1 Xvew is a homotopy functor of X.
This fact is used in the proof of Proposition B.69, which plays a fundamen-
tal role in establishing the positive complete stable model category structure
on 8.

The fact that 7%¢8% is tensored over SWY also gives control over homo-
topical properties of the smash product and of indexed wedges.

COROLLARY B.51. If X is of the form S™W AK, with K a G-CW complex
and W a representation of G, then the functor

(=)AX:89 8¢
s homotopical.

Proof. By Proposition B.17 we may assume K to be finite. In addition, it
suffices to show that smashing with S~ A K is homotopical as a functor from
78C to itself. Suppose that Y — Y’ is a weak equivalence. Let L € SWE
be a V-dual of K. By the isomorphism of Proposition B.28 it suffices to show
that for all H C G and all k € Z, the map

™ 8Y(G/H, NSF Y AX) = 758Y(G/H, A S*, Y A X)

is an isomorphism. Using the first part of the duality isomorphism (B.36), we
can identify this map with

'8(G/Hy NSFASW AL SYAY) — 7589 (G/Hy ASFANSW AL, SV AY),
and finally by Proposition B.44, with
ho 8¢ (G/HL NS*ANSW AL, SV AY) = ho8Y(G/HL ASE NSV AL, SV AY).
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But this latter map is an isomorphism since S¥ AY — SV AY’ is a weak
equivalence (Proposition B.47). O

PROPOSITION B.52. Let J be a finite G-set. For any X € 89, the canon-

ical map \/jeg X — [ljes X is an isomorphism in 8% and hence a weak

equivalence.

Proof. The finite G-sets are self-dual in SWY. Since

\V X~ JnX,
jeJ

the result follows from the duality isomorphism

T8G(Z, 1. N X) = 784 (Jy A 2, X) = 78% (2, T X)
JjeJ
once one checks that the composite map is the same as the one coming from the

canonical map from the (constant) finite indexed wedge to the finite indexed
product. We leave this to the reader. O

COROLLARY B.53. Let J be a finite G-set and X an equivariant J-diagram.
The map
VX = 11X
jeJ jeJ

is an isomorphism in T8¢ and hence a weak equivalence.

Proof. Let U : 8¢ — 8B7% be the pullback map associated to the unique
equivariant map J — pt. The indexed wedge is the left adjoint to U and the
indexed product is the right adjoint. The natural transformation from the
indexed wedge to the indexed product is easily checked to satisfy the condi-
tion of Lemma B.54 below. This reduces us to checking the case in which
the J-diagram is constant at a G-spectrum X. But that case is covered by
Proposition B.52. U

We have used

LEMMA B.54. Suppose that U : D — C is a functor with a left adjoint
L and right adjoint R and that L — R is a natural transformation. If the
composition

(B.55) Id - UR —1d

of the adjoint to L — R with the counit of the adjunction is the identity, then
L — R is a retract of LUR — RUR.
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Proof. Just apply L — R on the left to the composition (B.55) to get

L LUR L
R RUR R. 0

Corollary B.53 implies the only nontrivial part of the following “indexed”
analogue of Proposition B.22.

ProrosiTiON B.56.

(i) The formation of finite indexed products is homotopical.
(ii) Suppose that J is a finite G-set and X : BjG — 8§ is a functor. The map

V X = [T X;

jedJ jeJ

is a stable weak equivalence in 8. Hence the formation of finite indexed
wedges is homotopical.
(iii) The formation of all indexed wedges is homotopical.

B.3.6. Change of group. Let H C G be a subgroup. Specializing Proposi-
tion B.56 to the case J = G/H gives the homotopical properties of the “change
of group” functors. The functor 7 : 8¢ — 8 is homotopical by definition
and so induces a functor on the homotopy categories

it :ho8Y — ho8™,

Taking J = G/H in Proposition B.56 we see that the left and right adjoints to
i3 are also homotopical and that the canonical natural transformation between
them is a weak equivalence. They therefore induce left and right adjoints to the
restriction map on the homotopy categories, and the canonical map between
them is an isomorphism. This is the Wirthmiiller isomorphism [84], [5].

B.3.7. Weak equivalences and the smash product. The smash product is
not known to preserve weak equivalences, but it does so in good cases.

Definition B.57. An equivariant orthogonal spectrum is cellular if it is in
the smallest subcategory of 8¢ containing the spectra of the form G, I/} S—V Sk

with V a representation of H and k& > 0 and that is closed under the formation
of arbitrary coproducts, the formation of mapping cones, retracts, and the
formation of filtered colimits along h-cofibrations. A cellular spectrum is built
entirely from induced cells if it is in the smallest subcategory containing the
spectra of the form G 1/1\7 S=V A Sk, with H a proper subgroup of G, and that

is closed under the properties above.



KERVAIRE INVARIANT ONE 189

The small object argument shows that every X receives, functorially, a
weak equivalence X — X from a cellular X.

ProrosiTiON B.58. If K is cellular, then K is flat: the functor sending
X to X N\ K preserves weak equivalences.

Proof. By Corollary B.51 and the fact that the formation of indexed
wedges is homotopical (Proposition B.56), the result is true when

K:GJF}/L\IS’VAS’“.
The functor X A K is built from

XAGJF@S*VAS’“

by forming wedges, mapping cones, and filtered colimits along h-cofibrations,
all of which are homotopical by Proposition B.56. ([l

Since every object is weakly equivalent to a cellular object, and cellular
objects are flat, Remark B.16 implies

ProrosiTiON B.59. Suppose that X — Y is a weak equivalence of flat
spectra. Then for any Z, the map X NZ — Y AN Z is a weak equivalence.

Let Sg C 8% be the full subcategory of flat objects, considered as a ho-
motopical category using the stable weak equivalences. Since every object of
8% is weakly equivalent to an object of Sﬂc, the functor

(B.60) ho 8§ — ho 8¢
is an equivalence of categories. The above results show
ProprosiTION B.61. The smash product functor
8% x 8¢ — 8¢
is homotopical.

The equivalence (B.60) and Proposition B.58 are enough to show that the
smash product descends to give ho 8¢ a symmetric monoidal structure and that
the map SWE — ho 8% is symmetric monoidal. For a more refined statement,
see Section B.4.2.

B.4. Spectra as a model category.

B.4.1. The positive complete model structure. Let Ao be the set of maps

(B.62) Acot = {G STV AST! Gy A SV AD1}
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with n > 0, H a subgroup of G, and V a representation of H containing a
nonzero invariant vector. We define the class

8¢ . c 8¢

cof

of positive complete cofibrations to be the smallest collection of maps in 8¢ con-
taining the maps in (B.62) and that is closed under coproducts, cobase change
along arbitrary maps, and filtered colimits. A positive complete fibration (or
just fibration) is a map having the right lifting property with respect to the
class of maps in SCGOf that are stable weak equivalences.

PROPOSITION B.63. The category 8¢ equipped with the stable weak equiv-
alences, the positive complete cofibrations, and the positive complete fibrations
forms a (cofibrantly generated) Quillen model category.

We will call this model structure the positive complete model structure,
and when we need to recruit a model structure for some task, this will be
the one we use. Henceforth the terms “cofibration,” “fibration,” and “weak

bRENAY

equivalence” will refer to “positive complete cofibration,” “positive complete

fibration,” and “stable weak equivalence.”

Remark B.64. Since the maps in Ay are mapping cylinders, they are
h-cofibrations. This implies that the cofibrations in 8¢ are h-cofibrations
(cf. [55, Lemma IT1.2.5]) and hence flat. The cofibrant objects in 8¢ are cellular
and hence flat.

The “positive” condition is needed for the study of commutative algebras.
On the other hand, it creates some peculiarities in the model structure. For
example, the zero sphere S° is not cofibrant, nor is S° A K when K is a G-CW
complex. The cofibrant replacements are given by

STIASIAK = S°AK.
This means that the adjunction
DLEEVEET it

is not a Quillen adjunction, even though the left adjoint preserves all weak
equivalences between nondegenerately based G-spaces, and so barely needs to
be derived.

The positive complete model structure does not quite appear in the liter-
ature. It is closely related to the positive stable model structure of [55].

The positive complete model structure is cofibrantly generated. The set
Acof is the set of generating cofibrations. The set B,cyclic of generating acyclic
cofibrations consists of the analogous maps

(B.65) G\ SVAT -Gy A SVAIm
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together with the corner maps formed by smashing

-Vew w -V
(B.66) G (s nSY) = GL S

with the maps Si_l — D%. The H-representation V' is assumed to have a
nonzero invariant vector, while W need not. The map (B.66) is extracted from
the factorization

(B.67) SVEW AW 5V 5 57V

formed by applying the small object construction in 8, using the maps in Agct.

A map X — Y has the right lifting property with respect to the class
of maps Acor if and only for each H C G and each representation V of H
containing a nonzero invariant vector, the map Xy — Yy is an acyclic fibration
in 79. Among other things this implies that X — Y is a weak equivalence
and that the map S~V — S~V is a homotopy equivalence. From this one
concludes that a map X — Y has the right lifting property with respect to
Bacyclic if and only if for each subgroup H C G and each representation V' of
H containing a nonzero invariant vector, the map Xy — Yy is a fibration in
8 and for each representation W of H, the square

(B.68) Xy — Q" Xyagw

|

is homotopy cartesian in 7.

ProprosITION B.69. If a map X — Y is a weak equivalence and has the
right lifting property with respect to Bacyclic then it has the right lifting property
with respect to Acof.

Proof. We must show that the conditions imply that for each H C G and
each representation V of H containing a nonzero invariant vector, the map
Xy — Yy is an acyclic fibration in 7. Part of our assumption is that it is
a fibration, so it remains to show that it is a weak equivalence. Choose an
exhausting sequence {V},}. Letting W range through this sequence in (B.68)
leads to a homotopy cartesian square

XV ——ho hﬂ QV"XV@\/”
Yy — holim Q" Yigy, .

Since X — Y is a weak equivalence, the rightmost vertical map is a weak
equivalence (by (B.50)), and hence so is Xy — Yy O
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PROPOSITION B.70. Any cobase change along a map in Bacyclic s a weak
equivalence.

Proof. Since the maps in Bycyclic are flat, it suffices to check that the maps
in Bacyclic are weak equivalences. The only ones for which this is not obvious
are the corner maps. Since they are flat, it suffices to check that the quotients

G+ {:\I (ng/<SfV@W A SV)) /\Dn/Snfl

are weakly contractible. Since D"/S"! is flat, and G4 A (—) is homotopical,
it suffices to show that

S—W/(s—V@W A SV)
is weakly contractible in 8 or, equivalently that the leftmost map in (B.67) is
a weak equivalence in 8. But that is a consequence of Proposition B.30 and
the two out of three property. O

ProroOSITION B.71. A map X — Y is a fibration if and only if it has the
right lifting property with respect to Bacyclic-

Proof. Suppose that A — B is an acyclic cofibration. Using the small
object construction with the maps in Bycyalic factor it as A — B — B, where
A — B is a filtered colimit of maps constructed by iterated cobase change
along maps in Bacyclic and B — B has the right lifting property with respect to
Bicyclic- The map A — B is a weak equivalence by Propositions B.70 and B.17.
It follows that B — B is a weak equivalence, and so by Proposition B.69, has
the right lifting property with respect to Acos. This means that A — B is a
retract of A — B. Since X — Y has the right lifting property for A — B, it
also has this property for A — B. ]

The verification of the model category axioms is now completely straight-
forward and left to the reader.

Let H C G be a subgroup. In the positive complete model category
structures, the restriction functor

it 89 — 8f
preserves weak equivalences, fibrations and cofibrations. This implies

ProproSITION B.72. Let H C G be a subgroup. The restriction functor
and its left adjoint form a Quillen pair
G+1/L\I(—):8H<:>SG:Z'}I,
as do the restriction functor and its right adjoint

g8 sst I (-5
jJEG/H
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COROLLARY B.73. An indexed wedge of cofibrations is a cofibration.

Corollary B.73 is one of our reasons for introducing the positive complete
model structure. The positive stable model structure of [55] does not have this
property.

Associated to any map i : G’ — G of finite groups is a functor i* : 8¢ — 8¢,
This functor has both a left and right adjoint. The functor ¢* sends the generat-
ing cofibrations to indexed wedges of generating cofibrations and hence cofibra-
tions by Corollary B.73. Since it is a left adjoint, it therefore sends cofibrations
to cofibrations. It also sends the generating acyclic cofibrations to weak equiv-
alences. To see this note that the generators of the form X A (I7™1 — I7)
are homotopy equivalences and hence go to homotopy equivalences. To check
that the corner maps go to weak equivalences, it suffices to show that the
maps (B.66) go to weak equivalences. Since SV — §=V is a homotopy equiv-
alence, this is equivalent to showing that maps of the form

-Vew w -V
G (s nSY) = GLnS

go to weak equivalences. But these maps go to an indexed wedge of maps of
the form

(B.74) (S7VEWIASY) - sV

that are weak equivalences. Thus ¢* also sends acyclic cofibrations to acyclic
cofibrations. This gives

PROPOSITION B.75. Ifi: G’ — G is any homomorphism of finite groups,
then the pullback functor
i*: 8% = 8¢
is a left Quillen functor.

For more along these lines, see [55, Rem. V.3.13].

B.4.2. Smash product. Equipped with the smash product and the positive
complete model category structure, 8¢ is a symmetric monoidal model category
in the sense of Hovey [35, Def. 4.2.6] and Schwede-Shipley [77]. This means
that the analogue of Quillen’s axiom SMT7 holds (the pushout product axiom),
and for any cofibrant X, the map

SOANX - X

is a weak equivalence, where SO — 59 is a cofibrant approximation. As will be

apparent to the reader the proof applies equally well if “cofibran
by “cellular.”

is replaced

PrRopPOSITION B.76. Equipped with the smash product, the positive com-
plete model structure is a symmetric monoidal model category.
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The positive complete model structure also satisfies the monoid axiom [78,
Def. 3.3].

PROPOSITION B.77. If X — Y is an acyclic cofibration in 8¢ and Z is
arbitrary, then X NZ — Y AN Z is a flat weak equivalence.

We have stated these together to slightly streamline the proof. When
cofibrations are flat, the monoid axiom implies the “weak equivalence” part
of the pushout product axiom once one knows the “cofibration” part. Indeed,
suppose A; — Bj is an acyclic cofibration and Ay — B> is a cofibration. Then

the vertical arrows in the diagram

Al NAy —— A1 AN By

B1 ANAyg —— B A By
are weak equivalences by the monoid axiom, and all of the arrows are cofibra-
tions by the “cofibration” part (Remark B.79). Since cofibrations are flat, the
map from A; A By to the pushout is a weak equivalence, and the desired weak
equivalence assertion then follows from two out of three.

Proofs of Propositions B.76 and B.77. Proposition B.59 implies the unit
axiom since cofibrant objects are cellular and hence flat (Remark B.64). The
pushout product axiom asserts that if f; : A1 — By and fo : Ay — By are
cofibrations, then the corner map from the pushout of the left and top arrows in

(B78) AL NAy —— A1 AN By

l i

B1 ANAyg —— B A By

to the bottom right term is a cofibration, and is acyclic if one of f; or fs is. It
suffices to check the cofibration condition when f1, and fy are in A.f and so
of the form

G ASTVA(SH = DF),
H,

GASTVA(ST = DY)
Ho

But in that case the corner map is the smash product of G I? S~V with
1

G 1{1\2 S~V2 with the pushout product of S¥~' — D* and S*~' — D’. This
is an indexed wedge of cofibrations hence a cofibration. As remarked above,
once Proposition B.77 is proved, we are done. Since X — Y is a cofibration,
it is an h-cofibration, so it suffices to show that (Y/X) A Z is weakly con-
tractible if Y/ X is. But Y/X is cofibrant, hence flat, so the claim follows from
Proposition B.59. O
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Remark B.79. The special case of the pushout product axiom for * — A
and * — B asserts that if A and B are cofibrant, then so is A A B.

Hovey [35, Th. 4.3.2] now implies

COROLLARY B.80. The left derived smash product makes hoS8® into a
closed symmetric monoidal category.

B.4.3. The canonical homotopy presentation. Let
CVnCVnJ,_l cC .-

be an exhausting sequence of orthogonal G-representations, and consider the
transition diagram

(B.81) S Vat1 A /G(Vm Vot1) N X, —— S—Vat1 A Xn+1
S=Ve A X,
Write

Wn = Vn4+1 — Vn
for the orthogonal complement of V,, in V;,41. The inclusion V,, C V,,41 gives
an embedding

SWH — /G(VTH Vn+1)7
and so from (B.81) a diagram

S—(Va®&Wn) A gWn A Xy, —— S Vi1 A X1

|

SV N X,
Putting these together as n varies results in a system
(B.82) Ag<- By =A< By - Ay<- By = A3 < B3 — ---

The system (B.82) maps to X and a simple check of equivariant stable homo-
topy groups shows that the map from its homotopy colimit to X is a weak
equivalence. Now for each n let C,, be the homotopy colimit of the portion

(B.83) Ay<-By—---— A, 1< B,_1 — A,

of (B.82). Then C, is naturally weakly equivalent to A, = S~"» A Xy, , and
the C, fit into a sequence

(B84) Co—)cl—)02—>"'

whose homotopy colimit coincides with that of (B.82). This gives the canonical
homotopy presentation of X. One can functorially replace the sequence (B.84)
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with a weakly equivalent sequence of cofibrations between cofibrant-fibrant
objects. The colimit of this sequence is naturally weakly equivalent to X. It
will be cofibrant automatically, and fibrant since the model category 8¢ is
compactly generated.

We write the canonical homotopy presentation of X as

X = holim (87" A Xy, et
Vn

or when more precision is needed, as a diagram

X < holim (S~ A Xy, )e = holim (S~ A Xy, )er,
| Vi

with the subscript indicating cofibrant and cofibrant-fibrant replacement.

B.5. Homotopy properties of the norm. The purpose of this section is to
establish Proposition B.104 which asserts that indexed smash products have a
left derived functor which may be computed on cofibrant objects. As will be
apparent to the reader, they can also be computed on cellular objects. Many
of the technical results in this section are also required for our analysis of
symmetric powers and of commutative algebras.

Before formulating our main results, we generalize the situation slightly.

B.5.1. FEquivariant J-diagrams. Given a nonempty G-set J, consider the
category 887C of functors B;G — 8. A choice of point ¢ in each G-orbit of J
gives an equivalence

B;G G
8P ~ T 8%,
t

where Gy is the stabilizer of t. We give 887 the model structure corresponding
to the product of the positive complete model structures under this equivalence.
The model structure is independent of the chosen points in each orbit. We
will refer to the model category 887¢ as the model category of equivariant
J-diagrams of spectra.

To be more explicit, a map of J-diagrams X — Y is a weak equivalence
if and only if for each j € J, the map Xj — Y7 is a weak equivalence in 8%,
The generating cofibrations are the maps whose j™ component has the form

—V: m;—1 -V m;
Gj+1/{\jS INSY? _>Gj+1{1\js INDLY,

with Vj a representation of H; having a nonzero invariant vector. They can be
expressed without reference to points and stabilizers as an indexed wedge

(B.85) pl (S7TV A (STt — D))

with p : J* — J a finite surjective map of G-sets, and V a G-equivariant
orthogonal vector bundle over J' having a nowhere-zero invariant section. The
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generating acyclic cofibrations are the maps of the form
plSTV A (I = 1)

and those constructed as the corner map formed by smashing

(B.86) pl(STVEWASY = 57V

with the maps S7~' — D7. As in (B.66), the map (B.86) is extracted from
the factorization

(B.87) SVEW AW 57V 5 57V

by applying the small object construction in the category of equivariant .J'-
diagrams using the generating cofibrations. The map S=Y — S~V is a homo-
topy equivalence.

If J — K is a map of finite G-sets, the restriction functor

SBKG — SBJG

has both a left and right adjoint, given by the two Kan extensions. All three
functors are homotopical, and the both the restriction functor and its left ad-
joint send cofibrations to cofibrations. This means that the restriction functor
is both a left and right Quillen functor.

Let p: J — K be an equivariant map of finite G-sets. The indexed smash
product gives a functor

ph = (- )/\J/K . §BsG _, gBKG
When J — K is the map G/H — pt this is the norm. The various homotopi-
cal properties of indexed and symmetric smash products we require are most
(—)M/K Working fiberwise, establishing

these reduces to the case K = pt. To keep the discussion uncluttered we focus

naturally expressed as properties of
on that case in this section, leaving the extension to the case of more general
K to the reader.

B.5.2. Indexed smash products and cofibrations. Let p : J — pt be the
unique equivariant map, and write the indexed smash product as ( — )AJ . Note
that if V' is an equivariant orthogonal vector bundle over J, then

(S—V)/\J — S—V’
where V' is the orthogonal G-space of global sections of V.

LEMMA B.88. Suppose that A — B is a generating cofibration in 8876,
The indexed corner map 04B" — B is an indexed wedge

VSTV A(SW)y — D(W)4)
r
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in which I" is a G-set, V and W are equivariant vector bundles over I', and V
has a nonzero invariant section. In particular, 4B — B is a cofibration.

Proof. This is a straightforward consequence of the distributive law (The-
orem A.37) applied to (B.85) and the compatibility of the formation of 94 B’
with indexed wedges, as described at the end of Section A.3.4. O

ProproOSITION B.89. Suppose that J is a nonempty finite G-set. If X — Y
is a cofibration of equivariant J-diagrams, the indexed smash product

X/\J — Y/\J

is an h-cofibration. It is a cofibration between cofibrant objects in 8¢ if X is
cofibrant.

Proof. The assertion that X"/ — Y/ is an h-cofibration is contained in
Proposition A.69. For the cofibration assertion, we work by induction on |J|
and may therefore assume the result to be known for any nonempty Jy C J
and any H C G stabilizing Jy as a subset. In particular, we may assume that if
X is cofibrant, then X" is a cofibrant H-spectrum for any nonempty proper
Jo C J and any H C G stabilizing Jy as a subset.

We will establish the theorem in the case in which X — Y arises from a
pushout square of J-diagrams

A——2DB

X —Y
in which A — B is a generating cofibration. We will show in this case that
X" — YN is an h-cofibration and is a cofibration if X is cofibrant. Since
the formation of indexed smash products commutes with directed colimits and
retracts, the proposition then follows from the small object argument.

Give Y the filtration described in Section A.3.4. The successive terms
are related by the pushout square

(B.90) \/ XMoanouBM — \/ XMoABM
J=JollJ1 J=JpllJ1
|J1]=n |J1]=n
fil,_, YN/ fil,, Y.

By Lemma B.88, each of the maps

9AB™1 — B
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is a cofibration. If X is cofibrant, then X0 is either S° or cofibrant by
induction, hence
X/\Jo AaAB/\Jl N X/\Jo /\B/\J1

is a cofibration by the pushout product axiom. Since indexed wedges preserve
cofibrations, the top row of (B.90) is then a cofibration and hence so is the
bottom row. O

To show that the indexed smash product has a left derived functor we need
to augment Proposition B.89 and show that what when X — Y is an acyclic
cofibration, then X/ — Y/ is a weak equivalence. This can be proved with
the above argument once we know that the indexed corner maps 948" — B/
associated to the generating acyclic cofibrations are weak equivalences. But
the generating acyclic cofibrations contain the maps of the form (B.86) so
dealing with them requires understanding something about indexed corner
maps of fairly general cofibrations. These can be studied as the indexed smash
products of maps in a different symmetric monoidal category.

B.5.3. The category of arrows. Let 8§ denote the category of maps X =
(Xo — X1) in 8¢, with morphisms the commutative diagrams. As mentioned
in Remark A.42, 8? can be made into a closed symmetric monoidal category
by defining
(Xl — XQ) AN (Yi — Yg)
to be the corner map, from the pushout of the top and left arrows in

XiANYT—XoA

L

XiANYy——= Xo A Yy

to the bottom right corner. The tensor unit is * — S°.
We give 8? the projective model structure in which a map

(B.91) (X1 — X3) = (Y1 — Ya)

is a weak equivalence or fibration if each of X; — Y; is, and is a cofibration if
both X; — Y7 and the corner map

(B.92) XoUY1 =Y
X1

are cofibrations. An object X; — X5 is therefore cofibrant if X is cofibrant
and X7 — X5y is a cofibration.

The model structure on 8§ is compactly generated. The model category
structure on generating (acyclic) cofibrations in 8§ are of two types. Type I
are the maps

(K—-K)—(L— L)
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and type II are the maps
(x> K) — (x = L),

where K — L is running through the set A, defined in (B.62) (respectively
Bacyclic)~

ProrosiTiION B.93. Equipped with the structure just described, 8? s a
symmetric monoidal model category satisfying the monoid axiom.

Proof. The proof follows the proof of Propositions B.76 and B.77 and,
because of the special nature of the generators, essentially reduces to it. It
suffices to check the “cofibration” assertion on generators. In each of the three
cases (type I and type I, type II and type II, and mixed type) the result reduces
to the case of 8. Since the cofibrations are h-cofibration, the monoid axiom
reduces showing that if (x — %) — (X; — Xb) is an acyclic cofibration and
(Z1 — Z3) is arbitrary, then both the domain and range in the corner map of

XiNZ1—= X1 N2y

l |

XoANZ1 ——= Xo N Zy

are weakly contractible. But by the monoid axiom for 8¢, every term in the
diagram is weakly contractible. The claim then follows since the left vertical
arrow is an h-cofibration and hence flat. As pointed out before the statement
of Proposition B.76, this implies the “weak equivalence” part of the pushout

product axiom. The unit axiom is also straightforward and left to the reader.
O

The proof of Proposition B.93 is more or less completely formal, and can
be rewritten to apply to the arrow category of any symmetric monoidal model
category. This is done in the recent paper [36] of Hovey.

B.5.4. Indexed corner maps and cofibrations. Proposition B.93 addresses
the homotopy properties of ordinary smash products in SlG. For the indexed
smash products we work in the arrow category 8113 16 of maps of equivariant
J-diagrams, in the projective model structure. Our aim is to establish Propo-
sition B.96 which gives control over the indexed corner maps in 8¢ (Propo-
sition B.97). It is the analogue in Sf"G of Proposition B.89. In preparation,
we need to identify the generating (acyclic) cofibrations. As mentioned in the
previous section, those in 8§ are of two types. Type I are the maps

(K—K)—(L—1L)
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and type II are the maps
(x = K) — (x = L),
where K — L is running through the set Ao¢ defined in (B.62) (respectively

Bacyclic)- The generating (acyclic) cofibrations in 8? 7¢ can be taken to be the
equivariant J-diagrams consisting entirely of type I or type II generators.

Remark B.94. A map (B.91) is an h-cofibration if both X; — Y7 and the
corner map (B.92) are. Since the cofibrations in §“ are h-cofibrations, the
same is true of the cofibrations in 8¢.

LEMMA B.95. If X — Y is a generating cofibration in the category of
equivariant J-diagrams in S?, then the indexed corner map

GXY/\J — Y/\J
is a cofibration between cofibrant objects in 8§ .

Proof. First note that for generating cofibrations of type I, the corner map

is
(Ox LN — o L) — (L — L)
and in type II it is
(x+ = O L) = (x — LM).

The assertion therefore reduces to Lemma B.88. U

ProproSITION B.96. Suppose that J is a finite G-set. If

X =Y
is a cofibration in 81G and X is cofibrant, then the indexed smash product
XNy

is a cofibration between cofibrant objects.

Proof. The proof proceeds exactly as in the case of Proposition B.89. The
filtration of Section A.3.4 and induction on |J| reduce the problem to showing
that the indexed corner map (in Sf 7 G)

8AY“ — BN

is a cofibration between cofibrant objects when A — B is a cofibrant generator.
This is the content of Lemma B.95. n

Specializing, we now have

ProrosiTION B.97. If X — Y is a cofibration of equivariant J-diagrams
and X is cofibrant, then the indexed corner map OxY " — Y is a cofibration
between cofibrant objects.
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Proof. If X =Y is a cofibration of cofibrant J-diagrams, then (X — Y')
is cofibrant J-diagram in 8¢, and so

(X > Y)M = (oxY" = v)
is cofibrant by Proposition B.96. O

B.5.5. Indexed smash products and acyclic cofibrations. With the indexed
corner maps of cofibrations under control we can now turn to the acyclic cofi-
brations.

LEMMA B.98. If X — Y is a generating acyclic cofibration in 857C | then
the indexed corner map

oxY" Yy
is an acyclic cofibration of cofibrant objects in 8C.

Proof. We know from Proposition B.97 that the indexed corner maps are
cofibrations between cofibrant objects, so what remains is the assertion that
they are weak equivalences. This can be reduced further. Suppose that X — Y
is an acyclic cofibration in 887¢ and we wish to show that the indexed corner
map Ix YN — Y is a weak equivalence. Give Y/ the filtration described in
Section A.3.4, in which the successive terms are related by the pushout square

\/ X/\Jo A axy/\J1 - \/ X/\Jo A Y/\J1

J=JollJ; J=JollJy
|J1]=n |J1]=n
fil,_, Y fil,, Y.

By Proposition B.97 and the pushout product axiom, the upper arrow is a
cofibration which, by induction on |J|, we may assume to be acyclic when
n < |J|. Since the cofibrations are flat, this means that the bottom arrow is an
acyclic cofibration when n < |J|. It follows that in this case, the indexed corner
map is a weak equivalence if and only if the absolute map X/ — Y is,

We now turn to the generating acyclic cofibrations. The generators of
the form X A (Iﬁ_l — Iﬁ) are homotopy equivalences, and hence so are the
absolute maps. The other generators are of the form

(B.99) (St = D) A (plSTVEW A S — pySTY)),

where p : J' — J is a map of finite G-sets and V and W are equivariant vec-
tor bundles over J’. The fact that the norm is multiplicative, together with
the monoid axiom for 8§, reduces us to considering only the right-hand factor
in (B.99). The distributive law further reduces us to the case J' = J. Fi-
nally, since the map SV 58 Visa homotopy equivalence, we may replace
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S—V with S~V. Evaluating both sides using Proposition A.59 we see that the
assertion amounts to checking that

STVEW AW 5=V

is a weak equivalence, where V' and W’ are the G-spaces of global sections.
But this is Proposition B.30 (see Remark B.33). O

As with Lemma B.95, the separate cases of type I and type II generators
reduce the result below to Lemma B.98.

LEMMA B.100. If X — Y is a generating acyclic cofibration in the cate-
gory of equivariant J-diagrams in SlG, then the indexed corner map

OxY™N =y
is an acyclic cofibration of cofibrant objects in 8.
ProrosiTioN B.101. Suppose that J is a finite G-set. The functor
(=) 8779 — 8¢
sends acyclic cofibrations between cofibrant objects to acyclic cofibration be-

tween cofibrant objects, and hence weak equivalences between cofibrant objects
to weak equivalences between cofibrant objects.

Proof. The proof proceeds exactly as in the case of Proposition B.89.
That the second assertion follows from the first is Ken Brown’s Lemma (see,
for example, [35, Lemma 1.1.12]). O

Specializing Proposition B.101, we have

PROPOSITION B.102. If X — Y is an acyclic cofibration in 887¢ and X
is cofibrant, then both the indexed corner map OxY " — Y and the absolute
map XN — YN are acyclic cofibrations between cofibrant objects.

B.5.6. Homotopy properties of the norm. With all this in hand we can now
show that indexed smash products have left derived functors. From Proposi-
tions B.89 and B.102 and Ken Brown’s Lemma, we have

ProrosiTIiON B.103. The indexed smash product
(_)/\J . SBJG —>8G

takes weak equivalences between cofibrant objects to weak equivalences between
cofibrant objects.

This gives
ProprosITION B.104. The indexed smash product has a left derived functor

L
(=) 8579 = hos“,
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which may be computed as
L
X/\J — (‘X'c)/\J7
where X, — X is a cofibrant approximation.

B.6. Symmetric powers. We now turn to the homotopical properties of
symmetric smash powers, or just “symmetric powers” for short.

B.6.1. Indexed symmetric powers. The n'® symmetric (smash) power of a
G-spectrum is the orbit spectrum

Sym™(X) = X"\"/%,,.

The homotopy properties of this functor are fundamental to understanding
the homotopy theory of equivariant commutative algebras. For indexed smash
products of commutative algebras, the distributive law leads one to consider
indexed smash products of symmetric powers

(Sym™ X)".
These can be written as
(B.105) (Sym" X)N = (X "/ )N ~ xN0xTD) 5T
with n = {1,...,n}. This last expression is an indexed symmetric power.

The definition and homotopy properties of indexed symmetric powers are the
subject of this section.

Before turning to the definition, we consider a more basic situation. Sup-
pose that i : G — G is a surjective map of groups with kernel N. Then the
functor i* : 8¢ — 8% has both a left and a right adjoint. This is most readily
understood by thinking of G-spectra as objects of 8 equipped with a G-action.
The left adjoint i, : 8¢ — 8¢ sends a spectrum Y to the orbit spectrum Y /N
equipped with its residual G-action. The expression on the right of (B.105) is
a special case of this. As in any diagram category, the orbit spectrum Y/N is
computed objectwise: if U is an orthogonal vector space, then (Y/N)y is the
G-space Yy /N. For the homotopical properties we need information about the
W -space for a representation W of G. It is given by the formula

(Y/N)w = O(U. W) & (Y/N)o.

where U is any vector space of the same dimension as W but with trivial
G-action. Interchanging the colimits, this space can be written as

ou,w AN Yy)/N
OWW) p Y0/
which, in turn, is isomorphic to
YW/N7

where now W is regarded as a G representation through the map G—aG.



KERVAIRE INVARIANT ONE 205

We can now define indexed symmetric powers. Let I be a finite G-set
and X7 the group of (not necessarily equivariant) automorphisms of I, with G
acting by conjugation. Fix a G-stable subgroup ¥ C ¥;, and regard I as a
3. % G-set through the projection map to G. For a 3 x G-equivariant I-diagram
X, the indexed symmetric power is the orbit G-spectrum

Sym& X = XM /3.

When the indexing set I has a trivial G-action, X is the full symmetry group
of I, and the equivariant I-diagram is the constant diagram with value X € 8¢,
then this construction is the usual symmetric power Sym'I | X discussed above.
We will usually not distinguish in notation between a 3 x G-spectrum X and
the constant equivariant I-diagram with value X.

If X — Y is amap of ¥ xG-equivariant I-diagrams, the indexed symmetric
corner map is the map of orbit G-spectra

dx SymL Y — SymL Y
obtained by passing to ¥ orbits from
OxY M -y

It can also be regarded as the symmetric power Sym& (X — V) of (X — Y)
regarded as an object of the arrow category S?E”G].

Remark B.106. Since the orbit spectrum functor is a continuous left ad-
joint, it sends h-cofibrations to h-cofibrations. For example, suppose that
X — Y is a cofibration of cofibrant ¥ x G-equivariant I-diagrams. By Propo-
sitions B.89 and B.97 both the indexed smash product

X/\] N Y/\I

and the corner map
oxYMN =y

are cofibrations, and hence h-cofibrations, of ¥ x G-spectra. This means that
all four of the maps

Syml, X — Symi Y,

dx SymL Y — Symly,
(EcE)+ A XM = (Be®)y Y™,
(EaZ)+ IxYM = (Egx), A yM

are h-cofibrations of G-spectra.
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Note that X with its ¥ x G-action is a special case of an indexed
monoidal product. This means that the distributive law applies to symmetric
powers and, given a pushout square

A——B

o

X ——>Y,

there is a filtration of Symlz Y whose successive terms are related by passing
to X-orbits from the filtration described in Section A.3.4.

As described in [55], the homotopy theoretic analysis of indexed symmetric
powers requires certain equivariant principal bundles. For the moment, let ¥
be any finite group with a G-action.

Definition B.107. An equivariant universal ¥-space is a X X G-space FEgY
with the property that for each finite ¥ xG-set S, the space of X x G-equivariant
maps

S—>Egz

is empty if some element of S is fixed by a nonidentity element of 3, and
contractible otherwise.

The defining property characterizes an equivariant universal Y-space up
to X X G-equivariant weak homotopy equivalence. The space EgX is the total
space of the universal G-equivariant principal X-bundle. It can be constructed
as a X X G-CW complex, with cells of the form S x D™, where S is a X-free
> % G-set. We will always assume our equivariant universal Y-spaces are
¥ x G-CW complexes, in which case the characterization is up to equivariant
homotopy equivalence.

The symmetric powers of a cofibrant spectrum are rarely cofibrant. How-
ever they still have very good homotopy theoretic properties. Our main result
is the following.

ProprosiTION B.108. Suppose that X — Y is a cofibration between cofi-
brant X X G-equivariant I-diagrams. In the square of G-spectra

(B.109) (EcY)4 A OxYMN — = (EgX) 4 A Yy
dx SymL Y SymL Y,

every object is flat, the upper row is a cofibration between cofibrant objects, the
vertical maps are weak equivalences, and the bottom row is an h-cofibration.
The horizontal maps are weak equivalences if X — Y is.
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Remark B.110. By Proposition B.59 the maps in (B.109) asserted to be
weak equivalences remain so after smashing with any spectrum Z.

Remark B.111. The situation that comes up in studying the free commu-
tative algebra functor is that X — Y is a cofibration of cofibrant G-spectra,
regarded as a Xj X G-spectrum through the map to G, and then regarded
as a constant equivariant I-diagram. This map of equivariant I-diagrams is
cofibrant by Proposition B.75, and so Proposition B.108 applies.

Along the way to proving Proposition B.108 we will also show

PROPOSITION B.112. The functors (EgX)+ Q (=M and Sym&(—) take

weak equivalences between cofibrant objects to weak equivalences.

Remark B.113. Proposition B.108 is part of the reason for the positive
condition in the model structure we have chosen. The result is not true for
general cellular objects described in Section B.3.7, though it is true for cellular
object built from cells of the form G4 ﬁ STV A Dﬁ with V' nonzero. The

condition that V' is nonzero is used in the proof of Proposition B.116.

The assertions about the top row in Proposition B.108 are most easily
analyzed in the arrow category 8113 1@,

LEMMmA B.114. The functor
EcSy p (=) 877 - 87

takes acyclic cofibrations between cofibrant objects to acyclic cofibrations be-
tween cofibrant objects and hence weak equivalences between cofibrant objects
to weak equivalences between cofibrant objects.

Proof. Let X — Y be an acyclic cofibration. By working through an
equivariant cell decomposition of FgY and using SM7 for the topological en-
richment, we reduce to showing that if S is a 3-free ¥ X G-set, then the map

Sy AXM 5 AV
Ty Ty
is an acyclic cofibration between cofibrant objects. This is an indexed wedge

of maps, indexed by the Y-orbits @ C S. The summand corresponding to O
is the map of Gp-spectra

Oy NXM 0 NYM
+ > + 5 )
where Go C G is the subgroup of G preserving O. Since O is a Y-torsor, this

is just the map of indexed smash products

/ ’
X/\I N Y/\I ,
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with I’ = O x I, and is an acyclic cofibration between cofibrant objects by
b

Proposition B.101. The second assertion follows from the first by Ken Brown’s
lemma. O

The vertical maps in (B.109) require a more detailed analysis.

Definition B.115. Suppose that Y is a group with an action of G and that
X is a ¥ x G-spectrum. We will say that X is X-free as a G-spectrum if for
each orthogonal G-representation W, the X-action on Xy is free away from
the base point.

ProprosITION B.116. If X is a cofibrant ¥ x G-equivariant I-diagram and
Z is any ¥ x G-spectrum, then X A Z is a $-free G-spectrum. The map

(B.117) (EGZ)+ ) (XMAZ) = (XMAZ)/2.

is a weak equivalence in 8C.

Remark B.118. We will mostly be interested in the case in which the -
action on Z is trivial. In that case the equivalence (B.117) takes the form

((EeD)+ /E\X“) ANZ S SymL(X)AZ.

Remark B.119. The proof of Proposition B.116 is nearly identical to that
of [55, Lemma II1.8.4]. We go through the details because the statement is
slightly more general, and in order to correct a minor error in [55]. The state-
ments of [55, Lemma II1.8.4] and the related [55, Lemma IV.4.5] both use EY;,
whereas the object that should really be used is EgY;. This makes the proofs
of [55, Th. II11.8.1] and [57, Theorem 4] on equivariant commutative rings in-
complete. The actual homotopical analysis of commutative rings is more or
less equivalent to the homotopical analysis of the norm. So it would seem that
any correct treatment needs to be built on the theory of the norm.

Proof of Proposition B.116. For the first assertion, it suffices to show that
if A — B is a generating cofibration,
A——B
Xo — X3

is a pushout square, and XM A Z is Y-free, then X{M A Z is Y-free. We use the
filtration described in Section A.3.4 and consider the pushout square below:

(B.120) \/ XpPAoaBMANZ —= \] XpABMAZ
I:I(]HIl I:IOH11
[11]=m H1|=m

! |

fil,, 1 X1 ANZ fil,, X1 A Z.
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Since A — B is a cofibration, the map in the top row is an h-cofibration
(Proposition B.97) and hence a closed inclusion. It therefore suffices to show
that ¥ acts freely away from the base point on the upper right term (see
Remark A.9). Induction on |I| reduces this to m = |I|. In this way the first
assertion of the proposition reduces to checking the special case

X =p/S™V ADE,
with p : I >1a surjective map of ¥ x G-sets and V' an equivariant vector

bundle over I having a nowhere vanishing invariant global section. Since the
factor (Di)“ can be absorbed into Z, we might as well suppose

X =p/S7V.
The distributive law gives
X/\I — \/ S_V'Y,
vyel’

where T is the ¥ x G-set of sections I — I, and
Vy =DV
i€l

For an orthogonal ¥ x G-representation W we have, by Lemma A.18,

* dim W < dim V,,
(XMAZ)w = , .
W=V OoV,eU,, W)y A Zy,  dimW >dimV,
Ser o)

in which U = {U,} is any ¥ x G-equivariant vector bundle over I' satisfying
dimU, = dimW — dimV,. We are interested in representations W that are
pulled back from the projection map » x G — G. In the first case there is
nothing to prove. In the second case the complement of the base point is
homeomorphic to
O(Vy @ Uy, W) x (Zy, —{x})
EF owy

(see Remark A.9). The X-freeness then follows from the fact that this space
has an equivariant map to the disjoint union of Stiefel-manifolds

[T o, w) =[] o(v; & Uy, W)/O(Us),
yel’ yel

which is Y-free since each V, ;) is nonzero, and ¥ acts faithfully on I but
trivially on W.

With one additional observation, a similar argument reduces the assertion
about weak equivalences to the same case

(B.121) X =p/S™V.
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To spell it out, abbreviate (B.120) as

K——1L
Y —Y'

and form

(BaE)+ Y <— (Ea¥)+ A K —— (E¥)4 A L

| | P

Y/% K/S d L/x.

By Remark B.106 the rightmost maps in both rows are h-cofibrations and hence
flat. This means that if the vertical maps are weak equivalences, then the map
of pushouts is a weak equivalence (Remark B.13). With this in hand, one now
reduces the second claim to the cases X = p%YS*V/\S_’TF_1 and X = p}k/S*V/\Dﬁ.
Absorbing the factors (S_kfl)M and (D¥)M into Z completes the reduction
to (B.121).

With this X, the map on W-spaces induced by (B.117) is the identity map
of the terminal object if dim W < dimV, and otherwise the map of -orbit
spaces induced by

EgX w Z Z
(EaX)+ /\V\E/FO(VV & Uy, W)y O(/gv) U, = V\E/FO(Vv S Uy, W)y 0(/l>w) Uy

in which U = {U,} is any ¥ x G-equivariant vector bundle over I' satisfying
dim Uy = dim W — dim V,,. The proposition then follows from the fact that

Ect x [[Oo(V, o U, W) = [[ OV, @ Uy, W)
~yel’ ~vel

is an equivariant homotopy equivalence for the compact Lie group

%z(HO(UﬁNE) X G.
vyel
To see this, note that by [38] and [39], both sides are 4-CW complexes so it
suffices to check that the map is a weak equivalence of H-fixed point spaces for
all H C ¢. If the image of H in ¥ x G is not a subgroup of 3, then EgX is
contractible and the map of fixed points is a homotopy equivalence. If H is a
subgroup of []O(U,), then it acts trivially on EgY, and once again EgXH is
contractible. Finally, suppose that there is an element h € H whose image in
> x G is a nonidentity of 3. Since W is pulled back from a G-representation,
this element acts trivially on W. If v € T is not fixed by h, then no point
of O(V, @ Uy,W) can be fixed by h. If v € I' is fixed by h, then h acts on
V,. This action is nontrivial since X acts faithfully on I. This means that



KERVAIRE INVARIANT ONE 211

O(Vy @ Uy, W) has no points fixed by h since h acts trivially on W. Both sides
therefore have empty H-fixed points in this case. O

Proof of Proposition B.108. The assertion that the upper arrow is a cofi-
bration between cofibrant objects and a weak equivalence if X — Y is, is
contained in Lemma B.114. Indeed, consider the map of arrows

(X—=Y)= (Y =Y).
If X — Y is a cofibration between cofibrant objects, then both the domain and
range of the above map of arrows are cofibrant. By Lemma B.114 the map

(BeD)+ /E\BXYM — (EgY)+ /2\YM> — ((EeD)+ /E\Y” = (Be®)+ Y

is a map of cofibrant objects, which is a weak equivalence if X — Y is. This
gives the assertion about the upper row. The fact that the bottom row is an
h-cofibration is part of Remark B.106.

For the remaining assertions it will be helpful to reference the expanded
diagram

(EcY)4 A OXYMNANZ —= (EgY) 4 A YMAZ — (EgY)+ A Y/ X)MANZ

i l i

Ox SymL Y A Z SymLY A Z Sym&L(Y/X) A Z,

in which Z is any G-spectrum. By Proposition B.116 the two right vertical
maps are weak equivalences. Since the left horizontal maps are h-cofibrations,
hence flat, this implies that the left vertical map is a weak equivalences. Taking
Z = 89 gives the weak equivalence of the vertical arrows in the statement of
Proposition B.108. Letting Z vary through a weak equivalence and using the
fact that cofibrant objects are flat gives the flatness assertion. By what we
have already proved, when X — Y is a weak equivalence, the vertical and top
arrows in the left square are weak equivalences and hence so is the bottom left
map. This completes the proof. [l

Proof of Proposition B.112. Suppose that X — Y is a weak equivalence
of cofibrant objects, and consider the diagram

(EeX)t f XM — (EgX) YN

| i

Sym& X SymL. Y.

The vertical maps are weak equivalences by Proposition B.116. The top hor-
izontal map is a weak equivalence by Lemma B.114 (applied to, say, the map
(* = X) — (x = Y)). The bottom map is therefore a weak equivalence. [
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B.6.2. Iterated indexed and symmetric powers. In our analysis of the norms
of commutative rings in Section B.8 we will encounter iterated indexed smash
products and symmetric powers. These work out just to be other indexed
smash or symmetric powers. The point of this section is to spell this out.

Suppose that I and J are G-sets and that X is an equivariant I x J-
diagram. The factorization

IxJ—=J—-pt
gives an isomorphism
(B.122) (XMW g x NI

in which X" is shorthand for p/* X with p : I x J — J the projection mapping.
Applying this to the arrow category we get an isomorphism of the corner map

Dy YNIXT) _y xxAIx)
with the iterated corner map
owz" — ZzM
in which W — Z is the map
OxYM — vy

There is also a version with symmetric powers. Suppose in addition that
Y. C ¥y is a G-stable subgroup. Then the action of £/ on I x J by

¢ (i,5) = (¢(4) - 4, 7)

is G-stable, making J x I into a 7 x G-set, and the projection map I x J — J
equivariant, with ¥/ x G acting on J through G. When X is a ¥/ x G-equi-
variant J x I-diagram, the isomorphism (B.122) is ¥/ x G-equivariant. Passing
to orbits gives an isomorphism of G-spectra

(B.123) (Sym§ X)) ~ Sym{$7 X.

By working in the arrow category we get an isomorphism of the corner map
Ox SymIXJY — SymIX‘]Y

with the iterated indexed corner map

(B.124) A

in which W — Z is the map

dx SymL Y — SymL Y.
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Our analysis of the homotopy properties of symmetric powers depended on
a convenient cofibrant approximation. Let EgY be a universal G-equivariant
Y.-space. The above discussion leads to an isomorphism

AN J AIX.J)
(EG2+§X ) NEG2+EAJX ,
and an identification of the corner map
7NJ 7NJ
aﬁpZ — Z
in which W — Z is the map
AT AT
EgYy ) (0x Y = YM)
with
J ANIxJ) ANIxJ)
(Bax), A (0xY —Y ).

To reduce this expression to one we have already considered we need to know
that FgX” is a universal equivariant ¥7/-space.

LEMMA B.125. Let J be a finite G-set. If EgY is an equivariant universal
Y.-space then, under the product action, (Egz)‘] s an equivariant universal
7 _space.

Proof. The functor T + T (from ¥ x G-spaces to ¥/ x G-spaces) has a
left adjoint. To describe it, let M be the set X x G x J and define a left action
of 3 x GG by the product of the translation action on ¥ x G and the action of
G on J. There is a commuting right £7 x G-action

(ZNGXJ)X(EJNG>—>E>4GXJ

whose component in the second factor is just the projection and in the first
factor is composed of the evaluation map

IJx2I %G =2 %G
and the right action of ¥ x G on itself. The functor T+ T can be identified
with
homy (M, T),

and so its left adjoint is given by

S— M x S.
SIxG

Breaking M into right X7 x G-orbits gives the decomposition
M x S=][s//

J
Y¥IxG jeJ

In this latter expression, the action of t € ¥ on s € S/EJ_{j} can be computed
as the orbit class of os, where ¢ € ¥/ is any element with o(j) = ¢. For
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example, the entire Y-action can be computed by restricting to the diagonal
subgroup of %7.

Observe that a £/ x G-set S is ©7/-free if and only if M x S is E-free.
SIxG

Clearly if S is ¥/-free, then for each j € J, S/E‘]*{j} is X-free. On the other
hand, if ¢ € ¥/ is a nonidentity element fixing s € S, then there is a j € J,
with o (j) not the identity element. For this j we have o (j)-27 1} s = 2/ {iks,

Now to the proof. Let S be a finite ¥/ x G-set. We need to show that
the space of ¥/ x G-maps

S — Egx’
is empty or contractible depending on whether or not S has a point fixed by

a nonidentity element of ¥”. By adjunction, this space can be identified with
the space of ¥ x G-maps from

M x §— EgY,
YIxG

and so the result follows from the observation above. O
We will be interested in the following case. Suppose that X — Y is a

cofibration of cofibrant ¥/ x G-equivariant I x J-diagrams. By Lemma B.125
and Proposition B.108, in the diagram

(Ecx)] EA] OxY NI (Egx)] ZA] yAUIXJ)

Ox Symg,‘] Y Symgf} Y

every object is flat, the top row is a cofibration of cofibrant objects, the bottom
row is an h-cofibration, and the vertical maps are weak equivalences and remain
so after smashing with any spectrum. The same conclusion therefore holds for
the corresponding diagram of iterated indexed (symmetric) powers

aW(Z/\(J)) Z/\(J)
8W(Z/\(J)) — . gAJ)

in which

—_—

N<—"N\

P
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is the diagram

EG’E+ /E\ 8XY/\I —_— EGZ+ /2\ Y/\I

| l

dx Sym& Y SymL Y.

Working fiberwise leads to an analogous result about the indexed smash
product along a map ¢ : J — K of finite G-sets. It plays an important role
in our analysis of the homotopy properties of the norms of commutative rings.
Aside from the map J — K of finite G-sets, the situation is the same as what
we have been discussing in this section. We have fixed a finite G-set I, a
G-stable subgroup % C Y7, and a universal G-equivariant Y-space Eg>..

PROPOSITION B.126. Let X — Y be a cofibration of cofibrant £7 x G-
equivariant I X J-diagrams, and write

R

N=<=—N\r

_—

for the diagram

EgY, A OxYM — = Eg% A yM

| l

dx SymL Y SymL Y.

In the G-equivariant K-diagram of corner maps

8,5, (ZNIIK)) e ZAI/E)

| |

O (ZNI/K)y o ZAI/K)

every object is flat, the vertical maps are weak equivalences after smashing
with any object, the upper map is a cofibration of cofibrant objects, and the
lower map is an h-cofibration. The horizontal maps are weak equivalences if
X =Y is.

Remark B.127. The actual hypothesis on X — Y required for the fiber-
wise argument is that for each k € K, the map X — Y is a cofibration of
Y7k % Gp-equivariant I x Jy-diagrams, where J;, C J is the inverse image of k
and G}, is the stabilizer of k. For the sake of a cleaner statement, we have made
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the slightly stronger assumption that it is a cofibration of cofibrant 7 x G-
equivariant I x J-diagrams. That this implies the “fiberwise” hypothesis is a
consequence of Proposition B.75.

Remark B.128. As in Remark B.111, Proposition B.126 applies to the sit-
uation in which X — Y is a cofibration of cofibrant G-equivariant J-diagrams,
regarded as a ¥ x G-equivariant I x J diagram by pulling back along the
projection mappings X x G — G and I x J — J.

B.7. Rings and modules. Aside from the alteration in model structure,
the following is stated as [55, Th. IIL.8.1]. The proof depends on our analysis
of symmetric powers which, as mentioned in Remark B.119, makes essential
use of the norm.

PRroPOSITION B.129. The forgetful functor
Comm% — 8¢

creates a topological model category structure on Comm in which the fibra-
tions and weak equivalences in Comm are the maps that are fibrations and
weak equivalences in 8C.

Proof. Most of the proof is formal. One takes as generating cofibrations
the maps Sym A — Sym B, where A — B € A.y, and generating acyclic
cofibrations the maps Sym A — Sym B with A — B € B,cyclic- The only real
point to check is that if

(B.130) Sym A —— Sym B
X Y

is a pushout diagram in which A — B is a generating acyclic cofibration, then
X — Y is a weak equivalence. That is contained in Lemma B.131 below. The
rest of the proof is left to the reader. O

LEMMA B.131. Suppose that A — B is a map of G-spectra and

Sym A —— Sym B

L

X Y

s a pushout diagram of equivariant commutative rings. If A — B is an acyclic
cofibration of cofibrant objects, then X — Y is a weak equivalence.
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The proof of Lemma B.131 involves a filtration of ¥ by X-modules that
we will use again in Section B.8. For a map A — B of G-spectra, define

fil,, Sym B = \/ fil,,, Sym™ B,

where the fil,,, Sym”™ B is obtained from the filtration described in Section A.3.4
by passing to X,-orbits and fits into a pushout square
Sym™™"™ A A 9 Sym™ B —— Sym"™™ A A Sym™ B

| |

fil,;,—1 Sym"™(B) fil,, Sym"™ B,

with
04 Sym™ B = (04B"™) /.

Wedging over n, one sees that the fil,, B are Sym A-submodules and that there
is a pushout square of A-modules

Sym A A 94 Sym™ B —— Sym A A Sym™ B

| |

fil,,_1 Sym B fil,, Sym B.

If a map X — Y of commutative rings fits into a pushout diagram

Sym A —— Sym B

L

X Y,

then we can define a filtration of Y by X-modules by
fil,, Y =X Syl/q\lAﬁlm Sym B.

Evidently these fil,,, Y are related by the pushout square of X-modules

(B.132) X N0aSym™ B —— X A Sym™ B
fily,1 Y fil,, Y.

Proof of Lemma B.131. We use the filtration just described. In the dia-
gram (B.132), if A — B is an acyclic cofibration between cofibrant objects,
then

04 Sym™ B — Sym™ B
is a weak equivalence and an h-cofibration of flat spectra by Proposition B.108.
It follows that the bottom map is a weak equivalence. O
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COROLLARY B.133. For H C G, the adjoint functors

Comm’ = Comm®

form a Quillen pair.

Proof. The restriction functor obviously preserves the classes of fibrations
and weak equivalences. O

COROLLARY B.134. The norm functor on commutative algebras

NG : Comm” — Comm®

is a left Quillen functor. It preserves the classes of cofibrations and acyclic
cofibrations and hence weak equivalences between cofibrant objects.

Proof. This is immediate from Corollary B.133 and Proposition A.56. The
assertion about weak equivalences is Ken Brown’s Lemma (see, for example,
[35, Lemma 1.1.12]). O

The category Mg of left modules over an equivariant associative algebra R
is as defined in Section A.2.7. As pointed out there, when R is commutative,
a left R-module can be regarded as a right R-module, and Mpz becomes a
symmetric monoidal category under the operation

(B.135) M AN.

The following result is a consequence of Propositions B.76, B.77, and [78,
Th. 4.1]. Except for the slight change of model structure, it is [55, Th. IIL.7.6].

ProprosiTION B.136. The forgetful functor
MR — SG

creates a model structure on the category Mg in which the fibrations and weak
equivalences are the maps that become fibrations and weak equivalences in 8C.
When R is commutative, the operation (B.135) satisfies the pushout product
and monoid axioms making Mpg into a symmetric monoidal model category.

Though not explicitly stated, the following formal result was surely known
to the authors of [78]; see the proof of [78, Th. 4.3].

COROLLARY B.137. Let f : R — S be a map of equivariant associative
algebras. The functors

Sé(—):MRSMsiU
given by restriction and extension of scalars form a Quillen pair. If S is cofi-

brant as a left R-module, then the restriction functor is also a left Quillen
functor.
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Proof. Proposition B.136 implies that the restriction functor preserves
fibrations and acyclic fibrations. This gives the first assertion. The second
follows from the fact that the restriction functor preserves colimits and the
consequence of Proposition B.136 that the generating (acyclic) cofibrations
for Mg are formed as the smash product of S with the generating (acyclic)
cofibrations for 8¢. O

The following result is [55, Prop. II1.7.7]. Using the fact that h-cofibrations
are flat, the proof reduces to checking the case M = G4 I/} S~V A R, which is
Proposition B.58.

ProprosITION B.138. Suppose that R is an associative algebra and M is
a cofibrant right R-module. The functor M/}%( — ) preserves weak equivalences.

In other words, the functor M /1% (—) is flat if M is cofibrant, and so it
need not be derived.

COROLLARY B.139. Suppose that R is an associative algebra and M 1is
a cofibrant right R-module. If N — N’ is a map of left R-modules whose
underlying map of spectra is an h-cofibration, then the sequence

MAN— MAN" — MA(N'/N)
R R R

is weakly equivalent to a cofibration sequence.

Note that the assumption is not that N — N’ is an h-cofibration in the

category of left R-modules. In that case the result would not require any
hypothesis on M.

Proof. We must show that the map from the mapping cone of

(B.140) M AN = MAN
R R

to M % (N'/N) is a weak equivalence. The mapping cone of (B.140) is isomor-

phic to
MQ (N'UCN),

and the spectrum underlying the R-module mapping cone N’ U N is the map-
ping cone formed in spectra. Since N — N’ is an h-cofibration, the map
N'UCN — N'/N is a weak equivalence (Proposition B.20). The result now
follows from Proposition B.138. O

Corollary B.139 can be used to show that many constructions derived from
the formation of monomial ideals have good homotopy theoretic properties. It
is used in Section 2.4.3 and in Section 6.1. In those cases the map of spectra
underlying N — N’ is the inclusion of a wedge summand and so obviously an
h-cofibration.
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B.8. Indexed smash products of commutative rings.

B.8.1. Description of the problem. Proposition B.104 asserts that the in-
dexed smash product functor

(_)/\J:SBJG_>8G
has a left derived functor
L
(=) :ho 8579 — ho8“

that can be computed by applying the norm to a cofibrant approximation.
We also know from Corollary B.133 (and the fact that coproducts of weak
equivalences are weak equivalences) that the restriction functor and its left
adjoint form a Quillen pair

p: comm8/¢ S comm 8¢ : p*.

Furthermore, the following diagram commutes, in which the vertical functors
are the forgetful functors (Corollary A.56):

2
comm 88'¢ — = comm 8¢

| l

SBJG SG
)/\J :

However, what we really want is the commutativity of the following diagram:

Lp
ho comm 887¢ ——+ ho comm 8¢

l i

hoSBIG .+ ho8C,
(~)%

in which the vertical maps are the forgetful functors (which are homotopical,
so do not need to be derived), and the horizontal arrows are the left derived
functors indicated. The point of this section is to establish this.

To clarify the issue, suppose R € comm 857 is a cofibrant J-diagram of
commutative rings. Let R — R be a cofibrant approximation of the underlying
J-diagram of spectra. What needs to be checked is that the map

(B.141) (RN — (R

is a weak equivalence. The proof involves an elaboration of the notion of
flatness. To motivate it we describe a bit of the argument.



KERVAIRE INVARIANT ONE 221

The main point in the proof is to investigate the situation of a pushout
diagram of equivariant J-diagrams of commutative rings

Sym A —— Sym B

.

Ry Ry

in which the top row is constructed by applying the symmetric algebra functor
Sym to a generating cofibration A — B, and in which one knows that the
map (B.141) is a weak equivalence for R = R;. One would like to conclude
that (B.141) is a weak equivalence for R = Rs.

To pass from R; to Ro we use the Ri-module filtration described after the
statement of Lemma B.131, whose stages fit into a pushout square

(B.142) Ry AN9gSym™ B —— R; ASym™ B
ﬁlm_l RQ ﬁlm RQ;
where

94 Sym™ B = (04B"™) [/Zp.
The filtration of Section A.3.4 mediates between (fil,,_1 R2)"’ and (fil,,, R2)"’

by another sequence of pushout squares. The upper right-hand corner of a
typical stage is an indexed wedge of terms of the form

(B.143) (filyp—1 R2)° A (Ry A Sym™ B)M1,

indexed by the set-theoretic decompositions J = Jy I J;.

We need to know two things about this expression. One is that the left
derived functor of its formation (in all variables) is computed in terms of the
expression itself, and the other is that formation of each of the pushout squares
we encounter is homotopical. Motivated by this we are led to consider a tech-
nical condition slightly stronger than the requirement that (B.141) be a weak
equivalence. That is the subject of the next section.

B.8.2. Very flat diagrams. Asin Section B.6.2, to make the diagrams more
readable we will use the notation

X/\(K/L) — qi\X
for the indexed smash product along a map ¢ : K — L of finite G-sets.
Definition B.144. An equivariant J-diagram X wvery flat if it has the fol-
lowing property: for every cofibrant approximation X — X, every diagram of

finite G-sets
JEKS L
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and every weak equivalence of equivariant L-diagrams Z — Z, the map
(B.145) (p*X)\EID A 7 — (p* X)NEID) A 7

is a weak equivalence.

Our main goal is to establish the following result.

PROPOSITION B.146. If R € 88/C is cofibrant commutative ring, then the
equivariant J-diagram of spectra underlying R is very flat.

The condition that R be very flat certainly implies that (B.141) is a weak
equivalence. Proposition B.146 therefore implies

COROLLARY B.147. The following diagram of left derived functors com-
mutes up to natural isomorphism:

Lp,
ho comm 88/¢ —2' = ho comm 8¢

| |

ho 8§8/¢ — ho 8¢.

(=)

Remark B.148. Since identity maps are weak equivalences, the condition
of being very flat implies that every arrow in the diagram

(p*X)/\(K/L) A A (p*Xv)/\(K/L) ANZ

| |

is a weak equivalence. In particular, it implies that (p*X)"®/L) is flat.

Remark B.149. Since X X/L) is cofibrant (Proposition B.89), and cofi-
brant objects are flat (Proposition B.58), the top arrow in the above diagram is
always a weak equivalence. It therefore suffices to check the very flat condition
when Z — Z is the identity map.

Remark B.150. If (B.145) is a weak equivalence for one cofibrant approx-
imation, it is a weak equivalence for any cofibrant approximation. It therefore
suffices to check the “very flat” condition for a single cofibrant approximation
X = X.

LEMMA B.151. Arbitrary wedges of very flat spectra are very flat. Smash
products of very flat spectra are very flat. Filtered colimits of very flat equi-
variant J-diagrams along h-cofibrations are very flat.
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Proof. The first assertion follows easily from the distributive law and the
fact that the formation of indexed wedges is homotopical. The second fol-
lows from the fact that the formation of indexed smash products is symmetric
monoidal. The third makes use of Proposition A.69. The details are left to
the reader. O

Example B.152. Here is one motivation for the definition of “very flat.”
Suppose we are given a pushout square of equivariant J-diagrams

A——=DB
X ——Y

and we are interested in the filtration of Y 5/L) described in Section A.3.4,
whose stages are related by pushout squares

(B.153) \/  XMoaguBMY —  \/ XMoo pha
(6, K1)eGn (¢,K1)€Gy,
fily, g YA/E fil,, YME/L

where G,, = G,,(K/L) is the G-set of pairs (¢, K1) with £ € L and K; C ¢~ ()
a subset of cardinality n, and the map G,, — L sends (¢, K1) to £. For (¢, K;) €
G, we have written K to denote the complement of K7 in ¢~ (¢).

The condition that B be very flat gives some control over the upper right
term. To see this let V,, = V,,(K/L) be the set of triples (¢, K1, k) for which
(¢,K;) € Gy, and k € K;. We define maps

7Lv, %a,
by
f Ky k) = q(k),
g(l, K1, k) = (£, Ky).
The spectra X5 form an equivariant G,,-diagram, which we denote Z. The

B"E1 are the constituents of (f*B)/\(V”/G"), and so the indexed wedge occur-
ring in the pushout square is

\/ Z A (f*B)NVn/Gn),
Gn

Since the formation of indexed wedges is homotopical, its homotopy proper-
ties come down to understanding the homotopy properties of the equivariant
Gp-diagram Z A f*B"V»/Gn) some of which are specified by the condition that
B be very flat.
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Replacing the category of equivariant J-diagrams with its arrow category,
we arrive at the notion of a wvery flat object of 8113 J¢ The formal properties
of being very flat persist in this context and, in particular, the analogues of
Remarks B.148, B.149, B.150, and Lemma B.151 hold.

To get a feel for the more particular aspects of very flat arrows, suppose
that (A — B) is an object of 8?‘7 “ and that (A — B) is a cofibrant approxi-
mation. Consider a weak equivalence of the form

(X = %) = (X — %).
In this case the very flat condition becomes that
(p* (B ANETE A X — %) — (p*(BJA)E/D A X — %)

is a weak equivalence. This is so if and only if B/A is very flat.
Next consider a weak equivalence of the form

(x = X) = (x = X).
The very flat condition in this case is that
(0,35 BME/D A X BANEID 5 )
— (8o ap* BN A X — p* BNE/D) A X

is a weak equivalence. This holds if and only if B is very flat and (A — B)
satisfies the condition that

(B.154) 0, 40" BN N X 5 0o ap” BMETD) A X
is a weak equivalence. If we happen to know that the indexed corner maps
0, 40" BAK/L) _y BAUK/L)

and

By ap” BNEID) _y pAE/D)

are h-cofibrations, then the leftmost horizontal maps in

P *Ap*B/\(K/L) /\X*)p*B/\(K/L) /\X*>p (B/A) (K/L) X

| | |

) *Ap*BA(K/L) AXHp*BA(K/L) AX — = p*(B/A)" (K/L) A X

are h-cofibrations and hence flat. Thus the middle and left vertical arrows are
weak equivalences if and only if the middle and right vertical arrows are, or in
other words if and only if both B and B/A are very flat. So in the presence of
the condition above, a necessary condition that (A — B) be a very flat arrow
is that B and B/A are very flat. This turns out to be sufficient. We single out
the condition.
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CONDITION B.155. For every J LKL L, the corner map
6p*A(p*B)A(K/L) N (p*B)/\(K/L)
is an h-cofibration.

Remark B.156. By Proposition B.96 and the monoid axiom for SfLG, a
cofibrant object (A — B) of S?J @ is very flat and satisfies Condition B.155.

LEMMA B.157. If Ay — Ag satisfies Condition B.155 and both A1 and
As /A1 are very flat, then A = (A1 — As) is very flat.

Proof. Fix a diagram of finite G-sets
JEKL L,

let A= (1211 — Ajy) be a cofibrant approximation to A = (A1 — Ag), and let

f(—>X,
X:(X1—>X2),
X:(X1—>X2)

be a weak equivalence in S? LG, By Remark B.156, A also satisfies the condi-
tions of the lemma. Let

X 5 XX

be the sequence
(x = Xo) = (X1 — Xo) = (X5 — %)

and X’ — X — X’ the analogous sequence for X. The maps X’ — X and
X’ — X are not h-cofibrations, but they are so objectwise and hence are flat.
Consider the diagram

(B.158) prANEID) A % prANEID) \ % prANEID) g 3

l l |

p*A/\(K/L) A X! p*A/\(K/L) AX p*A/\(K/L) A X

Our aim is to show that the middle vertical map is a weak equivalence.

The first step is to show that the left horizontal maps are flat. This reduces
us to checking that the left and right vertical maps are weak equivalences. For
this, let us examine the bottom left horizontal map in more detail. It is given
by

AK/L)

(B.159) (9 a,p* AY ) A Xy — pr Al ETE)

NX9) = (C — p*AQ(K/L) A X3),
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in which C' is defined by the pushout diagram

(B.160) O, p* ALETE) A Xty > e ADETD) X
0, *Alp*A/\(K/L) A X2 C.

When A; — A, satisfies Condition B.155, the top map in (B.160) is an
h-cofibration, hence so is the bottom map. This means that (B.159) is an
objectwise h-cofibration and so is flat. Since A; — Ay also satisfies Condi-
tion B.155, the upper left horizontal map in (B.158) is also flat. Thus we are
reduced to checking that the maps

p*A/\(K/L) /\Xl —)p*A(/\K/L) /\X/,
p*AA(K/L) /\X” —)p*A(/\K/L) AX"
are weak equivalences. As described above, this fact for the second map follows

from the assumption that As/A; is very flat. The assertion in the case of the
first map is that the middle and left vertical arrows in

d *Alp*AQ(K/L) A Xy — pr ADITE A Ry o p*(Ay) Ap)NETD) A X

p l l
0P*A1p*A§(K/L) A Xo HP*AQ(K/L) A Xy — p*(Ag/ADNEID) A X,

are weak equivalences. Since Ag and Ay/A; are very flat, the middle and
right vertical maps are weak equivalences. Condition B.155 shows that the
left horizontal maps are h-cofibrations and hence flat. It follows that the left
vertical map is a weak equivalence. O

We can now establish an important technical fact used in the proof of
Proposition B.146.

LEMMA B.161. Suppose that A — B is a cofibrant object of S?"G, Iisa
G-set, and X C X5 is a G-stable subgroup. Then

Symk(A — B) = (04 Symk B — Symi, B)
is very flat.
Proof. Proposition B.126 implies that in this situation the map
Symk(A — B)

satisfies Condition B.155 and that for every cofibrant B, Symé B is very flat.
(Thus both Sym& B and Symk(B/A) are very flat.) The result then follows
from Lemma B.157. 0
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Ezample B.162. Continuing with Example B.152, the top map in (B.153)
arises naturally in the arrow category as

V'  ZAeH (A BN,
G (/1)

where Z is the identity arrow of the diagram X”/0. Since the formation of
indexed wedges is homotopical, the information in the homotopy type of this
expression is contained in the G, (K/L)-diagram Z A (p*(A — B)MK/L)). The
condition that (A — B) be very flat thus specifies good homotopical properties
of the top map in (B.153).

LEMMA B.163. Consider a pushout square

(B.164) A— B

L

X —Y

in which (A — B) is a very flat object of S{SJG satisfying Condition B.155. If
X s very flat, then so is Y.

Proof. Using the fact that cofibrations are flat, we can arrange things so
that the cofibrant approximation Y — Y fits into a pushout square

(B.165) A——B
|

X -V

of cofibrant approximations to (B.164), in which A — B is a cofibration. We
give YME/L) and YME/L) the filtration described in Section A.3.4. We will
prove by induction on n that for any weak equivalence Z — Z of equivariant
J-diagrams, the map

(B.166) fil, YA Z 5 fil, YA Z

is a weak equivalence. The case n = 0 is the assertion that X is very flat,
which is true by assumption. For the inductive step, consider the diagram

fil, 1 YMANZ < \/ XMONBMNONZ — \/ XMNONBMY A Z
Gn(K/L) Gn(L)

| |

fil, 1 YNENZ < \/ sX o A 8AB/\K1 N2 — \/ XNKo A BNEY A 7
Gn(K/L) Gn(K/L)
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The map from the pushout of the top row to the pushout of the bottom
row is (B.166). The rightmost horizontal maps are h-cofibrations by Con-
dition B.155. The left vertical map is a weak equivalence by induction, and
the other two vertical maps are weak equivalences since (A — B) is very flat
(Example B.162). The map of pushouts is therefore a weak equivalence since
h-cofibrations are flat. O

B.8.3. Proof of Proposition B.146. Since, as shown in Lemma B.151, the
class of very flat G-diagrams is closed under the formation of filtered colimits
along h-cofibrations, it suffices to show that if A — B is a generating cofibration
in 8876,

Sym A —— Sym B

L

X Y

is a pushout square of commutative J-algebras, and X is very flat, then Y
is very flat. Working fiberwise, the filtration described after the statement of
Lemma B.131 gives a filtration of Y by X-modules, whose stages are related
by the pushout squares

(B.167) X A9sSym™ B — X ASym™ B
fil,,_1 Y fil,, Y.

We show by induction on m that each fil,, Y is very flat. Since filY =X,
the induction starts. The arrow (94 Sym™ B — Sym™ B) is very flat by
Lemma B.161. This means that the top row of (B.167) is a very flat ar-
row, since smash products of very flat objects are very flat (Lemma B.151).
This places us in the situation of Lemma B.163, which completes the inductive
step.

B.9. The slice tower, symmetric powers and the norm. The main goal of
this section is to show that if R is an equivariant commutative ring in Sgo,
and n > 0 is an integer, then the slice section P"R is also an equivariz;nt
commutative ring in Sgo. The proof makes use of the technology used to show
that cofibrant commutative rings are very flat and so has been deferred to this
appendix. The reader may wish to look through the first three subsections of
Section 4 for the basic definitions concerning the slice tower.

Our presentation of the slice tower was made in a context where the em-
phasis was on homotopy theory, and the slice sections P", etc were character-
ized by homotopy theoretic properties. Here we will be making use of some
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explicit constructions, and some care needs to be taken to ensure that the de-
rived functors we are ultimately interested in can be computed on the objects
that arise. Using the fact that indexed smash products of cofibrant objects are
cofibrant, and that indexed symmetric powers of cofibrant spectra are flat, one
can check that this is indeed the case. We will take as the definition of P" the
colimit of the inductive construction described in Section 4.2, using the cofi-
brant approximations S™'ASTAG I/}Ska and ST'ASTAG, I/L\ISIWH*1 for the
slice cells. This particular choice of P™ is homotopical, and the natural map
X — P"X is a cofibration. Our task will be to show that something functori-
ally weakly equivalent to P" takes commutative rings in 5§0 to commutative
rings in Sgo.

We begin with the interaction of the slice filtration with the formation of
indexed smash products. As in Section B.5 we fix a finite G-set and work with
the homotopy theory of equivariant J-diagrams. We define slice cells and the
slice filtration in the evident manner, so that the slice filtration on equivariant
J-diagrams corresponds to the product of slice filtrations on Gy-spectra under
the equivalence

8879 ~ T 4.
t
The proposition below follows easily from Proposition 4.13.

ProrosiTION B.168. Suppose that J is a nonempty G-set, X is a cofi-
brant equivariant J-diagram, and n is an integer. If each X; is slice (n — 1)
positive, then the indexed wedge

V X,
jeJ
is slice (n — 1) positive.
The next two results make use of the implication
(B.169) X>0 and Y>>k = XAY >k
proved in Section 4.3 (Proposition 4.26).

ProproOSITION B.170. Suppose that J is a nonempty G-set, X is a cofi-
brant equivariant J-diagram, and n > 0 is an integer. If each X; is slice (n—1)
positive, then the indexed smash product

A X
jeJ
is slice (n — 1) positive.

Proof. By induction on |G| we may suppose that i3, X"/ is slice (n — 1)-
positive for any proper subgroup H C G. This implies that T A X > n
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if T is any G-CW complex built entirely from induced G-cells. Since the
formation of indexed smash products commutes with filtered colimits, it suffices
by Proposition 4.15 to consider a cofibration A — B of equivariant J-diagrams
in which B/A is a wedge of slice cells of dimension greater than n and show that

(B.171) AN >n = B >n.
Using the filtration of Section A.3.4 for the identity pushout square
A——2B

-

A——B

gives a filtration of B/ whose stages fit into cofibration sequences

(B.172) fily—1 B — fil,, B — \[ AN A (B/A)M

in which the indexing G-set for the coproduct is the set of all set theoretic
decomposition J = Jy[[Ji1 with |Ji|] = m. The implication (B.169) and
Proposition B.168 above reduce the claim to showing that if J; # ), then
(B/A)M1 (regarded as an equivariant spectrum for the stabilizer of Jp) is slice
(n — 1)-positive. In other words, it suffices to prove the proposition when X is
a wedge of slice cells of dimension greater than or equal to n.

Making use of the distributive law, and once again (B.169) and Proposi-
tion B.168, one reduces to the case in which J = G/H is a single orbit, and X
corresponds to S*°H with k|H| > n or S¥?u~1 with k|H| — 1 > n. In the first
case

X/\J ~ Skpg
has dimension k|G| > k|H| > n. In the second case
XN S(n—l)pc-‘,—V
where V' = pg — indg 1. Write W = indg —1 so that SW A SV ~ SP6—1 and
there is a cofibration sequence
(B.173) SW)p A XM — XM — gn=Deetlee—),

The G-space S(W) is homeomorphic to the boundary of the simplex with
vertices G/H and has no G-fixed points. The barycentric subdivision gives
S(W)4 the structure of a G-CW complex built entirely from induced G-cells.
It therefore follows from our induction hypothesis that

S(W)y A XN
is slice (n—1)-positive. The rightmost term in (B.173) is a slice cell of dimension
k|G| —1>Ek|H|—1>n.
It follows that X/ is slice (n — 1)-positive. O
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Remark B.174. We will later need to know that in the situation of Propo-
sition B.170, one has

(B.175) > Ex)NM > .
To see this, rewrite the spectrum in (B.175) as
(Z—l(sl>/\J) A (X/\J).
The factor £71(S1)" is weakly equivalent to the sphere SV with V = R’ — 1.
This gives
E—l(sl)/\J > 0’
and the relation (B.175) then follows from Proposition B.170 and (B.169).

We next turn to indexed symmetric powers. As in Section B.6 we consider
a finite G-set I, a G-stable subgroup > C X, and the indexed symmetric power

Symb, X = XM /3.

ProproSITION B.176. Let n > 0 be an integer, I a nonempty G-set, and
X a cofibrant equivariant I-diagram. If X is slice (n — 1)-positive, then both
the indexed symmetric power Symk X and X! SymL(SX) are slice (n — 1)-
positive.

Proof. Using the equivalences
(Eg¥)4 p X" ~ Symg, X,
SHEGD), A EX)M ~ 27! Symb(2X)

of Proposition B.116 and working through an equivariant cell decomposition
of EgY reduces the claim to showing that

(B.177) S, QXM and ©7'S, A (zx)M

are slice (n —1)-positive when S is a finite X-free ¥ x G-set. But the first spec-
trum in (B.177) is an indexed wedge of indexed smash products of X (see the
proof of Lemma B.114) and hence slice (n — 1)-positive by Propositions B.170
and B.168. The second spectrum is an indexed wedge of de-suspensions of in-
dexed smash products of ¥X and hence slice (n— 1)-positive by Remark B.174
and Proposition B.168. U
We can now investigate the slice sections of commutative rings. Let P;‘lg :
¢ — Comm?© be the multiplicative analogue of P", constructed as the

colimit of a sequence of functors

Comm

WEBR - WER — ...
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The WialgR are defined inductively starting with W' lep = R, and in which
W,j 812 is defined by the pushout square

Sym(\/Etg) HSym(VCEt§>
I I

i l

W R WeR

in which the indexing set I is the set of maps S8 — W,jiglR with § > n a

cofibrant slice cell and ¢t > 0. The functor ﬁg is homotopical, and for any R,
the map R — R is a cofibration of equivariant commutative rings. The
arrow R — Eﬁg
universal property: if S is an equivariant commutative ring whose underlying

n
alg
R is characterized up to weak equivalence by the following

spectrum is slice (n 4 1)-null, then the map

ho Comm®(P? R, S) — ho CommY (R, S)

alg

is an isomorphism.
For clarity let us temporarily denote by U the forgetful functor

U : Comm® — 8¢,

By the small object argument, the spectrum UP! R is slice (n + 1)-null, so

mn
alg
there is a natural transformation

P"UR - UP,R

n
alg
of functors to 8.

ProPOSITION B.178. If R is a slice (—1)-positive cofibrant equivariant
commutative Ting, then for all n € Z, the map

P"UR - UP}, R

mn
alg
is a weak equivalence.

Proof. When n is negative, P"U R is contractible, and P R is a commu-
tative ring whose unit is nullhomotopic and hence also contractible. We may
therefore assume n is nonnegative.

It suffices to show that each of the maps

UWM R — UW "R

is a P"-equivalence. We do this by working through the filtration used in the
proof of Lemma B.131, whose successive terms are related by the homotopy
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cocartesian square
UW RA04Sym™ B —= UW/"8 R A Sym™ B

| l

fil,,— WER fil,, WR,

in which A — B is the map
(B.179) \/ '8 = \/Cx's.
I I

By induction we may assume that the maps
UR — UW R — fil,,_, W R

are P™ equivalences, and so among other things, that the three spectra are all
in Sgo. The homotopy fiber of fil,, 1 W;lgR — fil,, W2BR is

UW R A S~ Sym™(B/A).

Now B/A is the suspension of the left term in (B.179), which is slice n-positive.
It follows (Proposition B.176) that ¥ ! Sym™(B/A) is also slice n-positive,
and hence so is UW 8 R A 71 Sym™(B/A) since UW/8 R > 0. The fact
that fil,,—1 W,jlgR — fil,, W28 R is a P™-equivalence is now a consequence of
Lemma 4.28. g

B.10. Geometric and monoidal geometric fized points. The geometric fixed
point functor was defined and its main properties summarized in Section 2.5.2.
In this section we gives proofs of some of these properties and describe the
variation constructed in Mandell-May [55, §V.4]. We refer to the Mandell-
May construction as the monoidal geometric fixed point functor and denote it
@AG/I, in order not to confuse it with the usual geometric fixed point functor.

B.10.1. Geometric fixed points. The geometric fixed point functor was de-
fined in Section 2.5.2 by

3%(X) = (EP A X)f)“,

in which the G-CW complex EP is the one characterized up to equivariant
homotopy equivalence by the property

0 —
x*  H#G.

Since smashing with EP is homotopical, and the fixed point functor (—)¢
is a right Quillen functor, the functor ®¢ is homotopical. Since the formation
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of mapping cones is homotopical, for a map A — X, the map
(B.180) PY(X)UCPY(A) = oY (X UCA)

is a weak equivalence. Among other things this provides a long exact sequence
of homotopy groups F*(I)G(X ) associated to a cofibration sequence in the X
variable.

The characterizing property of EP implies that for any G-space Z and
any G-CW complex A, the restriction map

[A,EP A Z)S — [AC EP A 29
is an isomorphism. Since G-acts trivially on A%, the right-hand side is isomor-
phic to
1A%, (EP A 7)) = 149, 29).
Combining these gives the isomorphism
(B.181) [A, EP A Z]¢ = [AY, 29).

This isomorphism is the foundation for our investigation into ®¢.

Let ¢ : 8 — 8% be the functor that regards a spectrum as a G-spectrum
with trivial action. As described in Section 2.5.1, the fixed point functor ( — )G
is right adjoint to ¢

1:858%: (—)¢
and together they form a Quillen morphism in the positive complete model
structures.

For spectra that are cellular in the sense of Definition B.57, the geometric
fixed point functor is an inverse to ¢.

PROPOSITION B.182. For a cellular spectrum X € 8, the map
(B.183) X - oY9(1X)
adjoint to
1 X = EP A X — (EP A LX)y
18 a weak equivalence.

Proof. The long exact sequence of homotopy groups coming from (B.180)
reduces the claim to the case in which X has the form S~ A A with V a vector
space and A a CW-complex. This case can be checked by a direct computation.
For a G-representation W, we have

Xw = /G(V, W)NA
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and
(Xw)¥ = Za(V,W)“ A A
= Ja(V,W) A A
= Xyoa.
We can then compute
@9 (LX) ~ ho8(S*, (EP A X)F)
~ho8(S*, (EP A X))
~ ho8Y(S*, EP A X)
~ lim 7 EP A Xw
w>"k

~ L m e (Xw)©
W>—k
~ lim m e Xye,
W>—k
with the penultimate isomorphism coming from (B.181) and the last isomor-
phism from the above. Under the composite isomorphism, the map on stable
homotopy groups induced by (B.183) is
hgﬂ 7Tk+VXV — hgfl 7T]€G+WGXwG,
V>—k W>—k
in which V is ranging through the poset of finite dimensional orthogonal vec-
tor spaces and W through the poset of G-representations. This is clearly an
isomorphism. O

Since EP is H-equivariantly contractible when H is a proper subgroup of
G, the smash product EP A X is contractible if X is a cellular spectrum built
entirely from G-cells induced from a proper subgroup of G. More generally,

LEMMA B.184. Let A and Y be G-spectra. If X is constructed from A
by attaching G-cells induced from proper subgroups, then the inclusion A — X
induces a weak equivalence

EPANANY S5 EPAXAY
hence a weak equivalence
PY(ANY) B 2% (X AY).

COROLLARY B.185. Let V' be a G-representation and A a G-CW complez.
The maps

STVENAY 5 SVINA STV A4,
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constructed from the inclusions AS C A and VC C V| induce weak equivalences
STVENAG ~ @G (57VI N AC) 2 0C(57VE A A) & %(STV A 4A),
giving a zig-zag of weak equivalences
OC(57V A A) S 57V A AC
Proof. We work our way from the left. The first weak equivalence is
Proposition B.182. The next map is a weak equivalence by Lemma B.184

since A is constructed from A® by adding induced G-cells. The last map can
be constructed by applying ®¢ to the composition

SVAASSVASYVINASSTVNA

The right arrow is a weak equivalence. Since S V-V is a G-CW complex with
fixed point space S, it is constructed from S° by adding induced G-cells.
The left map therefore induces an equivalence of geometric fixed points by
Lemma B.184. ]

B.10.2. Motivation and definition of the monoidal geometric fixed point
functor. For an orthogonal representation V of G, let V& C V be the space of
invariant vectors and V1 the orthogonal complement of V. Note that

(B.186) VW) = g (Ve W) now, whe,
so that there is a canonical map
Je(V.W)E = 7 (Ve Wwe),

given in terms of (B.186) by smashing the identity map of J(VE, W) with
the map O(VL, WhH¥ — pt.
We wish to define a functor <I>J\G/I with the property that

(B.187) 3G (STVAA) =85V AAC

and that commutes with colimits as far as is possible. A value needs to be
assigned to the effect of @f/[ on the map

SWA Fa(V,W) — SV,
The only obvious choice is to take
G (ST A _Ja(V,W)) = @5 (S7Y)
to be the composite
(B.188) SWIN 76V, W)E = 5WEN (VO W) = 57V

If (ID% actually were to commute with colimits, it would be determined by
the specifications given by (B.187) and (B.188). Indeed, using the tautolog-
ical presentation to write a general equivariant orthogonal spectrum X as a
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reflexive coequalizer

\V STVA Za(V,W)AXy =\ STV A Xy = X,
v,w 1%

the value of @%(X ) would be given by the reflexive coequalizer diagram
(B.189) \/ SN _ga(V WG AXE =\ STV A XE - 0§ X
V,W 1%
We take this as the definition of ®§,(X).
Definition B.190. The monoidal geometric fixed point functor
oG 8¢ = 8
is the functor defined by the coequalizer diagram (B.189).

Remark B.191. In case X = S~V A A, the tautological presentation is a
split coequalizer, and one recovers both (B.187) and (B.188).

A fundamental property of the usual geometric fixed point functor ®¢
is that for proper H C G, the spectrum ®¢(G I/L\I X) is contractible. The
monoidal geometric fixed point functor has this property on the nose.

PropPOSITION B.192. Suppose that J is a G-set and X an equivariant
J-diagram. If J has no G-fized points then the map

o5 (\/ X;5) = =
Jj€J
is an tsomorphism. In particular, if H C G is a proper subgroup and X an
orthogonal H -spectrum, then the map

5, (G4 AX) =
is an isomorphism.

Proof. Since indexed wedges are computed componentwise, the assump-
tion that J has no fixed points implies that for all representations W of G,

<\/'X¥>§f::(\/(XHNV)G=:*.

= =
The claim then follows from the definition of @AG/[. O

Working through an equivariant cell decomposition gives

COROLLARY B.193. Let A and Y be G-spectra. If X is constructed from
A by attaching G-cells induced from proper subgroups, then the map

PG(ANY) = DG (X AY)

is an isomorphism.
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There is a natural map
(B.194) X% 5 o x

from the fixed point spectrum of X to the monoidal geometric fixed point
spectrum. To construct it, note that the fixed point spectrum of X is computed
termwise and so is given by the coequalizer diagram

(B.195) V SYA VW AXE =\ STV AXE - XC.
V\We g Ve 7
The map (B.194) is given by the evident inclusion of (B.195) into (B.189).
The functor ‘I>]\G4 cannot commute with all colimits. However, since colimits
of orthogonal G-spectra are computed objectwise, the definition implies that
@AG/I commutes with whatever enriched colimits are preserved by the fixed point
functor on G-spaces. This means that there is a functorial isomorphism

(B.196) DY (X AN A) ~ T (X) A AY

for each pointed G-space A and that @% commutes with the formation of
wedges, directed colimits, and cobase change along a closed inclusion. Because
h-cofibrations and cofibrations are objectwise closed inclusion (Lemma A.70
and Remark 5.38), the functor @% has good homotopy theoretic properties.

B.10.3. Homotopy properties of CIJ%*;,. Several variations on the following
appear in in [55, §V.4].

ProrosiTION B.197. The functor <I>]\G/[ sends cofibrations to cofibrations
and acyclic cofibrations to acyclic cofibrations. It therefore sends weak equiva-
lences between cofibrant objects to weak equivalences.

Proof. That ®§; sends cofibrations to cofibrations follows from the fact
that it preserves cobase change along closed inclusions and sends generating
cofibrations to generating cofibrations. A similar argument applies to the
acyclic cofibrations, once one checks that @?/[ sends both maps in the fac-
torization (B.67)

STVIW AW 57V 5 g7V
to weak equivalences. But the second map is a homotopy equivalence and the

composite map is sent to a weak equivalence by (B.187). The last assertion is
a consequence of Ken Brown’s Lemma. ]

Proposition B.197 implies that the monoidal geometric fixed point functor
has a left derived functor that can be computed on any cofibrant approxima-
tion. A similar argument with a slightly different model structure could be
used to show that the left derived functor can be computed on a cellular ap-
proximation. We will show in Section B.10.5 that the left derived functor L<I>]\G/I
is the geometric fixed point functor ®C.
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B.10.4. Monoidal geometric fixzed points and smash product. The proper-
ties (B.187) and (B.188) give an identification

3G (STVANAANS™™ AB) ~ ®G,(S7V AA) A (ST AB)
making the diagram

OF (SN Ja(Wi, Vi) ARG (ST A Fa(Wa, Vo)) —= @F;(S™1) A @f (S72)

| i

PG (SN _Fe(Wi, Vi) ASTV2 N _F6(Wa, Vo)) ———— &G, (S~ A S—12)

commute. Applying ‘IDAG4 termwise to the smash product of the tautological
presentations of X and Y, and using the above identifications, gives a natural
transformation

(B.198) PGH(X) A DBG(Y) = BF(X AY),

making ®§; lax monoidal. From the formula (B.187) this map is an isomor-
phism if X =SV AAdand Y = S~ A B. This leads to

PROPOSITION B.199 ([55, Prop. V.4.7]). The lax monoidal functor ®F; is
weakly monoidal: the map (B.198) is a weak equivalence (in fact an isomor-
phism) if X and Y are cellular.

Proof. The class of spectra X and Y for which (B.198) is an isomorphism
is stable under smashing with a G-space, the formation of wedges, directed
colimits, and cobase change along an objectwise closed inclusion. Since (B.198)
is an isomorphism when X = G4 1/1\1 SV ANAand Y = Gy J/L\I S~™W A B, this
implies it is an isomorphism when X and Y are cellular. Since isomorphisms
are weak equivalences, the result follows. O

Remark B.200. Blumberg and Mandell [10, App. A] have shown that
Proposition B.199 remains true under the assumption that only one of X or
Y is cellular. This implies that Proposition B.203 below remains true if only
one of N or N’ is cofibrant.

B.10.5. Relation with the geometric fized point functor. We now turn to
identifying the left derived functor L<I>]\G/[ with the geometric fixed point func-
tor ®¢. The inclusion S° — EP and the fibrant replacement functor give
maps

X 5 EPAX = (EPAX);.

PROPOSITION B.201 ([55, Prop. V.4.17]). If X is cofibrant, then the maps
PYX = (EPAXp)C — G, (EPAX)p) + 05 (X)

are weak equivalences.
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Sketch of proof. For the arrow on the left, note that both functors are
homotopical and, up to weak equivalence, preserve filtered colimits along h-co-
fibrations. Using the canonical homotopy presentation, it suffices to check that
the arrow on the left is a weak equivalence when X = S~V A A, with A a G-CW
complex. This follows from Corollary B.185, the identity (B.187), and a little
diagram chasing to check compatibility.

The right arrow is the composition of

G (X) — 5 (EP A X),
which is an isomorphism by (B.196), and
DG (EP AX) = O (EP AX)p),
which is an acyclic cofibration by Proposition B.197. g

B.10.6. The relative monoidal geometric fized point functor. The functor
@5\;4 can be formulated relative to an equivariant commutative or associative
algebra R. As described below, care must be taken in using the theory in
this way.
Because it is lax monoidal, the functor <I>]\G4 gives a functor
@% : Mp — /\/lq,g{ R

that is lax monoidal in case R is commutative.

ProrosiTIiON B.202. The functor
@% . MR — M@%{R
commutes with cobase change along a cofibration and preserves the classes of

cofibrations and acyclic cofibrations.

Proof. This follows easily from the fact that the maps of spectra underly-
ing the generating cofibrations for Mp are h-cofibrations. O

ProrosiTiON B.203. When R is commutative, the functor
@% : MR — M(I)gIR
is weakly monoidal and, in fact,

(B.204) DG (N A BG(N) = 5, (N AN)
o, (R) R

is an isomorphism if N' and N are cofibrant.

Proof. The proof is the same as that of Proposition B.199 once one knows
that the class of modules N’ and N for which (B.204) is an isomorphism is
stable under cobase change along a generating cofibration. This, in turn, is a
consequence of the fact that both sides of (B.204) preserve h-cofibrations in
each variable, since h-cofibrations are closed inclusions. The functor ®§; does
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so since it commutes with the formation of mapping cylinders, and N’ /I% (—)
does so since Mp is a closed symmetric monoidal category. O

As promising as it looks, it is not so easy to make use of Proposition B.203.
The trouble is that unless X is cofibrant, ®$,(X) may not have the weak

homotopy type of @G(X). So in order to use Proposition B.203 one needs a
condition guaranteeing that N’ /1; N is a cofibrant spectrum. The criterion of

Proposition B.205 below was suggested to us by Mike Mandell.

ProPOSITION B.205. Suppose R is an associative algebra with the prop-
erty that STV AR is cofibrant. If N is a cofibrant right R-module, and S™' AN
is a cofibrant left R-module, then

N' AN
R
is cofibrant.

Proof. First note that the condition on R guarantees that for every rep-
resentation U with dim U® > 0 and every cofibrant G-space T, the spectrum

(B.206) SUANRAT
is cofibrant. Since the formation of N’ g N commutes with cobase change

in both variables, the result reduces to the case N = S~V A R A X and
N =SWARAY with V having a nonzero fixed point space and X and YV
cofibrant G-spaces. But in that case

N'AN=STVEVARNXNY,
which is of the form (B.206) and hence cofibrant. O

COROLLARY B.207. Suppose R is an associative algebra with the prop-
erty that S~Y A R is cofibrant. If N' is a cofibrant right R-module, then the
equivariant orthogonal spectrum underlying N' is cofibrant.

Proof. Just take N = R in Proposition B.205. O

The following result plays an important role in determining ®% R(c0) (Sec-
tion 7.3).

ProrosiTION B.208. Suppose that R is an equivariant associative algebra
whose underlying G-spectrum is cellular and that R — S° is an equivariant
associative algebra map. If N' is a cofibrant right R-module, then N//I%S0 is a

cofibrant spectrum and the map
OF(N') A 80— ef (N A S0)
M

18 an isomorphism.
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Proof. One easily reduces to the case N’ = S™V A X AR, in which V is a
representation with V& # 0 and X is a cofibrant G-space. In this case N’ /}% S0

is isomorphic to S~V A X, which is cofibrant. The assertion about monoidal

geometric fixed points follows easily from Proposition B.199. U

B.11. Geometric fixed points and the norm. Our original version of the
following result merely concluded that the transformation in question was a
weak equivalence on cofibrant objects. Andrew Blumberg and Mike Mandell
pointed out that it is in fact an isomorphism. At their request we have included
the stronger statement.

ProrosiTIiON B.209. Suppose H C G. There is a natural transformation
@1 (—) = Of o Njj(—)
that is an isomorphism and hence a weak equivalence on cellular objects.

Proof. To construct the natural transformation, first note that there is a

natural isomorphism
A ~ (NGA)C
for H-equivariant spaces A. Next note that for an orthogonal representation
V of H, Proposition A.59 and the property (B.187) give isomorphisms
PG NGS™V ~ 0§ iV o gV & pH GV,

The monoidal properties of @% and the norm then combine to give an isomor-
phism
(B.210) STV ANA) =~ BENG(STV A A),
which one easily checks to be compatible with the maps

STV Iu(W, V) — SV,

To construct the transformation, write a general H-spectrum X in terms of its
tautological presentation

\V SWA Zu(VI)AXy =2\ STV A XYy = X,
V.W \%
and apply (B.210) termwise to produce a diagram

\/ STV gV, A =\ STV A X - 9O NG X

V,.W \%4
The coequalizer of the two arrows is, by definition, ®(X). This gives the
natural transformation.

The isomorphism assertion for cellular X reduces to the special case
(B.210), once one shows that ®§; o N&(—) commutes with the formation
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of wedges, cobase change along cofibrations between cofibrant objects, and fil-
tered colimits along closed inclusions. The last property is clear since both
of the functors being composed commutes with filtered colimits along closed
inclusions. For the other two assertions, it will be easier to work in terms of
equivariant J-diagrams for J = G/H.

Suppose that T is an indexing set and X;, t € T is a set of equivariant
J-diagrams. We wish to show that the natural map

AT
(B.211) \/ @5 X = o5 (\/ Xi)
teT teT
is an isomorphism. For this use the distributive law to rewrite the argument
of the right-hand side as
\V xn

vyel
where ~ is the G-set of functions J — T and

XM=\ Xog5)-
jeJ
The map asserted to be an isomorphism on monoidal geometric fixed points is
the inclusion of the summand indexed by the constant functions. But since G
acts trivially on 7', the other summands form an indexed wedge over a G-set
with no fixed points. The claim then follows from Proposition B.192.
The cobase change property is similar. Suppose we are given a pushout
square of equivariant J-diagrams
|l

X —Y

in which A — B is a cofibration and A is cofibrant. We consider the filtration
of Y given in Section A.3.4 whose stages fit into a pushout square

—_

\/ X/\Jo A 8AB/\J1 . \/ X/\Jo A B/\J1

J=JOHJ1 J:JOHJI
|Ji|=m |Ji]=m
fil,,_1 YN/ fil,, Y.

By Proposition B.97, the upper arrow is an h-cofibration, so the resulting
diagram of monoidal geometric fixed points is a pushout. But since J is a
transitive G-set, unless m = |J|, the group G has no fixed points on the G-set
indexing the wedges. Applying Proposition B.192 then shows that for m < |J|,
the map

oG XN = @F, fil,,, Y
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is an isomorphism and that the pushout square when m = |J| becomes

§,04B" —— o BN

| !

oG XN = oG Y.

However the term 948" is the term fil -1 B in the case in which X = A
and Y = B, and so ®§, A" — ®{,04B" is an isomorphism. This completes
the proof. n

Thinking in terms of left derived functors one can get a slightly better
result. As long as X has the property that the map (LNg)X — NgX is a
weak equivalence, there will be a weak equivalence between ® X and @GNEX .
Since it plays an important role in our work, we spell it out. Start with X € 8,
and let X, — X be a cofibrant approximation. Now consider the diagram

H ~_ oH ~ _ &G NG ~ _ G NG
(B.212) d J/ch m Oy X —— O N X, m o JEHXC
PHX PENGX.

The left vertical arrow is a weak equivalence since the geometric fixed point
functor preserves weak equivalences. The weak equivalences in the top row are
given by Propositions B.201, B.89, and B.209. Since ® is homotopical, we
have

PROPOSITION B.213. Suppose that X € 8" has the property that for some
(hence any) cofibrant approzimation X. — X, the map

N§X, - NSX

is a weak equivalence. Then the functorial relationship between ®7X and
PENGX given by (B.212) is a weak equivalence.

Remark B.214. Proposition B.213 can be proved without reference to @%
by using the canonical homotopy presentation.

Remark B.215. Proposition B.213 applies, in particular, when X is very
flat in the sense of Section B.8.2. By Proposition B.146 this means that if
R € 8 is a cofibrant commutative ring, then ® R and @GNSR are related
by a functorial zig-zag of weak equivalences. The case of interest to us is when
H = (Cy G =Cy and R = MUg. In this case NgR = MU((G)), and we get
an equivalence

O MUG) ~ &2 MU ~ MO.
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Remark B.216. Proposition B.213 also applies to the suspension spectra of
cofibrant H-spaces. Indeed, if X is a cofibrant H-space, then ST'ASTAX — X
is a cofibrant approximation. Applying Ng leads to the map

STV ASY ANG(X) = N§(X)

with V = indg R, which is a weak equivalence (in fact a cofibrant approxima-
tion). This case is used to show that ®¢ o Ng is a ring homomorphism on the
RO(G)-graded cohomology of G-spaces (Proposition 2.59).

B.12. Real bordism. In this section we give a construction of the real bor-
dism spectrum MUg as a commutative algebra in $§2. As will be apparent to
the reader, this construction owes a great deal to the Stefan Schwede’s con-
struction of MU in [76, Ch. 2]. We are indebted to Schwede for some very
helpful correspondence concerning these matters.

Our goal is to construct a Cs-equivariant commutative ring MUgr admit-
ting the canonical homotopy presentation

(B.217) MUz = holim S~ A MU (n),
in which MU (n) is the Thom complex of the universal bundle over BU(n).
The group Cs is acting on everything by complex conjugation, so we could
also write this expression as
(B.218) MUg ~ holim 5772 A MU (n).
The map

STP2AMU(1) - MUg
defines a real orientation. These things form the basis for everything we proved
about MUg.

The most natural construction of MUp realizes this structure in the cat-
egory Sg of real spectra, which is related to the category of Cs-equivariant
orthogonal spectra by a multiplicative Quillen equivalence

ir: Sg = 892 1 i,
We will construct a commutative algebra MURr € comm Sk, whose underlying
real spectrum has a canonical homotopy presentation of the form

(B.219) MUz <= holiy S~ A MU (n) = holim S~ A MU (n)e.
Applying 4 to (B.219) and making the identification i1S~C = S7°2 leads to
the diagram

(B.220) iMUR <+ holim S22 AN MU (n) — holim STP2N MU (n)ct.

We define MUy to be the spectrum iy MUp, where MU — MUR is a cofibrant
commutative algebra approximation. The functor ¢, is strictly monoidal, so
MUy is a commutative ring in 8“2, The map on the right in (B.220) is a weak
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equivalence since 4, is a left Quillen functor. The problem is to show that the
one on the left is.
This involves two steps. The first is to show that the forgetful functor

comm 8g — Sp

creates a model category structure on commSg. This involves analyzing
the symmetric powers of cofibrant real spectra which, as pointed out in Re-
mark B.119, depends in an essential way on understanding the homotopy the-
oretic properties of indexed symmetric powers. The second is to show that the
functor 4, is homotopical on a subcategory of Sg containing the real spectra
underlying cofibrant real commutative rings. As in our analysis of norms of
commutative rings, this involves a generalized notion of flatness. There is no
real way to short circuit the model structure on comm Sg. Its role is to identify
the cofibrant real commutative algebras. But the only real work in establishing
the model structure is showing that what one thinks is a cofibrant approxima-
tion is actually a weak equivalence and that is what is needed to show that
every real commutative algebra is weakly equivalent to a cofibrant one.

B.12.1. Real and complex spectra. In this section we describe the basics
of real and complex spectra. The additive results are more or less all a special
case of the results of [56], but the important multiplicative properties require
a separate analysis.

For finite dimensional complex Hermitian vector spaces A and B, let
U(A, B) be the Stiefel manifold of unitary embeddings A < B. There is
a natural Hermitian inner product on the complexification V¢ of a real orthog-
onal vector space V', so there is a natural map

O(V, W) — U(V@, W(c).

The group Cy acts on U(Vg, W) by complex conjugation, and the fixed point
space is O(V, W).

Definition B.221. The category fZc is the topological category whose ob-
jects are finite dimensional Hermitian vector spaces and whose morphism space
Jc(A, B) is the Thom complex

_7¢(A, B) = Thom(U(A, B); B — A).

The category Zr is the Co-equivariant topological category whose objects are
finite dimensional orthogonal real vector spaces V and with

Ir(V,W) = Zc(Ve, We),

on which Cy acts by complex conjugation.
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Definition B.222. The category Sc¢ of complex spectra is the topological
category of (continuous) functors

/(c—>7-.

The category Sg of real spectra is the topological category of Cs-enriched func-
tors

IR =~ Toy
and equivariant natural transformations.

We will write
V= XVC

for a typical real spectrum X and let S~V € Sg be the functor co-represented
by V € #r. From the Yoneda lemma there is a natural isomorphism

Sr(S7VE, X) = Xy,

As with equivariant orthogonal spectra, every real spectrum X has a tautolog-
ical presentation

(B.223) \V STVeA mVW)AXw. = ) STEAXy = X
V,WE/R VE/]R

A similar apparatus exist for complex spectra.

Remark B.224. The category #g is equivalent to its full subcategory with
objects R™ and, similarly, Zc is equivalent to its full subcategory with objects
C™. Thus a real spectrum X is specified by the spaces Xy, with V' = R"
together with the structure maps between them, and an object Y € 8¢ is
specified by its spaces Ycn together with the structure maps between them.

The group C3 acts on 8¢ through its action on Zc. We write this as
X — X, where

(X)v = Xy.
A fixed point for this action is a complex spectrum X equipped with an iso-
morphism X — X having the property that X — X — X = X is the identity
map. Restricting to the spaces X¢r» and using the standard basis to identify
C" with C", one sees that a fixed point for this Cy-action consists of a sequence
C-spaces Xcn, together with an associative family Co-equivariant maps

/(C(Cn, Cm) /\U((Cn) X(Cn — X(Cm,

where Cs is acting by conjugation. But this is the same thing as giving a real
spectrum indexed on the spaces R". This shows that the category of fixed
points for the Cy-action on 8¢ is Sg.
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B.12.2. Smash product and indexed smash products. The orthogonal sum
makes _Zc into a symmetric monoidal category and #g an T2 _enriched sym-
metric monoidal category. Using this one can define the smash product X AY
giving both Sg and Sc the structure of symmetric monoidal categories. The
smash product in Sg is specified by the formula

§—Ve A g—We — g-(VeW)c

and the fact that it commutes with colimits in each variable. A similar char-
acterization holds for Sc.

There are indexed monoidal products in this context. Let J be a finite
set with a Cy-action. The actions of C on J and on 8¢ combine to give an
action on the product category Sé. The category of 8 of real J-diagrams is
the category of fixed points for this action. The category of real J-diagrams for
J = {pt} is equivalent to Sg. When J = Cb, the category of real J-diagrams
is equivalent to 8c. For general J = nj 4+ noC5, one has an equivalence

8ik ~ S x 82
There are indexed wedges and indexed smash products from Sﬁé to Sg.

B.12.3. Homotopy theory of real and complex spectra. We now turn to the
homotopy theory of real and complex spectra. We describe the case of Sy and
leave the analogous case of S¢ to the reader.

Suppose that X is a real spectrum. For H C Cy and k € Z, set

WI?(X) = hﬂwlg—FVcXVC'
14

The colimit is taken over the poset of finite dimensional orthogonal vector
spaces over R, ordered (in agreement with Definition 2.3) by dimension. A
stable weak equivalence in Sg is a map X — Y inducing an isomorphism
X — 7Y for all H C Cy and k € Z. For fixed k, the groups 7 form a
Mackey functor, which we denote .

Equipped with the stable weak equivalences, the category Sg becomes a
homotopical category. We refine it to a model category by defining a map
to be a fibration if for each nonzero V', the map Xy, — Yy, is a fibration in
T, The cofibrations are the maps having the left lifting property against the
acyclic fibrations. This is the positive stable model structure on Sg.

The positive stable model structure is cofibrantly generated. The gener-
ating cofibrations can be taken to be the maps of the form

STVen (st = D)
and

(Co)y NS A (8271 — DL,
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with V' > 0. The generating acyclic cofibrations are the analogous maps
STVEA (I = 1)
and
(Co)y ASTVEN(IF = T7)
together with the corner maps formed by smashing
(B.225) S—Ve®We o gWe _, g-Ve

with the maps S~ — D7 and (C2)4 A (ST1 — D7). We assume V > 0,
while W need not be. The map (B.225) is extracted from the factorization

STVEEWe A gWe , §7Ve g7 Ve

formed by applying the small object construction with the generating cofibra-
tions. As in the case of the complete positive stable model structure on 8¢, the
map S™¢ — S~VY¢ is a homotopy equivalence. The verification of the model
category axioms is straightforward. See Section B.4.1 or [56].

B.12.4. Real spectra and Co-spectra. Let
i IR Jo,

be the functor sending V to
Ve =V ® pa.

Then the restriction functor
i* 1 89 — 8p

has both a left and right adjoint which we denote 4 and 4, respectively. The
left adjoint sends S~V to S~V2 and is described in general by applying the
functor termwise to the tautological presentation.

Since the functor ¢ is symmetric monoidal, the left adjoint 4, is strongly
symmetric monoidal.

ProprosiTION B.226. The functors
iy Sp = 8¢ 1 it
form a Quillen equivalence.
Remark B.227. A similar discussion leads to a Quillen equivalence

Sc 5 8.
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Proof. Since 14y is a left adjoint and
i(STVEANA) =5"Ve2 A A,

it is immediate that i, sends the generating (acyclic) cofibrations to (acyclic)
cofibrations and hence is a left Quillen functor. Using the fact that the sequence
{R™ ® py} is exhausting, one can easily check that a map X — Y in 8“2 is a
weak equivalence if and only if ¢* X — ¢*Y is. This means that to show that
and 7* form a Quillen equivalence, it suffices to show that the unit map

(B.228) X =i X

is a weak equivalence for every cofibrant X € Sr. Since ¢* is also a left
adjoint, it preserves colimits, and therefore so does ¢*i;. Since both functors
also commute with smashing with a Cy-space, we are reduced to checking that
for each 0 # V € _#g, the map

(B.229) STVE 5 xS Ver

is a weak equivalence.
For W € #r, the Wc-space of S—Ve ig

Sr(V,W) = Thom(U(Ve, We); We — Ve)
and the W-space of i*S~Vr2 is
Hs(Vigs W) = Thom(O(Vp,, Wy, ); W, — Vpy).
The unit of the adjunction is derived from the inclusion
U(Vc, W(c) — O(Vpg, sz).
We must therefore show that for each k, the map

(B.230) lim e Sr(Ve, We) = lm m e F0y (Vo W)
wWe _7r We _#r
is an isomorphism.
We may suppose that dim W > dim V. For a fixed W, choose an orthog-
onal embedding V' C W, write W =V @ U, and consider the diagram

SUc /R(V, W)

- |

§Ur2 —— /Cz(vawm)'

The left vertical map is an equivariant isomorphism. A straightforward argu-
ment using the connectivity of Stiefel manifolds shows that for dim W > 0,
the horizontal maps are isomorphisms in both ., ;. and ng_wc. It follows
that the right vertical map is as well, and hence so is (B.230). O
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For later reference, we record one fact that emerged in the proof of Propo-
sition B.226.

LEMMA B.231. The functor i* reflects weak equivalences; that is, a map
X =Y €8 is a weak equivalence if and only if i*X — i*Y is.

B.12.5. Multiplicative aspects of real spectra. The multiplicative homo-
topy theory of real spectra is similar to that of 8¢. Though there does not
seem to be a simple way to directly deduce the results from the case of 82,
the proofs are very similar.

ProrosiTiON B.232. If J is a set with a Ce-action and X — Y is a
cofibration of cofibrant real J-diagrams, then both the indexed corner map
OxY™N — YN and the absolute map X — Y are cofibrations between
cofibrant objects. They are weak equivalences if X —'Y is.

Proof. This is an analogue of Propositions B.96 and B.102, and it is proved
in the same way, using the arrow category and the filtration of Section A.3.4.
O

For the symmetric powers, we fix a Cs-set J and a Ca-stable subgroup
¥ C X;. The following is an analog of Proposition B.116 and, making use of
Proposition B.232, is proved in the same manner.

ProrosiTIiON B.233. If X € Sy is cofibrant and Z is any real spectrum
equipped with an action of 3 x Cy extending the G-action, then the map

(Ee, D) § (XM A 2) 5 (XM A 2)/5
is a weak equivalence.

ProrosITION B.234. If A — B is a cofibration of cofibrant real spectra
and J is a finite set with a Ca-action, then in the diagram

EC2E+ /E\ 8AB/\J —_— ECQE_,_ /E\ BN

l i

d4Sym’ B Sym”’ B

the upper row is a cofibration between cofibrant objects, the vertical maps are
weak equivalences and remain so after smashing with any object, and the bot-
tom row is an h-cofibration of flat spectra. The horizontal maps are weak
equivalences if A — B is.

Proof. This is an analogue of Proposition B.108 and is proved in the same
way, making use of Proposition B.233. O
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ProPoOSITION B.235. The forgetful functor
comm 8g — Sp

creates a model category structure on commutative algebras in Sy, in which a
map of commutative algebras is a fibration or weak equivalence if and only if
the underlying map of real spectra is.

Proof. This is proved in the same manner as Proposition B.129, making
use of Proposition B.234. U

B.12.6. Generalized flatness. Our next task is to show that the left derived
functor of 41 can be computed on a subcategory of real spectra containing those
that underlie real commutative rings.

Definition B.236. A real spectrum X € Sy is 4 -flat if it satisfies the
following property: for every cofibrant approximation X — X and every weak
equivalence Z — Z € 8“2, the map

(B.237) WXANZ > XNZ
is a weak equivalence.

Remark B.238. Since 1 is a left Quillen functor and cofibrant objects of
8% are flat, cofibrant objects of Sk are 7i-flat.

Remark B.239. If (B.237) is a weak equivalence for one cofibrant approx-
imation, it is a weak equivalence for any cofibrant approximation.

Our main result is

ProprosiTION B.240. If R € Sg is a cofibrant commutative algebra, then
R is iy-flat.

The proof of Proposition B.240 follows the argument for the proof of
Proposition B.146.

LEMMA B.241. If A € Sg is cofibrant, and n > 1, then Sym™ A is i\-flat.
Proof. By Proposition B.233, the map
(EcyXn)+ Z/l AN — Sym™ A
is a cofibrant approximation. Since 4, is a continuous left adjoint, we may
identify
(B.242) in((EcySn)+ L AMYNZ =i (Sym™ A) A Z
with
(B.243) (EcyBn)+ A (it A" A Z — Sym™ (i A) A Z.

n
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Since iy is a left Quillen functor, 4(A) is cofibrant, and Proposition B.116
implies that (B.243), hence (B.242) is a weak equivalence. O

We also require an analogue of Lemma B.163, though the statement and
proof are much simpler in this case, since i is a left adjoint.

LEMMA B.244. If S — T is an h-cofibration in Sg and two of S, T, T/S
are i)-flat, then so is the third.

Proof. We may choose a map S — T of cofibrant approximations that is
a cofibration and hence an h-cofibration. Our assumption is that two of the
vertical maps in

ZIS/\ZHY/IT/\ZHZI(T/S’)/\Z
i!S/\ZHi!T/\ZH’L'[(T/S)/\Z

are weak equivalences. This implies that the third is, since the two left hori-
zontal maps are h-cofibrations and hence flat. O

LEMMA B.245. Consider a pushout square in Sg,
(B.246) S ——=T
X —Y,
in which S — T is an h-cofibration. If T, T'/S and X are i\-flat, then so is Y.

Proof. Since T and T'/S are ii-flat, so is S by Lemma B.244. We may
choose cofibrant approximations of everything fitting into a pushout diagram

I

X —Y

in which the top row is an h-cofibration. Now consider
Z'!X/\Z<—Z'IS/\24>Z'!T/\Z
WXNZ <~—0SNZ ——= 3T NZ.

The left horizontal maps are h-cofibrations hence flat, and the vertical maps
are weak equivalences by assumption. It follows that the map of pushouts is a
weak equivalence. O
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Proof of Proposition B.240. It suffices to show that if A — B is a gener-
ating cofibration in Sg, then

Sym A —— Sym B

|

X Y

is a pushout square of commutative algebras in Sg and X is #;-flat, and then
Y is i-flat. We induct over the filtration described in Section A.3.4. Since
filp Y = X, the induction starts. For the inductive step, consider the pushout
square

(B.247) X A9sSym™ B — X ASym™ B
fil,_1 Y fil,, Y,

and assume that fil,,, 1Y is 4-flat. Both Sym™ B and
Sym™ B/04 Sym™ B = Sym™(B/A)

are 7-flat by Lemma B.241. Since smash products of #;-flat spectra are i\-flat,
both X A Sym™ B and X A Sym™(B/A) are i)-flat. The top row of (B.247) is
an h-cofibration, so Lemma B.245 implies that fil,,, Y is 4;-flat. This completes
the inductive step and the proof. ]

Though we do not quite need the following result, having come this far
we record it for future reference.

PRrOPOSITION B.248. The functors iy and i* restrict to a Quillen equiva-
lence
i) : comm Sg S comm 82 : i*.

Proof. 1t is immediate from the definition of the model structures on

comm 8g and comm 82, and from the fact that
i Sp S 892 1 i*
is a Quillen pair, that
i* : comm 8“? — comm Sp
preserves the classes of fibrations and acyclic fibrations. It remains to show
that if A € comm Sy is cofibrant, then the composition
A— i*i[A — i*(iyAf)

is a weak equivalence, where iyA — /Ay is a fibrant replacement. Since ¢*
reflects weak equivalences (Lemma B.231), this is equivalent to showing that

A— Z*’LuA
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is a weak equivalence. Let A — A be a cofibrant approximation in 8g, and
consider the following diagram in Sg:

(B.249) A — i A

A ——= 1%} A.

By Proposition B.240 the map iy A’ — 7, A is a weak equivalence. The rightmost
arrow in (B.249) is therefore a weak equivalence. The top arrow is a weak
equivalence by Proposition B.226, and the left arrow is a weak equivalence by
assumption. This implies that the bottom arrow is a weak equivalence. O

B.12.7. The real bordism spectrum. For V € ¢, let
MU (V¢) = Thom(BU (Ve), Vi)
be the Thom complex of the bundle EU (V) (>< Ve over BU(V¢), equipped
U

C
with the C-action of complex conjugation. We will take our model of BU (V)

to be the one given by Segal’s construction [79], so that
(B.250) V +— Thom(BU (V¢), Vi)

is a lax symmetric monoidal functor #r — T, and so defines a commutative
ring MUy € comm 8g. Let MU — MUR be a cofibrant approximation to
MUR in comm Sg.

Definition B.251. The real bordism spectrum is the spectrum MUy is the
spectrum i MUp.

To get at the homotopy type of M Ug, we examine the canonical homotopy
presentation of MUR using the exhausting sequence V,, = R™. This gives a
weak equivalence

(B.252) holim 5~ A MU (n) = MUg
in which MU (n) = MU(C™). Applying 4, and using Proposition B.240 gives
holim S=mP2 A MU (n) = MUg.

In this presentation the universal real orientation of MUgr (Example 5.5) is
given by restricting to the term n =1

S~ A MU(1) — MUg.

The next result summarizes some further consequences of the presenta-
tion (B.252).
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PROPOSITION B.253.

(i) The nonequivariant spectrum underlying M Ug is the usual complex cobor-

dism spectrum MU.

(ii) The equivariant cohomology theory represented by MUg coincides with

the one studied in [45], [26], [6], [37].

(iii) There is an equivalence

2 MU ~ MO.

(iv) The Schubert cell decomposition of Grassmannians leads to a cofibrant

1]

2]

approzimation of MUg by a Co-CW complex with one 0-cell (S°) and the
remaining cells of the form e™P2 with m > 0.
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