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Abstract

We show that the Kervaire invariant one elements θj ∈ π2j+1−2S
0 exist

only for j ≤ 6. By Browder’s Theorem, this means that smooth framed

manifolds of Kervaire invariant one exist only in dimensions 2, 6, 14, 30,

62, and possibly 126. Except for dimension 126 this resolves a longstanding

problem in algebraic topology.
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1. Introduction

The existence of smooth framed manifolds of Kervaire invariant one is

one of the oldest unresolved issues in differential and algebraic topology. The

question originated in the work of Pontryagin in the 1930’s. It took a definitive

form in the paper [43] of Kervaire in which he constructed a combinatorial 10-

manifold with no smooth structure, and in the work of Kervaire-Milnor [44]

on h-cobordism classes of manifolds homeomorphic to a sphere. The question

was connected to homotopy theory by Browder in his fundamental paper [13],

where he showed that smooth framed manifolds of Kervaire invariant one exist

only in dimensions of the form (2j+1 − 2) and that a manifold exists in that

dimension if and only if the class

h2
j ∈ Ext2,2j+1

A (Z/2,Z/2)

in the E2-term of the classical Adams spectral represents an element

θj ∈ π2j+1−2S
0

in the stable homotopy groups of spheres. The classes h2
j for j ≤ 3 represent

the squares of the Hopf maps. The element θ4 ∈ π30S
0 had been observed

in existing computations [54], [59], [62], and was constructed explicitly as a

framed manifold by Jones [41]. The element θ5 ∈ π60S
0 was constructed by

Barratt-Mahowald and Barratt-Jones-Mahowald; see [9] and the discussion

therein.

The purpose of this paper is to prove the following theorem

Theorem 1.1. For j ≥ 7, the class h2
j ∈ Ext2,2j+1

A (Z/2,Z/2) does not

represent an element of the stable homotopy groups of spheres. In other words,

the Kervaire invariant elements θj do not exist for j ≥ 7.

Smooth framed manifolds of Kervaire invariant one therefore exist only

in dimensions 2, 6, 14, 30, 62, and possibly 126. At the time of writing, our

methods still leave open the existence of θ6.

Many open issues in algebraic and differential topology depend on knowing

whether or not the Kervaire invariant one elements θj exist for j ≥ 6. The

following results represent some of the issues now settled by Theorem 1.1. In

the statements, the phrase “exceptional dimensions” refers to the dimensions

2, 6, 14, 30, 62, and 126. In all cases the situation in the dimension 126 is

unresolved. By Browder’s work [13] the results listed below were known when

the dimension in question was not 2 less than a power of 2. Modulo Browder’s

result [13] the reduction of the statements to Theorem 1.1 can be found in the

references cited.

Theorem 1.2 ([44], [48]). Except in the six exceptional dimensions, every

stably framed smooth manifold is framed cobordant to a homotopy sphere.
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In the first five of the exceptional dimensions it is known that not ev-

ery stably framed manifold is framed cobordant to a homotopy sphere. The

situation is unresolved in dimension 126.

Theorem 1.3 ([44]). Let Mm be the manifold with boundary constructed

by plumbing together two copies of the unit tangent bundle to S2k+1 (so m =

4k+ 2), and set Σm−1 = ∂Mm. Unless m is one of the six exceptional dimen-

sions, the space Mm/Σm−1 is a triangulable manifold that does not admit any

smooth structure, and the manifold Σm−1 (the Kervaire sphere) is homeomor-

phic but not diffeomorphic to Sm−1.

In the first five of the exceptional cases, the Kervaire sphere is known to

be diffeomorphic to the ordinary sphere, and the Kervaire manifold can be

smoothed.

Theorem 1.4 ([44], [48]). Let Θn be the group of h-cobordism classes of

homotopy n-spheres. Unless (4k+ 2) is one of the six exceptional dimensions,

Θ4k+2 ≈ π4k+2S
0

and

|Θ4k+1| = ak
∣∣∣π4k+1S

0
∣∣∣ ,

where ak is 1 if k is even, and 2 if k is odd.

Theorem 1.5 ([8]). Unless n is 1, or one of the six exceptional dimen-

sions, the Whitehead square [ιn+1, ιn+1] ∈ π2n+1S
n+1 is not divisible by 2.

1.1. Outline of the argument. Our proof builds on the strategy used by

the third author in [72] and on the homotopy theoretic refinement developed

by the second author and Haynes Miller (see [75]).

We construct a multiplicative cohomology theory Ω and establish the fol-

lowing results.

Theorem 1.6 (The Detection Theorem). If θj ∈ π2j+1−2S
0 is an ele-

ment of Kervaire invariant 1, and j > 2, then the “Hurewicz” image of θj in

Ω2−2j+1
(pt) is nonzero.

Theorem 1.7 (The Periodicity Theorem). The cohomology theory Ω is

256-fold periodic: For all X ,

Ω∗(X) ≈ Ω∗+256(X).

Theorem 1.8 (The Gap Theorem). The groups Ωi(pt) are zero for 0 <

i < 4.

These three results easily imply Theorem 1.1. The Periodicity Theorem

and the Gap Theorem imply that the groups Ωi(pt) are zero for i ≡ 2 mod 256.
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By the Detection Theorem, if θj exists, it has a nonzero Hurewicz image in

Ω2−2j+1
(pt). But this latter group is zero if j ≥ 7.

1.2. The cohomology theory Ω. Write Cn for the cyclic group of order n.

Our cohomology theory Ω is part of a pair (Ω,ΩO) analogous to the orthogonal

and unitary K-theory spectra KO and KU . The role of complex conjugation

on KU is played by an action of C8 on ΩO, and Ω arises as its fixed points. It

is better to think of ΩO as generalizing Atiyah’s C2-equivariant KR-theory [7],

and in fact ΩO is constructed from the corresponding real bordism spectrum,

as we now describe.

Let MUR be the C2-equivariant real bordism spectrum of Landweber [45]

and Fujii [26]. Roughly speaking one can think of MUR as describing the

cobordism theory of real manifolds, which are stably almost complex manifolds

equipped with a conjugate linear action of C2, such as the space of complex

points of a smooth variety defined over R. A real manifold of real dimension

2n determines a homotopy class of maps

Snρ2 →MUR,

where nρ2 is the direct sum of n copies of the real regular representation of

C2, and Snρ2 is its one point compactification.

Write

MU ((C8)) = MUR ∧MUR ∧MUR ∧MUR

for the C8-equivariant spectrum gotten by smashing four copies of MUR to-

gether and letting C8 act by

(a, b, c, d) 7→ (d̄, a, b, c).

Very roughly speaking, MU ((C8)) can be thought of as the cobordism theory

of stably almost manifolds equipped with a C8-action, with the property that

the restriction of the action to C2 ⊂ C8 determines a real structure. If M is a

real manifold, f then M ×M ×M ×M with the C8-action

(a, b, c, d) 7→ (d̄, a, b, c)

is an example. A suitable C8-manifold M of real dimension 8n determines a

homotopy class of maps

Snρ8 →MU ((C8)),

where nρ8 is the direct sum of n copies of the real regular representation of

C8, and Snρ8 is its one point compactification.

To define Ω we invert an equivariant analogue

D : S`ρ8 →MU ((C8))
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of the Bott periodicity class and form the C8-equivariant spectrum ΩO =

D−1MU ((C8)). (In fact ` works out to be 19.) The cohomology theory Ω is

defined to be the homotopy fixed point spectrum of the C8-action on ΩO.

There is some flexibility in the choice of D, but it needs to be chosen in

order that the Periodicity Theorem holds, and in order that the map from

the fixed point spectrum of ΩO to the homotopy fixed point spectrum be a

weak equivalence. It also needs to be chosen in such a way that the Detection

Theorem is preserved (see Remark 11.14). That such an D can be chosen with

these properties is a relatively easy fact, albeit mildly technical. It is specified

in Corollary 9.21. It can be described in the form M ×M ×M ×M for a

suitable real manifold M , though we do not do so.

1.3. The Detection Theorem. Since the nonequivariant spectrum ΩO un-

derlying ΩO is complex orientable, the inclusion of the unit S0 → Ω induces a

map

Exts,tMU∗MU (MU∗,MU∗)

��

=⇒ πt−sS
0

��
Hs(C8;πtΩO) =⇒ πt−sΩ

from the Adams-Novikov spectral sequence to the C8 homotopy fixed point

spectral sequence for π∗Ω. In Section 11.3.3 we give an ad hoc construction of

this spectral sequence, conveniently adapted to describing the map of E2-terms.

It gives the horizontal arrow in the diagram of spectral sequences below:

Adams-Novikov
spectral sequence

��

//
C8 homotopy

fixed point
spectral sequence

Classical Adams
spectral sequence.

The Detection Theorem is proved by investigating this diagram and follows

from a purely algebraic result.

Theorem 1.9 (Algebraic Detection Theorem). If

x ∈ Ext2,2j+1

MU∗(MU) (MU∗,MU∗)

is any element mapping to h2
j in the E2-term of the classical Adams spectral

sequence, and j > 2, then the image of x in H2(C8;π2j+1ΩO) is nonzero.
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The restriction j > 2 is not actually necessary, but the other values of j

require separate arguments. Since we do not need them, we have chosen to

leave them to the interested reader.

To deduce the Detection Theorem from the Algebraic Detection Theorem

suppose that θj : S2j+1−2 → S0 is a map represented by h2
j in the classical

Adams spectral sequence. Then θj has Adams filtration 0, 1 or 2 in the Adams-

Novikov spectral sequence, since the Adams filtration can only increase under

a map. Since both

Ext0,2j+1−2
MU∗MU (MU∗,MU∗) and Ext1,2j+1−1

MU∗MU (MU∗,MU∗)

are zero, the class θj must be represented in Adams filtration 2 by some element

x that is a permanent cycle. By the Algebraic Detection Theorem, the element

x has a nontrivial image bj ∈ H2(C8;π2j+1ΩO), representing the image of θj in

π2j+1−2Ω. If this image is zero, then the class bj must be in the image of the

differential

d2 : H0(C8;π2j+1−1ΩO)→ H2(C8;π2j+1ΩO).

But πoddΩO = 0, so this cannot happen.

The proof of the Algebraic Detection Theorem is given in Section 11. The

method of proof is similar to that used in [72], where an analogous result is

established at primes greater than 3.

1.4. The slice filtration and the Gap Theorem. While the Detection The-

orem and the Periodicity Theorem involve the homotopy fixed point spectral

sequence for Ω, the Gap Theorem results from studying ΩO as an honest equi-

variant spectrum. What permits the mixing of the two approaches is the

following result, which is part of Theorem 10.8.

Theorem 1.10 (Homotopy Fixed Point Theorem). The map from the

fixed point spectrum of ΩO to the homotopy fixed point spectrum of ΩO is a

weak equivalence.

In particular, for all n, the map

πC8
n ΩO → πnΩhC8

O = πnΩ

is an isomorphism, in which the symbol πC8
n ΩO denotes the group of equivariant

homotopy classes of maps from Sn (with the trivial action) to ΩO.

We study the equivariant homotopy type of ΩO using an analogue of the

Postnikov tower. We call this tower the slice tower. Versions of it have ap-

peared in work of Dan Dugger [22], Hopkins-Morel (unpublished), Voevodsky

[81], [82], [83], and Hu-Kriz [37].
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The slice tower is defined for any finite group G. For a subgroup K ⊂ G,

let ρK denote its regular representation and write

Ŝ(m,K) = G+ ∧
K
SmρK , m ∈ Z.

Definition 1.11. The set of slice cells (for G) is

{Ŝ(m,K),Σ−1Ŝ(m,K) | m ∈ Z,K ⊂ G}.

Definition 1.12. A slice cell Ŝ is free if it is of the form G+ ∧Sm for some

m. An isotropic slice cell is one that is not free.

We define the dimension of a slice cell Ŝ by

dim Ŝ(m,K) = m|K|,

dim Σ−1Ŝ(m,K) = m|K| − 1.

Finally the slice section PnX is constructed by attaching cones on slice cells

Ŝ with dim Ŝ > n to kill all maps Ŝ → X with dim Ŝ > n. There is a natural

map

PnX → Pn−1X.

The n-slice of X is defined to be its homotopy fiber PnnX.

In this way a tower {PnX}, n ∈ Z is associated to each equivariant spec-

trum X. The homotopy colimit holim−→n
PnX is contractible, and holim←−n P

nX

is just X. The slice spectral sequence for X is the spectral sequence of the slice

tower, relating π∗P
n
nX to π∗X.

The key technical result of the whole paper is the following.

Theorem 1.13 (The Slice Theorem). The C8-spectrum PnnMU ((C8)) is

contractible if n is odd. If n is even, then PnnMU ((C8)) is weakly equivalent

to HZ ∧W , where HZ is the Eilenberg-Mac Lane spectrum associated to the

constant Mackey functor Z, and W is a wedge of isotropic slice cells of dimen-

sion n.

The Slice Theorem actually holds more generally for the spectra MU ((C
2k

))

formed like MU ((C8)), using the smash product of 2k−1 copies of MUR. The

more general statement is Theorem 6.1

The Gap Theorem depends on the following result.

Lemma 1.14 (The Cell Lemma). Let G = C2n for some n 6= 0. If Ŝ is an

isotropic slice cell of even dimension, then the groups πGk HZ ∧ Ŝ are zero for

−4 < k < 0.

This is an easy explicit computation, and it reduces to the fact that the

orbit space SmρG/G is simply connected, being the suspension of a connected

space.
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Since the restriction of ρG to a subgroupK⊂G is isomorphic to (|G/K|)ρK ,

there is an equivalence

SmρG ∧ (G+ ∧
K
SnρK ) ≈ G+ ∧

K
S(n+m|G/K|)ρK .

It follows that if Ŝ is a slice cell of dimension d, then for any m, SmρG ∧ Ŝ
is a slice cell of dimension d + m|G|. Moreover, if Ŝ is isotropic, then so is

SmρG ∧ Ŝ. The Cell Lemma and the Slice Theorem then imply that for any m,

the group

πC8
i SmρC8 ∧MU ((C8))

is zero for −4 < i < 0. Since

πC8
i ΩO = lim−→πiS

−m`ρC8MU ((C8)),

this implies that

πC8
i ΩO = πiΩ = 0

for −4 < i < 0, which is the Gap Theorem.

The Periodicity Theorem is proved with a small amount of computation

in the RO(C8)-graded slice spectral sequence for ΩO. It makes use of the fact

that ΩO is an equivariant commutative ring spectrum. Using the nilpotence

machinery of [17], [34] instead of explicit computation, it can be shown that the

groups π∗Ω are periodic with some period that is a power of 2. This would be

enough to show that only finitely many of the θj can exist. Some computation

is necessary to get the actual period stated in the Periodicity Theorem.

All of the results are fairly easy consequences of the Slice Theorem, which

in turn reduces to a single computational fact: that the quotient of MU ((C8))

by the analogue of the “Lazard ring” is the Eilenberg-Mac Lane spectrum

HZ associated to the constant Mackey functor Z. We call this the Reduction

Theorem, and its generalization to C2n appears as Theorem 6.5. It is proved

for G = C2 in Hu-Kriz [37], and the analogue in motivic homotopy theory

is the main result of the (unpublished) work of the second author and Morel

mentioned earlier, where it is used to identify the Voevodsky slices of MGL.

It would be very interesting to find a proof of Theorem 6.5 along the lines of

Quillen’s argument in [71].

During the long period between revisions of this paper, Haynes Miller’s

Bourbaki talk on this material has appeared [63]. We refer the reader there

for an incisive overview.

1.5. Summary of the contents. We now turn to a more detailed summary

of the contents of this paper. In Section 2 we recall the basics of equivariant

stable homotopy theory, establish many conventions, and explain some simple

computations. One of our main new constructions, introduced in Section 2.2.3,

is the multiplicative norm functor. We merely state our main results about
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the norm, deferring the details of the proofs to the appendices. Another useful

technique, the method of twisted monoid rings, is described in Section 2.4.

It is used in constructing convenient filtrations of rings, and in forming the

quotient of an equivariant commutative ring spectrum by a regular sequence,

in the situation in which the group is acting nontrivially on the sequence.

Section 4 introduces the slice filtration and establishes many of its ba-

sic properties, including the strong convergence of the slice spectral sequence

(Theorem 4.42), and an important result on the distribution of groups in the

E2-term (Corollary 4.43). The notions of pure spectra, isotropic spectra, and

spectra with cellular slices are introduced in Section 4.6.2. In these terms, the

Slice Theorem states that MU ((C2n )) is both pure and isotropic. Most of the

material of these first sections makes no restriction on the group G.

From Section 5 forward, we restrict attention to the case in which G

is cyclic of order a power of 2, and we localize all spectra at the prime 2.

The spectra MU ((G)) are introduced, and some of the basic properties are

established. The groundwork is laid for the proof of the Slice Theorem. The

Reduction Theorem (Theorem 6.5) is stated in Section 6. The Reduction

Theorem is the backbone of the Slice Theorem and is the only part that is not

“formal” in the sense that it depends on the outcome of certain computations.

The Slice Theorem is also proved in Section 6, assuming that the Reduc-

tion Theorem holds. The proof of the Reduction Theorem is in Section 7. The

Gap Theorem in proved in Section 8, and the Periodicity theorem in Section 9.

The Homotopy Fixed Point Theorem is proved in Section 10 and the Detection

Theorem in Section 11.

The paper concludes with two appendices devoted to foundations of equi-

variant stable homotopy theory. Two factors contribute to the length of this

material. One is simply the wish to make this paper as self-contained as possi-

ble and to collect material central to our investigation in one place. The other

reason is that our methods rely on multiplicative aspects of equivariant stable

homotopy theory that do not appear in the existing literature. Establishing

the basic properties of these structures involve details of the foundations and

cannot be done at the level of user interface. Because of this, a relatively

complete account of equivariant orthogonal spectra is required.
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2. Equivariant stable homotopy theory

We will work in the category of equivariant orthogonal spectra [56], [55]. In

this section we survey some of the main properties of the theory and establish

some notation. The definitions, proofs, constructions, and other details are

explained in Appendices A and B. The reader is also referred to the books of

tom Dieck [19], [18], and the survey of Greenlees and May [28] for an overview

of equivariant stable homotopy theory and for further references.

We set up the basics of equivariant stable homotopy theory in the frame-

work of homotopical category in the sense of [23]. A homotopical category is a

pair (C,W) consisting of a category C and a collection W of morphisms in C
called weak equivalences containing all identity maps, and satisfying the “two

out of six property” that in the situation

• u−→ • v−→ •, w−→ •

if vu and wv are in W, then so are u, v, w, and vwu. Any class W defined

as the collection of morphisms u taken to isomorphisms by some fixed functor

automatically satisfies this property. This holds, in particular, whenW consists

of the weak equivalences in a model category structure. In this situation we

will say that the model structure refines the homotopical category structure

and that the homotopical category is completed to a model category structure.
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Associated to a homotopical category (C,W) is the homotopy category

ho C and the functor C → ho C, characterized uniquely up to unique isomor-

phism by the following universal property: for every category D, and every

functor F : C → D taking the stable weak equivalences as isomorphisms, there

is a unique functor ho C → D making the diagram

C

F !!

// ho C

��
D

commute. See Section B.1 for more on the theory of homotopical categories,

for a description of the issues that arise when doing homotopy theory in a

homotopical category, the techniques for dealing with them, and for an expla-

nation of the notion of left (L) and right (R) derived functors appearing in the

discussion below.

2.1. G-spaces. We begin with unstable equivariant homotopy theory. Let

G be a finite group and T G the topological category of pointed compactly

generated, weak Hausdorff left G-spaces and spaces of equivariant maps. The

category T G is a closed symmetric monoidal category under the smash prod-

uct operation. The tensor unit is the 0-sphere S0 equipped with the trivial

G-action.

We call a category enriched over T G a G-equivariant topological category.

Since it is closed monoidal, T G may be regarded as enriched over itself. We

denote the enriched category by TG. Thus TG is the G-equivariant topological

category of G-spaces and G-spaces of continuous, not necessarily equivariant

maps, on which G acts by conjugation. There is an isomorphism

T G(X,Y ) = TG(X,Y )G.

See Sections A.1.3 and A.2.1 for further background and discussion.

The homotopy set (group, for n > 0) πHn (X) of a pointed G-space is

defined for H ⊂ G and n ≥ 0 to be the set of H-equivariant homotopy classes

of pointed maps

Sn → X.

This is the same as the ordinary homotopy set (group) πn(XH) of the space

of H fixed-points in X.

A map f : X → Y in T G is a weak equivalence if for all H ⊂ G, the map

XH → Y H of H-fixed point spaces is an ordinary weak equivalence. Equiv-

alently, f : X → Y is a weak equivalence if for all H ⊂ G and all choices of

base point x0 ∈ XH , the induced map πHn (X,x0) → πHn (Y, f(x0)) is an iso-

morphism. Equipped with the weak equivalences, the category underlying T G
becomes a homotopical category. It can be completed to a topological model
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category in which a fibration is a map X → Y that for every H ⊂ G is a Serre

fibration on fixed points XH → Y H . The smash product of G-spaces makes

T G into a symmetric monoidal category in the sense of Schwede-Shipley [77,

Def. 3.1] and TG into an enriched model category.

Every pointed G-space is weakly equivalent to a G-CW complex con-

structed inductively from the basepoint by attaching equivariant cells of the

form G/H ×Dn along maps from G/H × Sn−1.

We will write both

ho T G(X,Y ) and [X,Y ]G

for the set of maps from X to Y in the homotopy category of T G. When X is

cofibrant and Y is fibrant this can be calculated as the set of homotopy classes

of maps from X to Y in T G

[X,Y ]G = π0 T G(X,Y ) = πG0 TG(X,Y ).

We will make frequent use of finite dimensional real orthogonal represen-

tations of G. To keep the terminology simple these will be referred to as

representations of G.

An important role is played by the equivariant spheres SV arising as the

one point compactification of representations V of G. When V is the trivial

representation of dimension n, SV is just the n-sphere Sn with the trivial

G-action. We combine these two notations and write

SV+n = SV⊕R
n
.

Associated to SV is the equivariant homotopy set

πGVX = [SV , X]G

defined to be the set of homotopy classes of G-equivariant maps from SV to X.

The set πGVX is a group if dimV > 0 and an abelian group if dimV G > 1,

where V G is the space of G-invariant vectors in V .

Also associated to the sphere SV one has the equivariant suspension

ΣVX = SV ∧X and the equivariant loop space ΩVX = TG(SV , X).

Now suppose that V1 and V2 are two orthogonal representations of G and

that for each irreducible representation U of G occurring in V1, one has

(2.1) dim homG(U, V2) ≥ dim homG(U, V1).

Then one may choose an equivariant linear isometric embedding t : V1 → V2

and form

(2.2) πGV2−t(V1)(X),

in which V2 − t(V1) denotes the orthogonal complement of the image of V1 in

V2. The groups (2.2) form a local system over the Stiefel manifold O(V1, V2)G
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of equivariant linear isometric embeddings. If instead of (2.1) the one has

V2 > V1 in the sense of Definition 2.3 below, then the Stiefel manifold O(V1, V2)

is simply connected and one may define

πGV2−V2
(X)

to be the group of global sections of this local system. For any t ∈ O(V1, V2)G,

the restriction map gives a canonical isomorphism πGV2−V2
(X)→ πGV2−t(V1)(X).

Definition 2.3. Let V1 and V2 be two nonzero G-representations. We write

V1 < V2 if for every irreducible G-representation U ,

dim homG(U, V1) < dim homG(U, V2)− 1.

This relation makes the set of G-representations into a (large) partially

ordered set.

We will shortly (Section 2.2.4) be interested in the special case in which

V1 is a trivial representation of dimension k. As above we will write

πGV2−k(X)

for this group. In this way, for any n ∈ Z, there is a well-defined group

πGV+n(X)

provided dimV G ≥ −n+ 2.

2.2. Equivariant stable homotopy theory. There is a choice to be made

when stabilizing equivariant homotopy theory. If one only seeks that fibration

sequences and cofibration sequences become weakly equivalent, then one stabi-

lizes in the usual way, using suspensions by spheres with trivial G-action. But

if one wants to have Spanier-Whitehead duals of finite G-CW complexes, one

needs to stabilize with respect to the spheres SV where V is a finite dimensional

representation of G.

We will do equivariant stable homotopy theory in the category of equivari-

ant orthogonal spectra, equipped with the stable weak equivalences. In order

for this to be considered viable, some properties must be established that

guarantee computations made with equivariant orthogonal spectra ultimately

reduce to computations in ho T G in the expected manner. We therefore begin

by discussing the equivariant Spanier-Whitehead category and formulate six

properties an equivariant stable homotopy should satisfy in order that it faith-

fully extend the Spanier-Whitehead category. These properties are not enough

for all of our purposes, so after establishing them for equivariant orthogonal

spectra we turn the more refined structures (indexed products, coproducts,

and smash products) that we require.
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2.2.1. Spanier-Whitehead stabilization. The G-equivariant Spanier-White-

head category SWG is the category whose objects are finite pointed G-CW

complexes and with maps

{X,Y }G = lim−→
V

[SV ∧X,SV ∧ Y ]G,

in which the colimit is taken over the partially ordered set of G-representations.

For an informative discussion of this category, the reader is referred to [5].

There is a direct analogue [5], [84] of Spanier-Whitehead duality in SWG,

in which a finite based G-CW complex embedded in a representation sphere

SV is “V -dual” to the unreduced suspension of its complement.

Example 2.4. Suppose that X is a finite pointed G-set B. If there is an

equivariant embedding B ⊂ SV (for instance, when V is the G-representation

with basis B), then the V -dual of B works out to be SV ∧B.

If one wants finite G-CW complexes to have actual duals, in the sense of

objects in a symmetric monoidal category, then one must enlarge the category

SWG by formally adding, for each finite G-CW complex Y and each finite

dimensional representation V of G, an object S−V ∧ Y defined by

(2.5) {X,S−V ∧ Y }G = {SV ∧X,Y }G.

Since {SV ∧ (− ), Y }G is a functor on SWG, this amounts to simply working

in an enlargement of the Yoneda embedding of SWG. One checks that for

any Z, the map Z → S−V ∧ SV ∧ Z corresponding to the identity map of

SV ∧Z under (2.5) is an isomorphism and that symmetric monoidal structure

given by the smash product extends to this enlarged category. If X and Y are

V -duals in SWG, then X and S−V ∧ Y are duals in the enlarged equivariant

Spanier-Whitehead category.

Example 2.6. From Example 2.4, B is self-dual in the enlarged equivariant

Spanier-Whitehead category.

As in the nonequivariant case, the equivariant Spanier-Whitehead cate-

gory still suffers the defect that it is also not quite set up for doing stable

homotopy theory. What one wants is a complete closed symmetric monoidal

category SG of G-equivariant spectra, equipped with the structure of a homo-

topical category (or even a Quillen model category), and related to T G by a

pair of adjoint (suspension spectrum and zero space) functors

Σ∞ : T G � SG : Ω∞.

In order to know that computations made in this category reduce in the ex-

pected manner to those in classical stable homotopy theory, one would like this

data to satisfy
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SpG
1 : The functors Σ∞ and Ω∞ induce adjoint functors

LΣ∞ : ho T G � ho SG : RΩ∞

on the homotopy categories.

SpG
2 : The symmetric monoidal structure on SG induces a closed symmetric

monoidal structure on the homotopy category ho SG, and the functor

LΣ∞ is symmetric monoidal.

SpG
3 : The functor LΣ∞ extends to a fully faithful, symmetric monoidal em-

bedding of SWG into ho SG.

SpG
4 : The objects SV are invertible in ho SG under the smash product so,

in particular, the above embedding of SWG extends to an embedding

of the extended Spanier-Whitehead category.

SpG
5 : Arbitrary coproducts (denoted ∨) exist in ho SG and can be computed

by the formation of wedges. If {Xα} is a collection of objects of SG

and K is a finite G-CW complex, then the map⊕
α

ho SG(K,Xα)→ ho SG
(
K,
∨
α

Xα

)
is an isomorphism.

SpG
6 Up to weak equivalence, every object X is presentable in SG as a

homotopy colimit

· · · → S−Vn ∧XVn → S−Vn+1 ∧XVn+1 → · · · ,

in which {Vn} is a fixed increasing sequence of representations eventu-

ally containing every finite dimensional representation of G, and each

XVn is weakly equivalent to an object of the form Σ∞KVn , with KVn

a G-CW complex.

These properties are not meant to constitute a characterization of SG,

though they nearly do. The first five insist that SG not be too small, and

the last that it not be too big. Combined, they show that, any computation

one wishes to make in ho SG can, in principle, be reduced to a computation in

SWG.

In all of the common models and, in particular, in equivariant orthog-

onal spectra, the presentation SpG
6 is functorial. We call this the canonical

homotopy presentation. It is described in detail in Section B.4.3. For many

purposes one can ignore most of the technical details of equivariant spectra

and just think in terms of the canonical homotopy presentation.

Finally, unless the emphasis is on foundations, we will drop the L and

R and implicitly assume that all of the functors have been derived, unless

otherwise specified.
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2.2.2. Equivariant orthogonal spectra. An orthogonal G-spectrum consists

of a collection of pointed G-spaces XV indexed by the finite dimensional or-

thogonal representations V of G, an action of the orthogonal group O(V ) (of

nonequivariant maps) on XV , and for each (not necessarily G-equivariant) or-

thogonal inclusion t : V ⊂W , a map SW−t(V )∧XV → XW , in which W − t(V )

denotes the orthogonal complement of the image of V in W . These maps are

required to be compatible with the actions of G and O(V ). Maps of equivari-

ant orthogonal spectra are defined in the evident manner. For a more careful

and detailed description, see A.2.4.

Depending on the context, we will refer to orthogonal G-spectra as “equi-

variant orthogonal spectra,” “orthogonal spectra,” “G-spectra,” and some-

times just as “spectra.”

As with G-spaces, there are two useful ways of making the collection

of G-spectra into a category. There is the topological category SG just de-

scribed, and there is the G-equivariant topological category
¯
SG of equivariant

orthogonal spectra and G-spaces of nonequivariant maps. Thus for equivariant

orthogonal spectra X and Y , there is an identification

SG(X,Y ) =
¯
SG(X,Y )G.

We will use the abbreviated notation S to denote SG when G is the trivial

group.

If V and W are two orthogonal representations of G the same dimension

and O(V,W ) is the G-space of (not necessarily equivariant) orthogonal maps,

then

O(V,W )+ ∧
O(V )

XV → XW

is a G-equivariant homeomorphism. In particular, an orthogonal G-spectrum

X is determined by the XV with V a trivial G-representation. This implies

that the category SG is equivalent to the category of objects in S equipped

with a G-action (Proposition A.19).

Both SG and
¯
SG are tensored and cotensored over G-spaces:

(X ∧K)V = XV ∧K,Ä
XK
ä
V

= (XV )K .

Both categories are complete and cocomplete.

Definition 2.7. The suspension and 0-space functors are defined by

(Σ∞K)V = SV ∧K,
Ω∞X = X{0},

where {0} is the zero vector space.
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The suspension spectrum functor is left adjoint to the 0-space functor.

One has Σ∞K = S0 ∧K and, more generally, Σ∞(K ∧L) = (Σ∞K)∧L. The

functors Σ∞ and Ω∞ may be regarded as topological functors between T G and

SG or as T G-enriched functors relating TG and
¯
SG.

For each G-representation V , there is a G-spectrum S−V characterized by

the existence of a functorial equivariant isomorphism

(2.8)
¯
SG(S−V , X) ≈ XV

(see Section A.2.4). By the enriched Yoneda Lemma, every equivariant orthog-

onal G-spectrum X is functorially expressed as a reflexive coequalizer

(2.9)
∨
V,W

S−W ∧
¯
SG(S−W , S−V ) ∧XV ⇒

∨
V

S−V ∧XV → X.

We call this the tautological presentation of X.

The category SG is a closed symmetric monoidal category under the smash

product operation. The tensor unit is the sphere spectrum S0. There are

canonical identifications

S−V ∧ S−W ≈ S−V⊕W

and, in fact, the association

V 7→ S−V

is a symmetric monoidal functor from the category of finite dimensional repre-

sentations of G (and isomorphisms) to SG. Because of the tautological presen-

tation, this actually determines the smash product functor (see Section A.2.5).

Regarding the adjoint functors

Σ∞ : T G � SG : Ω∞,

the left adjoint Σ∞ is symmetric monoidal. We will usually drop the Σ∞

and either not distinguish in notation between the suspension spectrum of a

G-space and the G-space itself, or use S0 ∧K.

2.2.3. Change of group and indexed monoidal products. The fact that the

category SG is equivalent to the category of objects in S equipped with a

G-action has an important and useful consequence. It means that if a con-

struction involving spectra happens to produce something with a G-action, it

defines a functor with values in G-spectra. For example, if H ⊂ G is a sub-

group, there is a restriction functor i∗H : SG → SH given by simply restricting

the action to H. This functor has both a left and a right adjoint. The left

adjoint is given by

X 7→ G+ ∧
H
X
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and may be written as a “wedge” ∨
i∈G/H

Xi,

where Xi = (Hi)+ ∧
H
X with Hi ⊂ G the coset indexed by i. Similarly, the

right adjoint is given by the H-fixed points of the internal function spectrum

from G to X and may be written as a kind of product∏
i∈H\G

Xi ≈,
∏

i∈G/H
Xi.

where Xi = homH(H i, X) and H i is the left H-coset with index i. The

identification of the two expressions is made using the map g 7→ g−1. There is

also an analogous construction involving the smash product

NG
HX =

∧
i∈G/H

Xi.

These are special cases of a more general construction.

Suppose that G is a finite group and J is a finite set on which G acts.

Write BJG for the category with object set J , in which a map from j to j′ is

an element g ∈ G with g · j = j′. We abbreviate this to BG in case J = pt.

Given a functor

X : BJG→ S,

define the indexed wedge, indexed product and indexed smash product of X to

be ∨
j∈J

Xj ,
∏
j∈J

Xj , and
∧
j∈J

Xj

respectively. The group G acts naturally on the indexed wedge and indexed

smash product, and so they define functors from the category of BJG-diagrams

of spectra to SG. For more details, see Section A.3.2.

Suppose that H is a subgroup of G and J = G/H. In this case the

inclusion B{e}H → BJG of the full subcategory containing the identity coset

is an equivalence. The restriction functor and its left Kan extension therefore

give an equivalence of the category of BJG-diagrams of spectra with SH . Under

this equivalence, the indexed wedge works out to be the functor

G+ ∧
H

(− ).

The indexed smash product is the norm functor

NG
H : SH → SG,

sending an H-spectrum X to the G-spectrum∧
j∈G/H

Xj .
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Remark 2.10. When the context is clear, we will sometimes abbreviate

the NG
H simply to N in order to avoid clustering of symbols.

The norm distributes over wedges in much the same way as the iterated

smash product. A precise statement of the general “distributive law” appears

in Section A.3.3.

The functor NG
H is symmetric monoidal, commutes with sifted colimits,

and so filtered colimits and reflexive coequalizers (Proposition A.53). The fact

that V 7→ S−V is symmetric monoidal implies that

(2.11) NG
HS
−V = S− indGH V ,

where indGH V is the induced representation. From the definition, one also

concludes that for a pointed G-space T ,

NG
H

Ä
S−V ∧ T

ä
= S− indGH V ∧NG

HT,

where NG
HT is the analogous norm functor on spaces.

The norm first appeared in group cohomology (Evens [25]) and is often

referred to as the “Evens transfer” or the “norm transfer.” The analogue in

stable homotopy theory originates in Greenlees-May [29].

2.2.4. Stable weak equivalences. The inequality of Definition 2.3 gives the

collection of finite dimensional orthogonal G-representations the structure of

a (large) partially ordered set. When V1 is the trivial representation of dimen-

sion k, the condition V2 > V1 means that

(2.12) dimV G
2 > k + 1,

and instead we will use the abbreviation V2 > k. Using (2.12) we extend this

to all k ∈ Z.

Suppose we are given X ∈ SG, K ∈ T G, and two representations V1 < V2.

Choose an equivariant isometric embedding t : V1 → V2, and let W be the

orthogonal complement of t(V1) in V2. Define

(2.13) [SV1 ∧K,XV1 ]G → [SV2 ∧K,XV2 ]G

by using the identification SW ∧ SV1 ≈ SV2 and the structure map SW ∧XV1

→ XV2 to form the composite

[SV1 ∧K,XV1 ]G → [SW ∧ SV1 ∧K,SW ∧XV1 ]G → [SV2 ∧K,XV2 ]G.

This map depends only on the path component of t in O(V1, V2)G, so the

condition V1 < V2 implies that (2.13) is independent of the choice of t.

Definition 2.14. Let X be a G-spectrum and k ∈ Z. For H ⊂ G, the

H-equivariant kth stable homotopy group of X is the group

(2.15) πHk X = lim−→
V >−k

πHV+kXV ,
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in which the colimit is taken over the partial ordered set of orthogonal G-repre-

sentations V satisfying V > −k.

The poset of G-representations is a class, not a set, so one must check

that the colimit (2.15) actually exists.

Definition 2.16. An increasing sequence Vn ⊂ Vn+1 ⊂ · · · of finite dimen-

sional representations ofG is exhausting if any finite dimensional representation

V of G admits an equivariant embedding in some Vn.

Any exhausting sequence · · · ⊂ Vn ⊂ Vn+1 ⊂ · · · is final in the poset of

G-representations, so the map

lim−→
n

πHVn+kXVn → lim−→
V >−k

πHV+kXV

is an isomorphism. This gives the existence of the colimit (2.15) and shows

that πHk X can be computed as

πHk X = lim−→
n

πHVn+kXVn

in which · · · ⊂ Vn ⊂ Vn+1 ⊂ · · · is any choice of exhausting sequence.

Definition 2.17. A stable weak equivalence (or just weak equivalence, for

short) is a map X → Y in SG inducing an isomorphism of stable homotopy

groups πHk for all k ∈ Z and H ⊂ G.

Equipped with the stable weak equivalences, the category SG becomes a

homotopical category in the sense of [23], and so both the homotopy category

ho SG and the functor SG → ho SG are defined. As with G-spaces, we will often

employ the notation

[X,Y ]G

for ho SG(X,Y ). See Section B.1 for more on the theory of homotopical cat-

egories and for an explanation of the notion of left (L) and right (R) derived

functors appearing in the discussion below.

2.2.5. Properties SpG
1 –SpG

6 . We now describe how properties SpG
1 –SpG

6

are verified, deferring most of the technical details to Appendix B. The first

five properties assert things only about the homotopy category and, save the

fact that the symmetric monoidal structure is closed, they can be established

using only the language of homotopical categories.

For SpG
1 , one checks directly from the definition that the functor Σ∞

preserves weak equivalences between G-spaces with nondegenerate base points,

so that LΣ∞X can be computed as Σ∞X if X has a nondegenerate base point,

or as Σ∞X̃ in general, where X̃ is formed from X by adding a whisker at the

base point. The right derived functor RΩ∞ is given by choosing any exhausting
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sequence and forming

RΩ∞X = holim−→ΩVnXVn ;

see Proposition B.24. Verifying that LΣ∞ and RΩ∞ are adjoint functors makes

use of formula (2.18) below.

Regarding the symmetric monoidal structure (SpG
2 ), the smash product

is not known to preserve weak equivalences between all objects, but it does so

on the full subcategory of SG × SG consisting of pairs (X,Y ) for which one of

X or Y is cellular in the sense that it constructed inductively, starting with

∗ and attaching cells of the form G+ ∧
H
S−V ∧ Dm

+ , with V a representation

of H. Every G-spectrum receives a functorial weak equivalence from a cellular

object, so this is enough to induce a symmetric monoidal smash product on

ho SG; see Section B.3.7. The fact that the symmetric monoidal structure is

closed is best understood in the context of model categories. See Section B.4.2,

and especially Corollary B.80.

For SpG
3 , there is a useful formula for maps in ho SG in good cases. Choose

an exhausting sequence {Vn}. For K a finite G-CW complex, ` ∈ Z, and any

Y ∈ SG, the definition of stable weak equivalence and some elementary facts

about homotopical categories lead to the formula (Proposition B.44)

(2.18) ho SG(S` ∧K,Y ) = lim−→
n

[SVn+` ∧K,YVn ]G.

Using this one easily checks that the functor K 7→ S0∧K extends to a symmet-

ric monoidal functor SWG → ho SG. A little more work gives the generalization

(Proposition B.49)

(2.19) ho SG(S−V ∧K,Y ) = lim−→
n

[SVn ∧K,YV⊕Vn ]G,

in which V is a representation of G.

For any representations V , W of G, and any X ∈ SG, the map

S−V ∧ SV ∧X → X

is a weak equivalence (Proposition B.30). This ultimately implies that SV is

invertible in ho SG (Corollary B.48). This establishes SpG
4 .

The fact that the formation of arbitrary wedges preserves weak equiva-

lences gives the first part of Property SpG
5 (Corollary B.23). The second part

follows from (2.18).

The canonical homotopy presentation of SpG
6 is constructed by choosing

an exhausting sequence V = {Vn} and letting Xn be an equivariant CW ap-

proximation to XVn . Since it involves more than just the homotopy category,

the construction is easier to describe with a model category structure in place.

For the details, see Section B.4.3.
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Indexed monoidal products have convenient homotopy properties in SG.

The formation of indexed wedges is homotopical (Definition B.7), in the sense

that it preserves weak equivalences. This means that it need not be derived.

The same is true of the formation of finite indexed products. The map∨
α

Xα →
∏
α

Xα

from a finite indexed wedge to a finite indexed product is always a weak equiv-

alence. This means, in particular, that for H ⊂ G, the map from the left to

the right adjoint of the restriction functor

SG → SH

is always a weak equivalence. Thus for X ∈ SG and Y ∈ SH , there are

isomorphisms

(2.20) [X,G+ ∧
H
Y ]G ≈

î
X,

∏
i∈G/H

Yi
óG ≈ [i∗HX,Y ]H .

The composite is the Wirthmüller isomorphism. Because of it, the right adjoint

to the restriction functor tends not to appear explicitly when discussing the

homotopy category.

Up to weak equivalence, indexed smash products can be computed using

cellular approximations. Combining this with the properties of the norm listed

in Section 2.2.3 leads to a useful description of NG
HX in terms of the canonical

homotopy presentation

NG
HX = holim−→

Vn

S− indGH Vn ∧NG
HXVn .

Finally, note that the formula (2.18) also implies that for any k ∈ Z,

πHk X ≈ ho SH(Sk, X) ≈ ho SG(G+ ∧
H
Sk, X),

where for k > 0, S−k is defined to be S−R
k

with Rk the trivial representation.

2.2.6. The model structure. Not all of the functors one wishes to consider

have convenient homotopy theoretic properties.

Example 2.21. For a G-spectrum X, let

SymnX = X∧n/Σn

be the orbit spectrum of the n-fold iterated smash product by the action of

the symmetric group. The map

S−1 ∧ S1 → S0

is a weak equivalence. However, the induced map

Symn(S−1 ∧ S1)→ Symn S0



KERVAIRE INVARIANT ONE 23

is not. The right side is S0 since it is the tensor unit, while the left side works

out (Proposition B.116) to be weakly equivalent to the suspension spectrum of

classifying space for G-equivariant principal Σn-bundles, pointed by a disjoint

basepoint.

In order to go further it is useful to refine the homotopical category struc-

ture on SG to a model category. Let Acof be the set of maps

(2.22) Acof = {G+ ∧
H
S−V ∧ Sn−1

+ → G+ ∧
H
S−V ∧Dn

+}

in which H ⊂ G is a subgroup of G and V is a representation of H containing

a nonzero invariant vector. The set Acof is the set of generating cofibrations

in the positive complete model structure on SG. The weak equivalences are

the stable weak equivalences, and the fibrations are the maps having the right

lifting property against the acyclic cofibrations. See Section B.4.1 for more

details.

It works out that the symmetric power construction is homotopical on the

class of cofibrant objects in the positive complete model structure (Proposi-

tion B.112).

Remark 2.23. The condition that V contains a nonzero invariant vector

is the positivity condition. It is due to Jeff Smith and arose first in the theory

of symmetric spectra. (See the paragraph following Corollary 0.6 in [56].) The

choice is dictated by two requirements. One is that symmetric power construc-

tion sends weak equivalences between cofibrant objects to weak equivalences.

This is the key point in showing that the forgetful functor from commutative

algebras in SG to SG creates a model category structure on commutative al-

gebras in SG (Proposition B.129). The other is that the geometric fixed point

functor (Section B.10) preserves (acyclic) cofibrations. The first requirement

could be met by replacing “positive” with dimV > 0. The second requires

dimV G > 0, once one is using a positive model structure on S.

2.2.7. Virtual representation spheres and RO(G)-graded cohomology. Us-

ing the spectra S−V1 and the spaces SV0 , one can associate a stable “sphere”

to each virtual representation V of G. To do so, one first represents V as

difference [V0]− [V1] of representations and then sets

SV = S−V1 ∧ SV0 .

If (V0, V1) and (W0,W1) are two pairs of orthogonal representations represent-

ing the same virtual representation

V = [V0]− [V1] = [W0]− [W1] ∈ RO(G),

then there are a representation U and an equivariant orthogonal isomorphism

W1 ⊕ V0 ⊕ U ≈ V1 ⊕W0 ⊕ U.
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A choice of such data gives weak equivalences

S−W1 ∧ SW0 ← S−W1⊕V0⊕U ∧ SW0⊕V0⊕U

≈ S−V1⊕W0⊕U ∧ SW0⊕V0⊕U → S−V1 ∧ SV0 .

Thus, up to weak equivalence,

SV = S−V1 ∧ SV0

depends only on V . However, the weak equivalence between the spheres arising

from different choices depends on data not specified in the notation. This

leads to some subtleties in grading equivariant stable homotopy groups over

the real representation ring RO(G); see [5, §6] and [58, Ch. XIII]. The virtual

representation spheres arising in this paper always occur as explicit differences

of actual representations.

In the positive complete model structure, the spectrum S−V1 ∧SV0 will be

cofibrant if and only if the dimension of the fixed point space V G
1 is positive.

Definition 2.24. Suppose that V is a virtual representation of G. A pos-

itive representative of V consists of a pair of representations (V0, V1) with

dimV G
1 > 0 and for which

V = [V0]− [V1] ∈ RO(G).

Associated to every subgroup H ⊂ G and every representation V ∈
RO(H) is the group

πHV (X) = [SV , X]H .

An equivariant cohomology theory is associated to every equivariant orthogonal

spectrum E, by

Ek(X) = [X,Sk ∧ E]G,

Ek(X) = [Sk, E ∧X]G = πGk (E ∧X).

There is also an RO(G)-graded version, defined by

EV (X) = [X,SV ∧ E]G,

EV (X) = [SV , E ∧X]G = πGV (E ∧X).

2.3. Multiplicative properties.

2.3.1. Commutative and associative algebras.

Definition 2.25. An equivariant commutative algebra (or just commutative

algebra) is a unital commutative monoid in SG with respect to the smash

product operation. An equivariant associative algebra (associative algebra) is

a unital associative monoid with respect to the smash product.

There is a weaker “up to homotopy notion” that sometimes comes up.
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Definition 2.26. An equivariant homotopy associative algebra (or just ho-

motopy associative algebra) is an associative algebra in ho SG. An equivariant

homotopy commutative algebra (or just homotopy commutative algebra) is a

commutative algebra in ho SG.

The category of commutative algebras in SG and spaces of equivariant

multiplicative maps will be denoted CommG. The T G-enriched category of G-

equivariant commutative algebras and G-spaces of nonequivariant multiplica-

tive maps will be denoted CommG. The categories CommG and CommG

are tensored and cotensored over T and T G respectively. The tensor product

of an equivariant commutative algebra R and a G-space T will be denoted

R⊗ T

to distinguish it from the smash product. By definition,

CommG(R⊗ T,E) = TG(T,CommG(R,E)).

We make CommG into a homotopical category by defining a map to be

a weak equivalence if the underlying map of orthogonal G-spectra is. The free

commutative algebra functor

X 7→ Sym(X) =
∨
n≥0

SymnX

is left adjoint to the forgetful functor. It takes weak equivalences between

cofibrant spectra to weak equivalences (Proposition B.112). This is the key

point in showing that the forgetful functor

CommG → SG

creates a (T -enriched) model category from the positive complete model struc-

ture on SG (Proposition B.129) and that

CommG →
¯
SG

creates a TG-enriched model structure. For H ⊂ G, the forgetful functor

CommG → CommH and its left adjoint form a Quillen morphism. A similar

set of results applies to associative algebras.

Modules over an equivariant commutative ring are defined in the evident

way using the smash product. The category of left modules over R and equi-

variant maps will be denoted MR. A map of R-modules is defined to be a

weak equivalence if the underlying map of spectra is a weak equivalence. The

adjoint “free module” and “forgetful” functors

X 7→ R ∧X : SG �MR : M 7→M
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create a model category structure on MR. It becomes an enriched symmetric

monoidal model category under the operation

M ∧
R
N,

where M is regarded as a right R-module via

M ∧R flip−−→ R ∧M →M,

and M ∧
R
N is defined by the coequalizer diagram

M ∧R ∧N ⇒M ∧N →M ∧
R
N.

There are also the related notions of E∞ and A∞ algebras. It can be shown

that the categories of E∞ and commutative algebras are Quillen equivalent, as

are those of A∞ and associative algebras.

2.3.2. Commutative algebras and indexed monoidal products. Because it is

symmetric monoidal, the functor N take commutative algebras to commutative

algebras, and so induces a functor

N = NG
H : CommH → CommG.

The following result is proved in the appendices as Corollaries A.56 and B.133.

Proposition 2.27. The functor

N : CommH → CommG

is left adjoint to the restriction functor i∗. Together they form a Quillen mor-

phism of model categories.

Corollary 2.28. There is a natural isomorphism

NG
H (i∗HR)→ R⊗ (G/H)

under which the counit of the adjunction is identified with the map

R⊗ (G/H)→ R⊗ (pt)

given by the unique G-map G/H → pt.

Proof. Since bothR⊗(G/H) and the left adjoint to restriction co-represent

the same functor, this follows from Proposition 2.27 �

A useful consequence of Corollary 2.28 is that the group N(H)/H of

G-automorphisms of G/H acts naturally on NG
H (i∗HR). The result below is

used in the main computational assertion of Proposition 5.50.
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Corollary 2.29. For γ ∈ N(H)/H , the following diagram commutes :

NG
H (i∗HR)

��

γ // NG
H (i∗HR)

��
R.

Proof. Immediate from Corollary 2.28. �

At this point a serious technical issue arises. The spectra underlying

commutative rings are almost never cofibrant. This means that there is no

guarantee that the norm of a commutative ring has the correct homotopy

type. The fact that it does is one of the main results of Appendix B. The

following is a consequence of Proposition B.146.

Proposition 2.30. Suppose that R is a cofibrant commutative H-algebra

and that R̃→ R is a cofibrant approximation of the underlying H-spectrum. If

Z̃ → Z is a weak equivalence of G-spectra, then

NG
H (R̃) ∧ Z̃ → NG

H (R) ∧ Z

is a weak equivalence.

We refer to the property exhibited in Proposition 2.30 by saying that

cofibrant commutative rings are very flat.

2.3.3. Other uses of the norm. There are several important constructions

derived from the norm functor that also go by the name of “the norm.”

Suppose that R is a G-equivariant commutative ring spectrum and X is

an H-spectrum for a subgroup H ⊂ G. Write

R0
H(X) = [X, i∗HR]H .

There is a norm map

NG
H : R0

H(X)→ R0
G(NG

HX)

defined by sending an H-equivariant map X → R to the composite

NG
HX → NG

H (i∗HR)→ R,

in which the second map is the counit of the restriction-norm adjunction.

This is the norm map on equivariant spectrum cohomology and is the form in

which the norm is described in Greenlees-May [29]. For an explicit comparison

with [29], see [11].

When V is a representation of H and X = SV , the above gives a map

N = NG
H : πHV R→ πGindVR

in which indV is the induced representation. We call this the norm map on

the RO(G)-graded homotopy groups of commutative rings.
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Now suppose that X is a pointed G-space. There is a norm map

NG
H : R0

H(X)→ R0
G(X)

sending

x ∈ R0
H(X) = [S0 ∧X, i∗HR]H

to the composite

S0 ∧X → S0 ∧N(X) ≈ N(S0 ∧X)→ N(i∗HR)→ R,

in which the equivariant map of pointed G-spaces

X → NG
H (X)

is the “diagonal”

X →
∏

j∈G/H
Xj →

∧
j∈G/H

Xj

whose jth component is the inverse to the isomorphism

Xj = (Hj)+ ∧
H
X → X

given by the action map. That this is actually equivariant is probably most

easily seen by making the identification

Xj ≈ homH(H−1
j , X)

in which H−1
j denotes the left H-coset consisting of the inverses of the elements

of Hj , and then writing ∏
j∈G/H

Xj ≈ homH(G,X).

Under this identification, the “diagonal” map is the map

X → homH(G,X)

adjoint to the action map

G×
H
X → X,

which is clearly equivariant.

One can combine these construction to define the norm on RO(G)-graded

cohomology of a G-space X

NG
H : RVH(X)→ RindV

G (X)

sending

S0 ∧X a−→ SV ∧ i∗HR
to the composite

S0 ∧X −→ S0 ∧NX Na−−→ SindV ∧Ni∗HR→ SindV ∧R.
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2.4. The method of twisted monoid rings. In this section we describe the

method of twisted monoid rings. The basic constructions are categorical, and

in Sections 2.4.1–2.4.2 we do not make any homotopy theoretic considerations.

In Section 2.4.3 we take up the homotopy theoretic aspects of our constructions.

2.4.1. Twisted monoid rings. We start with a subgroup H of G, and a

positive representative (V0, V1) of a virtual representation V of H. Let

S0[SV ] =
∨
k≥0

(SV )∧k

be the free H-equivariant associative algebra generated by SV = S−V1 ∧ SV0 ,

and

x̄ ∈ πHV S0[SV ]

the homotopy class of the generating inclusion. When |x̄| = 0, the spec-

trum S0[SV ] is the monoid ring of the free monoid on one generator and is in

fact commutative. For general x̄, it is the Thom spectrum of an associative

monoid map from the free monoid on one generator to the classifying space

for H-equivariant real vector bundles, hence a twisted monoid ring. It is not

typically a commutative algebra, though the RO(H)-equivariant homotopy

groups make it appear so, since πH? S
0[SV ] is a free module over πH? S

0 with

basis {1, x̄, x̄2, . . . }. It will be convenient to use the notation

S0[x̄] = S0[SV ].

Using the norm functor we can form the G-equivariant twisted monoid

ring

NG
H (S0[SV ]) = S0[G+ ∧

H
SV ].

This spectrum can also be described as a Thom spectrum over the free com-

mutative monoid generated by G/H. Things will look cleaner and will better

resemble the (polynomial) algebras we are modeling if we use the alternate

notation

S0[G · SV ] and S0[G · x̄].

Though the symbol H is omitted in this notation, it is still referenced. The

representation V is representation of H, and x̄ is an H-equivariant map with

domain SV .

By smashing examples like these together we can make associative algebras

that are twisted forms of free commutative monoid algebras over S0, in which

the group G is allowed to act on the monoid. More explicitly, suppose we are

given a sequence (possibly infinite) of subgroups Hi ⊂ G and for each i, a

positive representative ((Vi)0, (Vi)1) of a virtual representation Vi of Hi. For

each i form

S0[G · x̄i]
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as described above, smash the first m together to make

S0[G · x̄1, . . . , G · x̄m],

and then pass to the colimit to construct the G-equivariant associative algebra

T = S0[G · x̄1, G · x̄2, . . . ].

The twisted monoid ring T can also be described as a Thom spectrum

over the free commutative monoid generated by the G-set

J =
∞∐
i=1

G/Hi.

By construction, it is an indexed smash product of an indexed wedge

(2.31) T =
∧
j∈J

∞∨
n=0

SnV (j),

where for j = gHi, V (j) is the virtual representation of gHig
−1 with positive

representative

V (j) =
Ä
V (j)0, V (j)1

ä
= (gHi) ×

Hi

Ä
(Vi)0, (Vi)1

ä
.

All of this can be done relative to an equivariant commutative algebra R

by defining

R[G · x̄1, G · x̄2, . . . ]

to be

R ∧ S0[G · x̄1, G · x̄2, . . . ].

Because they can fail to be commutative, these twisted monoid rings do

not have all of the algebraic properties one might hope for. But it is possible

to naturally construct all of the equivariant monomial ideals. Here is how.

Applied to (2.31), the distributive law of Section A.3.3 gives an isomor-

phism of T with the indexed wedge

T =
∨
f∈NJ0

SVf

in which f is running through the set of functions

J → N0 = {0, 1, 2, . . . }

taking nonzero values on only finitely many elements (finitely supported func-

tions). The group G acts on the set NJ0 through its action on J , and Vf is the

virtual representation

Vf =
∑
j∈J

f(j) · V (j)
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of the stabilizer Hf of f , with the evident positive representationÑ⊕
j∈J

V (j)
f(j)
0 ,

⊕
j∈J

V (j)
f(j)
1

é
.

The G-set NJ0 is a commutative monoid under addition of functions, and

the ring structure on T is the indexed sum of the obvious isomorphisms

SVf ∧ SVg ≈ SVf⊕Vg ≈ SVf+g .

Recall (for example, from [15]) that an ideal in a commutative monoid L

is a subset I ⊂ L with the property that L + I ⊂ I. Given a G-stable ideal

I ⊂ NJ0 , form the G-spectrum

TI =
∨
f∈I

SVf .

The formula for the multiplication in T implies that TI is an equivariant sub-

bimodule of T and that the association I 7→ TI is an inclusion preserving

function from the set of ideals in NJ0 to the set of sub-bimodules of T . For a

more general and systematic discussion, see Section A.3.6.

Example 2.32. The monomial ideal corresponding to the set I of all nonzero

elements of NJ0 is the augmentation ideal. (Up to homotopy it is the fiber of the

map T → S0.) It is convenient to denote this T bimodule as (G · x̄1, G · x̄2, . . . ).

More generally, for an integer n > 0, the set nI = I + · · · + I of n-fold sums

of elements of I is a monoid ideal. It corresponds to the monomial ideal given

by the nth power of the augmentation ideal.

Example 2.33. Let dim : NJ0 → N0 be the function given by

dim f = dimVf =
∑
j∈J

f(j) dimVj .

If for all i, dimVi > 0, then the set {f | dim f ≥ d} is a monoid ideal in NJ0 and

corresponds to the monomial ideal M ⊂ T consisting the wedge of spheres of

dimension greater than d. The quotient bimodule Md/Md−1 can be identified

with the indexed coproduct ∨
dim f=d

SVf

on which T is acting through the augmentation T → S0. These monomial

ideals play an important role in the proof of the Slice Theorem in Section 6.

2.4.2. The method of twisted monoid rings.

Definition 2.34. Suppose that

fi : Bi → R, i = 1, . . .m
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are algebra maps from associative algebra Bi to a commutative algebra R. The

smash product of the fi is the algebra map

m∧
fi :

m∧
Bi →

m∧
R→ R,

in which the right most map is the iterated multiplication. If B is an H-

equivariant associative algebra, and f : B → i∗HR is an algebra map, we define

the norm of f to be the G-equivariant algebra map

NG
HB → R

given by

NG
HB → NG

H (i∗HR)→ R,

in which the rightmost map is the counit of the adjunction described in Propo-

sition 2.27.

These constructions make it easy to map a twisted monoid ring to a com-

mutative algebra. Suppose that R is a fibrant G-equivariant commutative

algebra and we are given a sequence

x̄i ∈ πHiVi R, i = 1, 2, . . . .

A choice of positive representative ((V0)i, (V1)i) of Vi and a map

SVi → R

representing x̄i determines an associative algebra map

S0[x̄i]→ R.

Applying the norm gives a G-equivariant associative algebra map

S0[G · x̄i]→ R.

By smashing these together we can make a sequence of equivariant algebra

maps

S0[G · x̄1, . . . , G · x̄m]→ R.

Passing to the colimit gives an equivariant algebra map

(2.35) S0[G · x̄1, G · x̄2, . . . ]→ R

representing the sequence x̄i. We will refer to this process by saying that the

map (2.35) is constructed by the method of twisted monoid rings. The whole

construction can also be made relative to a commutative algebra S, leading to

an S-algebra map

(2.36) S[G · x̄1, G · x̄2, . . . ]→ R

when R is a commutative S-algebra.
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2.4.3. Quotient modules. One important construction in ordinary stable

homotopy theory is the formation of the quotient of a module M over a com-

mutative algebra R by the ideal generated by a sequence {x1, x2, . . . } ⊂ π∗R.

This is done by inductively forming the cofibration sequence of R-modules

(2.37) Σ|xn|M/(x1, . . . , xn−1)→M/(x1, . . . , xn−1)→M/(x1, . . . , xn)

and passing to the homotopy colimit in the end. There is an evident equivalence

M/(x1, . . . ) ≈M ∧
R
R/(x1, . . . )

in case M is a cofibrant R-module. The situation is slightly trickier in equivari-

ant stable homotopy theory, where the group G might act on the elements xi
and prevent the inductive approach described above. The method of twisted

monoid rings (Section 2.4.1) can be used to get around this difficulty.

Suppose that R is a fibrant equivariant commutative algebra and that

x̄i ∈ πHiVi (R), i = 1, 2, . . .

is a sequence of equivariant homotopy classes. Using the method of twisted

monoid rings, construct an associative R-algebra map

(2.38) T = R[G · x̄1, G · x̄2, . . . ]→ R.

Using this map, we may regard an equivariant R-module M as a T -module.

In addition to (2.38) we will make use of the augmentation ε : T → R sending

the x̄i to zero.

Definition 2.39. The quotient module M/(G · x̄1, . . . ) is the R-module

M
L
∧
T
R

in which T acts on M through the map (2.38) and on R through the augmen-

tation.

The symbol
L
∧ denotes derived smash product. By Proposition B.138 it

can be computed by taking a cofibrant approximation in either variable.

Let us check that this construction reduces to the usual one when the

group acting is the trivial group and M is a cofibrant R-module. For ease of

notation, write

T = R[x1, . . . ],

Tn = R[x1, . . . , xn].

Using the isomorphism

R[x1, . . . ] ≈ R[x1, . . . , xn] ∧
R
R[xn+1, . . . ]
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one can construct an associative algebra map

T → R[xn+1, . . . ]

by smashing the augmentation

R[x1, . . . , xn]→ R

sending each xi to 0, with the identity map of R[xn+1, . . . ]. By construction,

the evident map of T -algebras

lim−→R[xn+1, . . . ]→ R

is an isomorphism, and hence so is the map

lim−→M ∧
T
R[xn+1, . . . ]→M ∧

T
R.

In fact this isomorphism is also a derived equivalence. To see this, con-

struct a sequence

→ · · ·Nn+1 → Nn+2 · · ·

of cofibrations of cofibrant left T -module approximations to

→ · · ·R[xn+1, . . . ]→ R[xn+2, . . . ]→ · · · .

We have

π∗ lim−→Nk ≈ lim−→π∗Nk ≈ lim−→(π∗R)[xk, . . . ] ≈ R

from which one concludes that the map

lim−→Nk → lim−→R[xk, . . . ]

is a cofibrant approximation. It follows that

M/(x1, . . . ) ≈ holim−→M/(x1, . . . , xn).

To compare M/(x1, . . . , xn−1) with M/(x1, . . . , xn) let Tn → R[xn] be

associative algebra map constructed from the isomorphism

Tn ≈ Tn−1 ∧
R
R[xn]

by smashing the augmentation of Tn−1 with the identity map of R[xn]. We

have

M/(x1, . . . , xn−1) ∼M ∧
Tn−1

R ≈M ∧
Tn
Tn ∧

Tn−1

R ≈M ∧
Tn
R[xn].

By Proposition B.138, M ∧
Tn
R[xn] is a cofibrant R[xn]-module. The cofibration

sequence (2.37) is now constructed by applying the functor

(2.40) M/(x1, . . . , xn−1) ∧
R[xn]

(− )
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to the pushout diagram of R[xn] bimodules

(2.41) (xn) //

��

R[xn]

��
∗ // R

and appealing to Corollary B.139.

A similar discussion applies to the equivariant situation, giving

M/(G · x̄1, . . . ) ≈ lim−→M/(G · x̄1, . . . , G · x̄n),

a relation

M/(G · x̄1, . . . , G · x̄n) ≈M/(G · x̄1, . . . , G · x̄n−1) ∧
R[G·x̄n]

R,

and a cofibration sequence

(G · x̄n) ·M/(G · x̄1, . . . , G · x̄n−1)→M/(G · x̄1, . . . , G · x̄n−1)

→M/(G · x̄1, . . . , G · x̄n),

derived by applying the functor

M/(G · x̄1, . . . , G · x̄n−1) ∧
R[G·x̄n]

(− )

to

(G · x̄n)→ R[G · x̄n]→ R.

One can also easily deduce the equivalences

(2.42) R/(G · x̄1, . . . , G · x̄n) ≈ R/(G · x̄1) ∧
R
· · · ∧

R
R/(G · x̄1)

and

(2.43) R/(G · x̄1, . . . ) ≈ lim−→R/(G · x̄1) ∧
R
· · · ∧

R
R/(G · x̄n).

These expressions play an important role in the proof Lemma 7.7, which is a

key step in the proof the Reduction Theorem.

2.5. Fixed points, isotropy separation and geometric fixed points.

2.5.1. Fixed point spectra. The fixed point spectrum of a G-spectrum X is

defined to be the spectrum of G fixed points in the underlying, nonequivariant

spectrum i∗0X. In other words, it is given by

X 7→ (i∗0X)G.

The notation i∗0X
G can get clumsy, and we will usually abbreviate it to XG.

The functor of fixed points has a left adjoint that sends S−V ∧XV ∈ S to

S−V ∧XV ∈ SG, where in the latter expression V is regarded as a representation
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of G with trivial G-action and XV is regarded as a space with trivial G-action.

It can be computed for general X in terms of the tautological presentation∨
V,W

J (V,W )+ ∧ S−W ∧XV ⇒
∨
V

S−V ∧XV → X

for the trivial group (see (A.15)), once one observes that

J (V,W ) = JG(V,W )

when V and W have trivial G-action.

Under the equivalence between SG and the category of objects in S equipped

with a G-action, the fixed point spectrum functor is formed by passing to ob-

jectwise fixed points, and its left adjoint is given by regarding a nonequivariant

spectrum as a G-object with trivial G-action.

The fixed point functor and its left adjoint form a Quillen morphism in

the positive complete model structures. Neither the fixed point functor nor its

left adjoint is homotopical, and so both need to be derived. As one can easily

check from the definition, if X is fibrant (or more generally has the property

that for some exhausting sequence {Vn}, the map XVn → ΩVn+1−VnXVn+1 is a

weak equivalence), then there is an isomorphism

π∗(X
G) ≈ πG∗ X.

The (derived) fixed point functor on spectra does not always have the

properties one might be led to expect by analogy with spaces. For example,

even though the composition of the fixed point functor with its left adjoint is

the identity, the composition of the derived functors is not. The derived fixed

point functor does not generally commute with smash products, or with the

formation of suspension spectra.

2.5.2. Isotropy separation and geometric fixed points. A standard approach

to getting at the equivariant homotopy type of a G-spectrum X is to nest X

between two pieces, one an aggregate of information about the spectra i∗HX

for all proper subgroups H ⊂ G, and the other a localization of X at a “purely

G” part. This is the isotropy separation sequence of X.

More formally, let P denote the family of proper subgroups of G, and EP
the “classifying space” for P, characterized up to equivariant weak equivalence

by the property that the space of fixed points EPG is empty, while for any

proper H ⊂ G, EPH is weakly contractible. For convenience, we will assume

that EP has been chosen to be a G-CW complex. Such a model can be con-

structed as the join of infinitely many copies of G/H with H ranging through

the proper subgroups of G. It can also be constructed as the unit sphere in

the sum of infinitely many copies of the reduced regular representation of G.

Any G-CW complex EP admits an equivariant cell decomposition into cells of

the form (G/H)+ ∧Dn
+ with H a proper subgroup of G.
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Let ẼP be the mapping cone of EP → pt, with the cone point taken

as base point. The G-CW complex ẼP is characterized up to equivariant

homotopy equivalence by the propertyÄ
ẼP
äH ∼ S0 H = G,

∗ H 6= G.

The important isotropy separation sequence is constructed by smashing a G

spectrum X with the defining cofibration sequence for ẼP

(2.44) EP+ ∧X → X → ẼP ∧X.

The term on the left can be described in terms of the action of proper subgroups

H ⊂ G on X. The homotopy type of the term on the right is determined by

its right derived fixed point spectrum

ΦG(X) =
Ä
(ẼP ∧X)f

äG
,

in which the subscript f indicates a functorial fibrant replacement. The functor

ΦG(X) is the geometric fixed point functor and has many remarkable proper-

ties.

Proposition 2.45.

(i) The functor ΦG sends weak equivalences to weak equivalences.

(ii) The functor ΦG commutes with filtered homotopy colimits.

(iii) For a G-space A and a representation V of G, there is a weak equivalence

ΦG(S−V ∧A) ≈ S−V G ∧AG where V G ⊂ V is the subspace of G-invariant

vectors.

(iv) For G-spectra X and Y , the spectra

ΦG(X ∧ Y ) and ΦG(X) ∧ ΦG(Y )

are related by a natural chain of weak equivalences.

Remark 2.46. Note that in terms of the canonical homotopy presentation

X ≈ holim−→
V

S−V ∧XV ,

properties (i)–(iii) of Proposition 2.45 imply that

(2.47) ΦGX ≈ holim−→
V

S−V
G ∧XG

V .

Sketch of proof. The first assertion follows from the fact that smashing

with ẼP is homotopical (Section B.3.7), so it need not be derived, and that

the fixed point functor is homotopical on the full subcategory of fibrant objects.

The second is straightforward. Part (iii) is Corollary B.185. By the remark

above, the canonical homotopy presentation reduces part (iv) to the case X =
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S−V ∧ A, Y = S−W ∧ B, with A and B G-CW complexes. One easily checks

the assertion in this case using part (iii). �

Remark 2.48. When G = C2n , the space EP is the space EC2 with G

acting through the epimorphism G → C2. Taking S∞ with the antipodal

action as a model of EC2, this leads to an identification

ẼP ≈ lim
n→∞

Snσ,

in which Snσ denotes the one point compactification of the direct sum of n

copies of the real sign representation of G.

Remark 2.49. The isotropy separation sequence often leads to the situa-

tion of needing to show that a map X → Y of cofibrant G-spectra induces a

weak equivalence

ẼP ∧X → ẼP ∧ Y.
Since for every proper H ⊂ G, πH∗ ẼP ∧X = πH∗ ẼP ∧Y = 0, this is equivalent

to showing that the map of geometric fixed point spectra ΦGX → ΦGY is a

weak equivalence.

Remark 2.50. Since πH∗ ẼP ∧ X = 0 for every proper H ⊂ G, it is also

true that

[T, ẼP ∧X]G∗ = 0

when T a G-CW complex, built entirely from G-cells of the form G/H ×Dn

with H a proper subgroup of G. Similarly, if T is gotten from a G-space T0 by

attaching G-cells induced from proper subgroups, then the restriction map

[T, ẼP ∧X]G∗ → [T0, ẼP ∧X]G∗

is an isomorphism. This holds, in particular, when T0 ⊂ T is the subcomplex

of G-fixed points.

Remark 2.51. For a subgroup H ⊂ G and a G-spectrum X, it will be

convenient to use the abbreviation

ΦHX

for the more correct ΦHi∗HX. This situation comes up in our proof of the

“homotopy fixed point” property of Theorem 10.8, where the more compound

notation becomes a little unwieldy.

We end this section with a simple result whose proof illustrates a typical

use of the geometric fixed point spectra.

Proposition 2.52. Suppose that X is a G-spectrum with the property

that for all H ⊂ G, the geometric fixed point spectrum ΦHX is contractible.

Then X is contractible as a G-spectrum.
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Proof. By induction on |G| we may assume that for proper H ⊂ G, the

spectrum i∗HX is contractible. Since both G+ ∧
H

(− ) and the formation of

mapping cones are homotopical, it follows that T ∧X is contractible for any

G-CW complex built entirely from cells of the form G+ ∧
H
Dn with H ⊂ G

proper. This applies, in particular, to T = EP+. The isotropy separation

sequence then shows that

X → ẼP ∧X

is a weak equivalence. But Remark 2.49 and our assumption that ΦGX is

contractible imply that ẼP ∧X is contractible. �

2.5.3. Monoidal geometric fixed points. For some purposes it is useful to

have a version of the geometric fixed point functor that is lax symmetric

monoidal. For example, such a functor automatically takes (commutative)

algebras to (commutative) algebras. The geometric fixed point functor defined

in [55, §V.4] has this property. We denote it ΦG
M and refer to it as the monoidal

geometric fixed point functor in order to distinguish it from ΦG. The following

is a compendium of results from [55, §V.4]. The construction and proofs are

described in Section B.10.

Proposition 2.53. The monoidal geometric fixed point functor has the

following properties :

(i) it preserves acyclic cofibrations ;

(ii) it is lax symmetric monoidal ;

(iii) if X and Y are cofibrant, the map

ΦG
M (X) ∧ ΦG

M (Y )→ ΦG
M (X ∧ Y )

is an isomorphism ;

(iv) it commutes with cobase change along a closed inclusion ;

(v) it commutes with directed colimits.

Property (iii) implies that ΦG
M is weakly symmetric monoidal in the sense

of the definition below.

Definition 2.54 (Schwede-Shipley [77]). A functor F : C → D between

(symmetric) monoidal model categories is weakly (symmetric) monoidal if it is

lax (symmetric) monoidal, and the map

F (X) ∧ F (Y )→ F (X ∧ Y )

is a weak equivalence when X and Y are cofibrant.

The next result is [55, Prop. V.4.17], and it is discussed in more detail as

Proposition B.201.



40 M. A. HILL, M. J. HOPKINS, and D. C. RAVENEL

Proposition 2.55. The left derived functor of ΦG
M is ΦG. More specifi-

cally, there are natural transformations

ΦG(X)→ Φ̃G
M (X)

∼←− ΦG
M (X)

in which the rightmost arrow is a always weak equivalence and the leftmost

arrow is a weak equivalence when X is cofibrant.

Because ΦG is lax monoidal, it determines functors

ΦG
M : AlgG → Alg,

ΦG
M : CommG → Comm,

and for each associative algebra R, a functor

ΦG
M :MR →MΦGMR

.

In addition, if R is an associative algebra, M a right R-module and N a left

R-module, there is a natural map

(2.56) ΦG
M (M ∧

R
N)→ ΦG

MM ∧
ΦGMR

ΦG
MN.

The argument for [55, Prop. V.4.7] shows that (2.56) is a weak equivalence

(in fact an isomorphism) if M and N are cofibrant and R is “cellular.” See

Proposition B.203. (Recently, Blumberg and Mandell [10, App. A] have shown

that one need only require one of M or N to be cofibrant in order to guarantee

that this map is an isomorphism.)

While these properties of ΦG
M are very convenient, they must be used with

caution. The value ΦG
M (X) is only guaranteed to have the “correct” homotopy

type on cofibrant objects. The spectrum underlying a commutative algebra

is rarely known to be cofibrant, making the monoidal geometric fixed point

functor difficult to use in that context. The situation is a little better with

associative algebras. The weak equivalence (2.56) leads to an expression for

the geometric fixed point spectrum of a quotient module that we will use in

Section 7.3. In order to do so, we need criteria guaranteeing that the monoidal

geometric fixed point functor realizes the correct homotopy type. Such criteria

are described in Section B.10.4.

2.5.4. Geometric fixed points and the norm. The geometric fixed point

construction interacts well with the norm. Suppose H ⊂ G is a subgroup and

that X is an H-spectrum. The following result is proved as Proposition B.209.

Our original version merely concluded that the transformation in question was

a weak equivalence on cofibrant objects. Andrew Blumberg and Mike Mandell

pointed out that it is in fact an isomorphism on cofibrant objects, and at their

request we have included a proof of the stronger statement.
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Proposition 2.57. There is a natural map

ΦH
MX → ΦG

M (NG
HX)

that is an isomorphism, hence a weak equivalence, on cofibrant objects.

Because of Proposition 2.55 and the fact that the norm preserves cofibrant

objects (Proposition B.89), the above result gives a natural zig-zag of weak

equivalences relating ΦH(X) and ΦG(NG
HX) when X is cofibrant. In fact

there is a natural zig-zag of maps

ΦHX ↔ ΦG(NG
HX)

that is a weak equivalence not only for cofibrant X, but for suspension spectra

of cofibrant G-spaces and for the spectra underlying cofibrant commutative

rings. The actual statement is somewhat technical and is one of the main

results of Appendix B. The condition is described in the statement of Propo-

sition B.213. See also Remarks B.215 and B.216.

Corollary 2.58. For the spectra satisfying the condition of Proposi-

tion B.213, the composite functor

ΦG ◦NG
H : SH → S

preserves, up to weak equivalence, wedges, directed colimits along closed inclu-

sions and cofiber sequences.

Proof. The properties obviously hold for ΦH . �

There is another useful result describing the interaction of the geometric

fixed point functor with the norm map in RO(G)-graded cohomology described

in Section 2.3.3. Suppose that R is a G-equivariant commutative algebra, X is

a G-space, and V ∈ RO(H) a virtual real representation of a subgroup H ⊂ G.

In this situation one can compose the norm

N : RVH(X)→ RindV
G (X)

with the geometric fixed point map

ΦG : RindV
G (X)→ (ΦGR)V

H
(XG),

where V H ⊂ V is the subspace of H-fixed vectors and XG is the space of

G-fixed points in X.

Proposition 2.59. The composite

ΦG ◦N : RVH(X)→ (ΦGR)V
H

(XG)

is a ring homomorphism.
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Proof. Multiplicativity is a consequence of the fact that both the norm

and the geometric fixed point functors are weakly monoidal. Additivity follows

from the fact that the composition ΦG ◦N preserves wedges (Corollary 2.58).

�

3. Mackey functors, homology and homotopy

3.1. Mackey functors. In equivariant homotopy theory, the role of “abe-

lian group” is played by the notion of a Mackey functor (Dress [20]). The fol-

lowing is the summary of Dress’ definition as it appears in Greenlees-May [28].

Definition 3.1 (Dress [20]). A Mackey functor consists of a pair M =

(M∗,M
∗) of functors from the category of finite G-sets to the category of

abelian groups. The two functors have the same object function (denoted M)

and take disjoint unions to direct sums. The functor M∗ is covariant, while

M∗ is contravariant, and together they take a pullback diagram of finite G-sets

S
δ //

γ

��

A

α
��

T
β
// B

to a commutative square

M(P )
δ∗ // M(X)

M(Y )

γ∗

OO

β∗
// M(Z),

α∗

OO

where α∗ = M∗(α), β∗ = M∗(β), etc.

The contravariant maps M∗(α) are called the restriction maps and the

covariant maps M∗(β), the transfer maps.

A Mackey functor can also be defined as a contravariant additive functor

from the full subcategory of SG consisting of the suspension spectra Σ∞B+

of finite G-sets B. It is a theorem of tom Dieck that these definitions are

equivalent. See [28, §5].

The equivariant homotopy groups of a G-spectrum X are naturally part

of the Mackey functor πnX defined by

(πnX)∗(B) = [Sn ∧B+, X]G,

(πnX)∗(B) = [Sn, X ∧B+]G.

The identification of the two object functors

[Sn ∧B+, X]G ≈ [Sn, X ∧B+]G
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comes from the self-duality of finite G-sets (Example 2.6). For B = G/H, one

has

πnX(B) = πHn X.

The Mackey functor π0S
0 is the Burnside ring Mackey functor A. It is

the free Mackey functor on one generator. For a G-set B, the value A(B)

is the group completion of the monoid of isomorphism classes of finite G-sets

T → B over B under disjoint union. The restriction maps are given by pullback

and the transfer maps by composition. The group A(G/H) works out to be

isomorphic to the abelian group underlying the Burnside ring of finite H-sets.

Just as every abelian group can occur as a stable homotopy group, every

Mackey functor M can occur as an equivariant stable homotopy group. In fact

associated to each Mackey functor M is an equivariant Eilenberg-Mac Lane

spectrum HM , characterized by the property

πnHM =

M n = 0,

0 n 6= 0.

See [28, §5] or [49].

The homology and cohomology groups of a G-spectrum X with coefficients

in M are defined by

HG
k (X;M) = πGk HM ∧X,

Hk
G(X;M) = [X,ΣkHM ]G.

For a pointed G-space Y , one defines

HG
n (Y ;M) = HG

n (Σ∞Y ;M),

Hn
G(Y ;M) = Hn

G(Σ∞Y ;M).

We emphasize that the equivariant (co)homology groups of pointed G-spaces

Y we consider will always be reduced (co)homology groups.

We will have need to consider the ordinary, nonequivariant homology and

cohomology groups of the spectrum i∗0X underlying a G-spectrum X. It will

be convenient to employ the shorthand notation

Hu
n(X;Z) = Hn(i∗0X;Z),

Hn
u (X;Z) = Hn(i∗0X;Z)

for these groups.

3.2. Constant and permutation Mackey functors. The constant Mackey

functor Z is the functor represented on the category of finite G-sets by the

abelian group Z with trivial G-action. The value of Z on a finite G-set B is

the group of functions

Z(B) = homG(B,Z) = hom(B/G,Z).
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The restriction maps are given by precomposition, and the transfer maps by

summing over the fibers. For K ⊂ H ⊂ G, the transfer map associated by Z
to

G/K → G/H

is the map Z→ Z given by multiplication by the index of K in H.

Definition 3.2. Suppose that S is a G-set, and write Z{S} for the free

abelian group generated by S and ZS for the ring of functions S to Z. The

permutation Mackey functor Z{S} is the Mackey functor

Z{S}(B) = homG(B,Z{S}),

whose restriction maps are given by precomposition and transfer maps by

summing over the fibers.

The permutation Mackey functor Z{S} is naturally isomorphic to the

Mackey functor π0HZ ∧ S+. To see this note that restricting to underlying

nonequivariant spectra gives a map

π0HZ ∧ S+(B) = [B+, HZ ∧ S+]G → [B+, HZ ∧ S+],

whose image lies in the G-invariant part. Since

[B+, HZ ∧ S+] = hom(B,Z{S}),

this gives a natural transformation

π0HZ ∧ S+ → Z{S}.

Since both sides take filtered colimits in S to filtered colimits, to check that it

is an isomorphism, it suffices to do so when S is finite. In that case we can use

the self duality of finite G-sets to compute

[B+, HZ ∧ S+]G ≈ [B+ ∧ S+, HZ]G

and then observe that by definition of the constant Mackey functor Z, the

forgetful map

[B+ ∧ S+, HZ]G → [B+ ∧ S+, HZ]

is an isomorphism with the G-invariant part of the target. The claim then

follows from the compatibility of equivariant Spanier-Whitehead duality with

the restriction functor to nonequivariant spectra.

The properties of permutation Mackey functors listed in the lemma below

follow immediately from the definition. They are used in Section 4.6.2 to

establish some of our basic tools for investigating the slice tower. To formulate

part (ii), note that every G-set B receives a functorial map from a free G-set,

namely G×B and the group of equivariant automorphisms of G×B over B is

canonically isomorphic to G. For instance, one can give G×B the product of

the left action on G and the trivial action on B, and take the map G×B → B
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to be the original action mapping. With this choice the automorphisms G×B
over B are of the form (g, b) 7→ (g x, x−1b) with x ∈ G.

Lemma 3.3. Let M be a permutation Mackey functor and B finite G-set.

(i) If B′ → B is a surjective map of finite G-sets, then

M(B)→M(B′)⇒M(B′ ×
B
B′)

is an equalizer.

(ii) Restriction along the action map G×B → B gives an isomorphism

M(B)→M(G×B)G.

(iii) The restriction mapping M(G/H)→M(G) gives an isomorphism

M(G/H)→M(G)H

of M(G/H) with the H-invariant part of M(G).

(iv) A map M → M ′ of permutation Mackey functors is an isomorphism if

and only if M(G)→M ′(G) is an isomorphism.

3.3. Equivariant cellular chains and cochains. The Mackey functor ho-

mology and cohomology groups of a G-CW complex X can be computed from

a chain complex analogous to the complex of cellular chains (see, for example,

[28, §5]). Write X(n) for the n-skeleton of X so that

X(n)/X(n−1) ≈ Xn+ ∧ Sn

with Xn a discrete G-set. Set

Ccell
n (X;M) = πGnHM ∧X(n)/X(n−1) = πG0 HM ∧Xn+,

Cncell(X;M) = [X(n)/X(n−1),ΣnHM ]G = [Σ∞Xn+, HM ]G.

The map

X(n)/X(n−1) → ΣX(n−1)/X(n−2)

defines boundary and coboundary maps

Ccell
n (X;M)→ Ccell

n−1(X;M),

Cn−1
cell (X;M)→ Cncell(X;M).

The equivariant homology and cohomology groups of X with coefficients in M

are the homology and cohomology groups of these complexes. By writing the

G-set Xn as a coproduct of finite G-sets Xα
n , one can express Ccell

n (X;M) and

Cncell(X;M) in terms of the values of the Mackey functor M on the Xα
n .

Example 3.4. Write ρG for the (real) regular representation ofG and ρG−1

for the reduced regular representation. The groups

H∗(SρG−1;M)
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play an important role in equivariant stable homotopy theory. To describe

them we need an equivariant cell decomposition of SρG−1. Since SρG−1 is the

mapping cone of the map

S(ρG − 1)→ pt

from the unit sphere in (ρG − 1), it suffices to construct an equivariant cell

decomposition of S(ρG − 1). Write g = |G|. Think of RG as the vector

space with basis the elements of G. The boundary of the standard simplex

in this space is equivariantly homeomorphic to S(ρG − 1). The simplicial

decomposition of this simplex is not an equivariant cell decomposition, but the

barycentric subdivision is. Thus S(ρG − 1) is homeomorphic to the geometric

realization of the poset of nonempty proper subsets of G. This leads to the

complex

(3.5) M(G/G)→M(S0)→M(S1)→ · · · →M(Sg−1)

in which Sk is the G-set of flags F0 ⊂ · · · ⊂ Fk ⊂ G of proper inclusions

of subsets of G, with G acting by translation. The coboundary map is the

alternating sum of the restriction maps derived by omitting one of the sets in

a flag.

Corollary 3.6. For any Mackey functor M , the group

πGρG−1HM = H0
G(SρG−1;M)

is given by ⋂
H(G

ker
Ä
M(G/G)→M(G/H)

ä
.

Proof. Using the complex (3.5) it suffices to show that the orbit types

occurring in S0 are precisely the transitive G-sets of the form G/H with H

a proper subgroup of G. The set S0 is the set of nonempty proper subsets

S ⊂ G. Any proper subgroup H of G occurs as the stabilizer of itself, regarded

as a subset of G. Since the subsets are proper, the group G does not occur as

a stabilizer. �

Example 3.7. Let X be the sphere Sd−1 with the action of C2n given by

the antipodal map and pointed by adding a disjoint base point. The usual cell

decomposition into hemispheres is equivariant for the action of C2n , and for

this cell structure, one has X(j)/X(j−1) = (C2n/C2n−1)+ ∧Sj . The complex of

cellular chains Ccell
∗ (X;M) works out to be the complex of length d

M(C2n) −−→ · · · 1+γ−−→M(C2n)
1−γ−−→M(C2n)

in which γ ∈ C2n is the generator.

Example 3.8. Let G = C2n , and let σ the sign representation of G. Sus-

pending the cell decomposition of Example 3.7 gives an equivariant cell decom-

position of Sdσ whose k-skeleton is Skσ and whose set of k-cells is C2+×Dk, in
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which G acts on C2 through the unique surjective map G→ C2. The complex

of cellular chains Ccell
∗ (Sdσ;M) works out to be the complex of length (d+ 1)

M(C2) −−→ · · · 1−γ−−→M(C2) −−→M(pt)

in which γ ∈ G is the preferred generator.

If M is the constant Mackey functor Z, then Ccell
n (X;M) is the permu-

tation Mackey functor Z{Xn} and associates to a finite G-set B the group of

equivariant functions

B → Z{Xn} = Ccell
n X.

In this way the entire Mackey functor chain complex Ccell
∗ (X;Z) is encoded in

the ordinary cellular chain complex Ccell
∗ (X) for i∗0X, equipped with the action

of G. The equivariant homology group HG
∗ (X;Z) are just the homology groups

of the complex

homG(G/G,Ccell
∗ (X)) = Ccell

∗ (X)G

of G-invariant cellular chains. Similarly, the equivariant cohomology groups

H∗G(X;Z) are given by the cohomology groups of the complex

C∗cell(X)G

of equivariant cochains. The equivariant homology and cohomology groups

depend only on the equivariant chain homotopy type of these complexes of

permutation Mackey functors.

Example 3.9. If X is a G-space admitting the structure of a G-CW com-

plex, then the cohomology groups H∗G(X;Z) are isomorphic to the cohomology

groups

H∗(X/G;Z)

of the orbit space. Indeed, the equivariant cell decomposition of X induces a

cell decomposition of X/G and one has an isomorphism

C∗cell(X)G ≈ C∗cell(X/G).

Example 3.10. Suppose that V is a representation of G of dimension d,

and consider the equivariant cellular chain complex

Ccell
d (SV ;Z)→ Ccell

d−1(SV ;Z)→ · · · → Ccell
0 (SV ;Z),

associated to an equivariant cell decomposition of SV . The underlying homol-

ogy groups are those of the sphere SV . In particular, the kernel of

Ccell
d (SV ;Z)→ Ccell

d−1(SV ;Z)

is isomorphic, as a G-module, to Hu
d (SV ;Z). If V is orientable, then the

G-action is trivial, and one finds that the restriction map

HG
d (SV ;Z)→ Hu

d (SV ;Z)
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is an isomorphism. A choice of orientation gives an equivariant isomorphism

Hu
d (SV ;Z) ≈ Z.

Thus when V is oriented there is a unique isomorphism

HG
d (SV ;Z) ≈ Z

extending the nonequivariant isomorphism given by the orientation.

3.4. Homology and geometric fixed points. In addition to the Mackey func-

tor homotopy groups π∗X, there are the RO(G) graded homotopy groups πG? X

defined by

πGVX = [SV , X]G, V ∈ RO(G).

Here RO(G) is the Grothendieck group of real representations of G. The use of

? for the wildcard symbol in πG? is taken from Hu-Kriz [37]. The RO(G)-graded

homotopy groups are also part of a Mackey functor π?(X) defined by

πVX(B) = [SV ∧B+, X]G.

As with Z-graded homotopy groups, we will use the abbreviation

πHV X = (πVX)(G/H).

In this section we will make use of RO(G)-graded homotopy groups to describe

the geometric fixed point spectrum ΦGHZ when G = C2n (Proposition 3.18

below).

There are a few distinguished elements of RO(G)-graded homotopy groups

we will need. Let V be a representation of G and S0 → SV the one point

compactification of the inclusion {0} ⊂ V .

Definition 3.11. The element

aV ∈ πG−V S0

is the element corresponding under the suspension isomorphism πG−V S
0 ≈

πG0 S
V to the map S0 ↪→ SV described above.

The element aV is the Euler class of V in RO(G)-graded equivariant stable

cohomotopy. If V contains a trivial representation, then aV = 0. For two

representations V and W , one has

aV⊕W = aV aW ∈ πG−V−WS0.

Example 3.10 gives a preferred generator ofHG
d (SV ;Z) when V is oriented.

We give the corresponding RO(G)-graded homotopy class the following name.

Definition 3.12. Let V be an oriented representation of G of dimension d.

The element

uV ∈ πGd−VHZ
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is the element corresponding to the preferred generator of

πdHZ ∧ SV = HG
d (SV ;Z)

given by Example 3.10.

If V is trivial, then uV = 1. If V and W are two oriented representations

of G, and V ⊕W is given the direct sum orientation, then

uV⊕W = uV uW .

Among other things this implies that the class uV is stable in V in the sense

that uV+1 = uV .

For any V , the representation V ⊕ V has a canonical orientation, giving

uV⊕V ∈ πG2d−2VHZ.

When V is oriented this class can be identified, up to sign, with u2
V .

The elements aV and uV behave well with respect to the norm. The

following result is a simple consequence of the fact (2.11) that NSV = SindV .

Lemma 3.13. Suppose that V is a d-dimensional representation of a sub-

group H ⊂ G. Then

NaV = aindV ,

uind d ·NuV = uindV ,

where indV = indGH V is the induced representation and d is the trivial repre-

sentation.

Remark 3.14. As is standard in algebra, we will adopt the convention that

the operation of multiplication by an element of a ring on a module is denoted

by the element of the ring. We will also use it in closely related contexts. For

example, for a G-spectrum X, we will refer to the to the maps

aV ∧ 1X : S−V ∧X → X,

uV ∧ 1X : Sd−V ∧X → HZ ∧X

as multiplication by aV and uV respectively and, when no confusion is likely,

denote them simply by aV and uV . Note that X might be a virtual repre-

sentation sphere. This means that we will not usually distinguish in notation

between these maps and their suspensions. Similarly, if R is any equivariant

algebra, and x ∈ πGV S0, then the product of x with 1 ∈ πG0 R will be denoted

x ∈ πGV R. In accordance with this, at various places in this paper the sym-

bol aV might refer to a map S−V → S0, or its suspension S0 → SV or the

Hurewicz image S0 → HZ ∧ SV or equivalently an element of πG0 HZ ∧ SV .
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Example 3.15. Let S∞V be the colimit of the spaces SnV under the stan-

dard inclusions. Each of these inclusions is “multiplication by aV .” Smashing

with a G-spectrum X we find that S∞V ∧X is the colimit of the sequence

X
aV−−→ SV ∧X aV−−→ SV⊕V ∧X · · · aV−−→ SnV ∧X aV−−→ · · · .

Using the suspension isomorphism to replace πG? S
nV ∧ X with πG?−nVX, the

sequence of the RO(G)-graded groups becomes

πG? X
aV−−→ πG?−VX · · ·

aV−−→ πG?−nVX · · ·
from which one gets an isomorphism

πG? S
∞V ∧X ≈ a−1

V πG? X.

Under this isomorphism the effect in RO(G)-graded homotopy groups induced

by the inclusion
SnV ∧X → S∞V ∧X

sends x ∈ πG? X ≈ πG?+V SnV ∧X to a−nV x ∈ a−1
V πG? X.

Example 3.16. Specializing Example 3.8, let G = C2n and σ the sign

representation. Consider the equivariant homology of Sdσ with coefficients in

the constant Mackey functor Z. The complex of cellular chains works out to

be (Example 3.8) the complex of length (d+ 1)

Z −→ · · ·Z 2−→ Z 0−→ Z 2−→ Z.
Our conventions provide nomenclature for the homology classes. When d is odd

the group Hd(S
dσ;Z) is zero. When d is even, the representation dσ acquires

a canonical orientation, the group HC2
d (Sdσ;Z) is canonically isomorphic to

the integers, and the preferred generator is the class udσ (Remark 3.14). For

every even 0 ≤ k < d, the group HG
k (Sdσ;Z) is cyclic of order 2 generated

by the image of ukσ ∈ HG
k (Skσ;Z) under the map induced by the inclusion

Skσ ⊂ Sdσ. As explained in Remark 3.14 this induced map is multiplication

by a(d−k)σ, and so this generator corresponds to the element

a(d−k)σ · ukσ ∈ πGk−dσ(HZ)

under the suspension isomorphism

πGk−dσ(HZ) ≈ πGk (HZ ∧ Sdσ) = HG
k (Sdσ;Z).

Example 3.17. Passing to the limit as d → ∞ and using the last part of

Example 3.15 we find that a(d−k)σ · ukσ is sent to

a−1
dσ · a(d−k)σ · ukσ = a−1

kσukσ ∈ πkS
∞σ.

Writing b = a−1
2σ u2σ we find that the homogeneous component

πC2
2nHZ ∧ S∞σ ⊂ πC2

? HZ ∧ S∞σ = a−1
2σ π

C2HZ

is cyclic of order 2, generated by bn.
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We now explicitly describe the geometric fixed point spectrum of HZ
when G = C2n . The computation plays an important role in the proof of the

Reduction Theorem.

Proposition 3.18. Let G = C2n . For any G-spectrum X , the RO(G)-

graded homotopy groups of ẼP ∧X are given by

πG? (ẼP ∧X) = a−1
σ πG? (X).

The homotopy groups of the commutative algebra ΦGHZ are given by

π∗(Φ
GHZ) = Z/2[b],

where b = u2σa
−2
σ ∈ π2(ΦGHZ) = πG2 (ẼP ∧HZ) ⊂ a−1

σ πG? HZ.

Proof. As mentioned in Remark 2.48, the space ẼP can be identified with

lim
n→∞

Snσ.

The first assertion therefore follows from Example 3.15. The second assertion

follows from Example 3.17 and the fact that the map a−1
σ πG? X → πG? ẼP ∧X

is a ring homomorphism when X is an equivariant algebra. �

3.5. A gap in homology. We conclude Section 3 with some further obser-

vations about SρG−1. Proposition 3.20 below constitutes the computational

part of the Gap Theorem and contains the Cell Lemma as a special case.

Example 3.19. Suppose that G is not the trivial group. In Section 4.6.2

we will encounter the group

πGρG−2HZ ≈ H1
G(SρG−1;Z)

which, by Example 3.9, is isomorphic to

H1(SρG−1/G;Z).

The G-space SρG−1 is the unreduced suspension of the unit sphere S(ρG − 1),

and so the orbit space is also a suspension. If |G| > 2, then S(ρG − 1) is

connected, hence so is the orbit space. If G = C2, then S(ρG − 1) ≈ G and

the orbit space is still connected. In all cases then, the unreduced suspension

SρG−1/G is simply connected. Thus

πGρG−2HZ ≈ H2
G(SρG ;Z) ≈ H1

G(SρG−1;Z) = 0.

In fact the same argument shows that for n > 0, the orbit space Sn(ρG−1)/G

is simply connected, and hence

H0
G(Sn(ρG−1);Z) = H1

G(Sn(ρG−1);Z) = 0

or, equivalently,

πGn(ρG−1)HZ = πGn(ρG−1)−1HZ = 0.
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Building on this, we have

Proposition 3.20. Let G be any nontrivial finite group and n ≥ 0 an

integer. Except in case G = C3, i = 3, n = 1, the groups

H i
G(SnρG ;Z)

are zero for 0 < i < 4. In the exceptional case one has

H3
G(SρC3 ;Z) = Z.

Proof. Since

H i
G(SnρG ;Z) ≈ H i−n

G (Sn(ρG−1);Z),

connectivity and Example 3.19 show that H i
G(SnρG ;Z) = 0 for i ≤ n+ 1. This

takes care of the cases in which n+ 1 ≥ 3, leaving only n = 1, and in that case

only the group

H2
G(SρG−1;Z),

which is isomorphic to

H2(SρG−1/G;Z).

Since the orbit space SρG−1/G is simply connected, the universal coefficient

theorem gives an inclusion

H2(SρG−1/G;Z)→ H2(SρG−1/G;Q).

It therefore suffices to show that

H2(SρG−1/G;Q) = 0.

But since G is finite, this group is just the G-invariant part of

H2(SρG−1;Q),

which is zero since G does not have order 3. When G does have order 3

the group is Q. The claim follows since the homology groups are finitely

generated. �

4. The slice filtration

The slice filtration is an equivariant analogue of the Postnikov tower, to

which it reduces in the case of the trivial group. In this section we introduce the

slice filtration and establish some of its basic properties. We work for the most

part with a general finite group G, though our application to the Kervaire

invariant problem involves only the case G = C2n . While the situation for

general G exhibits many remarkable properties, the reader should regard as

exploratory the apparatus of definitions at this level of generality.

From now until the end of Section 11 our focus will be on homotopy theory.

Though it will not appear in the notation, all spectra should be replaced by

cofibrant or fibrant approximations where appropriate.
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4.1. Slice cells.

4.1.1. Slice cells and their dimension. For a subgroup K ⊂ G, let ρK
denote its regular representation, and write

Ŝ(m,K) = G+ ∧
K
SmρK , m ∈ Z.

Definition 4.1. The set of slice cells is

{Ŝ(m,K),Σ−1Ŝ(m,K) | m ∈ Z,K ⊂ G}.

This brings two notions of “cell” into the story: the slice cells and the

cells of the form G/H+ ∧Dm or G+ ∧
H
S−V ∧Dm, used to manufacture G-CW

complexes or cellular spectra (Definition B.57). We will refer to these latter

types of cells cells as “G-cells” in order to distinguish them from the slice cells.

Definition 4.2. A slice cell is regular if it is of the form Ŝ(m,K).

Definition 4.3. A slice cell is induced if it is of the form

G+ ∧
H
Ŝ,

where Ŝ is a slice cell for H and H ⊂ G is a proper subgroup. It is free if H

is the trivial group. A slice cell is isotropic if it is not free.

Since

[G+ ∧
H
S,X]G ≈ [S, i∗HX]H and

[X,G+ ∧
H
S]G ≈ [i∗HX,S]H ,

induction on |G| usually reduces claims about cells to the case of those that

are not induced. The slice cells that are not induced are those of the form

SmρG and SmρG−1.

Definition 4.4. The dimension of a slice cell is defined by

dim Ŝ(m,K) = m|K|,

dim Σ−1Ŝ(m,K) = m|K| − 1.

In other words, the dimension of a slice cell is that of its underlying

spheres.

Remark 4.5. Not every suspension of a slice cell is a slice cell. Typically,

the spectrum Σ−2Ŝ(m,K) will not be a slice cell, and will not exhibit the

properties of a slice cell of dimension dim Ŝ(m,K)− 2.

The following is immediate from the definition.
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Proposition 4.6. Let H ⊂ G be a subgroup. If Ŝ is a G-slice cell of

dimension d, then i∗H Ŝ is a wedge of H-slice cells of dimension d. If Ŝ is an

H-slice cell of dimension d, then G+ ∧
H
Ŝ is a G-slice cell of dimension d.

The regular slice cells behave well under the norm.

Proposition 4.7. Let H ⊂ G be a subgroup. If Ŵ is a wedge of regular

H-slice cells, then NG
HŴ is a wedge of regular G-slice cells.

Proof. The wedges of regular H-slice cells are exactly the indexed wedges

(in the sense of Section 2.3.2) of spectra of the form SmρK for K ⊂ H, and

m ∈ Z. Since regular representations induce to regular representations, the

identity (2.11) and the distribution formula (Proposition A.37) show that the

norm of such an indexed wedge is an indexed wedge of SmρK with K ⊂ G and

m ∈ Z. The claim follows. �

4.1.2. Slice positive and slice null spectra. Underlying the theory of the

Postnikov tower is the notion of “connectivity” and the class of (n − 1)-

connected spectra. In this section we describe the slice analogues of these ideas.

There is a simple relationship between “connectivity” and “slice-positivity, ”

which we will describe in detail in Section 4.4.

Definition 4.8. A G-spectrum Y is slice n-null, written

Y < n or Y ≤ n− 1

if for every slice cell Ŝ with dim Ŝ ≥ n, the G-space

¯
SG(Ŝ, Y )

is equivariantly contractible. A G-spectrum X is slice n-positive, written

X > n or X ≥ n+ 1

if

¯
SG(X,Y )

is equivariantly contractible for every Y with Y ≤ n.

We use the terms slice-positive and slice-null instead of “slice 0-positive”

and “slice 0-null.” The full subcategory of SG consisting of X with X > n will

be denoted SG>n or SG≥n+1. Similarly, the full subcategory of SG consisting of

X with X < n will be denoted SG<n or SG≤n−1.

Remark 4.9. The category SG>n is the smallest full subcategory of SG con-

taining the slice cells Ŝ with dim Ŝ > n and possessing the following properties:

(i) if X is weakly equivalent to an object of SG>n, then X is in SG>n;

(ii) arbitrary wedges of objects of SG>n are in SG>n;
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(iii) if X → Y → Z is a cofibration sequence and X and Y are in SG>n, then

so is Z;

(iv) if X → Y → Z is a cofibration sequence and X and Z are in SG>n, then

so is Y .

More briefly, these properties are that SG>n is closed under weak equivalences,

homotopy colimits (properties (ii) and (iii)), and extensions.

Remark 4.10. The fiber of a map of slice n-positive spectra is not assumed

to be slice n-positive, and need not be. For example, the fiber of ∗ → SρG is

SρG−1, which is not slice (|G| − 1)-positive, even though both ∗ and SρG are.

For n = 0,−1, the notions of slice n-null and slice n-positive are familiar.

Proposition 4.11. For a G-spectrum X , the following hold :

(i) X ≥ 0 ⇐⇒ X is (−1)-connected, i.e., πkX = 0 for k < 0;

(ii) X ≥ −1 ⇐⇒ X is (−2)-connected, i.e., πkX = 0 for k < −1;

(iii) X < 0 ⇐⇒ X is 0-coconnected, i.e., πkX = 0 for k ≥ 0;

(iv) X < −1 ⇐⇒ X is (−1)-coconnected, i.e., πkX = 0 for k ≥ −1.

Proof. These are all straightforward consequences of the fact that S0 is a

slice cell of dimension 0 and S−1 is a slice cell of dimension (−1). �

Remark 4.12. It is not the case that if Y > 0, then π0Y = 0. In Propo-

sition 4.15 we will see that the fiber F of S0 → HZ has the property that

F > 0. On the other hand, π0F is the augmentation ideal of the Burnside

ring. Proposition 4.48 below gives a characterization of slice-positive spectra.

The classes of slice n-null and slice n-positive spectra are preserved under

change of group.

Proposition 4.13. Suppose H ⊂ G, that X is a G-spectrum, and Y is

an H-spectrum. The following implications hold :

X > n =⇒ i∗HX > n,

X < n =⇒ i∗HX < n,

Y > n =⇒ G+ ∧
H
Y > n,

Y < n =⇒ G+ ∧
H
Y < n.

Proof. The second and third implications are straightforward consequences

of Proposition 4.6. The fourth implication follows from the Wirthmüller iso-

morphism and Proposition 4.6, and the first implication is an immediate con-

sequence of the fourth. �

We end this section with a mild simplification of the condition that a

spectrum be slice n-null.
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Lemma 4.14. For a G-spectrum X , the following are equivalent :

(i) X < n;

(ii) for all slice cells Ŝ with dim Ŝ ≥ n, [Ŝ,X]G = 0.

Proof. The first condition trivially implies the second. We prove that the

second implies the first by induction on |G|. By the induction hypothesis we

may assume that the G-space

¯
SG(Ŝ,X)

is contractible for all induced slice cells Ŝ with dim Ŝ ≥ n and that for all slice

cells Ŝ with dim Ŝ ≥ n, and all proper H ⊂ G, the space

¯
SG(Ŝ,X)H

is contractible. We therefore also know that the G-space

¯
SG(T ∧ Ŝ, S1 ∧X)

is contractible for all slice cells Ŝ with dim Ŝ ≥ n and all G-CW complexes

T that are built entirely from G-cells of the form G/H × Dm with H ⊂ G a

proper subgroup, and m > 0. This condition on a T is equivalent to requiring

that TG = ∗ and that for all proper H ⊂ G, the space TH be connected.

We must show that for each t ≥ 0, the groups

[St ∧ SmρG−1, X]G, m|G| − 1 ≥ n,

[St ∧ SmρG , X]G, m|G| ≥ n

are zero. They are zero by assumption when t = 0. For t > 0, the first case

is a special case of the second, since S1 ∧ SmρG−1 is a slice cell of dimension

m|G|. Let T be quotient G-CW complex

T = StρG/St,

and consider the exact sequence

[StρG ∧ SmρG , X]G → [St ∧ SmρG , X]G → [T ∧ SmρG , S1 ∧X]G.

The leftmost group is zero since the slice cell StρG ∧ SmρG has dimension

(t + m)|G|, which is at least n. The rightmost group is zero by the induc-

tion hypothesis as T is easily checked to be a have the fixed point properties

described above. It follows from exactness that the middle group is zero. �

4.2. The slice tower. Let PnX be the Bousfield localization, or Dror Far-

joun nullification ([21], [32]) of X with respect to the class SG>n , and Pn+1X

the homotopy fiber of X → PnX. Thus, by definition, there is a functorial

fibration sequence
Pn+1X → X → PnX.

The functor PnX can be constructed as the colimit of a sequence of func-

tors
W0X →W1X → · · · .
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The WiX are defined inductively starting with W0X = X and taking WkX to

be the cofiber of ∨
I

ΣtŜ →Wk−1X,

in which the indexing set I is the set of maps ΣtŜ → Wk−1X with Ŝ > n

a slice cell and t ≥ 0. By Lemma 4.14 the functors Pn can also be formed

using the analogous construction using only slice cells themselves, and not

their suspensions.

Proposition 4.15. A spectrum X is slice n-positive if an only if it admits

(up to weak equivalence) a filtration

X0 ⊂ X1 ⊂ · · ·

whose associated graded spectrum
∨
Xk/Xk−1 is a wedge of slice cells of di-

mension greater than n. For any spectrum X , Pn+1X is slice n-positive.

Proof. This follows easily from the construction of PnX described above.

�

The map Pn+1X → X is characterized up to a contractible space of choices

by the properties

(i) for all X, Pn+1X ∈ SG>n;

(ii) for all A ∈ SG>n and all X, the map
¯
SG(A,Pn+1X)→

¯
SG(A,X) is a weak

equivalence of G-spaces.

In other words, Pn+1X → X is the “universal map” from an object of SG>n
to X. Similarly, X → PnX is the universal map from X to a slice (n+ 1)-null

G-spectrum Z. More specifically,

(iii) the spectrum PnX is slice (n+ 1)-null;

(iv) for any slice (n+ 1)-null Z, the map

¯
SG(PnX,Z)→

¯
SG(X,Z)

is a weak equivalence.

These conditions lead to a useful recognition principle.

Lemma 4.16. Suppose X is a G-spectrum and that

P̃n+1 → X → P̃n

is a fibration sequence with the property that P̃n ≤ n and P̃n+1 > n. Then the

canonical maps P̃n+1 → Pn+1X and PnX → P̃n are weak equivalences.

Proof. We show that the map X → P̃n satisfies the universal property of

PnX. Suppose that Z ≤ n, and consider the fibration sequence of G-spaces

¯
SG(P̃n, Z)→

¯
SG(X,Z)→

¯
SG(P̃n+1, Z).
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The rightmost space is contractible since P̃n+1 > n, so the map

¯
SG(P̃n, Z)→

¯
SG(X,Z)

is a weak equivalence. �

The following consequence of Lemma 4.16 is used in the proof of the

Reduction Theorem.

Corollary 4.17. Suppose that X → Y → Z is a cofibration sequence

and that the mapping cone of PnX → PnY is slice (n+ 1)-null. Then both

PnX → PnY → PnZ

and

Pn+1X → Pn+1Y → Pn+1Z

are cofibration sequences.

Proof. Consider the diagram

Pn+1X //

��

Pn+1Y //

��

P̃n+1Z

��
X //

��

Y //

��

Z

��

PnX // PnY // P̃nZ

in which the rows and columns are cofibration sequences. By construction,

P̃n+1Z is slice n-positive (Remark 4.9). If P̃nZ ≤ n, then the right column

satisfies the condition of 4.16, and the result follows. �

Since SG>n ⊂ SG>n−1, there is a natural transformation

PnX → Pn−1X.

Definition 4.18. The slice tower of X is the tower {PnX}n∈Z. The spec-

trum PnX is the nth slice section of X.

When considering more than one group, we will write PnX = PnGX and

PnX = PGn X.

Let PnnX be the fiber of the map

PnX → Pn−1X.

Definition 4.19. The n-slice of a spectrum X is PnnX. A spectrum X is

an n-slice if X = PnnX.

The spectrum Pn+1X is analogous to the n-connected cover of X, and for

two values of n, they coincide. The following is a straightforward consequence

of Proposition 4.11.
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Proposition 4.20. For any spectrum X , P0X is the (−1)-connected

cover of X and P−1X is the (−2)-connected cover of X . The (−1)-slice of

X is given by
P−1
−1X = Σ−1Hπ−1X.

The formation of slice sections and therefore of the slices themselves be-

have well with respect to change of group.

Proposition 4.21. The functor Pn commutes with both restriction to a

subgroup and left induction. More precisely, given H ⊂ G there

i∗H(PnGX)→ PnH(i∗HX) and G+ ∧
H

(PnHX)→ PnG(G+ ∧
H
X).

Proof. This is an easy consequence of Lemma 4.16 and Proposition 4.13.

�

Remark 4.22. When G is the trivial group, the slice cells are just ordinary

cells and the slice tower becomes the Postnikov tower. It therefore follows from

Proposition 4.21 that the tower of nonequivariant spectra underlying the slice

tower is the Postnikov tower.

4.3. Multiplicative properties of the slice tower. The slice filtration does

not quite have the multiplicative properties one might expect. In this section

we collect a few results describing how things work. One important result is

Corollary 4.32, asserting that the slice sections of a (−1)-connected commu-

tative or associative algebra are (−1)-connected commutative or associative

algebras. We will show in Section 4.7 that the slice filtration is multiplicative

for the special class of “pure” spectra, defined in Section 4.6.2.

Lemma 4.23. Smashing with SmρG gives a bijection of the set of slice cells

Ŝ with dim Ŝ = k and those with dim Ŝ = k +m|G|.
Proof. Since the restriction of ρG to K ⊂ G is |G/K|ρK , there is an

identity

SρG ∧ (G+ ∧
K
SmρK ) ≈ G+ ∧

K
(SρG ∧ SmρK ) ≈ G+ ∧

K
S(|G/K|+m)ρK .

The result follows easily from this. �

Corollary 4.24. Smashing with SmρG gives an equivalence

SG≥n → SG≥n+m|G| .

Corollary 4.25. The natural maps

SmρG ∧ Pk+1X → Pk+m|G|+1 (SmρG ∧X) ,

SmρG ∧ P kX → P k+m|G| (SmρG ∧X)

are weak equivalences.

Proposition 4.26. If X ≥ n, Y ≥ m, and n is divisible by |G|, then

X ∧ Y ≥ n+m.
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Proof. By smashing X with S(−n/|G|)ρG and using Corollary 4.25 we may

assume n = 0. Suppose that Z < m. Since Y ≥ m, the zero space of function

spectrum ZY is contractible, and so ZY is 0-coconnected. Since X is (−1)-

connected (Proposition 4.11),

¯
SG(X ∧ Y, Z) ≈

¯
SG(X,ZY )

is contractible and so X ∧ Y ≥ m. �

Definition 4.27. A map X → Y is a Pn-equivalence if PnX → PnY is an

equivalence. Equivalently, X → Y is a Pn-equivalence if for every Z < n, the

map

¯
SG(Y,Z)→

¯
SG(X,Z)

is a weak equivalence.

Lemma 4.28. If the homotopy fiber F of f : X → Y is in SG>n, then f is

a Pn equivalence.

Proof. Immediate from the fibration sequence

¯
SG(Y, Z)→

¯
SG(X,Z)→

¯
SG(F,Z). �

Remark 4.29. The converse of the above result is not true. For instance,

∗ → S0 is a P−1-equivalence, but the fiber S−1 is not in SG>−1.

Lemma 4.30.

(i) If Y → Z is a Pn-equivalence and X ≥ 0, then X ∧ Y → X ∧ Z is a

Pn-equivalence.

(ii) For X1, . . . , Xk ∈ SG≥0, the map

X1 ∧ · · · ∧Xk → PnX1 ∧ · · · ∧ PnXk

is a Pn-equivalence.

Proof. Since Pn+1X and Pn+1Y are both slice n-positive, the vertical map

in the square below are Pn-equivalences by Lemmas 4.28 and 4.26:

X ∧ Y //

��

X ∧ Z

��
X ∧ PnY // X ∧ PnZ.

The bottom row is a weak equivalence by assumption. It follows that the top

row is a Pn-equivalence. The second assertion is proved by induction on k, the
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case k = 1 being trivial. For the induction step, consider

X1 ∧ · · · ∧Xk−1 ∧Xk
// PnX1 ∧ · · · ∧ PnXk−1 ∧Xk

��
PnX1 ∧ · · · ∧ PnXk−1 ∧ PnXk.

The first map is a Pn-equivalence by the induction hypothesis and part (i).

The second map is a Pn-equivalence by part (i). �

Remark 4.31. Lemma 4.30 can be described as asserting that the functor

Pn : {(−1)-connected spectra} →
¶
SG>n -null spectra

©
is weakly monoidal.

Corollary 4.32. Let R be a (−1)-connected G-spectrum. If R is a ho-

motopy commutative or homotopy associative algebra, then so is PnR for all n.

The following additional results are proved in Section B.9. The first two

are Propositions B.170 and B.176, and the third is easily deduced from Propo-

sition B.178.

Proposition 4.33. Suppose that n ≥ 0 is an integer. If A is a slice

(n− 1)-positive H-spectrum, then NG
HA is a slice (n− 1)-positive G-spectrum.

Proposition 4.34. Suppose that n ≥ 0 is an integer. If A is a slice

(n−1)-positive G-spectrum, then for every m > 0, the symmetric smash power

SymmA is slice (n− 1)-positive.

Proposition 4.35. Suppose that n ≥ 0 is an integer. If R is a (−1)-

connected equivariant commutative ring, then the slice section PnR can be

given the structure of an equivariant commutative ring in such a way that

R→ PnR is a commutative ring homomorphism. Moreover, this commutative

ring structure is unique.

4.4. The slice spectral sequence. The slice spectral sequence is the homo-

topy spectral of the slice tower. The main point of this section is to establish

strong convergence of the slice spectral sequence and to show that for any X,

the E2-term is distributed in the gray region of Figure 1. We begin with some

results relating the slice sections to Postnikov sections.

4.4.1. Connectivity and the slice filtration. Our convergence result for the

slice spectral sequence depends on knowing how slice cells are constructed from

G-cells. We will say that a space or spectrum X decomposes into the elements

of a collection of spectra {Tα} if X is weakly equivalent to a spectrum X̃
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admitting an increasing filtration

X0 ⊂ X1 ⊂ · · ·

with the property that Xn/Xn−1 is weakly equivalent to a wedge of Tα.

Remark 4.36. The suspensions spectrum of a G-CW complex decomposes

into the collection of spectra {G/H+ ∧ Sm | H ⊂ G,m ≥ 0}. More generally,

an (n− 1)-connected G-spectrum X decomposes into the collection of spectra

{G/H+ ∧ Sm | H ⊂ G,m ≥ n}.

Remark 4.37. To say that X decomposes into the elements of a collec-

tion of compact objects {Tα} means that X is in the smallest subcategory of

¯
SG closed under weak equivalences, arbitrary wedges, and the formation of

mapping cones and extensions (i.e., the properties listed in Remark 4.9).

Lemma 4.38. Let Ŝ be a slice cell. If dim Ŝ = n ≥ 0, then Ŝ decomposes

into the spectra G/H+ ∧ Sk with bn/|G|c ≤ k ≤ n. If dim Ŝ = n < 0, then Ŝ

decomposes into G/H+ ∧ Sk with n ≤ k ≤ bn/|G|c.

Proof. The cell structure of SρG−1 described in Example 3.4 has G-cells

ranging in dimension from 0 to |G| − 1 and suspends to a cell decomposition

of SρG with G-cells whose dimension ranges from 1 to |G|. The cases Ŝ =

SmρG and Ŝ = SmρG−1 with m ≥ 0 are handled by smashing these together

and passing to suspension spectra. For m < 0, Spanier-Whitehead duality

gives an equivariant cell decomposition of SmρG into cells whose dimensions

range from m|G| to m and of Σ−1SmρG into cells whose dimensions range

from n = m|G| − 1 to m − 1 = bn/|G|c. Finally, the case in which Ŝ is

induced from a subgroup K ⊂ G is proved by left inducing its K-equivariant

cell decomposition. �

Corollary 4.39. Let Y ∈ SG≥n. If n ≥ 0, then Y can be decomposed into

the spectra G/H+∧Sm with m ≥ bn/|G|c. If n ≤ 0, then Y can be decomposed

into G/H+ ∧ Sm with m ≥ n.

Proof. The class of G-spectra Y that can be decomposed into G/H+∧Sm
with m ≥ bn/|G|c is closed under weak equivalences, homotopy colimits, and

extensions. By Lemma 4.38 it contains the slice cells Ŝ with dim Ŝ ≥ n. It

therefore contains all Y ∈ SG≥n by Remark 4.9. A similar argument handles

the case n < 0. �

Proposition 4.40. Write g = |G|.
(i) If n ≥ 0 and k > n, then (G/H)+ ∧ Sk > n.

(ii) If m ≤ −1 and k ≥ m, then (G/H)+ ∧ Sk ≥ (m+ 1)g − 1.

(iii) If Y ≥ n with n ≥ 0, then πiY = 0 for i < bn/gc.
(iv) If Y ≥ n with n ≤ 0, then πiY = 0 for i < n.
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Proof. We start with the first assertion. We will prove the claim by induc-

tion on |G|, the case of the trivial group being obvious. Using Proposition 4.13

we may assume by induction that (G/H)+ ∧ Sk > n when n ≥ 0 and H ⊂ G

is a proper subgroup. This implies that if T is an equivariant CW-spectrum

built from G-cells of the form (G/H)+ ∧ Sk with k > n and H ⊂ G a proper

subgroup, then T > n. The homotopy fiber of the natural inclusion

Sk → SkρG

can be identified with the suspension spectrum of S(kρG − k)+ ∧ Sk and so is

such a T . Since SkρG ≥ k|G| ≥ kg > n, the fibration sequence

T → Sk → SkρG

exhibits Sk as an extension of two slice n-positive spectra, making it slice

n-positive. The second assertion is trivial for k ≥ 0 since in that case G/H+ ∧
Sk ≥ 0 and (m+ 1)g − 1 ≤ −1. The case k ≤ −1 is handled by writing

(G/H)+ ∧ Sk = Σ−1(G/H)+ ∧ S(k+1)ρG ∧ S−(k+1)(ρG−1).

Since −(k + 1) ≥ 0, the spectrum S−(k+1)(ρG−1) is a suspension spectrum and

so

(G/H)+ ∧ Sk ≥ (k + 1)g − 1 ≥ (m+ 1)g − 1.

The third and fourth assertions are immediate from Corollary 4.39. �

Remark 4.41. We have stated part (ii) of Proposition 4.40 in the form

in which it is most clearly proved. When it comes up, it is needed as the

implication that for n < 0,

k ≥ b(n+ 1)/gc =⇒ G/H+ ∧ Sk > n.

To relate these, write m = b(n+ 1)/gc, so that

m+ 1 > (n+ 1)/g

and by part (ii) of Proposition 4.40,

G/H+ ∧ Sk ≥ (m+ 1)g − 1 > n.

4.4.2. The spectral sequence. The slice spectral sequence is the spectral

sequence associated to the tower of fibration {PnX}, and it takes the form

Es,t2 = πGt−sP
t
tX =⇒ πGt−sX.

It can be regarded as a spectral sequence of Mackey functors, or of individual

homotopy groups. We have chosen our indexing so that the display of the

spectral sequence is in accord with the classical Adams spectral sequence: the

Es,tr -term is placed in the plane in position (t− s, s). The situation is depicted

in Figure 1. The differential dr maps Es,tr to Es+r,t+r−1
r , or in terms the
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display in the plane, the group in position (t − s, s) to the group in position

(t− s− 1, s+ r).

The following is an immediate consequence of Proposition 4.40. As there,

we write g = |G|.

Theorem 4.42. Let X be a G-spectrum. The Mackey functor homotopy

groups of PnX satisfy

πkP
nX = 0 for

k > n if n ≥ 0,

k ≥ b(n+ 1)/gc if n < 0,

and the map X → PnX induces an isomorphism

πkX
≈−→ πkP

nX for

k < b(n+ 1)/gc if n ≥ 0,

k ≤ n if n < 0.

Thus for any X ,

lim−→
n

PnX

is contractible, the map

X → lim←−
n

PnX

is a weak equivalence, and for each k, the map

{πk(X)} → {πkPnX}

from the constant tower to the slice tower of Mackey functors is a pro-isomor-

phism.

Corollary 4.43. If M is an n-slice, then

πkM = 0

if n ≥ 0 and k lies outside of the region bn/gc ≤ k ≤ n, or if n < 0 and k lies

outside of the region n ≤ k < b(n+ 1)/gc.

Theorem 4.42 gives the strong convergence of the slice spectral sequence,

while Corollary 4.43 shows that the E2-term vanishes outside of a restricted

range of dimensions. The situation is depicted in Figure 1. The homotopy

groups of individual slices lie along lines of slope −1, and the groups contribut-

ing to π∗P
nX lie to the left of a line of slope −1 intersecting the (t−s)-axis at

(t− s) = n. All of the groups outside the gray region are zero. The vanishing

in the regions labeled 1–4 correspond to the four parts of Proposition 4.40.

Proposition 4.40 also gives a relationship between the Postnikov tower and

the slice tower.

Corollary 4.44. If X is an (n − 1)-connected G-spectrum with n ≥ 0,

then X ≥ n.
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Figure 1. The slice spectral sequence

Proof. The class of (n−1)-connected spectra is exactly the class of spectra

that decompose into terms of the form G/H+ ∧ Sm with m ≥ n. By part (i)

of Proposition 4.40, these are in SG≥n. �

We end this section with an application. The next result says that if a

tower looks like the slice tower, then it is the slice tower.

Proposition 4.45. Suppose that X → {P̃n} is a map from X to a tower

of fibrations with the properties

(i) the map X → lim←− P̃
n is a weak equivalence;

(ii) the spectrum lim−→n
P̃n is contractible;

(iii) for all n, the fiber of the map P̃n → P̃n−1 is an n-slice.

Then P̃n is the slice tower of X .

Proof. We first show that P̃n is slice (n+1)-null. We will use the criteria of

Lemma 4.14. Suppose that Ŝ is a slice cell with dim Ŝ > n. By condition (iii),

the maps

[Ŝ, P̃n]G → [Ŝ, P̃n−1]G → [Ŝ, P̃n−2]G → · · ·
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are all monomorphisms. Since Ŝ is finite, the map

lim−→
k≤n

[Ŝ, P̃ k]G → [Ŝ, lim−→
k≤n

P̃ k]G

is an isomorphism. It then follows from assumption (ii) that [Ŝ, P̃n]G = 0.

This shows that P̃n is slice (n+ 1)-null. Now let P̃n+1 be the homotopy fiber

of the map X → P̃n. By Lemma 4.16, the result will follow if we can show

P̃n+1 > n. By assumption (iii), for any N > n+ 1, the spectrum

P̃n+1 ∪ CP̃N

admits a finite filtration whose layers are m-slices, with m ≥ n+ 1. It follows

that

P̃n+1 ∪ CP̃N > n.

In view of the cofibration sequence

P̃N → P̃n+1 → P̃n+1 ∪ CP̃N ,

to show that P̃n+1 > n it suffices to show that P̃N > n for some N > n.

Let Z be any slice (n + 1)-null spectrum. We need to show that the

G-space

¯
SG(P̃N , Z)

is contractible. We do this by studying the Mackey functor homotopy groups

of the spectra involved and appealing to an argument using the usual equivari-

ant notion of connectivity. By Theorem 4.42, there is an integer m with the

property that for k > m,

πkZ = 0.

By Corollary 4.43 and assumption (iii), for N � 0 and any N ′ > N ,

πkP̃N ∪ CP̃N ′ = 0, k ≤ m,

so

πkP̃N ′ → πkP̃N

is an isomorphism for k ≤ m. Since holim←−N ′ P̃N ′ is contractible, this implies

that for N � 0,

πkP̃N = 0, k ≤ m.

Thus for N � 0, P̃N is m-connected in the usual sense, and so

¯
SG(P̃N , Z)

is contractible. �
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4.5. The RO(G)-graded slice spectral sequence. Applying RO(G)-graded

homotopy groups to the slice tower leads to an RO(G)-graded slice spectral

sequence

Es,V2 = πGV−sP
dimV
dimV X =⇒ πGV−sX.

The grading convention is chosen so that it restricts to the one of Section 4.4.2

when V is a trivial virtual representation. The rth differential is a map

dr : Es,V2 → E
s+r,V+(r−1)
2 .

The RO(G)-graded slice spectral sequence is a sum of spectral sequences, one

for each element of RO(G)/Z. We will call the spectral sequence corresponding

to the coset V + Z ∈ RO(G)/Z the slice spectral sequence for πGV+∗X . This

spectral sequence can be displayed on the (x, y)-plane, and we will do so fol-

lowing Adams conventions, with the term Es,V+t
2 displayed at a position with

x-coordinate (V + t− s) and y-coordinate s. For an example, see Figures 2, 3

and 4 in Section 9.

4.6. Special slices. In this section we investigate special slices of spectra,

and introduce the notion of a spectrum with cellular slices and of a pure G-

spectrum. Our main result (Proposition 4.59) asserts that a map X → Y of

G-spectra with cellular slices is a weak equivalence if and only if the underlying

map of nonequivariant spectra is. This result plays an important role in the

proof of the Reduction Theorem in Section 7. We also include material useful

for investigating the slices of more general spectra.

4.6.1. Slice positive spectra, 0-slices and (−1)-slices. In this section we will

describe methods for determining the slices of spectra and introduce a conve-

nient class of equivariant spectra. Our first results make use of the isotropy

separation sequence (Section 2.5.2) obtained by smashing with the cofibration

sequence of pointed G-spaces

EP+ → S0 → ẼP.

The space EP+ is an equivariant CW-complex built from G-cells of the form

(G/H)+∧Sn with H ⊂ G a proper subgroup. It follows that if W is a pointed

G-space whose H-fixed points are contractible for all proper H ⊂ G, then

TG(EP+,W ) is contractible.

Lemma 4.46. Fix an integer d. If X is a G-spectrum with the property

that i∗HX > d for all proper H ⊂ G, then EP+ ∧X > d.

Proof. Suppose that Z ≤ d. Then

¯
SG(EP+ ∧X,Z) ≈ TG(EP+,

¯
SG(X,Z)).
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By the assumption on X, the G-space
¯
SG(X,Z) has contractible H fixed points

for all proper H ⊂ G. The lemma now follows from the remark preceding its

statement. �

Lemma 4.47. Write g = |G|. The suspension spectrum of ẼP is in SG≥g−1.

Proof. The map ẼP ∧ S0 → ẼP ∧ SρG−1 is a weak equivalence (Proposi-

tion 2.45 and Remark 2.49). The suspension spectrum of ẼP is in SG≥0, since

it is (−1)-connected (Proposition 4.11). So ẼP ∧ SρG−1 ≥ g − 1 by Proposi-

tion 4.26. �

Proposition 4.48. A G-spectrum X is slice positive if and only if it is

(−1) connected and πu0X = 0 (i.e.,the nonequivariant spectrum i∗0X underlying

X is 0-connected).

Proof. The “only if” assertion follows from the fact that the slice cells

of positive dimension are (−1)-connected and have 0-connected underlying

spectra. The “if” assertion is proved by induction on |G|, the case of the

trivial group being trivial. For the induction step, we may assume X is (−1)-

connected and has the property that i∗HX > 0 for all proper H ⊂ G. Consider

the isotropy separation sequence for X,

EP+ ∧X → X → ẼP ∧X.

The leftmost term is slice-positive by Lemma 4.46, and the rightmost term is

by Propositions 4.11 and 4.26, and Lemma 4.47. It follows that X is slice-

positive. �

Example 4.49. Suppose that f : S → S′ is a surjective map of G-sets.

Proposition 4.48 implies that the suspension spectrum of the mapping cone of

f is slice positive. This implies that if HM is an Eilenberg-MacLane spectrum

that is a zero slice, then for every surjective S → S′, the map M(S′)→M(S)

is a monomorphism. The proposition below shows that this is also a sufficient

condition.

Proposition 4.50.

(i) A spectrum X is a (−1)-slice if and only if it is of the form X = Σ−1HM ,

with M an arbitrary Mackey functor.

(ii) A spectrum X is a 0-slice if and only if it is of the form HM with M a

Mackey functor all of whose restriction maps are monomorphisms.

Remark 4.51. The condition on M in (ii) is that if S → S′ is a surjective

map of finite G-sets, then M(S′) → M(S) is a monomorphism. Let G act on

G × S and G × S′ through its left action on G. Then G × S → G × S′ has a

section, so M(G×S′)→M(G×S) is always a monomorphism. Using this one

easily checks that this condition is also equivalent to requiring that for every
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finite G-set S′, the map M(S′)→M(G× S′), induced by the action mapping

G× S′ → S′, is a monomorphism.

Proof. The first assertion is immediate from Proposition 4.20 which, com-

bined with part (i) of Proposition 4.40, also shows that a 0-slice is an Eilenberg-

MacLane spectrum. Example 4.49 gives the “only if” part of the second as-

sertion. For the “if” part, suppose that M is a Mackey functor all of whose

restrictions maps are monomorphisms, and consider the sequence

P1HM → HM → P 0HM.

Since P1HM ≥ 0, it is (−1)-connected, and so P1HM is an Eilenberg-MacLane

spectrum. For convenience, write

M ′ = π0P1HM,

M ′′ = π0P
0HM

so that there is a short exact sequence

M ′�M �M ′′.

Suppose that S is any finite G-set, and consider the following diagram:

M ′(S) //

��

M(S)

��

// M ′′(S)

��
M ′(G× S) // M(G× S) // M ′′(G× S)

in which the rows are short exact and the vertical maps are induced by the

action mapping, as in Remark 4.51. The bottom right arrow is an isomorphism

since i∗0HM → i∗0P
0HM is an equivalence. Thus M ′(G × S) = 0. (This also

follows from Proposition 4.48.) The claim now follows from a simple diagram

chase. �

Remark 4.52. The second assertion of Proposition 4.50 can also be de-

duced directly from Corollary 3.6.

Corollary 4.53. If X = HM is a zero slice and πu0X = 0, then X is

contractible.

Corollary 4.54. The (−1)-slice of S−1 is Σ−1HA. The zero slice of S0

is HZ.

Proof. The first assertion follows easily from Part (i) of Proposition 4.50.

For the second assertion, note that the S0 → HA is a P 0-equivalence, so the

zero slice of S0 is P 0HA. Consider the fibration sequence

HI → HA→ HZ,
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in which I = kerA → Z is the augmentation ideal. The leftmost term is slice

positive by Proposition 4.48, and the rightmost term is in SG≤0 by Proposi-

tion 4.50. The claim now follows from Lemma 4.16. �

Corollary 4.55. For K ⊂ G, the m|K|-slice of Ŝ(m,K) is

HZ ∧ Ŝ(m,K)

and the (m|K| − 1)-slice of Σ−1Ŝ(m,K) is

HA ∧ Σ−1Ŝ(m,K).

Proof. Using the fact that G+ ∧
K

(− ) commutes with the formation of the

slice tower (Proposition 4.21), it suffices to consider the case K = G. The

result then follows from Corollaries 4.25 and 4.54. �

4.6.2. Cellular slices, isotropic and pure spectra.

Definition 4.56. A d-slice is cellular if it is of the form HZ ∧ Ŵ , where

Ŵ is a wedge of slice cells of dimension d. A cellular slice is isotropic if Ŵ

can be written as a wedge of slice cells, none of which is free (i.e., of the form

G+ ∧ Sn). A cellular slice is pure if Ŵ can be written as a wedge of regular

slice cells (those of the form Ŝ(m,K), and not Σ−1Ŝ(m,K)).

Definition 4.57. A G-spectrum X has cellular slices if PnnX is cellular for

all d and is isotropic or pure if its slices are isotropic or pure.

Lemma 4.58. Suppose that f : X → Y is a map of cellular d-slices and

πudf is an isomorphism. Then f is a weak equivalence.

Proof. The proof is by induction on |G|. If G is the trivial group, the

result is obvious since X and Y are Eilenberg-MacLane spectra. Now suppose

we know the result for all proper H ⊂ G, and consider the map of isotropy

separation sequences

EP+ ∧X //

��

X

��

// ẼP ∧X

��

EP+ ∧ Y // Y // ẼP ∧ Y.

By the induction hypothesis, the left vertical map is a weak equivalence. If d is

not congruent to 0 or−1 modulo |G|, then the rightmost terms are contractible,

since every slice cell of dimension d is induced. Smashing with SmρG for suitable

m, we may therefore assume d = 0 or d = −1. Smashing with S1 in case

d = −1, we reduce to the case d = 0 and therefore assume that X = HM0 and

Y = HM1 with M0 and M1 permutation Mackey functors. The result then

follows from part (iv) of Lemma 3.3. �
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Proposition 4.59. Suppose that X and Y have cellular slices. If f :

X → Y has the property that πu∗f is an isomorphism, then f is a weak equiv-

alence.

Proof. It suffices to show that for each d, the induced map of slices

(4.60) P ddX → P dd Y

is a weak equivalence. Since the map of ordinary spectra underlying the slice

tower is the Postnikov tower, the map satisfies the conditions of Lemma 4.58,

and the result follows. �

For certain slices, the condition on Y in Proposition 4.59 can be dropped.

Lemma 4.61. Suppose that f : X → Y is a map of 0-slices and X is

cellular. If πu0f is an isomorphism, then f is an equivalence.

Proof. Write X = HM and Y = HM ′, and let S be a finite G-set.

Consider the diagram

M(S)
∴∼ //

∼
��

M ′(S)

mono
��

M(G× S)G ∼
// M ′(G× S)G

in which the vertical maps come from the action mapping G × S → S. (See

the discussion preceding Lemma 3.3.) The bottom arrow is an isomorphism by

assumption. The vertical maps are monomorphisms by Proposition 4.50. The

left vertical map is an isomorphism since M is a permutation Mackey functor

(part (ii) of Lemma 3.3). The result follows. �

Proposition 4.62. Suppose that f : X → Y is a map of d-slices, X is

cellular, and d 6≡ −1 mod p for any prime p dividing |G|. If πudX → πudY is

an isomorphism, then f is a weak equivalence.

Proof. Let C be the mapping cone of f . We know that C ≥ d. We will

show that

[Ŝ, C]G = 0

for all slice cells Ŝ with dim Ŝ ≥ d. This will show (Lemma 4.14) that C < d

and hence must be contractible since its identity map is null. The assertion is

obvious when G is the trivial group. By induction on |G| we may assume Ŝ is

not induced. If d is divisible by |G|, we may smash with S−d/|G| ρG and reduce

to the case d = 0, which is Lemma 4.61. It remains to show that πGmρGC = 0

when m|G| ≥ d and that πGmρG−1C = 0 when m|G| − 1 ≥ d. Since

d 6≡ 0,−1 mod |G|,
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the condition implies m|G| − 1 > d. So we are in the situation m|G| − 1 > d,

and we need to show that both πGmρGC and πGmρG−1C are zero. The exact

sequence

πGmρGY → πGmρGC → πGmρG−1X

gives the vanishing of πGmρGC. For the remaining case consider the exact se-

quence

πGmρG−1Y → πGmρG−1C → πGmρG−2X → πGmρG−2Y.

As above, the left group vanishes since Y is a d-slice and SmρG−1 > d.

Lemma 4.63 below implies that the left vertical map in

πGmρG−2X
//

��

πGmρG−2Y

��
πumg−2X ≈

// πumg−2Y

is monomorphism, and therefore so is the top horizontal map. Thus πGmρG−1C

= 0 by exactness. �

Lemma 4.63. Suppose Ŝ is a slice cell of dimension d. If m|G| − 1 > d,

then the restriction mapping

πGmρG−2HZ ∧ Ŝ → πumg−2HZ ∧ Ŝ

is a monomorphism.

Proof. When G is trivial the map is an isomorphism. By induction on |G|
we may therefore assume G is not the trivial group and that Ŝ is not induced,

in which case Ŝ = SkρG or Ŝ = SkρG−1. Note that

SmρG−2 = S(m−1)ρG−1 ∧ SρG−1 ≥ (m− 1)|G| − 1 > (m− 2)|G|

so that both πGmρG−2HZ ∧ SkρG and πGmρG−2HZ ∧ SkρG−1 are trivial unless

k = m − 1. The group πGmρG−2HZ ∧ S(m−1)ρG−1 is zero since it is isomorphic

to

πGmρG−1HZ ∧ S(m−1)ρG

and SmρG−1 ≥ m|G| − 1 > (m− 1)|G|. This leaves the group

πGmρG−2HZ ∧ S(m−1)ρg ≈ πGρG−2HZ,

whose triviality was established in Example 3.19. �

4.6.3. The special case in which G is a finite 2-group. In this section we

record some results that are special to the case in which G has order a power of

2. The results about even slices are used in the proof of the Reduction Theorem

in Section 7.2. The results on odd slices were used in an earlier approach to

the main results of this paper but are no longer needed. We include them here



KERVAIRE INVARIANT ONE 73

because they provide useful tools for investigating slices of various spectra.

Throughout this section the group G will be a finite 2-group.

Suppose that X is a G-spectrum with the property that πudX is a free

abelian group. In Section 5.3 we will define a refinement of πudX to be a map

c : Ŵ → X

in which Ŵ is a wedge of slice cells of dimension d, with the property that the

map πudŴ → πudX is an isomorphism.

Proposition 4.64. If Ŵ → X is a refinement of πu2kX , then the canon-

ical map

HZ ∧ Ŵ → P 2k
2kX

is an equivalence.

Proof. By Corollary 4.55 (and the fact that the formation of slices com-

mutes with the formation of wedges), the map

Ŵ → HZ ∧ Ŵ

induces an equivalence

P 2k
2k Ŵ → HZ ∧ Ŵ .

Applying P 2k
2k to Ŵ → X then leads to a map

HZ ∧ Ŵ → P 2k
2kX

which, since the slice tower refines the Postnikov tower, is an equivalence of un-

derlying nonequivariant spectra. The result now follows from Proposition 4.62,

since the only prime dividing |G| is 2. �

Proposition 4.64 gives some control over the even slices of a G-spectrum

X when G is a 2-group. The odd slices are something of a different story, and

getting at them requires some knowledge of the equivariant homotopy type of

X. Note that by Proposition 4.50, any Mackey functor can occur in an odd

slice. On the other hand, only special ones can occur in even slices.

Corollary 4.65. If Ŝ is a slice cell of odd dimension d, then for any X ,

[Ŝ,X]G ≈ [Ŝ, P ddX]G.

Proof. Since the formation of P ddX commutes with the functors i∗H , induc-

tion on |G| reduces us to the case when Ŝ is not an induced slice cell. So we may

assume Ŝ = SmρG−1. Smashing Ŝ and X with S−mρG and using Corollary 4.25

reduces to the case m = 0, which is given by Proposition 4.20. �

The situation of most interest to us in this paper is when the odd slices

are contractible. Proposition 4.66 below gives a useful criterion.
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Proposition 4.66. For a G spectrum X and an odd integer d, the fol-

lowing are equivalent :

(i) the d-slice of X is contractible;

(ii) for every slice cell Ŝ of dimension d, [Ŝ,X]G = 0.

Proof. By Corollary 4.65 (which requires d to be odd), there is an isomor-

phism

[Ŝ,X]G = [Ŝ, P ddX]G.

By Lemma 4.14, the vanishing of this group implies that P ddX < d and hence

must be contractible, since it is also ≥ d. �

Corollary 4.67. Suppose that d is odd. If X → Y → Z is a cofibration

sequence and the d-slices of X and Z are contractible, then the d-slice of Y is

contractible.

Proof. This is immediate from Proposition 4.66 and the long exact se-

quence of homotopy classes of maps. �

Remark 4.68. Using the slice spectral sequence one can easily show that

a pure spectrum always admits a refinement of homotopy groups. Thus the

results above say that a spectrum X is pure if and only if the even homo-

topy groups admit an equivariant refinement, and the “slice homotopy groups”

πHmρH−1X are all zero whenever H ⊂ G is nontrivial.

4.7. Further multiplicative properties of the slice filtration. In this section

we show that the slice filtration has the expected multiplicative properties for

pure spectra. Our main result is Proposition 4.69 below. It has the consequence

that if X and Y are pure spectra and Es,tr (− ) is the slice spectral sequence,

then there is a map of spectral sequences

Es,tr (X)⊗ Es′,t′r (Y )→ Es+s
′,t+t′

r (X ∧ Y )

representing the pairing π∗X ∧ π∗Y → π∗(X ∧ Y ). In other words, multipli-

cation in the slice spectral sequence of pure spectra behaves in the expected

manner. We leave the deduction of this property from Proposition 4.69 to the

reader.

Proposition 4.69. If X ≥ n is pure and Y ≥ m has cellular slices, then

X ∧ Y ≥ n+m.

Proof. We need to show Pn+m−1(X ∧ Y ) is contractible. By Lemma 4.30

the map

X ∧ Y → Pn+m−1X ∧ Pn+m−1Y

is a Pn+m−1-equivalence, so we may reduce to the case in which the slice

filtrations of X and Y are finite. That case in turn reduces to the situation in
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which

X = HZ ∧ Ŝ(m,K),

Y = HZ ∧ Ŝ′

in which Ŝ′ is any slice cell. By induction on |G|, the assertion further reduces

to the case in which neither Ŝ nor Ŝ′ is induced. Thus we may assume

X = HZ ∧ SkρG ,

Y = HZ ∧ S`ρG or HZ ∧ Σ−1S`ρG ,

in which case the result follows from Proposition 4.26. �

5. The complex cobordism spectrum

From here forward we specialize to the case G = C2n and, for convenience,

localize all spectra at the prime 2. Write

g = |G|,
and let γ ∈ G be a fixed generator.

5.1. The spectrum MU ((G)). We now introduce our equivariant variation

on the complex cobordism spectrum by defining

MU ((G)) = NG
C2
MUR,

where MUR is the C2-equivariant real bordism spectrum of Landweber [45] and

Fujii [26] (and further studied by Araki [6] and Hu-Kriz [37]). In Section B.12

we will give a construction of MUR as a commutative algebra in SC2 . The

norm is taken along the unique inclusion C2 ⊂ G. Since the norm is symmetric

monoidal, and its left derived functor may be computed on the spectra under-

lying cofibrant commutative rings (Proposition B.146), the spectrum MU ((G))

is an equivariant commutative ring spectrum. For H ⊂ G, the unit of the

restriction-norm adjunction (Proposition 2.27) gives a canonical commutative

algebra map

(5.1) MU ((H)) → i∗HMU ((G)).

By analogy with the shorthand i∗0 for restriction along the inclusion of the

trivial group, we will employ the shorthand notation

i∗1 = i∗C2

for the restriction map SG → SC2 induced by the unique inclusion C2 ⊂ G.

Restricting, one has a C2-equivariant smash product decomposition

(5.2) i∗1MU ((G)) =

g/2−1∧
j=0

γjMUR.
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5.2. Real bordism, real orientations and formal groups. We begin by re-

viewing work of Araki [6] and Hu-Kriz [37] on real bordism.

5.2.1. The formal group. Consider CPn and CP∞ as pointed C2-spaces

under the action of complex conjugation, with CP0 as the base point. The

fixed point spaces are RPn and RP∞. There are homeomorphisms

(5.3) CPn/CPn−1 ≡ Snρ2

and, in particular, an identification CP1 ≡ Sρ2 .

Definition 5.4 (Araki [6]). Let E be a C2-equivariant homotopy commu-

tative ring spectrum. A real orientation of E is a class x̄ ∈ Ẽρ2

C2
(CP∞) whose

restriction to

Ẽρ2

C2
(CP1) = Ẽρ2

C2
(Sρ2) ≈ E0

C2
(pt)

is the unit. A real oriented spectrum is a C2-equivariant ring spectrum E

equipped with a real orientation.

If (E, x̄) is a real oriented spectrum and f : E → E′ is an equivariant

multiplicative map, then

f∗(x̄) ∈ (E′)ρ2(CP∞)

is a real orientation of E′. We will often not distinguish in notation between

x̄ and f∗x̄.

Example 5.5. The zero section CP∞ →MU(1) is an equivariant equiva-

lence and defines a real orientation

x̄ ∈MUρ2

R (CP∞),

making MUR into a real oriented spectrum.

Example 5.6. From the map

MUR → i∗1MU ((G))

provided by (5.1), the spectrum i∗1MU ((G)) gets a real orientation, which we

will also denote by

x̄ ∈ (MU ((G)))ρ2(CP∞).

Example 5.7. If (H, x̄H) and (E, x̄E) are two real oriented spectra, then

H ∧ E has two real orientations given by

x̄H = x̄H ⊗ 1 and x̄E = 1⊗ x̄E .

The following result of Araki follows easily from the homeomorphisms (5.3).
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Theorem 5.8 (Araki [6]). Let E be a real oriented cohomology theory.

There are isomorphisms

E?(CP∞) ≈ E?[[x̄]],

E?(CP∞ ×CP∞) ≈ E?[[x̄⊗ 1, 1⊗ x̄]].

Because of Theorem 5.8, the map CP∞ ×CP∞ → CP∞ classifying the

tensor product of the two tautological line bundles defines a formal group

law over πG? E. Using this, much of the theory relating formal groups, complex

cobordism, and complex oriented cohomology theories works for C2-equivariant

spectra, with MUR playing the role of MU . For information beyond the dis-

cussion below, see [6], [37].

Remark 5.9. A real orientation x̄ corresponds to a coordinate on the corre-

sponding formal group. Because of this we will use the terms interchangeably,

preferring “coordinate” when the discussion predominantly concerns the for-

mal group and “real orientation” when it concerns spectra.

The standard formulae from the theory of formal groups give elements in

the RO(C2)-graded homotopy groups πC2
? E of real oriented E. For example,

there is a map from the Lazard ring to πC2
? E classifying the formal group

law. Using Quillen’s theorem to identify the Lazard ring with the complex

cobordism ring this map can be written as

MU∗ → πC2
? E.

It sends MU2n to πC2
nρ2
E. When E = MUR, this splits the forgetful map

(5.10) πC2
nρ2
MUR → πu2nMUR = π2nMU,

which is therefore surjective. A similar discussion applies to iterated smash

products of MUR giving

Proposition 5.11. For every m > 0, the above construction gives a ring

homomorphism

(5.12) πu∗

m∧
MUR →

⊕
j

πC2
jρ2

m∧
MUR

splitting the forgetful map

(5.13)
⊕
j

πC2
jρ2

m∧
MUR → πu∗

m∧
MUR.

In particular, (5.13) is a split surjection.

It is a result of Hu-Kriz[37] that (5.13) is in fact an isomorphism. This

result and a generalization to MU ((G)) can be recovered from the slice spectral

sequence.
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The class

x̄H ∈ Hρ2

C2
(CP∞;Z(2))

corresponding to 1 ∈ H0
C2

(pt,Z(2)) under the isomorphism

Hρ2

C2
(CP∞;Z(2)) ≈ H

ρ2

C2
(CP2;Z(2)) ≈ H0

C2
(pt,Z(2))

defines a real orientation of HZ(2). As in Example 5.7, the classes x̄ and x̄H
give two orientations of E = HZ(2) ∧MUR. By Theorem 5.8 these are related

by a power series

x̄H = logF (x̄)

= x̄+
∑
i>0

m̄ix̄
i+1,

with
m̄i ∈ πC2

iρ2
HZ(2) ∧MUR.

This power series is the logarithm of F . Similarly, the invariant differential on

F gives classes (n+ 1)m̄n ∈ πC2
nρ2
MUR. The coefficients of the formal sum give

āij ∈ πC2

(i+j−1)ρ2
MUR.

Remark 5.14. Since the generator of C2 acts by (−1)n on

H2ni
∗
0S

nρ2 = πu2nHZ ∧ Snρ2 ,

it acts also acts by (−1)n on the nonequivariant class mn underlying m̄n and

by (−1)n on πu2n
∧mMUR = π2n

∧mMU .

If (E, x̄E) is a real oriented spectrum, then E ∧MUR has two orientations

x̄E = x̄E ⊗ 1,

x̄R = 1⊗ x̄.

These two orientations are related by a power series

(5.15) x̄R =
∑

b̄ix
i+1
E

defining classes

b̄i = b̄Ei ∈ π
C2
iρ2
E ∧MUR.

The power series (5.15) is an isomorphism over πC2
? E ∧MUR,

FE → FR,

of the formal group law for (E, x̄E) with the formal group law for (MUR, x̄).

Theorem 5.16 (Araki [6]). The map

E?[b̄1, b̄2, . . . ]→ πC2
? E ∧MUR

is an isomorphism.
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Araki’s theorem has an evident geometric counterpart. For each j, choose

a map

Sjρ2 → E ∧MUR

representing b̄j . As in Section 2.4, let

S[b̄j ] =
∨
k≥0

Sk·jρ2

be the free associative algebra on Sjρ2 and

S[b̄j ]→ E ∧MUR

the homotopy associative algebra map extending (5.39). Using the multiplica-

tion map, smash these together to form a map of spectra

(5.17) E[b̄1, b̄2, . . . ]→ E ∧MU ((G)),

where

E[b̄1, b̄2, . . . ] = E ∧ holim−→
k

S[b̄1] ∧ S[b̄2] ∧ · · · ∧ S[b̄k].

The map on RO(C2)-graded homotopy groups induced by (5.17) is the isomor-

phism of Araki’s theorem. This proves

Corollary 5.18. If E is a real oriented spectrum, then there is a weak

equivalence

E ∧MUR ≈ E[b̄1, b̄2, . . . ].

Remark 5.19. If E is strictly associative, then (5.17) is a map of associative

algebras, and the above identifies E ∧MUR as a twisted monoid ring over E.

As in Section 2.4, write

S0[b̄1, b̄2, . . . ] = holim−→
k

S0[b̄1] ∧ S0[b̄2] ∧ · · · ∧ S0[b̄k]

and

S0[G · b̄1, G · b̄1, . . . ] = NG
C2
S0[b̄1, b̄2, . . . ].

Using Proposition 4.7 one can easily check that S0[G · b̄1, G · b̄2, . . . ] is a wedge

of isotropic regular slice cells. Finally, let

MU ((G))[G · b̄1, G · b̄2, . . . ] = MU ((G)) ∧ S0[G · b̄1, G · b̄1, . . . ].

Corollary 5.20. For H ⊂ G of index 2, there is an equivalence of H-

equivariant associative algebras

i∗HMU ((G)) ≈MU ((H))[H · b̄1, H · b̄2, . . . ].

Proof. Apply NH
C2

to the decomposition of Corollary 5.18 with E = MUR.

�
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5.2.2. The unoriented cobordism ring. Passing to geometric fixed points

from

x̄ : CP∞ → Σρ2MUR

gives the canonical inclusion

a : RP∞ = MO(1)→ ΣMO,

defining the MO Euler class of the tautological line bundle. There are isomor-

phisms

MO∗(RP∞) ≈MO∗[[a]],

MO∗(RP∞ ×RP∞) ≈MO∗[[a⊗ 1, 1⊗ a]],

and the multiplication map RP∞ ×RP∞ → RP∞ gives a formal group law

over MO∗. By Quillen [70], it is the universal formal group law F over a ring

of characteristic 2 for which F (a, a) = 0.

As described by Quillen [71, p. 53], the formal group can be used to give

convenient generators for the unoriented cobordism ring. Let

e ∈ H1(RP∞;Z/2)

be the HZ/2 Euler class of the tautological line bundle. Over π∗HZ/2 ∧MO

there is a power series relating e and the image of the class a

e = `(a) = a+
∑

αna
n+1.

Lemma 5.21. The composite series

(5.22)
(
a+

∑
α2j−1a

2j
)−1
◦ `(a) = a+

∑
j>0

hja
j+1

has coefficients in π∗MO. The classes hj with j + 1 = 2k are zero. The

remaining hj are polynomial generators for the unoriented cobordism ring

(5.23) π∗MO = Z/2[hj , j 6= 2k − 1].

Proof. The assertion that hj = 0 for j + 1 = 2k is straightforward. Since

the sequence

(5.24) π∗MO → π∗HZ/2 ∧MO ⇒ π∗HZ/2 ∧HZ/2 ∧MO

is a split equalizer, to show that the remaining hj are in π∗MO it suffices to

show that they are equalized by the parallel maps in (5.24). This works out to

showing that the series (5.22) is invariant under substitutions of the form

(5.25) e 7→ e+
∑

ζme
2m .

The series (5.22) is characterized as the unique isomorphism of the formal group

law for unoriented cobordism with the additive group, having the additional

property that the coefficients of a2k are zero. This condition is stable under the
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substitutions (5.25). The last assertion follows from Quillen’s characterization

of π∗MO. �

Remark 5.26. Recall the real orientation x̄ of i∗1MU ((G)) of Example 5.6.

Applying the RO(G)-graded cohomology norm (Section 2.3.3) to x̄, and then

passing to geometric fixed points, gives a class

ΦGN(x̄) ∈MO1(RP∞).

One can easily check that ΦGN(x̄) coincides with the MO Euler class a defined

at the beginning of this section. Similarly one has

ΦGN(x̄H) = e.

Applying ΦGN to logF̄ and using the fact that it is a ring homomorphism

(Proposition 2.59) gives

e = a+
∑

ΦGN(m̄k)a
k+1.

It follows that

ΦGN(m̄k) = αk.

5.3. Refinement of homotopy groups. We begin by focusing on a simple

consequence of Proposition 5.11.

Proposition 5.27. For every m > 1, every element of

π2k

Çm∧
MU

å
can be refined to an equivariant map

Skρ2 →
m∧
MUR.

This result expresses an important property of the C2-spectra given by

iterated smash products of MUR. Our goal in this section is to formulate a

generalization to the case G = C2n .

Definition 5.28. Suppose X is a G-spectrum. A refinement of πukX is a

map

c : Ŵ → X

in which Ŵ is a wedge of slice cells of dimension k, inducing an isomorphism

πukŴ → πukX.

A refinement of the homotopy groups of X (or a refinement of homotopy of X)

is a map

Ŵ =
∨
Ŵk → X

whose restriction to each Ŵk is a refinement of πuk .
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Remark 5.29. Let σG(Z) be the sign representation of G on Z. There is

an G-module isomorphism πu|G|S
ρG ≈ σG(Z) and, more generally,

πun|H|
Ä
G+ ∧

H
SnρH

ä
≈ indGH σH(Z)⊗n.

This implies that when k is even, a necessary condition for πukX to admit a

refinement is that it be isomorphic as a G-module to a sum⊕
H⊂G

MH,k,

whereMH,k is zero unless |H| divides k and is a sum of copies of indGH
Ä
σH(Z)⊗`

ä
when k = `|H|. We get a sufficient condition by requiring additionally that for

every such subgroup H, each element in πukX transforming in σH(Z)⊗` refines

to an element of πH`ρH . A similar analysis describes the case in which k is odd.

Remark 5.30. Using Remark 5.29 one can check that a refinement of πukX

consists of isotropic slice cells if and only if πukX does not contain a free

G-module as a summand.

The splitting (5.12) used to prove Proposition 5.27 is multiplicative. This

too has an important analogue.

Definition 5.31. Suppose that R is an equivariant associative algebra. A

multiplicative refinement of homotopy is an associative algebra map Ŵ → R

which, when regarded as a map of G-spectra, is a refinement of homotopy.

Proposition 5.32. For every m ≥ 1, there exists a multiplicative refine-

ment of homotopy

Ŵ →
m∧
MU ((G)),

with Ŵ a wedge of regular isotropic slice cells.

Two ingredients form the proof of Proposition 5.32. The first, Lemma 5.33

below, is a description of πu∗MU ((G)) as a G-module. The computation is of

interest in its own right and is used elsewhere in this paper. It is proved in

Section 5.4. The second is the classical description of πu∗ (
∧mMU ((G))), m > 1,

as a πu∗MU ((G))-module.

Lemma 5.33. There is a sequence of elements ri ∈ πu2iMU ((G)) with the

property that

(5.34) πu∗MU ((G)) = Z2[G · r1, G · r2, . . . ],

in which G · ri stands for the sequence

(ri, . . . γ
g
2
−1ri)

of length g/2.
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We refer to the condition (5.34) by saying that the elements ri∈πu2iMU ((G))

form a set of G-algebra generators for πu∗MU ((G)).

Remark 5.35. Lemma 5.33 completely describes πu∗MU ((G)) as a represen-

tation of G. To spell it out, recall from Remark 5.14 that the action of the

generator of C2 on πu2iMU ((G)) is by (−1)i. The elements ri ∈ πu2iMU ((G)) there-

fore satisfy γ
g
2 ri = (−1)iri and transform in the representation induced from

the sign representation of C2 if i is odd and in the representation induced from

the trivial representation of C2 if i is even. Lemma 5.33 implies that the map

from the symmetric algebras on the sum of these representations to πu∗MU ((G))

is an isomorphism.

Remark 5.36. The fact that the action of C2 on πu2iMU ((G)) is either a

sum of sign or trivial representations means that it cannot contain a summand

that is free. The same is therefore true of the G-action. By Remark 5.30 this

implies that only isotropic slice cells may occur in a refinement of πu2iMU ((G)).

Over πu∗MU ((G)) ∧MU ((G)), there are two formal group laws, FL and FR
coming from the canonical orientations of the left and right factors. There is

also a canonical isomorphism between them, which can be written as

xR =
∑

bjx
j+1
L .

Write

G · bi
for the sequence

bi, γbi, . . . , γ
g/2−1bi.

The following result is a standard computation in complex cobordism.

Lemma 5.37. The ring πu∗MU ((G)) ∧MU ((G)) is given by

πu∗MU ((G)) ∧MU ((G)) = πu∗MU ((G))[G · b1, G · b2, . . . ].

For m > 1,

πu∗

m∧
MU ((G)) = πu∗MU ((G)) ∧

m−1∧
MU ((G))

is the polynomial ring

πu∗MU ((G))[G · b(j)i ],

with

i = 1, 2, . . . , and

j = 1, . . . ,m− 1.

The element b
(j)
i is the class bi arising from the jth factor of MU ((G)) in∧m−1MU ((G)).
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Proof. The second assertion follows from the first and the Künneth for-

mula. If not for the fact that G acts on both factors of i∗0MU ((G)), the first

assertion would also follow immediately from the Künneth formula and the

usual description of MU∗MU . The quickest way to deduce it from the appa-

ratus we have describe so far is to let G ⊂ G′ be an embedding of index 2 into

a cyclic group, write

MU ((G)) ∧MU ((G)) ≈ i∗GMU ((G′))

and use Corollary 5.20. �

Remark 5.38. As with Lemma 5.33, the lemma above actually determines

the structure of πu∗MU ((G)) ∧MU ((G)) as a G-equivariant πu∗MU ((G))-algebra.

See Remark 5.35.

Proof of Proposition 5.32, assuming Lemma 5.33. This is an easy appli-

cation of the method of twisted monoid rings of Section 2.4. To keep the nota-

tion simple we begin with the case m = 1. Choose a sequence ri ∈ πu2iMU ((G))

with the property described in Lemma 5.33. Let

(5.39) r̄i : Siρ2 → i∗1MU ((G))

be a representative of the image of ri under the splitting (5.12). Since MU ((G))

is a commutative algebra, the method of twisted monoid rings can be used to

construct an associative algebra map

(5.40) S0[G · r̄1, G · r̄2, . . . ]→MU ((G)).

Using Proposition 4.7 one can easily check that S0[G · r̄1, G · r̄2, . . . ] is a wedge

of regular isotropic G-slice cells. Using Lemma 5.33 one then easily checks

that (5.40) is multiplicative refinement of homotopy. The case m ≥ 1 is similar

using, in addition, Lemma 5.37 and the collection {ri, bi(j)}. �

5.4. Algebra generators for πu∗MU ((G)). In this section we will describe

convenient algebra generators for πu∗MU ((G)). Our main results are Propo-

sition 5.45 (giving a criterion for a sequence of elements ri to “generate”

πu∗MU ((G)) as a G-algebra, as in Lemma 5.33) and Corollary 5.49 (specifying

a particular sequence of ri). Proposition 5.45 directly gives Lemma 5.33.

We remind the reader that the notation Hu
∗X refers to the homology

groups H∗(i
∗
0X) of the nonequivariant spectrum underlying X.

5.4.1. A criterion for a generating set. Let

mi ∈ H2iMU = πu2iHZ ∧MUR
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be the coefficient of the universal logarithm. Using the identification (5.2) —

i∗1MU ((G)) =

g/2−1∧
j=0

γjMUR

— and the Künneth formula, one has

Hu
∗MU ((G)) = Z(2)[γ

jmk],

where

k = 1, 2, . . . ,

j = 0, . . . , g/2− 1.

By the definition of the γjmk and Remark 5.14, the action of G on Hu
∗MU ((G))

is given by

(5.41) γ · γjmk =

γj+1mk j < g/2− 1,

(−1)kmk j = g/2− 1.

Let

I = kerπu∗MU ((G)) → Z(2),

IH = kerHu
∗MU ((G)) → Z(2)

denote the augmentation ideals and

Q∗ = I/I2,

QH∗ = IH/I
2
H

the modules of indecomposable, with Q2m and QH2m indicating the homoge-

neous parts of degree 2m (the odd degree parts are zero). The module QH∗
is the free abelian group with basis {γjmk}, and from Milnor [67], one knows

that the Hurewicz homomorphism gives an isomorphism

Q2k → QH2k,

if 2k is not of the form 2(2` − 1), and an exact sequence

(5.42) Q2(2`−1) � QH2(2`−1) � Z/2

in which the rightmost map is the one sending each γjmk to 1.

Formula (5.41) implies that the G-module QH2k is the module induced

from the sign representation of C2 if k is odd and from the trivial representation

if k is even.

Lemma 5.43. Let r =
∑
ajγ

jmk ∈ QH2k. The unique G-module map

Z(2)[G]→ QH2k,

1 7→ r
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factors through a map

Z(2)[G]/(γg/2 − (−1)k)→ QH2k,

which is an isomorphism if and only if
∑
aj ≡ 1 mod 2.

Proof. The factorization is clear, since γg/2 acts with eigenvalue (−1)k on

QH2k. Use the unique map Z(2)[G]→ QH2k sending 1 to mk to identify QH2k

with A = Z(2)[G]/(γg/2 − (−1)k). The main assertion is then that an element

r =
∑
ajγ

j ∈ A is a unit if and only if
∑
aj ≡ 1 mod 2. Since A is a finitely

generated free module over the Noetherian local ring Z(2), Nakayama’s lemma

implies that the map A → A given by multiplication by r is an isomorphism

if and only if it is after reduction modulo 2. So r is a unit if and only if it is

after reduction modulo 2. But A/(2) = Z/2[γ]/(γg/2 − 1) is a local ring with

nilpotent maximal ideal (γ − 1). The residue map

A/(2)→ A/(2, γ − 1) = Z/2

sends
∑
ajγ

jmk to
∑
aj . The result follows. �

Lemma 5.44. The G-module Q2(2`−1) is isomorphic to the module induced

from the sign representation of C2. For y ∈ QH2(2`−1), the unique G-map

Z(2)[G]→ QH2(2`−1),

1 7→ y

factors through a map

A = Z(2)[G]/(γg/2 + 1)→ Q2(2`−1),

which is an isomorphism if and only if y = (1 − γ)r, where r ∈ QH2(2`−1)

satisfies the condition
∑
aj = 1 mod 2 of Lemma 5.43.

Proof. Identify QH2(2`−1) with A by the map sending 1 to m2`−1. In this

case A is isomorphic to Z(2)[ζ], with ζ a primitive gth root of unity and, in

particular, is an integral domain. Under this identification, the rightmost map

in (5.42) is the quotient of A by the principal ideal (ζ − 1). Since A is an

integral domain, this ideal is a rank 1 free module generated by any element

of the form (1− γ)r with r ∈ A a unit. The result follows. �

This discussion proves

Proposition 5.45. Let

{r1, r2, . . . } ⊂ πu∗MU ((G))

be any sequence of elements whose images

sk ∈ QH2k
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have the property that for k 6= 2` − 1, sk =
∑
ajγ

jmk with∑
aj ≡ 1 mod 2,

and s2`−1 = (1− γ)
(∑

ajγ
jm2`−1

)
, with∑

aj ≡ 1 mod 2.

Then the sequence

{r1, . . . γ
g
2
−1r1, r2, . . . , γ

g
2
−1r2, . . . }

generates the ideal I , and so

Z(2)[r1, . . . γ
g
2
−1r1, r2, . . . , γ

g
2
−1r2, . . . ]→ πu∗MU ((G))

is an isomorphism.

5.4.2. Specific generators. We now use the action of G on i∗1MU ((G)) to

define specific elements r̄i ∈ πC2
iρ2
MU ((G)) refining a sequence satisfying the

condition of Proposition 5.45.

Write
F̄ (x̄, ȳ)

for the formal group law over πC2
? MU ((G)) and

logF̄ (x̄) = x̄+
∑
i>0

m̄kx̄
k+1

for its logarithm. This defines elements

m̄k ∈ πC2
kρ2
HZ(2) ∧MU ((G)).

We define the elements

(5.46) r̄k ∈ πC2
kρ2
MU ((G))

to be the coefficients of the unique strict isomorphism between F and the

2-typification of F
γ
. The Hurewicz images

r̄k ∈ πC2
kρ2
HZ(2) ∧MU ((G))

are given by the power series identity

(5.47)
∑

r̄kx̄
k+1 =

(
x̄+

∑
γ(m̄2`−1)x̄2`

)−1
◦ logF̄ (x̄).

Modulo decomposables this becomes

(5.48) r̄k ≡

m̄k − γm̄k k = 2` − 1,

m̄k otherwise.

This shows that the elements r̄k satisfy the condition of Proposition 5.45, hence

Corollary 5.49. The classes rk = i∗0r̄k form a set of G-algebra genera-

tors for πu∗MU ((G)).
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These are the specific generators with which we shall work. Though it does

not appear in the notation, the classes r̄i depend on the group G. In Section 9

we will need to consider the classes r̄i for a group G and for a subgroup H ⊂ G.

We will then use the notation

r̄Hi and r̄Gi

to distinguish them.

The following result establishes an important property of these specific r̄k.

In the statement below, the symbol N is the norm map on the RO(G)-graded

homotopy groups of commutative rings.

Proposition 5.50. For all k,

ΦGN(r̄k) = hk ∈ πkMO,

where the hk are the classes defined in Section 5.2.2. In particular, the set

{ΦGN(r̄k) | k 6= 2` − 1}

is a set of polynomial algebra generators of π∗MO, and for all `,

ΦGN(r̄2`−1) = h2`−1 = 0.

Proof. From Remark 5.26 we know that

ΦGNx̄ = a,

ΦGNx̄H = e,

ΦGNm̄n = αn.

Corollary 2.29 implies that

ΦGNγm̄n = ΦGNm̄n,

so we also know that

ΦGNγm̄n = αn.

Since the Hurewicz homomorphism

π∗Φ
GMU ((G))

≈
��

// π∗Φ
G(HZ(2) ∧MU ((G)))

≈
��

π∗MO // π∗HZ/2[b] ∧MO
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is a monomorphism, we can calculate ΦGNr̄k using (5.47). Applying ΦGN

to (5.47) and using the fact that it is a ring homomorphism gives

a+
∑

(ΦGNr̄k)a
k+1

=
(
a+

∑
(ΦGNγm̄2`−1)a2`

)−1
◦
Ä
a+

∑
(ΦGNm̄k)a

k+1
ä

=
(
a+

∑
α2`−1a

2`
)−1
◦
Ä
a+

∑
αka

k+1
ä
.

But this is the identity defining the classes hk. �

In addition to

hk = ΦGN(r̄k) ∈ πkΦGMU ((G)) = πkMO

there are some important classes fk attached to these specific r̄k.

Definition 5.51. Set

fk = akρ̄GNr̄k ∈ π
G
kMU ((G)),

where ρ̄G = ρG − 1 is the reduced regular representation.

The relationship between these classes is displayed in the following com-

mutative diagram:

Sk
akρ̄G

zz
fk
��

hk

''

SkρG
Nr̄k // MU ((G)) // ẼP ∧MU ((G)).

6. The Slice Theorem and the Reduction Theorem

Using the method of twisted monoid rings one can show the Slice Theorem

and the Reduction Theorem to be equivalent. In Section 6.1 we formally

state the Reduction Theorem, and assuming it, prove the Slice Theorem. In

Section 6.2 we establish a converse for associative algebras R that are pure and

that admit a multiplicative refinement of homotopy by a polynomial algebra.

Both assertions are used in the proof of the Reduction Theorem in Section 7.

6.1. From the Reduction Theorem to the Slice Theorem. We now state the

Slice Theorem, using the language of Section 4.6.2.

Theorem 6.1 (Slice Theorem). The spectrum MU ((G)) is an isotropic

pure spectrum.

For the proof of the slice theorem, let

A = S0[G · r̄1, G · r̄2, . . . ]→MU ((G))
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be the multiplicative refinement of homotopy constructed in Section 5.3 using

the method of twisted monoid rings and the specific generators of Section 5.4.2.

Let J be the left G-set defined by

J =
∐
i

G/C2.

As described in Section 2.4, the spectrum A is the indexed wedge

A =
∨
f∈NJ0

Sρf ,

in which ρf is the unique multiple of the regular representation of the stabilizer

group of f having dimension

dim f = 2
∑
j∈J

j f(j).

As in Example 2.33, let
Md ⊂ A

be the monomial ideal consisting of the indexed wedge of the Sρf with dim f≥d.

Then M2d−1 = M2d, and the M2d fit into a sequence

· · · ↪→M2d+2 ↪→M2d ↪→M2d−2 ↪→ · · · .
The quotient

M2d/M2d+2

is the indexed wedge

(6.2) Ŵ2d =
∨

dim f=2d

Sρf

on which A is acting through the multiplicative map A→ S0 (Examples 2.33

and A.49). The G-spectrum (6.2) is a wedge of regular isotropic slice cells of

dimension 2d.

Replace MU ((G)) with a cofibrant A-module, and form

K2d = MU ((G)) ∧
A
M2d.

The K2d fit into a sequence

K2d+2 ↪→ K2d ↪→ · · · .

Lemma 6.3. The sequences

K2d+2 → K2d → K2d/K2d+2,

K2d/K2d+2 →MU ((G))/K2d+2 →MU ((G))/K2d

are weakly equivalent to cofibration sequences. There is an equivalence

(6.4) K2d/K2d+2 ≈ R(∞) ∧ Ŵ2d

in which

R(∞) = MU ((G)) ∧
A
S0.
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Proof. Since the map K2d+2 → K2d is the inclusion of a wedge sum-

mand, it is an h-cofibration of spectra, and the first assertion follows from

Proposition B.20 and Corollary B.139. The second assertion follows from the

associativity of the smash product

MU ((G)) ∧
A

(M2d/M2d+1) ≈ (MU ((G)) ∧
A
S0) ∧ Ŵ2d ≈ R(∞) ∧ Ŵ2d.

This completes the proof. �

The Thom map

MU ((G)) → HZ(2)

factors uniquely through an MU ((G))-module map

R(∞)→ HZ(2).

The following important result will be proved in Section 7.3.

Theorem 6.5 (The Reduction Theorem). The map

R(∞)→ HZ(2)

is a weak equivalence.

The case G = C2 of the Reduction Theorem is Proposition 4.9 of Hu-Kriz

[37]. Its analogue in motivic homotopy theory appears in unpublished work of

the second author and Morel.

To deduce the Slice Theorem from Theorem 6.5 we need two simple lem-

mas.

Lemma 6.6. The spectrum K2d+2 is slice 2d-positive.

Proof. The class of left A-modules M for which M ∧
A
M2d+2 > 2d is closed

under homotopy colimits and extensions. It contains every module of the

form ΣkG/H+ ∧ A, with k ≥ 0. Since A is (−1)-connected, this means it

contains every (−1)-connected cofibrant A-module. In particular, it contains

the cofibrant replacement of MU ((G)). �

Lemma 6.7. If Theorem 6.5 holds, then MU ((G))/K2d+2 ≤ 2d.

Proof. This is easily proved by induction on d, using the fact that

R(∞) ∧ Ŵ2d →MU ((G))/K2d+2 →MU ((G))/K2d

is weakly equivalent to a cofibration sequence (Lemma 6.3). �

Proof of the Slice Theorem assuming the Reduction Theorem. Note that

the fibration sequence

K2d+2 →MU ((G)) →MU ((G))/K2d+2,



92 M. A. HILL, M. J. HOPKINS, and D. C. RAVENEL

Lemmas 6.6 and 6.7 above, and Lemma 4.16 imply that

P 2d+1MU ((G)) ≈ P 2dMU ((G)) ≈MU ((G))/K2d+2.

Thus the odd slices of MU ((G)) are contractible and the 2d-slice is weakly

equivalent to

R(∞) ∧ Ŵ2d ≈ HZ(2) ∧ Ŵ2d.

This completes the proof. �

6.2. A converse. The arguments of the previous section can be reversed.

Suppose that R is a (−1)-connected associative algebra that we know in ad-

vance to be pure, and suppose that A → R is a multiplicative refinement of

homotopy, with

A = S0[G · x̄1, . . . ]

a twisted monoid ring having the property that |x̄i| > 0 for all i. Note that this

implies that πu0R = Z and that P 0
0R = HZ. Let Md+1 ⊂ A be the monomial

ideal consisting of the slice cells in A of dimension > d, and write

P̃d+1R = Md+1 ∧
A
R

and

P̃ dR = R/P̃d+1R ≈ (A/Md+1) ∧
A
R.

Then the P̃ dR form a tower. Since Md+1 > d and R ≥ 0 (Proposition 4.20),

the spectrum P̃d+1R is slice d-positive. There is therefore a map

(6.8) P̃ dR→ P dR,

compatible with variation in d.

Proposition 6.9. The map (6.8) is a weak equivalence. The tower {P̃ dR}
is the slice tower for R.

By analogy with the slice tower, write P̃ dd′R for the homotopy fiber of the

map

P̃ dR→ P̃ d
′−1R,

when d′ ≤ d.

We start with a lemma concerning the case d = 0.

Lemma 6.10. Let n ≥ 0. If the map

P̃ 0R→ P 0R

becomes an equivalence after applying Pn, then for every d ≥ 0, the map

P̃ ddR→ P ddR

becomes an equivalence after applying P d+n.
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Proof. Write Ŵd = Md/Md+1. Then there are equivalences

P̃ ddR ≈ Ŵd ∧
A
R ≈ Ŵd ∧ (S0 ∧

A
R) ≈ Ŵd ∧ P̃ 0

0R.

Since A→ R is a refinement of homotopy and R is pure, the analogous map

Ŵd ∧ P 0
0R→ P ddR

is also a weak equivalence. Now consider the following diagram:

Ŵd ∧ Pn(P̃ 0
0R)

∼ //

��

Ŵd ∧ Pn(P 0
0R)

��

P d+n(Ŵd ∧ P̃ 0
0R) //

∼
��

P d+n(Ŵd ∧ P 0
0R)

∼
��

P d+n(P̃ ddR) // P d+n(P ddR).

The top map is an equivalence by assumption. The bottom vertical maps are

the result of applying P d+n to the weak equivalences just described. Since

Ŵd is a wedge of regular slice cells of dimension d, Corollary 4.25 implies that

the upper vertical maps are weak equivalences. It follows that the bottom

horizontal map is a weak equivalence as well. �

Proof of Proposition 6.9. We will show by induction on k that for all d,

the map

P d+k(P̃ dR)→ P d+k(P dR)

is a weak equivalence. By the strong convergence of the slice tower (Theo-

rem 4.42) this will give the result. The induction starts with k = 0 since

P̃d+1R > d, and so R → P̃ dR is a P d-equivalence. For the induction step,

suppose we know the result for some k > 0, and consider

P d+kP̃ ddR
//

∼
��

P d+k(P̃ dR) //

∼
��

P d+k(P̃ d−1R)

��
P d+k(P ddR) // P d+k(P dR) // P d+k(P d−1R).

The bottom row is a cofibration sequence since it can be identified with

P ddR→ P dR→ P d−1R.

The middle vertical map is a weak equivalence by the induction hypothesis,

and the left vertical map is a weak equivalence by the induction hypothesis

and Lemma 6.10. It follows that the cofiber of the upper left map is weakly

equivalent to P d+k(P d−1R) and hence is (d + k + 1)-slice null (in fact d slice

null). The top row is therefore a cofibration sequence by Corollary 4.17, and so
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the rightmost vertical map is a weak equivalence. This completes the inductive

step and the proof. �

7. The Reduction Theorem

We will prove the Reduction Theorem by induction on g = |G|. The case

in which G is the trivial group follows from Quillen’s results. We may therefore

assume that we are working with a nontrivial group G and that the Reduction

Theorem is known for all proper subgroups of G. In the first subsection below

we collect some consequences of this induction hypothesis. The proof of the

induction step is in Section 7.3.

7.1. Consequences of the induction hypothesis. This next result holds for

general G.

Lemma 7.1. Suppose that X is pure spectrum and Ŵ is a wedge of regular

slice cells. Then Ŵ ∧X is pure. If X is pure and isotropic and Ŵ is regular

isotropic, then Ŵ ∧X is pure and isotropic.

Proof. Using Proposition 4.21 one reduces to the case in which Ŵ = SmρG .

In that case the claim follows from Corollary 4.25. �

Proposition 7.2. Suppose H ⊂ G has index 2. If the Slice Theorem

holds for H , then the spectrum i∗HMU ((G)) is an isotropic pure spectrum.

Proof. This is an easy consequence of Corollary 5.20, which gives an as-

sociative algebra equivalence

i∗HMU ((G)) ≈MU ((H))[H · b̄1, H · b̄2, . . . ].

This shows that i∗HMU ((G)) is a wedge of smash products of even dimensional

isotropic slice cells with MU ((H)), and hence (by Lemma 7.1), an isotropic pure

spectrum since MU ((H)) is. �

Proposition 7.3. Suppose H ⊂ G has index 2. If the Slice Theorem

holds for H , then the map

i∗HR(∞)→ i∗HHZ(2)

is an equivalence.

Proof. By Proposition 7.2 we know that i∗HMU ((G)) is pure. The claim

then follows from Proposition 6.9. �

7.2. Certain auxiliary spectra. Our proof of the Reduction Theorem will

require certain auxiliary spectra. For an integer k > 0, we define

R(k) = MU ((G))/(G · r̄1, . . . , G · r̄k) = MU ((G)) ∧
A
A′,
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where

A = S0[G · r̄1, G · r̄2, . . . ],

A′ = S0[G · r̄k+1, G · r̄k+2, . . . ].

The spectrumR(k) is a right A′-module, and as in the case ofMU ((G)) described

in Section 6, the filtration of A′ by the “dimension” monomial ideals leads to

a filtration of R(k) whose associated graded spectrum is

R(∞) ∧A′.

Thus the reduction theorem also implies that R(k) is a pure isotropic spectrum.

By the results of the previous section, the induction hypothesis implies that

i∗HR(k) is pure and isotropic.

We know from Proposition 4.64 that when m is even, the slice PmmR(k) is

given by

PmmR(k) ≈ HZ(2) ∧ Ŵm,

where Ŵ ⊂ A′ is the summand consisting of the wedge of slice cells of dimen-

sion m. When m is odd, the above discussion implies that T ∧ PmmR(k) is

contractible for any G-CW complex T built entirely from induced G-cells. In

particular, the equivariant homotopy groups of EP+∧R(k) may be investigated

by smashing the slice tower of R(k) with EP+, and we will do so in Section 7.3,

where we will exploit some very elementary aspects of the situation.

7.3. Proof of the Reduction Theorem. As mentioned at the beginning of

the section, our proof of the Reduction Theorem is by induction on |G|, the

case of the trivial group being a result of Quillen. We may therefore assume

that G is nontrivila and that the result is known for all proper subgroups

H ⊂ G. By Proposition 7.3 this implies that the map

R(∞)→ HZ(2)

becomes a weak equivalence after applying i∗H .

For the induction step, we smash the map in question with the isotropy

separation sequence (2.44)

EP+ ∧R(∞) //

f

��

R(∞) //

g

��

ẼP ∧R(∞)

h
��

EP+ ∧HZ(2)
// HZ(2)

// ẼP ∧HZ(2).

By the induction hypothesis, the map f is an equivalence. It therefore suffices

to show that the map h is one. As discussed in Remark 2.49, this is equivalent

to showing that

(7.4) πG∗ h : π∗Φ
GR(∞)→ π∗Φ

GHZ(2)

is an isomorphism.
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We first show that the two groups are abstractly isomorphic.

Proposition 7.5. The ring π∗Φ
GHZ(2) is given by

π∗Φ
GHZ(2) = Z/2[b],

with

b = u2σa
−2
σ ∈ π2ΦGHZ(2) ⊂ a−1

σ πG? HZ(2).

The groups π∗Φ
GR(∞) are given by

πnΦGR(∞) =

Z/2 n ≥ 0 even,

0 otherwise.

Proof. The first assertion is a restatement of Proposition 3.18. For the

second, we will make use of the monoidal geometric fixed point functor ΦG
M .

The main technical issue is to take care that at key points in the argument we

are working with spectra X for which ΦGX and ΦG
MX are weakly equivalent.

Recall the definition

R(∞) = MU ((G))
c ∧

A
S0,

where for emphasis we have written MU
((G))
c as a reminder that MU ((G)) has

been replaced by a cofibrant A-module (see Section 2.4). Proposition B.208

implies that R(∞) is cofibrant, so there is an isomorphism

π∗Φ
GR(∞) ≈ π∗ΦG

MR(∞)

(Proposition B.201). For the monoidal geometric fixed point functor, Propo-

sition B.208 gives an isomorphism

ΦG
M (R(∞)) = ΦG

M (MU ((G))
c ∧

A
S0) ≈ ΦG

MMU ((G))
c ∧

ΦGMA
S0.

We next claim that there are associative algebra isomorphisms

ΦG
MA ≈ S0[ΦGNr̄1,Φ

GNr̄2, . . . ] ≈ S0[ΦC2 r̄1,Φ
C2 r̄2, . . . ].

For the first, decompose A into an indexed wedge and use Proposition B.192.

For the second, use the fact that the monoidal geometric fixed point func-

tor distributes over wedges, and for V and W representations of C2, can be

computed in terms of the isomorphisms

ΦG
M (NG

C2
(S−W ∧ SV )) ≈ ΦG

M (S
− indGC2

W ∧ SindGC2
V

) ≈ ΦC2
M (S−W ∧ SV ).

By Proposition B.202, ΦG
MMU

((G))
c is a cofibrant ΦG

MA-module, and so

ΦG
MMU ((G))

c ∧
ΦGMA

S0 ≈ ΦG
MMU ((G))/(ΦG

MNr̄1,Φ
G
MNr̄2, . . . ).
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Since MU
((G))
c is a cofibrant A-module, and the polynomial algebra A has the

property that S−1∧A is cofibrant, the spectrum underlyingMU
((G))
c is cofibrant

(Corollary B.207). This means that

ΦG
MMU ((G))

c

and

ΦGMU ((G))
c ∼ ΦGMU ((G)) ∼MO

are related by a functorial zig-zag of weak equivalences (Proposition B.201).

Putting all of this together, we arrive at the equivalence

ΦGR(∞) ∼MO/(ΦC2 r̄1,Φ
C2 r̄2, . . . ).

By Proposition 5.50,

ΦGr̄i =

hi i 6= 2k − 1,

0 i = 2k − 1.

From this is an easy matter to compute π∗MO/(ΦGr̄1,Φ
Gr̄2, . . . ) using the

cofibration sequences described at the end of Section 2.4.3. The outcome is as

asserted. �

Before going further we record a simple consequence of the above discus-

sion, which will be used in Section 9.1.

Proposition 7.6. The map

π∗Φ
GMU ((G)) = π∗MO → π∗Φ

GHZ(2)

is zero for ∗ > 0.

A simple multiplicative property reduces the problem of showing that (7.4)

is an isomorphism to showing that it is surjective in dimensions that are a power

of 2.

Lemma 7.7. If for every k ≥ 1, the class b2
k−1

is in the image of

(7.8) π2kΦGMU ((G))/(G · r̄2k−1)→ π2kΦGHZ(2),

then (7.4) is surjective and hence an isomorphism.

Proof. By writing

R(∞) = MU ((G))/(G · r̄1) ∧
MU((G))

MU ((G))/(G · r̄2) ∧
MU((G))

· · ·

we see that if for every k ≥ 1, b2
k−1

is in the image of (7.8), and then all

products of the b2
k−1

are in the image of

(7.9) π∗Φ
GR(∞)→ π∗Φ

GHZ(2).

Hence every power of b is in the image of (7.9). �
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In view of Lemma 7.7, the Reduction Theorem follows from

Proposition 7.10. For every k ≥ 1, the class b2
k−1

is in the image of

π2kΦG(MU ((G))/(G · r̄2k−1))→ π2kΦG(HZ(2)).

To simplify some of the notation, write

ck = 2k − 1

and

Mk = MU ((G))/(G · r̄ck).

Since SckρG is obtained from Sck by attaching induced G-cells, the restriction

map

πGckρG+1ẼP ∧Mk → πGck+1ẼP ∧Mk

is an isomorphism (Remark 2.50). The element of interest in this group (the

one hitting b2
k−1

) arises from the class

Nr̄ck ∈ π
G
ckρG

MU ((G))

and the fact that it is zero for two reasons in πGckρGẼP∧Mk. (It has been coned

off in the formation of Mk, and it is zero in πGckρGẼP ∧MU ((G)) = πckMO by

Proposition 5.50.) We make this more precise and prove Proposition 7.10 by

chasing the class Nr̄ck around the sequences of equivariant homotopy groups

arising from the diagram

(7.11) EP+ ∧MU ((G)) //

��

MU ((G)) //

��

ẼP ∧MU ((G))

��

EP+ ∧Mk
//

��

Mk
//

��

ẼP ∧Mk

��

EP+ ∧HZ(2)
// HZ(2)

// ẼP ∧HZ(2).

We start with the top row. By Proposition 5.50 the image of Nr̄ck in

πGckρGẼP ∧MU ((G)) ≈ πGckẼP ∧MU ((G)) ≈ πckMO

is zero. There is therefore a class

yk ∈ πGckρGEP+ ∧MU ((G))

lifting Nr̄ck . The key computation, from which everything follows, is

Proposition 7.12. The image under

πGckρGEP+ ∧MU ((G)) → πGckρGEP+ ∧HZ(2),

of any choice of yk above, is nonzero.
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Proof of Proposition 7.10 assuming Proposition 7.12. We continue chas-

ing around the diagram (7.11). By construction the image of yk in πGckρGEP+∧
Mk maps to zero in πGckρGMk. It therefore comes from a class

ỹk ∈ πGckρG+1ẼP ∧Mk.

The image of ỹk in πGckρG+1ẼP ∧HZ(2) is nonzero since it has a nonzero image

in

πGckρGEP+ ∧HZ(2)

by Proposition 7.12. Now consider the commutative square below, in which

the horizontal maps are the isomorphisms (Remark 2.50) given by restriction

along the fixed point inclusion S2k ⊂ SckρG+1:

πGckρG+1ẼP ∧Mk
≈ //

��

πG
2k
ẼP ∧Mk

��

πGckρG+1ẼP ∧HZ(2) ≈
// πG

2k
ẼP ∧HZ(2).

The group on the bottom right is cyclic of order 2, generated by b2
k−1

. We

have just shown that the image of ỹk under the left vertical map is nonzero.

It follows that the right vertical map is nonzero and hence that b2
k−1

is in its

image. �

The remainder of this section is devoted to the proof of Proposition 7.12.

The advantage of Proposition 7.12 is that it entirely involves G-spectra that

have been smashed with EP+ and that (as discussed in Section 7.2) therefore

fall under the jurisdiction of the induction hypothesis. In particular, the map

(7.13) EP+ ∧MU ((G)) → EP+ ∧HZ(2)

can be studied by smashing the slice tower of MU ((G)) with EP+.

We can cut down some the size of things by making use of the spectra

introduced in Section 7.2. Factor (7.13) as

EP+ ∧MU ((G)) → EP+ ∧R(ck − 1)→ EP+ ∧HZ(2),

and replace yk with its image

yk ∈ πGckρGEP+ ∧R(ck − 1).

Lemma 7.14. For 0 < m < ckg,

πckρGEP+ ∧ PmmR(ck − 1) = 0.
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There is an exact sequence

πGckρGEP+ ∧ PckgR(ck − 1) // πGckρGEP+ ∧R(ck − 1)

��
πGckρGEP+ ∧HZ(2) = Z/2.

Proof. Because of the induction hypothesis, we know that the spectrum

EP+ ∧ PmmR(ck − 1)

is contractible when m is odd and that when m is even, it is equivalent to

EP+ ∧HZ ∧ Ŵm,

where Ŵ ⊂ S0[G · r̄ck , . . . ] is the summand consisting of the wedge of slice cells

of dimension m. Since 1 < m < ckg, all of these cells are induced. This implies

that the map

EP+ ∧HZ ∧ Ŵm → HZ ∧ Ŵm

is an equivalence, since

EP+ → S0

is an equivalence after restricting to any proper subgroup of G. But

πGckρGHZ ∧ Ŵm = πG0 HZ ∧ S−ckρG ∧ Ŵm = 0

since

HZ ∧ S−ckρG ∧ Ŵm

is an (m−ckg)-slice and m−ckg < 0. This proves the first assertion. It implies

that the map

πGckρGEP+ ∧ PckgR(ck − 1)→ πGckρGEP+ ∧ P1R(ck − 1)

is surjective. As mentioned in Section 7.2, Proposition 4.64 implies that

P 0
0R(ck − 1) = HZ(2), and so the second assertion follows from the exact

sequence of the fibration

EP+ ∧ P1R(ck − 1)→ EP+ ∧R(ck − 1)→ EP+ ∧ P 0
0R(ck − 1). �

The exact sequence in Lemma 7.14 converts the problem of showing that

yk has nonzero image in πGckρGEP+ ∧ HZ(2) to showing that it is not in the

image of

πGckρGEP+ ∧ PckgR(ck − 1).

We now isolate a property of this image that is not shared by yk. Recall that

γ is a fixed generator of G.
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Proposition 7.15. The image of

πGckρGEP+ ∧ PckgR(ck − 1)→ πGckρGR(ck − 1)
i∗0−→ πuckgR(ck − 1)

is contained in the image of (1− γ).

The class yk does not have the property described in Proposition 7.15.

Its image in πuckgR(ck − 1) is i∗0Nr̄ck , which generates a sign representation of

G occurring as a summand of πuckgR(ck − 1). Thus once Proposition 7.15 is

proved the proof of the Reduction Theorem is complete.

The proof of Proposition 7.15 makes use of the RO(G)-graded Mackey

functor

πckρG(X)

and the transfer map

(7.16) πckρG(X)(C2)→ πckρG(X)(pt),

in which C2 is regarded as a finite G-set through the unique surjective map

G→ C2. By definition (Section 3.1) of the covariant part πckρG∗ of the Mackey

functor, the map (7.16) is given by the map of equivariant homotopy groups

πGckρG(X ∧ C2+)→ πGckρG(X)

induced by the unique surjective map C2 → pt.

There are two steps in the proof of Proposition 7.15. First it is shown

(Corollary 7.19) that the image of

πGckρGEP+ ∧ PckgR(ck − 1)→ πGckρGR(ck − 1)

is contained in the image of the transfer map just described. We then show

(Lemma 7.20) that the image of the transfer map in πuckgR(ck − 1) is in the

image of (1− γ).

Lemma 7.17. Let M ≥ 0 be a G-spectrum, and regard C2 as a finite G-set

using the unique surjective map G→ C2. The image of

πG0 EP+ ∧M → πG0 M

is the image of the transfer map

πG0 M ∧ C2+ → πG0 M.

Proof. As mentioned in Remark 2.48, the space EP+ can be taken to be

the space S∞+ on which γ acts through the antipodal action. The standard cell

decomposition in this model has 0-skeleton C2+. Since M is (−1)-connected

(Proposition 4.11), this implies that πG0 C2+ ∧M → πG0 EP+ ∧M is surjective,

and the claim follows. �
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Corollary 7.18. The image of

πGckρGEP+ ∧ PckgR(ck − 1)→ πGckρGPckgR(ck − 1)

is contained in the image of the transfer map.

Proof. This follows from Lemma 7.17 above, after the identification

πGckρGPckgR(ck − 1) ≈ πG0 S−ckρG ∧ PckgR(ck − 1)

and the observation that

S−ckρG ∧ PckgR(ck − 1) ≈ P0(S−ckρG ∧R(ck − 1))

is ≥ 0. �

Corollary 7.19. The image of

πGckρGEP+ ∧ PckgR(ck − 1)→ πGckρGR(ck − 1)

is contained in the image of the transfer map.

Proof. Immediate from Corollary 7.18 and the naturality of the transfer.

�

The remaining step is the special case X = PckgR(ck − 1), V = ckρG of

the next result.

Lemma 7.20. Let X be a G-spectrum, V a virtual representation of G

of virtual dimension d, and regard C2 as a finite G-set through the unique

surjective map G→ C2. Write ε ∈ {±1} for the degree of

γ : i∗0S
V → i∗0S

V .

The image of

πGV (X ∧ C2+)→ πGVX → πudX

is contained in the image of

(1 + εγ) : πudX → πudX.

Proof. Consider the diagram

πGV (X ∧ C2+) //

��

πGVX

��
πud (X ∧ C2+) // πudX.

The nonequivariant identification

C2+ ≈ S0 ∨ S0

gives an isomorphism of groups of nonequivariant stable maps

[SV , X ∧ C2+] ≈ [SV , X]⊕ [SV , X],
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and so an isomorphism of the group in the lower left-hand corner with

πudX ⊕ πudX

under which the generator γ ∈ G acts as

(a, b) 7→ (εγb, εγa).

The map along the bottom is (a, b) 7→ a+ b. Now the image of the left vertical

map is contained in the set of elements invariant under γ which, in turn, is

contained in the set of elements of the form

(a, εγa).

The result follows. �

Proof of Proposition 7.15. As described after its statement, this is a con-

sequence of Corollary 7.19 and Lemma 7.20. �

8. The Gap Theorem

The proof of the Gap Theorem was sketched in the introduction, and

various supporting details were scattered throughout the paper. We collect

the story here for convenient reference.

Given the Slice Theorem, the Gap Theorem is a consequence of the fol-

lowing special case of Proposition 3.20.

Proposition 8.1. Suppose that G = C2n is a nontrivial group and that

m ≥ 0. Then

H i
G(SmρG ;Z(2)) = 0 for 0 < i < 4.

Lemma 8.2 (The Cell Lemma). Let G = C2n for some n > 0. If Ŝ is an

isotropic slice cell of even dimension, then the groups πGk HZ(2) ∧ Ŝ are zero

for −4 < k < 0.

Proof. Suppose that

Ŝ = G+ ∧
H
SmρH ,

with H ⊂ G nontrivial. By the Wirthmüller isomorphism,

πGk HZ(2) ∧ Ŝ ≈ πHk HZ(2) ∧ SmρH ,

so the assertion is reduced to the case Ŝ = SmρG with G nontrivial. If m ≥ 0,

then πGk HZ(2) ∧ Ŝ = 0 for k < 0. For the case m < 0,

πGk HZ(2) ∧ Ŝ = H−kG (S−mρG ;Z(2)).

The result then follows from Proposition 8.1. �
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Theorem 8.3. If X is pure and isotropic, then

πGi X = 0, −4 < i < 0.

Proof. Immediate from the slice spectral sequence for X and the Cell

Lemma. �

Corollary 8.4. If Y can be written as a directed homotopy colimit of

isotropic pure spectra, then

πGi X = 0, −4 < i < 0.

Theorem 8.5 (The Gap Theorem). Let G = C2n with n > 0, and let

D ∈ π`ρGMU ((G)) be any class. Then for −4 < i < 0,

πGi D
−1MU ((G)) = 0.

Proof. The spectrum D−1MU ((G)) is the homotopy colimit

holim−→
j

Σ−j `ρGMU ((G)).

By the Slice Theorem, MU ((G)) is pure and isotropic. But then the spectrum

Σ−j `ρGMU ((G))

is also pure and isotropic, since for any X,

PmmΣρGX ≈ ΣρGPm−gm−gX

by Corollary 4.25. The result then follows from Corollary 8.4. �

9. The Periodicity Theorem

In this section we will describe a general method for producing periodic-

ity results for spectra obtained from MU ((G)) by inverting suitable elements of

πG? MU ((G)). The Periodicity Theorem (Theorem 9.19) used in the proof of The-

orem 1.1 is a special case. The proof relies on a small amount of computation

of πG? MU ((G)).

9.1. The RO(G)-graded slice spectral sequence for MU ((G)). Let σ = σG
be the real sign representation of G, and let

u = u2σ ∈ πG2−2σHZ(2)

be the element defined in Definition 3.12. Since

P 0
0MU ((G)) = HZ,

the powers um define elements

um ∈ E0,2m−2mσ
2 = πG2m−2mσP

0
0MU ((G))
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Figure 2. The slice spectral sequence for πG−2mσ+∗MU ((G))

in the E2-term of the RO(G)-graded slice spectral sequence

Es,t2 = πGt−sP
dim t
dim tMU ((G)) =⇒ πt−sMU ((G)),

with t ∈ −2mσ + Z. Our periodicity theorems depend on the fate of these

elements. To study them it is convenient to consider odd negative multiples of

σ as well and to investigate the slice spectral sequences for π∗−kσ for k ≥ 0.

It turns out to be enough to investigate the groups Es,t2 with

s ≥ (g − 1)((t− s)− (k − kσ)),

where g = |G|. The situation is depicted in Figures 2–4. We have, in fact,

already described all of the groups in this range. To see this write t′ = dim t,
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Figure 3. The slice spectral sequence for πG−(2m+1)σ+∗MU ((G))

so that t = t′ + (k − kσ), and

Es,t2 = πGt′−s+kS
kσ ∧ P t′t′MU ((G)).

Since Skσ ∧ P t′t′MU ((G)) ≥ t′, part (iii) of Proposition 4.40 tells us that this

group vanishes if

t′ − s+ k < bt′/gc
and hence if

s > (g − 1)
Ä
(t− s) + kσ) + k.

This gives the vanishing line depicted in Figures 2–4. Now P t
′
t′MU ((G)) is

contractible unless t′ is even, in which case it is a wedge of G-spectra of the
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Figure 4. Differentials on um

form HZ ∧ Ŝ, where Ŝ is a slice cell of dimension t′. Since the restriction of

σ to any proper subgroup is trivial, when Ŝ = G+ ∧
H
S`
′ρH is an induced slice

cell, there are isomorphisms

Skσ ∧HZ ∧ Ŝ ≈ G+ ∧
H

Ä
Skσ ∧HZ ∧ S`′ρH

ä
≈ G+ ∧

H

Ä
Sk ∧HZ ∧ S`′ρH

ä
and so πGt′−s+kS

kσ ∧HZ ∧ Ŝ is isomorphic to

πHt′−sHZ ∧ S`′ρH .

This group vanishes if

t′ − s < `′ = t′/h (h = |H|),

so certainly when

t′ − s ≤ t′/g
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or, equivalently when

s ≥ (g − 1)
Ä
(t− s)− (k − kσ)

ä
.

Thus in this range only the noninduced slice cells contribute.

The only even dimensional slice cells that are not induced are those of the

form S`ρG . We are therefore studying the groups

πGj HZ ∧ Skσ ∧ S`ρG

with j ≤ `+ k and k, ` ≥ 0.

Lemma 9.1. For k, ` ≥ 0 and j ≤ `+ k, the group

πGj HZ ∧ Skσ ∧ S`ρG

is given by

πGj HZ∧Skσ∧S`ρG ≈


0 if (j − `) < 0 or (j − `) is odd,

Z/2 · {a`ρ̄ak−2m
σ um2σ} if (j − `) = 2m ≥ 0 and ` > 0,

Z(2) · {um2σ} if (j − `) = 2m ≥ 0 and ` = 0.

Proof. This computation reduces to the one described in Example 3.16.

To see this, write

Skσ ∧ S`ρG = S(k+`)σ ∧ S` ∧ S`(ρG−σ−1),

and consider the map

(9.2) a`ρ̄−σ : πGj HZ ∧ S(k+`)σ ∧ S` → πGj HZ ∧ Skσ ∧ S`ρG

given by multiplication by a`ρ̄−σ. When ` = 0, this map is an isomorphism.

When ` > 0, the space S`(ρG−σ−1) has the structure of a G-CW complex with

one 0-cell and all other G-cells of positive dimension and induced from proper

subgroups. Smashing with S(k+`)σ and using the fact that the restriction of σ to

every proper subgroup of G is trivial, one finds that Skσ∧S`ρG is obtained from

S(k+`)σ ∧ S` by attaching induced G-cells of dimension greater than (k + 2`).

This implies that the map a`ρ̄−σ is an isomorphism for j < k + 2`, and so

certainly for j ≤ k+` since ` > 0. Thus in the range of interest, multiplication

by a`ρ̄−σ is isomorphism, and the computation reduces to the evaluation of

πGj HZ ∧ S(k+`)σ ∧ S`.

These groups were described in Example 3.16. �

To complete the description of the E2-term of the RO(G)-graded slice

spectral sequence in this range, we need to identify the summand of noninduced

slices of MU ((G)). From the associative algebra equivalence∨
k∈Z

P kkMU ((G)) ∼ HZ ∧ S0[G.r̄1, . . . ],
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this is equivalent to identifying the summand of noninduced slice cells in the

twisted monoid ring

S0[G · r̄1, . . . ].

Since the smash product of an induced spectrum with any spectrum is induced,

we can do this by identifying the summand of noninduced slice cells in each

S0[G · r̄i]

and smashing them together.

Take the generating inclusion

r̄i : SiρC2 → S0[r̄i],

apply NG
C2

to obtain

Nr̄i : SiρG → S0[G · r̄i],

and extend it to an associative algebra map

(9.3) S0[Nr̄i]→ S0[G · r̄i].

Lemma 9.4. The map (9.3) is the inclusion of the summand of nonin-

duced slice cells.

Proof. The distributive law expresses S0[G · r̄i] = NG
C2
S0[r̄i] as an indexed

wedge (see Section 2.4)

S0[G · r̄i] ≈
∨

f :G/C2→N0

SVf ,

and Vf =
⊕g/2

i=1 γ
if(γi)ρC2 . We now decompose the right-hand side into an

ordinary wedge over the G-orbits. Since an indexed wedge over a G-orbit

is induced from the stabilizer of any element of the orbit, the summand of

noninduced slice cells consists of those f that are constant. If f : G/C2 is the

constant function with value n, then Vf = nρG, so the summand of noninduced

slice cells is ∨
n

SnρG .

The result follows easily from this. �

Smashing these together gives

Corollary 9.5. The associative algebra map

S0[Nr̄1, . . . ]→ S0[G · r̄1, . . . ]

is the inclusion of the summand of noninduced slice cells.
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To put this all together, consider the Z×RO(G)-graded ring

Z(2)[a, fi, u]/(2a, 2fi)

with

|a| = (1, 1− σ),

|fi| = (i(g − 1), ig),

|u| = (0, 2− 2σ).

Define a map

(9.6) Z(2)[a, fi, u]/(2a, 2fi)→
⊕
s,k≥0,
t∈∗−kσ

Es,t2

by

fi 7→ aiρ̄Nr̄i ∈ E
i(g−1),ig
2 = πGi P

ig
igMU ((G)),

a 7→ aσ ∈ E1,1−σ
2 = π−σP

0
0 0MU ((G))

and by sending u to the element u ∈ E0,2−2σ
2 described at the beginning of this

section. The combination of Lemmas 9.1 and 9.4 gives

Proposition 9.7. The map

(9.8) Z(2)[a, fi, u]/(2a, 2fi)→
⊕
s,k≥0
t∈∗−kσ

Es,t2

is an isomorphism in the range

s ≥ (g − 1)((t− s)− (k − kσ)).

We now turn to the differentials. By construction, the fi are the repre-

sentatives at the E2-term of the slice spectral sequence of the elements defined

in Definition 5.51 (and also called fi). They are therefore permanent cycles.

Similarly, the element a is the representative of aσ and also a permanent cycle.

This leaves the powers of u. The case G = C2 of the following result appears

in unpublished work of Araki and in Hu-Kriz [37].

Theorem 9.9 (Slice Differentials Theorem). In the slice spectral sequence

for πG? MU ((G)), the differentials diu
2k−1

are zero for i < r = 1 + (2k− 1)g, and

dru
2k−1

= a2kf2k−1.

Remark 9.10. It follows from Proposition 9.7 that what lies on the “van-

ishing line”

s = (g − 1)
Ä
(t− s) + kσ

ä
+ k
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is the algebra

Z(2)[a, fi]/(2a, 2fi).

In Proposition 5.50 it was shown that the kernel of the map

Z(2)[aσ, fi]/(2a, 2fi)→ πG? MU ((G)) → πG? ΦGMU ((G)) = π∗MO[a±1
σ ]

is the ideal (2, f1, f3, f7, . . . ). The only possible nontrivial differentials into the

vanishing line must therefore land in this ideal.

For the proof of Theorem 9.9, the reader may find it helpful to consult

Figure 4.

Proof of Theorem 9.9. We establish the differential by induction on k. As-

sume the result for k′ < k. Then what is left in the range s ≥ (g−1)(t− s−k)

after the differentials assumed by induction is the sum of two modules over

Z(2)[fi]/(2fi). One is generated by a2k and is free over the quotient ring

Z/2[fi]/(f1, f3, . . . , f2k−1−1).

The other is generated by u2k−1
. Since the differential must take its value in

the ideal (2, a, f1, f3, . . . ), the next (and only) possible differential on u2k−1
is

the one asserted in the theorem. So all we need do is show that the classes

u2k−1
do not survive the spectral sequence. For this it suffices to do so after

inverting a. Consider the map

a−1
σ πG? MU ((G)) → a−1

σ πG? HZ(2).

We know the Z-graded homotopy groups of both sides, since they can be

identified with the homotopy groups of the geometric fixed point spectrum. If

u2k−1
is a permanent cycle, then the class a−2ku2k−1

is as well, and it represents

a class with nonzero image in πG∗ ΦGHZ(2). This contradicts Proposition 7.6.

�

Remark 9.11. After inverting aσ, the differentials described in Theorem 9.9

describe completely the RO(G)-graded slice spectral sequence. The spectral

sequence starts from

Z/2[fi, a
±1, u].

The class u2k−1
hits a unit multiple of f2k−1, and so the E∞-term is

Z/2[fi, i 6= 2k − 1][a±1] = MO∗[a
±1],

which we know to be the correct answer since ΦGMU ((G)) = MO. This also

shows that the class u2k−1
is a permanent cycle modulo (r̄2k−1). This fact

corresponds to the main computation in the proof of Theorem 6.5 (which, of

course we used in the above proof). The logic can be reversed, and in [37] the

results are established in the reverse order (for the group G = C2).
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Write

d̄k = Nr̄2k−1 ∈ πG(2k−1)ρG
MU ((G)),

and note that with this notation

f2k−1 = a2k−1
ρ̄ d̄k.

In the proof of the corollary below we will make use of the identity

(9.12) f2k+1−1d̄k = a2k+1−1
ρ̄ d̄k+1d̄k = f2k−1a

2k

ρ̄ d̄k+1.

The map d̄k : S(2k−1)ρG → MU ((G)) is represented at the E2-term of the

RO(G)-graded slice spectral sequence by a map S(2k−1)ρG → P
(2k−1)g

(2k−1)g
MU ((G)),

which we will also call d̄k. Multiplying, this defines elements d̄ku
2k in the

E2-term of the RO(G)-graded slice spectral sequence.

Corollary 9.13. The class d̄ku
2k is a permanent cycle in the RO(G)-

graded slice spectral sequence for MU ((G))

Proof. Write

r = 1 + (2k+1 − 1)g.

Theorem 9.9 implies that differentials di(d̄ku
2k) = d̄kdi(u

2k) are zero for i < r,

and

dr(d̄ku
2k) = d̄ka

2k+1
f2k+1−1 = a2k+1

f2k−1a
2k

ρ̄ d̄k+1,

the second equality coming from (9.12) above. But from the earlier differential

dr′u
2k−1

= a2kf2k−1,

where r′ = 1 + (2k − 1)g < r, we also have

dr′(u
2k−1

a2ka2k

ρ̄ d̄k+1) = a2k+1
f2k−1a

2k

ρ̄ d̄k+1

so that, in fact ,dr(d̄ku
2k) = 0. The target of the remaining differentials work

out to be in a region of the spectral sequence that is already zero at the E2-

term. So once we check this, the proof is complete.

To check the claim about the vanishing region first note that with our

conventions, differential di+1 of the RO(G)-graded slice spectral sequence maps

a sub-quotient of

πGmP
n
nX

to a sub-quotient of

πGm−1P
n+i
n+iX.

The class in question starts out at the E2-term as

d̄ku
2k ∈ πG2k(2−2σ)+(2k−1)ρG

P
(2k−1)g

(2k−1)g
MU ((G)),

so we are interested in the groups

πG2k(2−2σ)+(2k−1)ρG−1P
(2k−1)g+i

(2k−1)g+i
MU ((G))
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or, equivalently,

πG2k+1−1

Ä
S2k+1σ ∧ S−(2k−1)ρG ∧ P (2k−1)g+i

(2k−1)g+i
MU ((G))

ä
,

with i+ 1 > r = 1 + (2k+1 − 1)g. To simplify the notation, write

Xi = S−(2k−1)ρG ∧ P (2k−1)g+i

(2k−1)g+i
MU ((G)),

so that the group we are interested in is

(9.14) πG2k+1−1

Ä
S2k+1σ ∧Xi

ä
.

Now
Xi ≥ i,

so Proposition 4.40 implies that

πGj Xi = 0

for j < bi/gc. Since S2k+1σ is (−1)-connected, this means that if i ≥ 2k+1g,

then the group (9.14) is trivial. The remaining values of i are strictly between

(2k+1−1)g and (2k+1)g, and hence are not divisible by g. But since MU ((G)) is

pure, when i is not divisible by g, the spectrum P
(2k−1)g+i

(2k−1)g+i
MU ((G)) is induced

from a proper subgroup of G, hence so is Xi. There is therefore an equivalence

S2k+1σ ∧Xi ≈ S2k+1 ∧Xi,

and so
πG2k+1−1

Ä
S2k+1σ ∧Xi

ä
= πG2k+1−1

Ä
S2k+1 ∧Xi

ä
= 0

since Xi ≥ 0. �

9.2. Periodicity theorems. We now turn to our main periodicity theorem.

As will be apparent to the reader, the technique can be used to get a much

more general result. We have chosen to focus on a case that contains what is

needed for the proof of Theorem 1.1, and yet can be stated for general G = C2n .

Our motivating example is the spectrum KR of “real” K-theory [7]. Mul-

tiplication by the real Bott class r̄1 ∈ πρ2KR is an isomorphism, giving KR
an Sρ2-periodicity. On the other hand, the representation 4ρ2 admits a Spin

structure, and the construction of the KO-orientation of Spin bundles leads to

a “Thom” class u ∈ πC2
8 KR ∧ S4ρ2 . This class is represented at the E2-term of

the slice spectral sequence by u4ρ2 . Multiplication by r̄4
1u is then an equivari-

ant map S8 ∧ KR → KR whose underlying map of nonequivariant spectra is

an equivalence. It therefore gives an equivalence S8∧KhC2
R ≈ KhC2

R . Since the

map KO → KhC2
R is an equivalence, this gives the 8-fold periodicity of KO.

In our situation we begin with an equivariant commutative ring R, a

representation V of G, and an element D ∈ πGV R. We manually create a

spectrum with SV -periodicity by working with the homotopy colimit, D−1R,

of the sequence

R
D−→ S−V ∧R D−→ S−2V ∧R→ · · · .
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The unit inclusion

S0 → D−1R

gives a map

HZ = P 0
0 S

0 → P 0
0D
−1R

and hence defines, for every oriented representation W of G, elements

uW ∈ πdimW−WP
0
0R = E0,dimW−W

2

in the E2-term of the RO(G)-graded slice spectral sequence for πG? D
−1R. We

will show, under certain hypotheses on D, that there is an integer k > 0 with

the property that ukV is a permanent cycle. Let u ∈ πG? D−1R be any element

representing ukV . Then the equivariant map

Sk dimV ∧D−1R
u−→ SkV ∧D−1R

Dk−−→ D−1R

induces an equivalence of underlying, nonequivariant spectra, and hence an

equivalence of homotopy fixed point spectraÄ
Sk dimV ∧D−1R

ähG → ÄD−1R
ähG

.

This establishes a periodicity theorem for the homotopy fixed point spectrum

(D−1R)hG.

The exposition is cleanest when one exploits multiplicative properties of

the spectrum D−1R. There are some easy general things to say at first. The

spectrum D−1R is certainly an R-module, and it inherits a homotopy commu-

tative multiplication (over R) from R. The technique of [24, §VIII.4] can be

used to show that the nonequivariant spectrum underlying D−1R has a unique

commutative algebra structure for which the map i∗0R → i∗0D
−1R is a map of

commutative rings.

With an additional assumption on D, one can go further. Let H ⊂ G be

a subgroup, and suppose that there is an m > 0 for which the norm NG
H

Ä
i∗HD

ä
divides Dm. Write Dm = D′ · NG

H

Ä
i∗HD

ä
, and to keep the notation compact,

abbreviate NG
H

Ä
i∗HD

ä
to NG

HD. Then there is a commutative diagram

NG
HR

NG
H (D)

//

��

NG
H

Ä
S−V ∧R

ä NG
H (D)

//

��

NG
H

Ä
S−2V ∧R

ä
· · ·

��

R
NG
H (D)

//

1

��

S−V
′ ∧R

NG
H (D)

//

D′

��

S−2V ′ ∧R · · ·

D′2

��
R

Dm // S−mV ∧R Dm // S−2mV ∧R · · ·
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in which V ′ = indGH V . Passing to the colimit gives a map

NG
H i
∗
H

Ä
D−1R

ä
→ D−1R

extending the iterated multiplication. This allows one to form norms of ele-

ments in πH? D
−1R as if D−1R were an equivariant commutative ring.

A necessary condition forD−1R to actually be an equivariant commutative

ring is that for every H ⊂ G, the norm NG
H i
∗
HD divides a power of D. In fact

the condition is also sufficient. The proof of the result below is described

in [31].

Proposition 9.15. Let R be an equivariant commutative ring and D ∈
πG? R. If D has the property that for every H ⊂ G, the element NG

H i
∗
HD divides

a power of D, then the spectrum D−1R has a unique equivariant commutative

algebra structure for which the map R→ D−1R is a map of commutative rings.

We will not make use of Proposition 9.15, as the ad hoc formation of

norms from the nontrivial subgroups of G is sufficient for our purpose.

Suppose that t ∈ RO(G) and that u ∈ πHt D
−1R is represented at the

E2-term of the RO(H)-graded slice spectral sequence by the image of u′ ∈
πHt HZ under the map πHt HZ → πHt P

0
0D
−1R induced by the unit. We then

have an H-equivariant commutative diagram

St

u

yy ��

u′

**
D−1R P0D

−1R //oo P 0
0D
−1R HZ.oo

The maps in the bottom row are maps of homotopy commutative ring spec-

tra. Since the formation of slice sections commutes with filtered colimits, if

NG
HD divides a power of D, then the spectra along the bottom row also come

equipped with maps NG
H (− )→ (− ) extending the iterated multiplication and

are compatible with the maps between them. This means we may apply the

norm to the whole diagram to produce

SindGH t

NG
Hu

yy ��

NG
Hu
′

**
D−1R P0D

−1R //oo P 0
0D
−1R HZ,oo

showing that

NG
Hu
′

is a permanent cycle representing the class NG
Hu ∈ πindGH tD

−1R.

We will take R to be the spectrum MU ((G)). In order to specify the element

D, we need to consider all of the spectra MU ((H)) for H ⊂ G, and we will need
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to distinguish some of the important elements of the homotopy groups we have

specified. We use (5.1) to map

πH? MU ((H)) → πH? MU ((G)),

and we make all of our computations in πH? MU ((G)). Let

r̄Hi ∈ π
C2
iρ2
MU ((H)) ⊂ πC2

iρ2
MU ((G))

be the element defined in Section 5.4.2, and let

d̄Hk = NH
C2

(r̄H2k−1) ∈ πH(2k−1)ρH
MU ((G)).

Finally, in addition to g = |G|, we will write h = |H| for H ⊂ G.

Theorem 9.16. Let D ∈ πG`ρGMU ((G)) be any class having the property

that for every nontrivial H ⊂ G, the element NG
H i
∗
HD divides a power of D, and

whose image in πH? MU ((G)) is divisible by d̄Hg/h. The class u2g/2
2ρG

is a permanent

cycle in the RO(G)-graded slice spectral sequence for πG? D
−1MU ((G)).

Proof. By Corollary 9.13, for each nontrivial subgroup H ⊂ G, the class

d̄Hg/hu
2g/h
2σH

is a permanent cycle in the RO(H)-graded slice spectral sequence for

πH? MU ((G)). Since i∗HD is divisible by d̄Hg/h, the class u2g/h
2σh

is then a permanent

cycle in the RO(G)-graded slice spectral sequence for πH? D
−1MU ((G)). From

this inventory of permanent cycles, and the ad hoc norm described above, we

will show that u2g/2
2ρG

is also a permanent cycle.

To begin, note that if H ⊂ G has index 2, then indGH 1 = 1+σG. It follows

from Lemma 3.13 that

u2ρG = u
g/2
2σG

NG
Hu2ρH .

This leads to the formula

uk2ρG =
∏

06=H⊂G
NG
H (u

kh/2
2σH

).

When k = 2g/2, we have kh/2 = 2g/2h/2 ≥ 2g/h for every h 6= 1 dividing g, so

every term in the product is a permanent cycle. (The inequality is an equality

only when h = 2.) This completes the proof. �

Write ∆G = u2ρG(d̄G1 )2.

Corollary 9.17. In the situation of Theorem 9.16, the class

(9.18) (∆G)2g/2 = u2g/2

2ρG
(d̄G1 )2·2g/2

is a permanent cycle. Any class in πG
2·g·2g/2D

−1MU ((G)) represented by (9.18)

restricts to a unit in πu∗D
−1MU ((G)).
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Proof. The fact that (9.18) is a permanent cycle is immediate from Theo-

rem 9.16. Since the slice tower refines the Postnikov tower, the restriction of an

element in the RO(G)-graded group πG? D
−1MU ((G)) to πu∗D

−1MU ((G)) is de-

termined entirely by any representative at the E2-term of the slice spectral se-

quence. Since u2ρG restricts to 1, the restriction of any representative of (9.18)

is equal to the restriction of (d̄G1 )2·2g/2 , which is a unit since d̄G1 divides D. �

This gives

Theorem 9.19. With the notation of Theorem 9.16, if M is any equivari-

ant D−1MU ((G))-module, then multiplication by (∆G)2g/2 is a weak equivalence

Σ2·g·2g/2i∗0M → i∗0M

and hence an isomorphism

(∆G)2g/2 : π∗M
hG → π∗+2·g·2g/2M

hG.

For example, in the case of G = C2, the groups π∗(D
−1MU ((G)))hG are

periodic with period 2 ∗ 2 ∗ 2 = 8, and for G = C4, there is a periodicity of

2 ∗ 4 ∗ 22 = 32. For G = C8, we have a period of 2 ∗ 8 ∗ 24 = 256.

Remark 9.20. Suppose that D ∈ πG? R is of the form

D = NG
C2
x.

Then for C2 ⊂ H ⊂ G, one has

NG
H i
∗
HD = Dg/h.

Indeed,

NG
H i
∗
HD = NG

H i
∗
HN

G
C2
x = NG

H (NH
C2

)g/h = NG
C2
xg/h = Dg/h.

Since each d̄Hk has this form, any class D that is a product of NG
H d̄Hk has the

property required for Theorems 9.16 and 9.19.

Corollary 9.21 (The Periodicity Theorem). Let G = C8 and

D = (NC8
C2

d̄C2
4 ) (NC8

C4
d̄C4

2 ) (d̄C8
1 ) ∈ πG19ρG

MU ((G)).

Then multiplication by (∆G)16 gives an isomorphism

π∗(D
−1MU ((G)))hG → π∗+256(D−1MU ((G)))hG.

Remark 9.22. For a periodicity theorem, one gets a sufficient inventory

of powers of u2σH as permanent cycles as long as for each H, some d̄Hj is

inverted. This is also enough to prove the Homotopy Fixed Point Theorem.

Our particular choice of d̄Hg/h is dictated by the requirements of the Detection

Theorem.
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10. The Homotopy Fixed Point Theorem

Until now we have not had occasion to refer to the function G-spectrum

of maps from a pointed G-space S to a G-spectrum X, which exists as part of

the completeness of
¯
SG as a topological G-category. We will write XS for this

object, so that

SG(Z,XS) = SG(Z ∧ S,X).

Definition 10.1. A G-spectrum X is cofree if the map

(10.2) X → XEG+

adjoint to the projection map EG+ ∧X → X is a weak equivalence.

If X is cofree, then the map

πG∗ X → πG∗ X
EG+ = π∗X

hG

is an isomorphism. The main result of this section (Theorem 10.8) asserts that

any module over D−1MU ((G)) is cofree.

The map (10.2) is an equivalence of underlying spectra and hence becomes

an equivalence after smashing with any G-CW complex built entirely out of

free G-cells. In particular, the map

(10.3) EG+ ∧X
∼−→ EG+ ∧ (XEG+)

is an equivariant equivalence. One exploits this, as in [14], by making use of

the pointed G-space ẼG defined by the cofibration sequence

(10.4) EG+ → S0 → ẼG.

Lemma 10.5. For a G-spectrum X , the following are equivalent :

(i) for all nontrivial H ⊂ G, the spectrum ΦHX is contractible;

(ii) the map EG+ ∧X → X is a weak equivalence;

(iii) the G-spectrum ẼG ∧X is contractible.

Proof. The equivalence of the second and third conditions is immediate

from the cofibration sequence defining ẼG. Since EG+ is built from free

G-cells, condition (ii) implies condition (i). For H ⊂ G nontrivial, we have

ΦH(ẼG ∧X) ≈ ΦH(ẼG) ∧ ΦH(X) ≈ S0 ∧ ΦH(X).

Since the nonequivariant spectrum underlying ẼG is contractible, condition

(i) therefore implies that ΦH(ẼG ∧X) is contractible for all H ⊂ G. But this

means that ẼG ∧X is contractible (Proposition 2.52). �

Corollary 10.6. If R is an equivariant ring spectrum satisfying the

equivalent conditions of Lemma 10.5, then any module over R is cofree.
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The condition of Corollary 10.6 requires R to be an equivariant ring spec-

trum in the weakest possible sense, namely that R possesses a unital multipli-

cation (not necessarily associative) in ho SG. Similarly, the “module” condition

is also one taking place in the homotopy category.

Proof. Let M be an R-module. Consider the diagram

(10.7) EG+ ∧M //

��

M //

��

ẼG ∧M

��

EG+ ∧MEG+ // MEG+ // ẼG ∧MEG+

obtained by smashing M →MEG+ with the sequence (10.4). The fact that R

satisfies the condition (i) of Lemma 10.5 implies that any R-module M ′ does

since ΦH(M) is a retract of ΦH(R ∧M) ≈ ΦH(R) ∧ ΦH(M). Thus both M

and MEG+ satisfy the conditions of Lemma 10.5, and the terms on the right

in (10.7) are contractible. The left vertical arrow is the weak equivalence (10.3).

It follows that the middle vertical arrow is a weak equivalence. �

Turning to our main purpose, we now consider a situation similar to the

one in Section 9.2, and we fix a class

D ∈ πG`ρGMU ((G))

with the property that for all nontrivial H ⊂ G the restriction of D to

πH∗ MU ((G)) is divisible by d̄Hk for some k that may depend on H.

Theorem 10.8 (Homotopy Fixed Point Theorem). Any module M over

D−1MU ((G)) is cofree, and so

πG∗ M → π∗M
hG

is an isomorphism.

Proof. We will show that D−1MU ((G)) satisfies condition (i) of Lemma 10.5.

The result will then follow from Corollary 10.6. Suppose that H ⊂ G is

nontrivial. Then

ΦH(D−1MU ((G))) ≈ ΦH(D)−1ΦH(MU ((G))).

But D is divisible by d̄Hk , and so ΦH(D) is divisible by

ΦH(d̄Hk ) = ΦH(NH
C2

(r̄H2k−1))y = ΦC2(r̄H2k−1),

which is zero by Proposition 5.50. This completes the proof. �

Corollary 10.9. In the situation of Corollary 9.21, the map “multipli-

cation by ∆G” gives an isomorphism

πG∗ (D−1MU ((G)))→ πG∗+256(D−1MU ((G))).
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Proof. In the diagram

πG∗ (D−1MU ((G))) //

��

πG∗+256(D−1MU ((G)))

��
π∗(D

−1MU ((G)))hG // πG∗+256(D−1MU ((G)))hG

the vertical maps are isomorphisms by Theorem 10.8 and the bottom horizontal

map is an isomorphism by Corollary 9.21. �

11. The Detection Theorem

11.1. Outline of the proof. We now turn to the proof of the Detection

Theorem. For the convenience of the reader, we restate the result.

Theorem 11.1 (The Detection Theorem). If θj ∈ π2j+1−2S
0 is an ele-

ment of Kervaire invariant 1, and j > 2, then the image of θj in π2j+1−2Ω is

nonzero.

To recapitulate, we are working with the group G = C8, and the spec-

trum Ω is the spectrum of G-fixed points in ΩO = D−1MU ((G)), with D ∈
π19ρMU ((G)) the element specified in Corollary 9.21.

Theorem 11.2 (Algebraic Detection Theorem). If

x ∈ Ext2,2j+1

MU∗(MU) (MU∗,MU∗)

is any element mapping to

h2
j ∈ Ext2,2j+1

A (Z/2,Z/2)

in the E2-term of the classical Adams spectral sequence, and j > 2, then the

image of x in H2(C8;πu2j+1ΩO) is nonzero.

We will prove the Algebraic Detection Theorem by establishing the fol-

lowing.

Proposition 11.3. For j > 2, there is a map

(11.4) H2(C8;π2j+1ΩO)→ Q/Z
making the diagram

(11.5) Ext2,2j+1

MU∗MU (MU∗,MU∗)
//

��

H2(C8;π2j+1ΩO)

��

Ext2,2j+1

A (Z/2,Z/2)
� � // Q/Z

commute.
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In (11.5), the bottom row is the Kervaire invariant homomorphism sending

h2
j to 1/2. Since the vector space

Ext2,2j+1

A (Z/2,Z/2)

has dimension 1, with basis h2
j (Adams [3, Th. 2.5.1]), the Kervaire invariant

homomorphism is completely specified by this property and is a monomor-

phism. In plain language, Proposition 11.3 asserts that the Kervaire invariant

homomorphism, thought of as a map

Ext2,2j+1

MU∗MU (MU∗,MU∗)→ Q/Z,

factors through H2(C8, π2j+1ΩO). This directly implies Theorem 11.2.

Remark 11.6. All three of these results (Theorems 11.1 and 11.2 and

Proposition 11.3) remain true without the restriction j > 2. The other cases

j ≤ 2 require separate arguments, and are not needed for the proof of Theo-

rem 1.1, so we do not include them.

We now describe the proof of Proposition 11.3, deferring the details to

later subsections. In order to construct the map (11.4) we use the theory

of formal A-modules to construct a C8-equivariant ring homomorphism from

πu∗ΩO to a much smaller ring. Let A = Z2[ζ] be the 2-adic completion of the

ring obtained by adjoining an 8th root of unity to the ring of integers, and

let Ff be the Lubin-Tate formal A-module over A associated to any choice of

power series f(x) ∈ A[[x]] satisfying (see Section 11.2)

f(x) ≡ πx mod (x2),

f(x) ≡ x2 mod (π),

with uniformizer π = ζ − 1. By construction, there is an isomorphism

A
≈−→ End(Ff ),

a 7→ [a](x)

satisfying [a]′(0) = a. Using the map γ 7→ ζ to identify the group of 8th roots

of unity with C8 gives an action of C8 on Ff extending the canonical action of

C2 by formal multiplication by −1. As described in Section 11.3.4 below, this

data is classify by a C8-equivariant map of graded rings

(11.7) πu∗MU ((C8)) → A∗

in which A∗ = A[u±1], |u| = 2, and in which the action of the chosen generator

γ ∈ C8 is the A-algebra map sending u to ζu. The first thing to check about

this map is

Proposition 11.8. The image of D ∈ π19ρMU ((C8)) under

π19ρMU ((C8)) → πu152MU ((C8)) → A152
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is a unit, hence (11.7) factors uniquely through a C8-equivariant map

(11.9) πu∗ΩO → A∗.

Let

χ : H2(C8;πu2j+1ΩO)→ H2(C8;A2j+1)

be the map of cohomology groups induced by (11.9). Using χ, form the right-

most arrow in the diagram below:

(11.10) Ext2,2j+1

MU∗MU (MU∗,MU∗)
//

��

H2(C8;πu2j+1ΩO)

2
π ·χ
��

Ext2,2j+1

A (F2,F2)
� � // H2(C8;A2j+1).

For the bottom arrow, note that Ext2,2j+1

A (Z/2,Z/2) and H1(C8;A2j+1/(π))

both are cyclic of order 2 and hence isomorphic by a unique isomorphism.

The bottom arrow in (11.10) is defined to be the map corresponding to the

connecting homomorphism

H1(C8;A2j+1/(π))→ H2(C8;A2j+1)

under this isomorphism. For j > 2, the action of γ on u2j is trivial, and so

H2(C8, A2j+1) ≈ A2j+1/(8), and one easily checks that this map is a monomor-

phism.

The main point is the commutativity of the diagram. Once that is estab-

lished, the map (11.4) can be taken to be the composition of the right vertical

arrow in (11.10) with any map (dashed arrow)

H2(C8;A2j+1)

��

H1(C8;A2j+1/(π))

) 	

66

� � // Q/Z

factoring the inclusion through the connecting homomorphism.

Checking the commutativity of (11.10) involves some technical details

about the groups Ext2,2j+1

MU∗MU (MU∗,MU∗). The following lemma can be read

off from [80, Th. 1.5] (see Section 11.6).

Lemma 11.11. For j > 1, the map

Ext1,2j+1

MU∗MU (MU∗,MU∗/(2))→ Ext2,2j+1

MU∗MU (MU∗,MU∗)

is surjective after localizing at 2.
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Lemma 11.11 enables us to replace the upper left corner of (11.10) with

the group Ext1,2j+1

MU∗MU (MU∗,MU∗/(2)) and to verify the commutativity of

(11.12) Ext1,2j+1

MU∗MU (MU∗,MU∗/(2)) //

��

H2(C8;π2j+1ΩO)

2
π ·χ
��

Ext2,2j+1

A (Z/2,Z/2)
� � // H2(C8;A2j+1).

The key technical point in doing this is

Proposition 11.13. The maps

Ext1,2j+1

MU∗MU (MU∗,MU∗/(2))→ Ext2,2j+1

A (Z/2,Z/2),

Ext1,2j+1

MU∗MU (MU∗,MU∗/(2))→ H1(C8;A2j+1/(π))

are surjective and have the same kernel.

Proposition 11.13 gives the commutativity of the left square in

Ext1,2
j+1

MU∗MU (MU∗,MU∗/(2)) //

����

H1(C8;πu2j+1ΩO/(2))

��

// H2(C8;πu2j+1ΩO)

2
π ·χ
��

Ext2,2
j+1

A (Z/2,Z/2)
≈ // H1(C8;A2j+1/(π)) �

� // H2(C8;A2j+1).

The commutativity of the right-hand square follows from the naturality of the

connecting homomorphism. The outer square is (11.12). This completes our

summary of the proof of the Proposition 11.3 and the Detection Theorem.

Remark 11.14. The argument of this section can be easily adapted to

prove a detection theorem for MU ((C2n )) as long as n ≥ 3. The result does not

hold in the cases n < 3. What fails is the assertion in Proposition 11.13 that

the two maps have the same kernel. This assertion makes essential use of the

fact that the reduction of the Lubin-Tate group over A/(π) has height greater

than 2.

The remainder of this section is devoted to filling in the details of this out-

line. We begin in Section 11.2 by recalling the Lubin-Tate formal A-module [51]

and some simple but useful results relating the power series [a](x) to the

π-adic valuation of a. We turn in Section 11.3 to the ideas connecting the

Adams-Novikov E2-term to group cohomology. In Section 11.3.4 we describe

the “conjugation action” and prove Proposition 11.28, which describes the

functor co-represented by πu∗MU ((G)) on the category of G-equivariant graded

commutative rings. Setting all of this up brings us as far as the statement of
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Proposition 11.8, which is proved in Section 11.4. Proposition 11.13 is proved

in Section 11.5. The proof relies heavily on the computations in [66] and [80],

in the form of Proposition 11.34. An addendum to this section discusses how

these computations are made and how they lead to Lemmas 11.11 and Propo-

sition 11.34.

The reader may also wish to consult [63] for another presentation of these

ideas.

11.2. Formal A-modules and the Lubin-Tate group. Let A and R be com-

mutative rings, and let e : A→ R be a ring homomorphism. A (1-dimensional)

formal A-module over R is a formal group law F over R, equipped with a ring

homomorphism

A→ End(F ),

a 7→ [a](x)

with the property that [a]′(0) = e(a). In the case of interest to us, e is a

monomorphism (in fact the identity map), and we will not distinguish in no-

tation between a and e(a).

Formal A-modules were introduced by Lubin and Tate in their work [51]

on local class field theory. For A the ring of integers in a local field with finite

residue field, they constructed a formal A-module over A itself, unique up to

isomorphism. Their construction starts with a choice of uniformizer π ∈ A and

a power series

f(x) ∈ A[[x]]

intended to be the endomorphism [π](x). Writing q for the order of the residue

field, the power series f is required to satisfy

f(x) ≡ πx mod (x2),

f(x) ≡ xq mod (π).

For example, f(x) could be taken to be πx+ xq. Lubin and Tate showed that

such an f determines a formal A-module in which the formal sum is the unique

power series Ff (x, y) ∈ A[[x]] satisfying

Ff (x, y) ≡ x+ y mod (x, y)2,

Ff (f(x), f(y)) = f(Ff (x, y)),

and for a ∈ A, the power series [a](x) is the unique power series satisfying

[a](x) ≡ ax mod (x)2,

[a](f(x)) = f([a](x)).

In particular, one does indeed have [π](x) = f(x).
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Continuing with the Lubin-Tate formal A-module, for a ∈ A, write

[a](x) ≡ αdxd + · · · mod (π),

with 0 6= αd ∈ A/(π). One easily checks that the function ν(a) = logq(d)

defines a valuation on A. The fact that [π](x) = f(x) implies that ν is the

unique valuation for which ν(π) = 1.

We are interested in the case

A = Z2[ζ],

with π = ζ − 1, and any fixed choice of f(x). Since ν(ζ − 1) = 1, ν(ζ2− 1) = 2

and ν(ζ4 − 1) = 4, and since any unit in A is congruent to 1 modulo π, this

means that modulo (π),

[ζ − 1](x) ≡ x2 + · · · ,

[ζ2 − 1](x) ≡ x4 + · · · ,

[ζ4 − 1](x) ≡ x16 + · · · ,

and so

(11.15)

[ζ](x) ≡ x +
Ff
x2 + · · ·

≡ x+ x2 + · · · ,

[ζ2](x) ≡ x +
Ff
x4 + · · ·

≡ x+ x4 + · · · ,

[ζ4](x) ≡ x +
Ff
x16 + · · ·

≡ x+ x16 + · · · .
These congruences play an important role in the proof of Proposition 11.8.

Remark 11.16. The formulae (11.15) are independent of the choice of f(x).

In particular, they hold for a choice of f leading to a 2-typical formal group law.

11.3. Group actions and homogeneous formal group laws. We now turn

to the relationship between group actions on formal group laws and group

cohomology. Our eventual goal involves some explicit formulas, so we begin

with a relatively detailed summary.

11.3.1. Homogeneous formal group laws. Suppose that R∗ =
⊕
Rn is a

graded commutative ring. By Quillen’s work [70], [4] the set of graded ring

homomorphisms
MU∗ → R∗

is in one-to-one correspondence with the set of formal group laws F over R

that are homogeneous of degree −2 in the sense that the formal sum

F (x, y)
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is homogeneous of degree −2, when x and y are given degree −2. In terms of

the power series

F (x, y) = x+ y +
∑

aijx
iyj ,

this means that aij has degree 2(i+ j − 1).

The graded ring MU∗MU = π∗MU ∧MU co-represents the functor as-

sociating to a graded ring R∗ the set of pairs (F1, F2) of homogeneous formal

group laws and an isomorphism g : F1 → F2 between them that is strict in the

sense that it is given by a power series of the form

[g](x) = x+O(x2).

More generally, the ring π∗MU (n) (n-fold smash product) co-represents the

functor associating to a graded ring R∗ the set of chains

F1 → · · · → Fn

of homogeneous formal group laws and strict isomorphisms over R. The stan-

dard convention is that the homogeneous formal group law Fi is the one clas-

sified by the map

π∗MU → π∗MU ∧ · · · ∧MU

induced from the inclusion of the ith factor

S0 ∧ · · · ∧MU ∧ · · · ∧ S0 →MU ∧ · · · ∧MU.

Taken together, the pair (MU∗,MU∗MU) forms the Hopf algebroid that

co-represents the functor associating to a graded commutative ring R∗ the

groupoid of homogeneous formal group laws over R∗ and strict isomorphisms.

For the definition of Hopf algebroid, the reader is referred to [73, Def. A1.1.1].

11.3.2. Group actions. Let MFG be the category of pairs (R,F ), with F

a formal group law over a commutative ring R, and in which a morphism

(f, ψ) : (R1, F1)→ (R2, F2)

consists of a ring homomorphism f : R1 → R2 and an isomorphism of for-

mal group laws ψ : F2
≈−→ f∗F1. Morphisms can also be described as ring

homomorphisms

h : R1[[x]]→ R2[[x]],

h(r) = f(r),

h(x) = ψ(x)
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that are compatible with the formal sum in the sense that the diagram

R1[[x]]
h //

F1

��

R2[[x]]

F2

��

R1[[x, y]]
h
// R2[[x, y]]

commutes. LetMh
FG be the analogous category of homogeneous formal group

laws over graded rings and strict isomorphisms.

The categories MFG and Mh
FG are related by the strictification functor

MFG →Mh
FG,

(R,F ) 7→ (R∗, F
h).

The ring R∗ = R[u] is obtained from R by adjoining a polynomial variable u

with |u| = 2, and F h is the unique formal power series satisfying

(11.17) uF h(x, y) = F (ux, ux).

The strictification of a map (f, ψ) : (R,F )→ (R′, F ′) is the pair

(fh, ψh) : (R∗, F
h)→ (R′∗, (F

′)h),

with fh(u) = ψ′(0)u and ψh(x) = ψ(ux)/u the unique power series satisfying

uψh(x) = ψ(ux).

A (left) action of a group G on a pair (R,F ) ∈MFG is a map of monoids

G→MFG((R,F ), (R,F )),

and a strict (left) action of a group on (R∗, F ) ∈Mh
FG is a map

G→Mh
FG((R∗, F ), (R∗, F )).

The strictification functor converts a group action into a strict one.

A left action of G on (R,F ) corresponds to a left action of G on R[[x]].

We will use the notation

r 7→ g r, r ∈ R,
x 7→ [g](x)

for this action.

Example 11.18. Suppose that E is a complex oriented, homotopy com-

mutative ring spectrum and that a finite group G acts on E by homotopy

multiplicative maps. Let F denote the corresponding homogeneous formal

group law over π∗E. Then the action of G on E∗(CP∞) gives a strict action

of G on (π∗E,F ).
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Example 11.19. The group C2 acts on any (R,F ) ∈MFG as the identity

map on R and formal multiplication by (−1) on F .

11.3.3. Group cohomology and the Adams-Novikov spectral sequence. When

(R∗, F ) is a homogeneous formal group law equipped with a strict action of a

group G, there is a map

Exts,tMU∗MU (MU∗,MU∗)→ Hs(G;Rt).

Conceptually, it arises from the inclusion functor of the subcategory of Mh
FG

whose only object is (R∗, F ) and whose monoid of self maps is given by the ac-

tion of G. For the purposes of explicit computation, it is conveniently described

as derived from a map of Hopf algebroids

(11.20) (MU∗,MU∗MU)→ (R∗, C(G;R∗)),

in which C(G;R∗) is the ring of (set-theoretic) functions from G to R∗.

The Hopf algebroid (R∗, C(G;R∗)) is the one expressing the group action

of G on R∗. The “source” map

ηL : R∗ → C(G;R∗)

sends r ∈ R∗ to the constant function with value r, and the “target” map

ηR : R∗ → C(G;R∗) is the transpose of the action mapping. It associates to

r ∈ R∗ the function sending g ∈ G to g · r. The coproduct

∆ : C(G;R∗)→ C(G;R∗) ⊗
R∗
C(G;R∗)

is the composition of the map

C(G;R∗)→ C(G×G,R∗)

dual to multiplication in G and the isomorphism

C(G;R∗) ⊗
R∗
C(G;R∗)

≈−→ C(G×G,R∗)

given by setting

(f1 ⊗ f2)(g1, g2) = f1(g1) · g1f2(g2).

The map (11.20) consists of the map MU∗ → R∗ classifying the homogeneous

formal group law F , and the map MU∗MU → C(G,R∗), defined by declaring

the composition

MU∗MU → C(G,R∗)
evg−−→ R∗

to be the map classifying the strict isomorphism

[g](x) : F → g∗F.

When the G-action on (R∗, F ) arises, as in Example 11.18, from an action

of G on a complex oriented homotopy commutative ring spectrum E, the

map (11.20) is the E2-term of a map of spectral sequences abutting to the
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homomorphism π∗S
0 → π∗E

hG. We could not quite find this result in the

literature (though [16, Prop. 6.7] is close). To see it, let

C•(G;E) = MapG(EG•, E)

be the cosimplicial spectrum of G-maps from the bar construction model for

EG• into E. Thus

Cn(G;E) =
∏
Gn

E

and TotC•(G;E) is the homotopy fixed point spectrum EhG. The cosimplical

ring [n] 7→ π∗C(Gn, E) is the nerve of the Hopf-algebroid (π∗E,C(G, π∗E))

and forms the cobar complex for calculating H∗(G, π∗E). The homotopy fixed

point spectral sequence is the homotopy spectral sequence of this cosimplicial

spectrum.

Choose a complex orientation for E, and for every n ≥ 0, let

(11.21) MU (n+1) → Cn(G;E) ∈ ho S

be a representative of the unique homotopy class of homotopy multiplicative

maps whose restriction to the ith smash factor of MU (n+1) is the composition

of the complex orientation

MU → E = C0(G;E),

with the cosimplicial structure map C0(G;E) → Cn(G;E) corresponding to

the inclusion of the ith-vertex of ∆[n]. The maps (11.21) fit into a homotopy

commutative map of cosimplicial resolutions

(11.22) S0 //

��

MU ////

��

MU ∧MU
//////

��

MU ∧MU ∧MU · · ·

��
EhG // C0(G;E) // // C1(G;E)

////// C
2(G;E) · · · .

If this were an actually commutative diagram, the desired spectral sequence

would be the one derived from the induced map of “Tot towers.” Even though

it is only homotopy commutative, the fact that the top row is an MU Adams

resolution and the spectra in the bottom row are complex oriented means that

it can still be refined to a map of towers.

This result does not quite seem to appear in the literature, though an

assertion along these lines is made in [64, pp. 289–290], and the case in which

MU is replaced by En is [16, Prop. 6.2]. To spell out the details, we begin

with some generalities about the Tot tower of a cosimplical spectrum X•. Let

NXn be the iterated mapping cone of the coface maps

di : Xn−1 → Xn, i = 1, . . . , n.
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The spectrum NXn is a retract of Xn. (It is split by the inclusion of the iter-

ated homotopy fiber of the co-degeneracy maps.) By construction it depends,

as a retract of Xn, functorially on X•. The spectra NXn fit into a sequence

NX0 d0

−→ NX1 d0

−→ · · · ,

which is a “complex” in the sense that the composition of any two maps is null

homotopic.

The homotopy spectral sequence of the cosimplicial spectrum X• is de-

rived from the tower {TotnX
•}. For our purposes, it is easier to work with

the fibers of the map from TotX•. Write FX0 = TotX•, and define FXn

to be the homotopy fiber of the map TotX• → Totn−1X
•. Then there is a

functorial fibration sequence

(11.23) FXn → FXn−1 → Σ−(n−1)NX(n−1).

Of course the homotopy spectral sequence can also be derived from the tower

{FXn}, for example by using it to reconstruct the Tot-tower.

To simplify the notation, write X• = MU•+1 and Y • = C•(G;E) for the

cosimplicial spectra occurring in the top and bottom rows of (11.22). The

complex NX• is the standard MU -Adams resolution for S0, and in this case

the fibration sequence (11.23) is equivalent to

FXn → FXn−1 →MU ∧ FXn−1.

The consequence we need of this is the characterizing property of an Adams

tower: if R is any MU -module, then the connecting homomorphism

(11.24) [FXn, R] ↪→ [Σ−n−1NXn, R]

is a monomorphism.

Our aim is to construct a map of towers

(11.25) {FXn} → {FY n}.

Suppose by induction we have produced a homotopy commutative diagram

FXn−1 //

��

Σ−(n−1)NXn−1

��
FY n−1 // Σ−(n−1)NY n−1,

and choose any map FXn → FY n making

Σ−nNXn−1 //

��

FXn //

��

FXn−1

��
Σ−nNY n−1 // FY n // FY n−1
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commute up to homotopy. We claim that the diagram

FXn //

��

Σ−nNXn

��
FY n // Σ−nNY n

also commutes up to homotopy. The claim completes the induction step and

gives (11.25).

To verify the claim, consider

(11.26) Σ−nNXn−1 //

��

FXn //

��

Σ−nNXn

��
Σ−nNY n−1 // FY n // Σ−n)NY n.

The outermost square commutes since it is a retract of a suspension of one

of the squares in (11.22). The spectrum Σ−(n+1)NY n+1 admits the structure

of an MU -module since it is a retract of a suspension of Cn+1(G;E) that is

complex orientable. Taking it for R in the monomorphism (11.24) shows that

the commutativity of the outer square in (11.26) implies the commutativity of

the right-hand square. This verifies the claim.

11.3.4. The conjugation action. Applying the strictification functor to Ex-

ample 11.19, one is led to the “conjugation action” of C2 on homogeneous

formal group laws over graded rings.

Let F be a homogeneous formal group law over a graded commutative ring

R∗, and let c : R∗ → R∗ be any ring homomorphism with the property that

c : R2n → R2n is the map given by multiplication by (−1)n. The homogeneous

formal group law F c := c∗F is given by

F c(x, y) = −F (−x,−y).

The power series
c(x) = −[−1]F (x)

has the property that c ◦ c(x) = x and provides both a strict isomorphism

F → Fc and its inverse F c → F . These combine to give an action of C2 on

(R∗, F ), which we call the conjugation action associated to c : R∗ → R∗.

The map c is completely specified on the even degree elements in R∗ and,

in general, there are as many conjugation actions as there are ways of extending

c to all of R∗. In the examples of interest to us, R∗ will be evenly graded, and

so there is exactly one conjugation action.

Example 11.27. If E is a real-oriented spectrum, then the underlying C2

action on (i∗0E)∗[[CP∞]] is the conjugation action. The case E = MUR is

universal in the sense that the map MU∗ → R∗ classifying a homogeneous

formal group law is equivariant for any choice of conjugation action.



132 M. A. HILL, M. J. HOPKINS, and D. C. RAVENEL

We now generalize Example 11.27. Let G = C2n , and give i∗1MU ((G)) the

real orientation coming from the unit

MUR → i∗1MU ((G))

of the norm-restriction adjunction on equivariant commutative algebras (Ex-

ample 5.6). Examples 11.18 and 11.27 then equip (πu∗MU ((G)), F ) with a

G-action extending the conjugation action of C2.

Proposition 11.28. The pair (πu∗MU ((G)), F ) equipped with its G-action

is universal in the sense that map associating to a G-equivariant

(11.29) f : πu∗MU ((G)) → R∗,

the pair (R∗, f∗F ) with its induced G-action, is a bijection between the set

of equivariant maps (11.29) and the set of (R∗, F ) equipped with a G-action

extending the one on R∗, and the conjugation action of C2 ⊂ G.

Proof. Suppose that (R∗, F ) is a homogeneous formal group law over a

graded ring, equipped with a G-action extending the conjugation action of C2.

Choose a generator γ ∈ G. This data is equivalent to an isomorphism

τ : F1 → F0

having the property that the composite of the chain of isomorphisms

Fg/2
τg/2−1−−−−→ Fg/2−1 −→ · · ·

τ1−→ F1
τ0−→ F0,

τi = (γi)∗τ

is the conjugation isomorphism c. The claim then follows from the decom-

position (5.2) and the description of π∗MU ∧ · · · ∧MU in terms of chains of

composable strict isomorphisms. �

11.4. The fundamental representation. As described in Section 11.1 these

ideas can be used to construct a C8-equivariant ring homomorphism from πu∗ΩO
to much smaller ring. Let A = Z2[ζ] be as in Section 11, and let Ff be the

Lubin-Tate formal A-module over A associated to a power series series f(x)

leading to a 2-typical formal group law. Using ζ to identify the group of 8th-

roots of unity with C8, we get a C8 action on (A,Ff ). From this apply the

strictification functor to get a strict action of C8 on (A∗, F
h
f ). With an eye to-

ward Proposition 11.8, we invert the class u and re-define A∗ to be A[u, u−1].

The underlying C2-action is the conjugation action, so Proposition 11.28 pro-

vides a C8-equivariant map

(11.30) πu∗MU ((C8)) → A∗,

classifying (A∗, F
h
f ) with its C8-action.
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Proposition 11.31. The image of D under

D ∈ π19ρMU ((C8)) → πu152MU ((C8)) → A152

is a unit, hence (11.30) factors through a C8-equivariant map

πu∗ΩO → A∗.

Proof. We must show that the classes rC8
1 , rC4

3 , and rC2
15 all map to units in

A∗. It suffices to show that they do so in A∗/(π). By definition (Section 5.4.2)

the image of rC8
1 in A2/(π) is the coefficient of x2 in the isomorphism of γ∗F hf

with the 2-typification of F hf . Since F hf is already 2-typical, this is just the

coefficient of x2 in the power series [ζ]Fh
f

(x) in the homogeneous formal group

law. By (11.15) this coefficient is congruent to u modulo π, hence a unit.

Equation (11.15) similarly shows that rC4
3 maps to u3, and rC2

15 to u15 modulo

(π). This completes the proof. �

11.5. Technical results. In this section we describe explicitly the maps

(11.32)
Ext1,2j+1

MU∗MU (MU∗,MU∗/(2))→ Ext2,2j+1

A (Z/2,Z/2),

Ext1,2j+1

MU∗MU (MU∗,MU∗/(2))→ H1(C8;A2j+1/(π))

occurring in the statement of Proposition 11.13. The results are Proposi-

tions 11.36 and 11.38 below. Combined with Lemma 11.11 and Proposi-

tion 11.34 they directly imply Proposition 11.13.

11.5.1. Preliminaries. We remind the reader that everything has been

localized at the prime p = 2. The 2-typification F
(2)
univ of the universal formal

group law Funiv is classified by a map BP∗ → MU∗. This map extends to an

equivalence of Hopf algebroids

(BP∗, BP∗BP )
≈−→ (MU∗,MU∗MU),

giving an isomorphism

(11.33) Exts,tBP∗BP (BP∗, BP∗)
≈−→ Exts,tMU∗MU (MU∗,MU∗).

Our proofs depend heavily on the computations in [66] and [80], which are

stated for BP . Because of the above isomorphism they apply equally well to

MU .

In order to describe explicit computations, we fix the identification

BP∗BP = Z(2)[v1, v2, . . . , t1, t2, . . . ]
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in which the vi are the Hazewinkel generators, and the elements ti ∈ BP∗BP
are the coefficients of the universal isomorphism

η∗RF
(2)
univ → F

(2)
univ = η∗LF

(2)
univ,

x 7→
∑F

(2)
univ tnx

2n .

We will not distinguish in notation between the vi and ti in BP∗BP and their

images in MU∗MU .

An important role in the proof of 11.3 is played by the element t1. Since

any coordinate x is 2-typical modulo x3, the class t1 is also given by the

coefficient of the universal isomorphism of η∗RFuniv with η∗LFuniv

x 7→ x+ t1x
2 + · · · .

With the standard conventions this is the inverse of the universal strict iso-

morphism over π∗MU ∧MU , which goes from η∗LFuniv to η∗RFuniv.

11.5.2. The Adams-Novikov 2-line. Let

δ2 : Ext1,2j+1

MU∗MU (MU∗,MU∗/(2)) −→ Ext2,2j+1

MU∗MU (MU∗,MU∗)

and

δ1 : Ext0,2j+1

MU∗MU (MU∗,MU∗/(2, v
∞
1 )) −→ Ext1,2j+1

MU∗MU (MU∗,MU∗/(2))

be the connecting homomorphisms associated to the short exact sequences of

MU∗MU co-modules

0→MU∗
2−→MU∗ →MU∗/(2)→ 0,

0→MU∗/2→ v−1
1 MU∗ →MU∗/(2, v

∞
1 )→ 0.

Our description of the maps (11.32) relies on the following computation, whose

proof is discussed in Section 11.6. We employ the standard “cobar construc-

tion” notation for elements (see, for example, [73, Def. A1.2.11]).

Proposition 11.34 ([66, 80]). For j > 1, the Z/2-vector space

Ext1,2j+1

MU∗MU (MU∗,MU∗/(2))

has a basis consisting of the elements

v2j−1
1 [t1], v2j−2

1 [t21]

and the image under δ1 of certain elements of the form

vs2
k

2 /v2k

1 ∈ Ext0,2j+1

MU∗MU (MU∗,MU∗/(2, v
∞
1 )),

with s odd.
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We will also need

Lemma 11.35. For k ≥ 2, the connecting homomorphisms δ1 and δ2 sat-

isfy the following congruences modulo the ideal (2, v2
1):

δ1(vs2
k

2 /v2k

1 ) ≡ v(s−1)2k

2 [t2
k+1

1 ],

δ2v
2k

1 [t1] ≡ 0,

δ2v
2k

1 [t21] ≡ 0,

δ2δ1(vs2
k

2 /v2k

1 ) ≡ v(s−1)2k

2 [t2
k

1 |t2
k

1 ].

Proof. This is a straightforward (and long-known) computation using the

structure formulae

ηR(v1) = v1 + 2t1,

ηR(v2) ≡ v2 + v1t
2
1 + v2

1t1 mod 2.

The assertion about δ1 is easy to check. The structure formulae imply that

ηR(v2
1) ≡ v2

1 modulo 4, so one may work modulo (4, v2
1) when computing δ2.

The terms v2k
1 [t1] and v2k

1 [t21] are already in this ideal, giving the first two

assertions about δ2. The last makes use of the congruences

δ2[t2
k+1

1 ] ≡ [t2
k

1 |t2
k

1 ] mod 2,

ηRv
4i
2 ≡ v4i

2 mod (4, v2
1).

Since s is odd and k ≥ 1, (s− 1)2k is divisible by 4. This means that

δ2(v
(s−1)2k

2 [t2
k+1

1 ]) ≡ v(s−1)2k

2 δ2([t2
k+1

1 ]) ≡ v(s−1)2k

2 [t2
k

1 |t2
k

1 ] mod (2, v2
1).

This completes the proof. �

11.5.3. The proof of Proposition 11.13. Given Lemma 11.11 and Propo-

sition 11.34, Proposition 11.13 is an immediate consequence of the two results

below.

Proposition 11.36. For j > 1, the map

Ext1,2j+1

MU∗MU (MU∗,MU∗)→ Ext2,2j+1

A (Z/2,Z/2)

is given by

v2j−1
1 [t1] 7→ 0,

v2j−2
1 [t21] 7→ 0,

δ1(vs2
k

2 /v2k

1 ) 7→ 0 (s > 1),

δ1(v2j−1

2 /v2j−1

1 ) 7→ h2
j .
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Proof. This follows directly from Lemma 11.35 and the fact that the map

from MU∗MU to the dual Steenrod algebra given by

vi 7→ 0,

ti 7→ χ(ξi)
2. �

Remark 11.37. The map from the Adams-Novikov E2-term to the classical

Adams E2-term has been completely determined for s ≤ 2 and all t. For a

comprehensive discussion, the reader is referred to [73, Ch. 5].

We next turn to the second map in Proposition 11.13. When j > 2 the

action of C8 on A2j+1 is trivial, and the group H1(C8;A2j+1/(π)) is cyclic of

order two, generated by the cohomology class of the cocycle whose value on γ

is u2j . Let us denote this class υ.

Proposition 11.38. For j > 2, the map

Ext1,2j+1

MU∗MU (MU∗,MU∗/(2))→ H1(C8;A2j+1/(π))

is given by

v2j−1
1 [t1] 7→ 0,

v2j−2
1 [t21] 7→ 0,

δ1(vs2
k

2 /v2k

1 ) 7→ 0 (s > 1),

δ1(v2j−1

2 /v2j−1

1 ) 7→ υ.

Proof. Let ν be the valuation on A normalized so that ν(π) = 1. Since

ν(2) = 4,

[2]Fh
f

(x) ≡ x24
+ · · · mod π,

and v1 and v2 both map to zero in A∗/(π). This gives the first line and makes

the second a consequence of Lemma 11.35. Lemma 11.35 also gives the identity

δ1(v2j

2 /v
2j

1 ) = [t2
j

1 ],

so to determine the image of δ1(v2j
2 /v

2j
1 ) we need to work out the image of t1

under the map of Hopf-algebroids

(11.39) (MU∗,MU∗MU)→ (A∗/(π), C(C8, A∗/(π))).

As explained at the end of 11.5.1, the element t1 occurs as the coefficient of

x2 the isomorphism η∗RF
(2)
univ → F

(2)
univ, inverse to the universal strict isomor-

phism. Since we have chosen a 2-typical coordinate on F hf , the element t1 is

therefore sent, under the map of Hopf-algebroids (11.39), to the 1-cocycle on

C8 whose value on γ is the coefficient of x2 in the inverse of the power series

[ζ](x). By (11.15) and the formula for strictification (11.17) this is −u2j ≡ u2j

modulo (π). �
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11.6. Addendum. Lemma 11.11 and Proposition 11.34 do not quite appear

literature in a readily accessible form, and the purpose of this addendum is to

outline their proofs, explaining how the key points can be read off from the

results of [66] and [80]. To conform with the notation of these references, we

will use BP rather that MU in this section.

The paper [66] introduced the chromatic approach to studying the groups

Exts,∗BP∗BP (BP∗, BP∗).

The computation begins with the fact that for s > 0, one has

Exts,∗BP∗BP (BP∗, BP∗)⊗Q = 0.

This means that the connecting homomorphism

Ext1,2j+1

BP∗BP
(BP∗, BP∗/2

∞)→ Ext2,2j+1

BP∗BP
(BP∗, BP∗)

is an isomorphism. The assertion of Proposition 11.34 is that the map

Ext1,2j+1

BP∗BP
(BP∗, BP∗/2)→ Ext1,2j+1

BP∗BP
(BP∗, BP∗/2

∞)

induced by the inclusion

BP∗/2
1/2−−→ BP∗/2

∞

is surjective and that the left-hand group is spanned by the elements listed.

Continuing with the chromatic approach, one is led to the following diagram

(in which, to manage the size, we have abbreviated Exts,tBP∗BP (BP∗,M) to

Exts,t(M)):

(11.40)

Ext0,2
j+1

(BP∗/(2, v
∞
1 ))

δ1 //
� _

��

Ext1,2
j+1

(BP∗/(2)) //

��

Ext1,2
j+1

(v−11 BP∗/(2))

��

Ext0,2
j+1

(BP∗/(2
∞, v∞1 )) // Ext1,2

j+1

(BP∗/(2
∞)) // Ext1,2

j+1

(v−11 BP∗/(2
∞)).

The rightmost column is analyzed using the Miller-Ravenel change of rings

theorem (see [65] or [73, Ch. 6, §1]), which identifies it with the map

H1(Z×2 ;Z(2)[v
±1
1 ]/(2))→ H1(Z×2 ;Z(2)[v

±1
1 ]/(2∞))

in which λ ∈ Z×2 acts on v1 with eigenvalue λ. This is easily calculated, and one

finds that the map is indeed surjective and that Ext1,2j+1

BP∗BP
(BP∗, v

−1
1 BP∗/(2))

has dimension 2, with basis the image of v2j−1

1 [t1] and v2j−2

1 [t21]. This reduces

Proposition 11.34 to the assertion that the left vertical arrow is surjective

(hence an isomorphism) and that the upper left group has a basis consisting of
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the elements of the form vs2
k

2 /v2k
1 . For this, one first appeals to the invariant

prime ideal theorem ([68], [46], or see [73, Th. 4.3.2]) for the fact that

Ext0,∗
BP∗BP

(BP∗, BP∗/(2, v1)) = Z/2[v2].

It follows that any invariant element in BP∗BP/(2
∞, v∞1 ) has the form

(11.41)
vs2

k

2 + r

v`12i+1
,

with r ∈ (2, v1) ⊂ BP∗. We now come to the key point. It turns out that a

necessary (but not sufficient) condition that such an element be invariant is

that the indices satisfy the inequality

(11.42) ` ≤ 2k−i + 2k−i−1.

This can be extracted from the stronger conditions of [80, Th. 3.3], in which the

symbol xn is an explicitly defined element, congruent to v2n
2 modulo (2, v1) and

yi is an explicitly defined element congruent to v2i
1 modulo 2. From (11.42) it

follows that for an element of the form (11.41) to be invariant and have degree

2j+1, the numbers i, j, k, and ` must satisfy

6s2k − 2(2k−i + 2k−i−1) ≤ 2j+1 ≤ 6s2k.

Expanding, and dividing both sides by 2k+1, gives

3s− 2−i − 2−i−1 ≤ 2j−k ≤ 3s.

Since s ≥ 1 and i ≥ 0, one has

3s− 2−i − 2−i−1 ≥ 3s− 3/2 > 1,

and so k < j. This implies that 2j−k is even and so must equal 3s− 1. This in

turn means that 2−i + 2−i−1 > 1, and so i must be 0.

It thus follows from the inequality (11.42) that the invariant elements of

degree 2j+1 in BP∗/(2
∞, v∞1 ) have the form

vs2
k

2 + r

v2k
1 2

.

Thus the left vertical map in (11.40) is surjective. Since

vs2
k

2

v2k
1 2

is already invariant, a simple induction shows that the elements stated form a

basis.
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Appendix A. The category of equivariant orthogonal spectra

In this appendix we recall the definition and some basic properties of

the theory of equivariant orthogonal spectra. For further details and refer-

ences, the reader is referred to Mandell-May [55] and to Mandell-May-Schwede-

Shipley [56].

One of the reasons we have chosen to use equivariant orthogonal spectra

is that it has many convenient category theoretic properties. These are inde-

pendent of the homotopy theory of equivariant orthogonal spectra, and so we

make two passes through the theory, one focused on the category theory, and

the other on the homotopy theory.

Our main new innovation is the theory of the norm (Section A.4). Most

of the category theoretic aspects apply to any symmetric monoidal category,

and things work out much cleaner at that level of generality.

A.1. Category theory preliminaries.

A.1.1. Symmetric monoidal categories.

Definition A.1. A symmetric monoidal category is a category V equipped

with a functor
⊗ : V × V → V,

a unit object 1 ∈ V, a natural associativity isomorphism

aABC : (A⊗B)⊗ C ≈ A⊗ (B ⊗ C),

a natural commutativity isomorphism

sAB : A⊗B ≈ B ⊗A,
and a unit isomorphism

ιA : 1⊗A ≈ A.
This data is required to satisfy the associative and commutative coherence

axioms, as well as the strict symmetry axiom.

The two coherence axioms express that all of the ways one might get

from one iterated tensor product to another using the associativity and com-

mutativity transformations coincide. The strict symmetry axiom is that the

square of the commutativity transformation is the identity map. See [52], or

Borceux [12, §6.1].

Even though it requires six pieces of data to specify a symmetric monoidal

category, we will usually indicate one with a triple V = (V0,⊗,1).

A symmetric monoidal category is closed if for each A, the functor A⊗(− )

has a right adjoint (− )A, which one can think of as an “internal hom.” Note

that
V(1, XA) ≈ V(A,X)

so that one can recover the usual hom from the internal hom.
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A.1.2. Sifted colimits, commutative and associative algebras. In a closed

symmetric monoidal category, the monoidal product commutes with colimits

in each variable. It follows easily that the iterated monoidal product

X 7→ X⊗n

commutes with all colimits over indexing categories I for which the diagonal

I → In is final in the sense of [52, §IX.3]. If I → I × I is final, then for all

n ≥ 2, I → In is also final.

Definition A.2. A category I is sifted the diagonal embedding I → I × I
is final.

Equivalently (see [27, 15.2 (c)] or [2, Th. 2.15]), a small category I is

sifted if and only if the formation of colimits over I in sets commutes with

finite products.

Definition A.3. A sifted colimit is a colimit over a sifted category.

Examples of sifted colimits include reflexive coequalizers and directed col-

imits. In fact the class of sifted colimits is essentially the smallest class of

colimits containing reflexive coequalizers and directed colimits; see, for exam-

ple, [1], [27].

Let V = (V0,⊗,1) be a closed symmetric monoidal category.

Definition A.4. An associative algebra in V is an object A equipped with

a multiplication map A ⊗ A → A that is unital and associative. A commu-

tative algebra is an associative algebra for which the multiplication map is

commutative.

The categories of associative and commutative algebras (and algebra maps)

in V are denoted assV and commV, respectively.

The following straightforward result holds more generally for algebras over

any operad. The existence of colimits in the algebra categories is proved by

expressing any algebra as a reflexive coequalizer of a diagram of free algebras.

There is an even more general result for algebras over a triple [12, Prop. 4.3.1].

Proposition A.5. Suppose that V is a closed symmetric monoidal cate-

gory. The forgetful functors

assV → V,
commV → V

create limits. If V is cocomplete, these functors have left adjoints

X 7→ T (X) =
∐
n≥0

X⊗n,

X 7→ Sym(X) =
∐
n≥0

X⊗n/Σn,
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the categories assV and commV are cocomplete, and the “free” functors above

commute with all sifted colimits.

A left module over an associative algebra A is an object M equipped with

a unital and associative left multiplication

A⊗M →M.

Similarly, a right module is an object N equipped with a unital, associative

right multiplication N ⊗ A → N . Given a left A-module M and a right A-

module N , one defines N ⊗
A
M by the (reflexive) coequalizer

N ⊗A⊗M ⇒ N ⊗M → N ⊗
A
M.

When A is commutative, a left A-module can be regarded as a right A-module

by the action

M ⊗A flip−−→ A⊗M →M.

Using this, the formation M ⊗
A
N makes the category of left A-modules into a

symmetric monoidal category.

A.1.3. Enriched categories. In this section we briefly describe the basic

notions of enriched categories. The reader is referred to [42] or [12, Ch. 6] for

further details.

Suppose that V = (V0,⊗,1) is a symmetric monoidal category.

Definition A.6. A V-category C consists of a collection ob C called the

objects of C, for each pair X,Y ∈ ob C a morphism object C(X,Y ) ∈ obV0,

for each X an identity morphism 1 → C(X,X), and for each triple X,Y, Z of

objects of C a composition law

C(Y,Z)⊗ C(X,Y )→ C(X,Z).

This data is required to satisfy the evident unit and associativity properties.

As is customary, we write X ∈ C rather than X ∈ ob C. Most of the

notions of ordinary category theory carry through in the context of enriched

categories, once formulated without reference to “elements” of mapping ob-

jects. For example, a functor F : C → D of V-categories consists of a function

F : ob C → obD

and for each pair of objects X,Y ∈ C a V-morphism

F : C(X,Y )→ D(FX,FY )

compatible with the unit and composition. A natural transformation between

two functors F and G is a function assigning to each object X ∈ C a map
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TX : 1→ D(FX,GX) that makes the diagram

(A.7) C(X,Y )
TY ⊗F //

G⊗TX
��

D(FY,GY )⊗D(FX,FY )

��
D(GX,GY )⊗D(FX,GX) // D(FX,GY )

commute for each Y .

There is an ordinary category C0 underlying the enriched category C. The

objects of C0 are the objects of C, and one defines

C0(X,Y ) = V0(1, C(X,Y )).

If V itself underlies a W-enriched category, then any V-category C has an

underlying W-category, whose underlying ordinary category is C0.

When V is a closed symmetric monoidal category, the internal hom defines

an enrichment of V over itself, with underlying category V0.

When V is closed, a natural transformation F → G can be described as a

map

1→
∏
X∈C
D(FX,GX)

that equalizes the two arrows

(A.8)
∏
X∈C
D(FX,GX)⇒

∏
X,Y ∈C

D(FX,GY )C(X,Y )

describing the two ways of going around (A.7).

We will write CatV for the 2-category of V-categories and denote the cat-

egory of enriched functors C → D as CatV(C,D)0. When V is closed and

contains products indexed by the collection of pairs of objects of C, the cate-

gory CatV(C,D)0 underlies an enriched category CatV(C,D) in which the object

of natural transformations from F to G is given by the equalizer of (A.8).

A.2. Equivariant orthogonal spectra.

A.2.1. Equivariant spaces. Let T be the category of pointed, compactly

generated weak Hausdorff spaces (in the sense of [61]). The category T is

symmetric monoidal under the smash product, with unit S0. A topological

category is a category enriched over (T ,∧, S0).

Remark A.9. Working with compactly generated weak Hausdorff spaces

has many benefits, but it does create some technical issue. Colimits are com-

puted by forming the colimit in topological spaces, replacing the topology by

the compactly generated topology, and then forming the universal quotient

that is weak Hausdorff. This last step can alter the underlying point set, how-

ever it does not in the case of pushouts along closed inclusion. More precisely,
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given a pushout diagram

A //

��

X

��
B // Y

of topological spaces in which A→ X is a closed inclusion, if A, X, and B are

compactly generated and weak Hausdorff, then so is Y . This follows from [61,

Prop. 2.5] and the remark about adjunction spaces immediately preceding its

statement. Among other things this means that the smash product of two

compactly generated weak Hausdorff spaces can be computed as the smash

product of the underlying compactly generated spaces.

Now suppose that G is a group. Let (T G,∧, S0) be the topological sym-

metric monoidal category of pointed spaces with a left G-action and spaces

of equivariant maps. With this structure T G is a closed symmetric monoidal

category, with internal mapping spaces TG(X,Y ) = Y X given by the space of

nonequivariant maps, with the conjugation action of G.

A word about notation. The expression “category of G-spaces” can rea-

sonably refer to three objects, depending on what is meant by a map. It can

be an ordinary category, a category enriched over topological spaces, or a cat-

egory in which the hom objects are the G-spaces of nonequivariant maps. As

indicated above we will use TG to denote the category enriched over G-spaces,

with TG(X,Y ) denoting the G-space of nonequivariant maps, and T G for the

topological category of G-spaces, and spaces of equivariant maps.

We will be making use of categories enriched over T G. As in [55], we will

refer to them as topological G-categories (or just G-categories for short). Let

CatG denote the collection of topological G-categories, and write CatG(C,D) for

the enriched category of functors and left G-spaces of natural transformations.

The symbol CatG(C,D)G will denote the topological category of functors and

spaces of equivariant natural transformations.

A.2.2. Change of group. Suppose that H ⊂ G is a subgroup. The restric-

tion functor

T G → T H

has continuous left and a right adjoints given by

Y 7→ G+ ∧
H
Y,

Y 7→ T H(G+, Y ).

These two constructions are basic examples of indexed monoidal products (see

Section A.3). Because T G is pointed there is a canonical equivariant map

G+ ∧
H
Y → T H(G+, Y ).
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A.2.3. The basic indexing categories. For a real orthogonal representation

V of G, let O(V ) be the orthogonal group of nonequivariant linear isometric

maps V → V . The group G acts on O(V ) by conjugation, and the group

of fixed points is the orthogonal group of equivariant maps. Given orthogonal

representations V and W , we define O(V,W ) to be the Stiefel manifold of linear

isometric embeddings of V into W , with the conjugation action of G. The G

fixed points in O(V,W ) are the equivariant orthogonal embeddings. The group

O(W ) acts transitively on O(V,W ) on the left. A choice of embedding V →W

identifies O(V,W ) with the homogeneous space O(W )/O(W − V ).

Definition A.10. The category JG is the topological G-category whose

objects are finite dimensional real orthogonal representations of G, and with

morphism G-space JG(V,W ) the Thom complex

JG(V,W ) = Thom(O(V,W );W − V )

of the “complementary bundle” W − V over O(V,W ).

We will denote the topological category underlying JG with the symbol

J G. Thus J G(V,W ) = JG(V,W )G.

The G-space JG(V,W ) can be thought of as the topologically indexed

wedge ∨
V→W

SW−V .

When dimW < dimV , it reduces to the one point space ∗. When dimW ≥
dimV , one can get a convenient description by choosing an orthogonal G-

representation U with dimU + dimV = dimW (for example, the trivial rep-

resentation). With this choice one has

JG(V,W ) ≈ O(V ⊕ U,W )+ ∧
O(U)

SU .

The fixed point space JG(V,W )G is given by

(A.11) JG(V,W )G = J (V G,WG) ∧O(V ⊥,W⊥)G+,

in which V G denotes space of invariant vectors in V , and V ⊥ its orthogonal

complement. The space O(V ⊥,W⊥)G in turn decomposes into the product∏
α

O(Vα,Wα)

in which α is running through the set of nontrivial irreducible representations

of G, and Vα ⊂ V and Wα ⊂W indicate the α-isotypical parts.

When G is the trivial group we will denote the category JG simply by

J . For any G, there is an inclusion J ⊂ JG identifying J with the full

subcategory of objects with trivial G-action. There is also a forgetful functor

JG → J that refines in the evident manner to a functor from JG to the
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G-category of objects in J equipped with a G-action. One can easily check

that this is an equivalence. For later reference, we single this statement out.

Proposition A.12. The forgetful functor described above gives an equiv-

alence of JG with the topological G-category of objects in J equipped with a

G-action. Passage to fixed points gives an equivalence of J G with the topo-

logical category of objects in J equipped with a G-action.

Proposition A.12 plays an important role in establishing one of the basic

properties of the norm (Proposition A.59).

A.2.4. Orthogonal spectra.

Definition A.13. An orthogonal G-spectrum is a functor

JG → TG
of topological G-categories.

Informally, an orthogonal spectrum X consists of a collection of spaces

{XV }, and for each V →W , an equivariant map

SW−V ∧XV → XW .

These maps are required to be compatible with composition in JG, the action

of G, and to vary continuously in V →W . More formally, one has equivariant

maps

Thom(O(V,W );SW−V ) ∧XV → XW

compatible with composition.

Definition A.14. The topological G-category of orthogonal G-spectra is

the category

¯
SG = CatG(JG, TG).

The (topological) category of G-spectra is

SG = CatG(JG, TG)G.

We will use the notation

S = CatG(J , T )

to denote the category
¯
SG for the case of the trivial group.

The (G-)category of orthogonal G-spectra is complete and cocomplete (in

the sense of enriched categories). Both limits and colimits in SG are computed

objectwise:

(lim−→Xα)V = lim−→Xα
V ,

(lim←−X
α)V = lim←−X

α
V .
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Certain orthogonal G-spectra play a fundamental role. For V ∈JG, let

S−V : JG → TG
be the functor co-represented by V . By the Yoneda lemma,

¯
SG(S−V , X) = XV .

For a pointed G-space A, let S−V ∧A be the orthogonal G-spectrum withÄ
S−V ∧A

ä
W

=
Ä
S−V

ä
W
∧A.

Again, by Yoneda,

¯
SG(S−V ∧A,X) = TG(A,XV ).

It also follows from the Yoneda lemma that every X is functorially expressed

as a reflexive coequalizer

(A.15)
∨
V,W

S−W ∧JG(V,W ) ∧XV ⇒
∨
V

S−V ∧XV → X.

We call this the tautological presentation of X and for ease of typesetting,

sometimes indicate it as

(A.16) X = lim−→
V

S−V ∧XV .

A.2.5. Smash product. The symmetric monoidal structures on JG and

TG combine to give SG a symmetric monoidal structure (the Day convolution),

denoted ∧. The smash product of two orthogonal G-spectra X and Y is defined

to be the left Kan extension of

(V,W ) 7→ XV ∧ YW : JG ×JG → TG
along the map

JG ×JG →JG

sending (V,W ) to V ⊕W . The smash product is thus characterized by the

fact that it commutes with enriched colimits in both variables and satisfies

S−V ∧ S−W = S−(V⊕W ).

In terms of the tautological presentations

X = lim−→
V

S−V ∧XV ,

Y = lim−→
W

S−W ∧ YW

one has
X ∧ Y = lim−→

V

S−V ∧XV ∧ Y

= lim−→
V

S−V ∧XV ∧ lim−→
W

S−W ∧ YW ,

= lim−→
V,W

S−V⊕W ∧XV ∧ YW .

The above expression is, of course, an abbreviation for the reflexive coequalizer



KERVAIRE INVARIANT ONE 147

diagram∨
V0,V1,
W0,W1

JG(V0, V1) ∧JG(W0,W1) ∧ S−V1⊕W1 ∧XV0 ∧ YW0

⇒
∨
V,W

S−V⊕W ∧XV ∧ YW .

Proposition A.17. The category SG is a closed symmetric monoidal cat-

egory with respect to ∧.

Smashing the tautological presentation of a general spectrum X with S−V

gives a presentation of S−V ∧X as a (reflexive) coequalizer∨
W0,W1

JG(W0,W1) ∧ S−V⊕W1 ∧XW0 ⇒
∨
W

S−V⊕W ∧XW → S−V ∧X.

This is not the tautological presentation of S−V ∧X, but from it, one can read

off the formula of the following lemma

Lemma A.18. If dimW < dimV , then (S−V ∧ X)W = ∗. If dimW ≥
dimV , then there is a natural isomorphism of G-spaces

(S−V ∧X)W ≈ O(V ⊕ U,W )+ ∧
O(U)

XU ,

where U is any orthogonal G-representation with

dimU + dimV = dimW.

A.2.6. Variations on the indexing category. There is a lot of flexibility in

defining SG. In this section we describe a variation that is especially convenient

for certain category theoretical properties and will be used in our construction

of the norm. We learned of the result below from Lars Hesselholt and Mark

Hovey. It is due to Mandell-May ([55, Th. V.1.5]).

Proposition A.19. Let i : J →JG be the inclusion of the full subcat-

egory of trivial G-representations. The functors

i∗ : CatG(JG, TG)→ CatG(J,TG)

and

i! : CatG(J,TG)→ CatG(JG, TG)

given by restriction and left Kan extension along i are inverse equivalences of

enriched symmetric monoidal categories.

In other words, the symmetric monoidal (topological) category SG can

simply be regarded as the symmetric monoidal (topological) category of objects

in S equipped with a G-action.
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The proof of Proposition A.19 requires a simple technical lemma ([55,

Lemma V.1.1]).

Lemma A.20. Suppose that V and W are orthogonal G-representations

with dimV = dimW . Then for any U ,

O(V,U)×O(V )×O(W,V )⇒ O(V,U)×O(W,V )→ O(W,U)

is a (reflexive) coequalizer in T G.

Proof. Since the forgetful functor T G → T preserves colimits and reflects

isomorphisms, it suffices to prove the result in T , where it is obvious, since the

coequalizer diagram can be split by choosing an orthogonal (nonequivariant)

isomorphism of V with W . �

Proof of Proposition A.19. Since i : J → JG is fully faithful, the left

Kan extension i! is fully faithful (see, for example, [52, Cor. X.3]). To show

that it is essentially surjective, let W ∈JG be any object, and let V ∈J be

a vector space of the same dimension as W . Define X by the coequalizer

(O(W,V )×O(V ))+ ∧ S−V ⇒ O(W,V )+ ∧ S−V → X.

Since JG(W,V ) = O(W,V ), i∗X is given by the coequalizer of

(JG(W,V )×JG(V, V ))+ ∧ S−V ⇒JG(W,V )+ ∧ S−V → i∗X.

There is thus a natural map

(A.21) i∗X → S−W .

Evaluating at U ∈ JG and using Lemma A.20 shows that (A.21) is an iso-

morphism. Thus S−W is in the image of i∗. It then follows easily that i∗ is

essentially surjective.

Finally, the fact that i∗ is symmetric monoidal is immediate from the fact

that left Kan extensions commute. It follows that i∗ is as well, since it is the

inverse equivalence. �

A.2.7. Equivariant commutative and associative algebras. Using the no-

tions described in Section A.1.2 one can transport many algebraic structures

to SG using the symmetric monoidal smash product.

Definition A.22. A G-equivariant commutative (associative) algebra is a

commutative (associative) algebra with unit in SG.

The conventions of Section A.1.2 would dictate that we refer to the topo-

logical categories of G-equivariant commutative and associative algebras as

comm SG and ass SG. To ease some of the typesetting it will be convenient
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to employ the slightly abbreviated notation

CommG = comm SG,

AlgG = ass SG

and to write CommG and AlgG for the corresponding G-equivariant topolog-

ical categories of not necessarily equivariant algebra maps.

Since SG is a closed symmetric monoidal category under ∧, Proposi-

tion A.5 implies that both CommG and AlgG are complete and cocomplete,

and that the forgetful functors

CommG → SG,

AlgG → SG

create enriched limits, sifted colimits, and have left adjoints

Sym : SG → CommG,

T : SG → AlgG.

Similarly, there are categories of left and right modules over an associative

algebra A. We will use the symbolMA for the category of left A-modules. As

described in Section A.1.1, when A is commutative, the categoryMA inherits

a symmetric monoidal product M ∧
A
N defined by the reflexive coequalizer

diagram
M ∧A ∧N ⇒M ∧N →M ∧

A
N.

A.3. Indexed monoidal products.

A.3.1. Covering categories and fiberwise constructions. We begin with an

example. Suppose that (C,⊗,1) is a symmetric monoidal category and that I

is a finite set. Write CI for the I-fold product of copies of C. For notational

purposes and subsequent generalization, it will be useful to think of an object

of CI as a functor X : I → C, with I regarded as a category with no nonidentity

morphisms. The iterated monoidal product

⊗IX =
⊗
i∈I

Xi

defines a functor

⊗I : CI → C.

The functor ⊗I is natural in isomorphisms in I. (This is just the symmetry of

the symmetric monoidal structure.) In this section we make use of the notion

of a covering category to exploit this naturality in a systematic way.

Let Setsiso be the groupoid of sets and isomorphisms. Suppose that J is a

category and that P : J → Setsiso is a functor with the property that each Pj
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is finite. Then P defines a J-diagram of finite sets, and the iterated monoidal

product defines for each j a functor

(A.23) ⊗Pj : CPj → C.

These vary functorially in j. This functoriality is expressed most cleanly using

the Grothendieck construction [30, §VI.8]. (See also [40, §B.1], or [53, p. 44],

where the special case in which Cat is replaced with Sets is attributed to

Yoneda.)

Suppose that J is a category and that P : J → Cat is a functor. The

Grothendieck construction associates to P the category

I =

∫
P

of pairs (j, s) with j ∈ J and s ∈ P (j). The set of maps from (j, s) to (j′, s′)

is the set of pairs (f, h) with f : j → j′ a map in J , and h : Pf(s)→ s′ a map

in Pj′. By regarding a finite set as a category with no nonidentity morphisms,

the Grothendieck construction also applies to functors P : J → Setsiso.

A functor p : I → J arises from the Grothendieck construction of the

functor P : J → Setsiso if and only if it is satisfies the following two conditions:

(i) for every morphism f : i→ j in J , and every a ∈ I with pa = i, there is a

unique morphism g with domain a, and with pg = f ;

(ii) for every morphism f : i→ j in J , and every b ∈ I with pb = j, there is a

unique morphism g with range b, and with pg = f .

If p : I → J satisfies the above conditions, then j 7→ p−1(j) defines a functor

p−1 : J → Setsiso.

This structure is analogous to the notion of a covering space, and we name it

accordingly.

Definition A.24. A functor I → J satisfying properties (i) and (ii) above

is called a covering category.

A covering category p : I → J in which each of the fibers p−1(j) is finite

will be called a finite covering category.

The aggregate of the functors (A.23) is a functor

p⊗∗ : CI → CJ

given in terms of p by

p⊗∗ X(j) =
⊗
p(i)=j

X(i).

We will have much more to say about this in the next few sections. For now

we focus on the general process that led to its construction.
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Suppose we are given a formation of a category depending functorially on

a set I, or in other words, a functor

C : Setsiso → Cat.

Given a covering category p : I → J , let CI → J be the category obtained by

applying the Grothendieck construction to the composite

J → Setsiso
C−→ Cat

in which the first functor is the one classifying I → J . Let C(p) be the cate-

gory of sections of CI → J . We will say that C(p) is constructed from C by

working fiberwise. For example, the category constructed from C(S) = CS by

working fiberwise is CI . The category constructed from the constant functor

C ′(S) = C is CJ .

A natural transformation C → C ′ leads, via the same process, to a functor

C(p) → C ′(p), which we will also describe as being constructed by working

fiberwise.

A.3.2. Indexed monoidal products. When (C,⊗,1) is a symmetric monoidal

category, the diagram category CI can be regarded as a symmetric monoidal

category using the objectwise monoidal structure.

Definition A.25. Let p : I → J be a finite covering category and (C,⊗,1)

a symmetric monoidal category. The indexed monoidal product (along p) is the

functor
p⊗∗ : CI → CJ

constructed fiberwise from the iterated monoidal product.

For some purposes the notation X⊗(I/J) is preferable to p⊗∗ X. When J

is the one point G-set this can be further abbreviated to X⊗I . We use this

alternate notation systematically when ⊗ is the smash product ∧.

The properties of iterated monoidal products listed in the following propo-

sition are straightforward.

Proposition A.26. The functor ⊗I : CI → C is symmetric monoidal. If

⊗ : C2 → C
commutes with colimits in each variable, then so does ⊗I . In this situation ⊗I
commutes with sifted colimits.

Applying Proposition A.26 fiberwise to a finite covering category p : I → J

gives

Proposition A.27. The indexed monoidal product p⊗∗ : CI → CJ is sym-

metric monoidal. If
⊗ : C2 → C

commutes with colimits in each variable, then p⊗∗ commutes with sifted colimits.
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Remark A.28. Though it plays no role in this paper, it can be useful to

observe that the class of colimits preserved by p⊗∗ is slightly larger than the

class of sifted colimits. For example, p⊗∗ will commute with objectwise reflexive

coequalizers, which are diagrams of the form

X ⇒ Y → Z

with the property that for each j ∈ J , there is a map Y j → Xj completing

Xj ⇒ Y j

to a reflexive coequalizer diagram. The maps Y j → Xj are not required to be

natural in j.

The following is also straightforward.

Proposition A.29. Suppose that p : I → J and q : J → K are covering

categories. Then q ◦ p is a covering category, which is finite if p and q are. In

that case there is a natural isomorphism

q⊗∗ ◦ p⊗∗ ≈ (q ◦ p)⊗∗

arising from the symmetric monoidal structure. This natural isomorphism is

compatible with composition in the sense that if

I
p−→ J

q−→ K
r−→ L

is a composition of finite covering categories categories, the diagram

r⊗∗ ◦ q⊗∗ ◦ p⊗∗ //

��

r⊗∗ ◦ (q ◦ p)⊗∗

��
(r ◦ q)⊗∗ ◦ p⊗∗ // (r ◦ q ◦ p)⊗∗

(in which the associativity isomorphisms have been suppressed) commutes.

The following results are also proved by working fiberwise.

Proposition A.30. Suppose that (C,⊗,1C) and (D,∧,1D) are symmetric

monoidal categories and that

F : C → D,
T : FX ∧ FY → F (X ⊗ Y ),

φ : 1D → F1D

form a lax monoidal functor. If p : I → J is a finite covering category, then T

gives a natural transformation

pT∗ : p∧∗ ◦ F I → F J ◦ p⊗∗
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between the two ways of going around

CI F I //

p⊗∗
��

DI

p∧∗
��

CJ
FJ
// DJ .

If T is a natural isomorphism, then so is pT .

The association p 7→ pT∗ of Proposition A.30 is compatible with the com-

position isomorphism of Proposition A.29 in the evident sense.

Suppose that p : I → J is a covering category and f : J̃ → J is a functor.

Let Ĩ be the “rigid pullback” category of pairs (j′, i) ∈ J̃ × I with f(i′) = p(j),

and in which a morphism is a pair (g, g′) with f(g) = p(g′). Then the functor

p̃ : Ĩ → J̃ defined by (j′, i) 7→ j′ is a covering category.

Proposition A.31. In the situation described above, if p : I → J is

finite, then the following commutes up to a natural isomorphism given by the

symmetric monoidal structure

CI //

p⊗∗
��

C Ĩ

p̃⊗∗��

CJ
f∗
// CJ̃ .

The categories I and J used in this paper arise from a left action of a

group G on a finite set A. Given such an A, let BAG be the category whose

set of objects is A and in which a map a → a′ is an element g ∈ G with the

property that g a = a′. When A = pt we will abbreviate BAG to just BG. For

any finite map A→ B of G-sets, the corresponding functor

BAG→ BBG

is a covering category.

In the following series of examples we suppose H ⊂ G is a subgroup,

take A = G/H to be the set of right H-cosets, and write p : A → pt for the

unique equivariant map. In this case the inclusion of the identity coset gives

an equivalence

BH → BAG

and hence an equivalence of functor categories

CBAG → CBH .

An inverse is provided by the left Kan extension.
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Example A.32. Suppose C is the category of abelian groups, with ⊕ as

the symmetric monoidal structure. Then CBAG is equivalent to the category

of left H-modules, and the functor p⊕∗ is left additive induction. If the sym-

metric monoidal structure is taken to be the tensor product, then p⊗∗ is “norm

induction.”

Example A.33. Now take (C,⊗,1) to be the category (S,∧, S0) of orthog-

onal spectra. From the above and Proposition A.19, the category SBAG is

equivalent to the category of orthogonal H-spectra, and SBG is equivalent to

the category of orthogonal G-spectra. In this case p∧∗ defines a multiplicative

transfer from orthogonal H-spectra to orthogonal G-spectra. This is the norm.

It is discussed more fully in Sections A.4 and B.5.

Remark A.34. When C has all colimits and the tensor unit 1 is the initial

object one may form infinite “weak” monoidal products, and the condition

that p : I → J be finite may be dropped. If I is an infinite set and {Xi} a

collection of objects indexed by i ∈ I, set

⊗IXi = lim−→
I′⊂I finite

⊗I′Xi

in which the transition maps associated to I ′ ⊂ I ′′ are given by tensoring with

the unit

⊗I′Xi ≈
Ä
⊗I′Xi

ä
⊗
Ä
⊗I′′−I′1

ä
→ ⊗I′′Xi.

The functor p⊗∗ is constructed by working fiberwise.

Remark A.35. The results of this section apply, with the obvious modifi-

cations, in the setting of enriched categories.

A.3.3. Distributive laws. Continuing with the same notation, we now as-

sume that the category C comes equipped with two symmetric monoidal struc-

tures, ⊗ and ⊕, and that ⊗ distributes over ⊕ in the sense that there is a

natural isomorphism

A⊗ (B ⊕ C) ≈ (A⊗B)⊕ (A⊗ C)

compatible with all of the symmetries. For a precise definition, see [47], or the

definition of bipermutative category in [60, Ch. VI]. In all of our examples, ⊕
will be the categorical coproduct and A⊗ (− ) will commute with all colimits.

Given p : I → J and q : J → K, we can form

q⊗∗ ◦ p⊕∗ .
Our goal is to express this in the form

q⊗∗ ◦ p⊕∗ = r⊕∗ ◦ π⊗∗ .
We start with the case in which K is the trivial category and p : I → J

is a map of finite sets. Let Γ = Γ(I/J) be the set of sections s : J → I of p.
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Write ev : J ×Γ→ I for the evaluation map, π : J ×Γ→ Γ for the projection,

and with an eye toward generalization, r : Γ→ {pt} for the unique map. The

following lemma expresses the usual distributivity expansion

⊗
j∈J

Ñ ⊕
p(i)=j

Xi

é
≈
⊕
s∈Γ

Ñ⊗
j∈J

Xs(j)

é
in functorial terms.

Lemma A.36. The following diagram of functors commutes, up to a canon-

ical natural isomorphism given by the symmetries of the symmetric monoidal

structures :

CI

p⊕∗

��

ev∗ // CJ×Γ

π⊗∗

��
CJ

q⊗∗
��

CΓ

r⊕∗
��
C.

Working fiberwise, it is now a simple matter to deal with the more general

case in which p : I → J and q : J → K are covering categories. Let Γ be the

category of pairs (k, s), with k ∈ K and s a section of (q ◦ p)−1k → q−1k.

A morphism (k, s) → (k, s′) in Γ is a map f : k → k′ making the following

diagram commute:

(q ◦ p)−1k
(q◦p)−1(f)

// (q ◦ p)−1k′

p−1k

s

OO

p−1(f)

// p−1k′.

s′

OO

Write Γ×
K
J for the fiber product,

ev : Γ×
K
J → I

for the “evaluation,” and π : Γ×
K
J → J for the projection. By naturality in I

and J in Lemma A.36, we have

Proposition A.37. The following diagram of functors commutes, up to

a canonical natural isomorphism given by the symmetries of the symmetric
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monoidal structures :

CI

p⊕∗
��

ev∗ // C
J×
K

Γ

π⊗∗
��

CJ

q⊗∗ ��

CΓ

r⊕∗��
CK .

This formula is used in showing that the norm of a wedge of regular slice

cells is a wedge of regular slice cells (Proposition 4.7), in the construction of

monomial ideals (Section A.3.6), and in describing the structure of equivariant

twisted monoid rings and their monomial ideals (Section 2.4).

A.3.4. Indexed monoidal products and pushouts. The homotopy theoretic

properties of the norm depend on a formula for the indexed monoidal product

of a pushout. We describe here the absolute case. The fiberwise analogue is

spelled out in Section B.8.2.

Suppose that (C,⊗) is a closed symmetric monoidal category with finite

colimits, and let I be a finite set. For X ∈ CI , write X⊗I for the iterated

monoidal product. Suppose we are given a pushout diagram

(A.38) A //

��

B

��
X // Y

in CI . We wish to express Y ⊗I as an iterated pushout. Since the coequalizer

diagram

X qAqB ⇒ X qB → Y

can be completed to a reflexive coequalizer, the sequence

(X qAqB)⊗I ⇒ (X qB)⊗I → Y ⊗I

is a coequalizer (Proposition A.26). By the distributivity law of Section A.3.3,

this can be re-written as∐
I=I0qI1qI2

X⊗I0 ⊗A⊗I1 ⊗B⊗I2 ⇒
∐

I=I0qI1
X⊗I0 ⊗B⊗I1 → Y ⊗I .

The horizontal arrows do not preserve the coproduct decompositions, but the

sequence can be filtered by the cardinality of the exponent of B. Define filn Y

by the coequalizer diagram∐
I=I0qI1qI2
|I1|+|I2|≤n

X⊗I0 ⊗A⊗I1 ⊗B⊗I2 ⇒
∐

I=I0qI1
|I1|≤n

X⊗I0 ⊗B⊗I1 → filn Y.
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Thus fil0 Y = X⊗I and fil|I| Y = Y ⊗I . There is an evident coequalizer diagram∐
I=I0qI1qI2
|I1|+|I2|=n

X⊗I0 ⊗A⊗I1 ⊗B⊗I2 ⇒ filn−1 Y q
Ä ∐
I=I0qI1
|I1|=n

X⊗I0 ⊗B⊗I1
ä
→ filn Y,

which can be re-written as a pushout square∐
I=I2qI1qI0
|I0|=|I|−n

X⊗I0 ⊗A⊗I1 ⊗B⊗I2 //

��

∐
I=I1qI0
|I1|=n

X⊗I0 ⊗B⊗I1

��
filn−1 Y // filn Y.

The upper left term may be replaced by its effective quotient∐
|I1|=n

X⊗I0 ⊗ ∂AB⊗I1

in which ∂AB
⊗S is defined by the coequalizer diagram

(A.39)
∐

S=S0qS1qS2
S0 6=∅

A⊗S0 ⊗A⊗S1 ⊗B⊗S2 ⇒
∐

S=S0qS1
S0 6=∅

A⊗S0 ⊗B⊗S1 → ∂AB
⊗S ,

leading to a pushout square

(A.40)
∐

I=I0qI1
|I1|=n

X⊗I0 ⊗ ∂AB⊗I1 //

��

∐
I=I0qI1
|I1|=n

X⊗I0 ⊗B⊗I1

��
filn−1 Y

⊗I // filn Y
⊗I .

The object ∂AB
⊗S can also be computed as the coequalizer of

(A.41)
∐

S=S0qS1qS2
|S0|=|S1|=1

A⊗S0 ⊗A⊗S1 ⊗B⊗S2 ⇒
∐

S=S0qS1
|S0|=1

A⊗S0 ⊗B⊗S1 → ∂AB
⊗S .

We call the map

∂AB
⊗S → B⊗S

the indexed corner map, since in the absolute case with |I| = 2 it reduces to

the “corner map” in

A⊗B∐B ⊗A //

��

A⊗A

��
A⊗B // B ⊗B

from the pushout of the top and left arrows to the bottom right term.
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Remark A.42. The category of arrows in C becomes a closed symmetric

monoidal category with

(A1 → B1)⊗ (A2 → B2)

taken to be the corner map in

A1 ⊗A2
//

��

A1 ⊗B2

��
B1 ⊗A2

// B1 ⊗B2.

If A→ B is a map in CS , then (A→ B)⊗S works out to be ∂AB
⊗S → B⊗S .

By working fiberwise, one obtains a similar iterated pushout describing

p⊗∗ Y , involving the evident analogue ∂Ap
⊗
∗ B → p⊗∗ B of ∂AB

⊗S → B⊗S .

Taking A = X and B = Y in (A.38) gives a filtration of the indexed

monoidal product of any map. In the case of a pushout square (A.38) the two

filtrations in fact coincide. We describe the absolute case. The relative case

follows easily by working fiberwise.

Proposition A.43. Let

(A.44) A //

��

B

��
X // Y

be a pushout square in CI .
(i) The square

∂AB
⊗I //

��

B⊗I

��
∂XY

⊗I // Y ⊗I

is a pushout square.

(ii) The filtrations of Y ⊗I arising from (A.44) and

(A.45) X //

��

X

��
Y // Y

coincide.

Proof. The proof is by induction on n = |I|, the case in which n = 1 being

trivial. Let film Y
⊗I be the filtration computed from the pushout square (A.44),
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and let fil′m Y
⊗I be the one computed from (A.45). The evident map of squares

gives a natural map film Y
⊗I → fil′m Y

⊗I . Consider the diagram

∐
I=I0qI1
|I1|=m

X⊗I0 ⊗ ∂AB⊗I1 //

��

∐
I=I0qI1
|I1|=m

X⊗I0 ⊗B⊗I1

��∐
I=I0qI1
|I1|=m

X⊗I0 ⊗ ∂XY ⊗I1 //

��

∐
I=I0qI1
|I1|=m

X⊗I0 ⊗ Y ⊗I1

��
film−1 Y

⊗I // film Y
⊗I .

If m < n, then the induction hypothesis and part (i) imply that the upper

square is a pushout square. This shows that the map film Y
⊗I → fil′m Y

⊗I is

an isomorphism m < n. The case m = n− 1 then gives an identification

filn−1 Y
⊗I = ∂XY

⊗I

which, when combined with the pushout square

∂AB
⊗I //

��

B⊗I

��
filn−1 Y

⊗I // Y ⊗I ,

gives part (i) for I. �

By working in the category of arrows (as in Remark A.42) one can see

that the formation of ∂A(q⊗∗ B) is compatible with the isomorphism coming

from the distributive law. More explicitly, let I
p−→ J

q−→ K be a sequence of

covering categories, and recall the basic diagram

CI

p⊕∗
��

ev∗ // C
J×
K

Γ

π⊗∗
��

CJ

q⊗∗ ��

CΓ

r⊕∗��
CK .
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Suppose that A → B is a map in CI . The distributivity isomorphism in the

arrow category is given by

∂(p⊕∗ A)(p
⊕
∗ B)⊗J/K //

≈
��

(p⊕∗ B)⊗J/K

≈
��

r⊕∗ ∂(ev∗ A)π
⊗
∗ (ev∗B) // r⊕∗ π

⊗
∗ (ev∗B).

The fact that the left vertical arrow is an isomorphism is what expresses the

compatibility of ∂A(q⊗∗ B) with the distributive law.

A.3.5. Commutative algebras and indexed monoidal products. By Propo-

sition A.5, if C is a co-complete closed symmetric monoidal category, then

comm C is cocomplete. The restriction functor p∗ : comm CJ → comm CI
then has a left adjoint p! given by left Kan extension.

Proposition A.46. If p : I → J is a covering category, the following

diagram commutes up to natural isomorphism :

comm CI //

p!

��

CI

p⊗∗
��

comm CJ // CJ .

Proof. For a commutative algebra A ∈ comm CI , and j ∈ J , the value of

p!A at j is calculated as the colimit over the category I/j of the restriction of

p. Since p : I → J is a covering category, the category I/j is equivalent to the

discrete category p−1j, and so

(p!A)j = ⊗p−1jA,

and the result follows. �

A.3.6. Monomial ideals. Let I be a set, and consider the polynomial al-

gebra

A = Z[xi], i ∈ I.
As an abelian group, it has a basis consisting of the monomials xf , with

f : I → {0, 1, 2, . . . }

a function taking the value zero on all but finitely many elements, and

xf =
∏
j∈J

x
f(j)
j .

The collection of such f is a monoid under addition, and we denote it NI0. If

D ⊂ NI0 is a monoid ideal, then the subgroup MD ⊂ A with basis {xf | f ∈ D}
is an ideal. These are the monomial ideals, and they can be formed in any
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monoidal product of free associative algebras in any closed symmetric monoidal

category.

Let (C,⊗,1) be a closed symmetric monoidal category. Fix a set I that

we temporarily assume to be finite. Given X ∈ CI , let

TX =
∐
n≥0

X⊗n

be the free associative algebra generated by X. Write A = p⊗∗ TX ∈ C, where

p : I → pt is the unique map. Then A is an associative algebra in C. The

motivating example above occurs when C is the category of abelian groups and

X is the constant diagram Xi = Z.

Using Proposition A.37, the object A can be expressed as an indexed

coproduct

A =
∐

f :I→N0

X⊗f ,

where N0 = {0, 1, 2, . . . } and

X⊗f =
⊗
i∈I

X(i)⊗f(i).

The set

NI0 = {f : I → N0}

is a commutative monoid under addition of functions. The multiplication map

in A is the sum of the isomorphisms

(A.47) X⊗f ⊗X⊗g ≈ X⊗(f+g)

given by the symmetry of the monoidal product ⊗, and the isomorphism

X⊗f(i) ⊗X⊗g(i) ≈ X⊗(f(i)+g(i)).

For a monoid ideal D ⊂ NI0, set

MD =
∐
f∈D

X⊗f .

The formula (A.47) for the multiplication in A gives MD the structure of an

ideal in A. If D ⊂ D′, then the evident inclusion MD ⊂MD′ is an inclusion of

ideals.

When C is pointed (in the sense that the initial object is isomorphic to

the terminal object), the map

A→ A/MD
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is a map of associative algebras, where A/MD is defined by the pushout dia-

gram

MD
//

��

A

��
∗ // A/MD,

with ∗ denoting the terminal (and initial) object.

Definition A.48. The ideal MD ⊂ A is the monomial ideal associated to

the monoid ideal D.

Example A.49. Suppose that dim : NI0 → N0 is any homomorphism. Given

d ∈ N0, the set

{f | dim f ≥ d}
is a monoid ideal. We denote the corresponding monomial ideal Md. The Md

form a decreasing filtration

· · · ⊂Md+1 ⊂Md ⊂ · · · ⊂M1 ⊂M0 = A.

When C is pointed, the quotient

Md/Md+1

is isomorphic as an A bimodule to

A/M1 ⊗
∐

dim f=d

X⊗f ,

in which A act through its action on the left factor.

Remark A.50. The quotient module is defined by the pushout square

Md+1
//

��

Md

��
∗ // Md/Md+1.

The pushout can be calculated in the category of left A-modules, A bimodules,

or just in C.

Remark A.51. All of this discussion can be made to be covariant with

respect to inclusion in I. Suppose that I0 ⊂ I1 is an inclusion of finite sets and

X1 : I1 → C is an I1-diagram. Define X0 : I1 → C by

X0(i) =

X1(i) i ∈ I0,

∗ otherwise.

There is a natural map X0 → X1. Let A0 and A1 be the associative algebras

constructed from the Xi as described above. The algebra A0 coincides with
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the one constructed directly from the restriction of X0 to I0. A monoid ideal

D1 ⊂ NI10 defines ideals MD0 ⊂ A0 and MD1 ⊂ A1. The monoid ideal D0 is

the same as the one constructed from the intersection of D0 with NI00 , where

NI00 is regarded as a subset of NI10 by extension by 0. There is a commutative

diagram

MD0
//

��

MD1

��
A0

// A1.

Using this, the construction of monomial ideals can be extended to the case

of infinite sets I, by passing to the colimit over the finite subsets. As in the

motivating example, when the set I is infinite, the indexing monoid NI0 is the

set of finitely supported functions.

By working fiberwise, this entire discussion applies to the situation of a

(possibly infinite) covering category p : I → J . Associated to X : I → C is

A = p⊗∗ TX ∈ ass CJ = (ass C)J .

In case I/J is infinite, the algebra A is formed fiberwise by passing to the

colimit from the finite monoidal products using the unit map, as described in

Remark A.34. As an object of CJ , the algebra A decomposes into

A =
∐
f∈Γ

X⊗f ,

where Γ is the set of sections of

NI/J0 → J

with NI/J0 formed from the Grothendieck construction applied to

j 7→ NIj0 (Ij = p−1(j)).

The category NI/J0 is a commutative monoid over J , and associated to any

monoid ideal D ⊂ NI/J0 over J , is a monomial ideal MD ⊂ A.

The situation of interest in this paper (see Section 2.4) is when I → J is

of the form

BKG→ BG

associated to a G-set K, and the unique map K → pt. In this case NI/J0 is

the G-set NK0 of finitely supported functions K → N0. The relative monoid

ideals are just the G-stable monoid ideals. A simple algebraic example arises

in the case of a polynomial algebra Z[xi] in which a group G is acting on the

set indexing the variables.
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A.4. The norm. We now specialize the discussion of Section A.3 to the

case (C,⊗,1) = (S,∧, S0) and define the norm functor.

Because of Proposition A.19 we may identify the category of G-equivariant

orthogonal spectra as the functor category SBG. If H ⊂ G, then the functor

i : BH → BG/HG

sending the unique object to the coset H/H is an equivalence of categories.

This leads to an equivalence

i∗ : SBG/HG → SBH ,

with inverse

i! : SBH → SBG/HG

given by the left Kan extension. Write p : BG/HG → BG for the functor

corresponding to the G-map G/H → pt.

Definition A.52. The norm functor NG
H : SH → SG is the composite

SBH
i! //

NG
H $$

SBG/HG

p∧∗
��

SBG.

By Proposition A.27, we have

Proposition A.53. The functor NG
H is symmetric monoidal and com-

mutes with sifted colimits.

Remark A.54. By Remark A.28, the norm also commutes with the forma-

tion of coequalizer diagrams in SH whose underlying nonequivariant diagram

in S extends to a reflexive coequalizer.

Remark A.55. We have defined the norm on the topological categories of

equivariant spectra. Since it is symmetric monoidal, it naturally extends to a

functor of enriched categories

NG
H :

¯
SH →

¯
SG

compatible with the norm on spaces (and, in fact, spectra) in the sense that

for every X,Y ∈
¯
SH , it gives a G-equivariant map

NG
H (

¯
SH(X,Y ))→

¯
SG(NG

HX,N
G
HY ).

By Proposition A.46, on equivariant commutative algebras the norm is

the left adjoint of the restriction functor.
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Corollary A.56. The following diagram commutes up to a natural iso-

morphism given by the symmetry of the smash product :

CommH //

��

SH

NG
H��

CommG // SG.

The left vertical arrow is the left adjoint to the restriction functor.

Remark A.57. Because of Corollary A.56, we will refer to the left adjoint

to the restriction functor

CommG → CommH

as the commutative algebra norm and denote it

NG
H : CommH → CommG.

The Yoneda embedding gives a functor

J op → S,

V 7→ S−V .

By definition of ∧ this is a symmetric monoidal functor, and we are in the

situation described in Proposition A.30. Thus if p : I → J is a covering

category, there is a natural isomorphism between the two ways of going around

(A.58)
Ä
J op

äI //

p⊕∗
��

SI

p∧∗
��Ä

J op
äJ // SJ .

Take I = BG/HG and J = BG. Then the functor category
Ä
J op

äI
is equiv-

alent to the category
Ä
J H

äop
(Proposition A.12), and SI is equivalent to SH

(Proposition A.19). By naturality, the functor

J Hop → SH

corresponding to Ä
J op

äI → SI

is just the Yoneda embedding, and so sends an orthogonal H-representation

V to S−V . Similarly,
Ä
J op

äJ
is equivalent to J Gop, SJ is equivalent to the

category of orthogonal G-spectra, and the functor between them sends an or-

thogonal G-representation W to S−W . One easily checks (as in Example A.32)
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that the functor p⊕∗ corresponds to additive induction. We therefore have a

commutative diagram Ä
J H

äop //

indGH
��

SH

NG
H

��Ä
J G

äop // SG.

This proves

Proposition A.59. There is a natural isomorphism

NG
H S

−V ≈ S− indGH V

of functors
Ä
J H

äop → SG.

A.5. h-cofibrations. Suppose that C is a complete topological category

(and, in particular, tensored and cotensored over T ).

Definition A.60. A map i : A → X in C is an h-cofibration if it has

the homotopy extension property: given f : X → Y and a homotopy h : A ⊗
[0, 1]→ Y with h|A⊗{0} = f ◦i, there is an extension of h to H : X⊗ [0, 1]→ Y .

Example A.61. The mapping cylinder A → X ∪
A
A ⊗ [0, 1] of any map

A→ X is an h-cofibration.

As is well known, a map i : A→ X is an h-cofibration if and only if

cyl i = X ⊗ {0} ∪
A⊗{0}

A⊗ [0, 1]→ X ⊗ [0, 1]

is the inclusion of a retract.

Proposition A.62. The class of h-cofibrations is stable under composi-

tion, and the formation of coproducts and cobase change. Given a sequence

X1
f1−→ · · · → Xi

fi−→ Xi+1 → · · ·

in which each fi is an h-cofibration, the map

X1 → lim−→
i

Xi

is an h-cofibration.

Proposition A.63. Any topological functor L that is a continuous left

adjoint preserves the class of h-cofibrations.

Now suppose that C has a symmetric monoidal structure ⊗ that is com-

patible with the cartesian product of spaces, in the sense that for spaces S and
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T , and objects X,Y ∈ C, there is a natural isomorphism

(X ⊗ S)⊗ (Y ⊗ T ) ≈ (X ⊗ Y )⊗ (S × T )

compatible with the enrichment and the symmetric monoidal structures. Then

given i : A→ X, we may form

i⊗n : A⊗n → X⊗n

and regard it as a map in the category CBΣn of objects in C equipped with a

Σn-action.

Proposition A.64. If A → X is an h-cofibration in C, then for any Z ,

A⊗ Z → X ⊗ Z is an h-cofibration.

Proposition A.65. If i : A → X is an h-cofibration, then i⊗n is an

h-cofibration in CBΣn .

Remark A.66. In the category of equivariant orthogonal spectra a version

of this result appears in [56, Lemma 15.8] (where the reader is referred to [24,

Lemma XII.2.3]).

Proof. The main point is to show that the diagonal inclusion

(A.67) cyl(A⊗n → X⊗n)→ cyl(A→ X)⊗n

is the inclusion of a Σn-equivariant retract. Granting this for the moment, one

constructs a Σn-equivariant retraction of

cyl(A⊗n → X⊗n)→ X⊗n ⊗ [0, 1]

as the composition

X⊗n ⊗ [0, 1]
1⊗diag−−−−→ X⊗n ⊗ [0, 1]n ≈ (X ⊗ [0, 1])⊗n

→ cyl(A→ X)⊗n → cyl(A⊗n → X⊗n).

For the retraction of (A.67), start with the pushout square

A⊗ {0} //

��

A⊗ [0, 1]

��
X // cyl(A→ X)

and consider the last stage of the filtration of cyl(A → X)⊗n constructed in

Section A.3.4

(A.68) ∂A(A⊗ [0, 1])⊗n //

��

(A⊗ [0, 1])⊗n

��
filn−1(cyl(A→ X)⊗n) // cyl(A→ X)⊗n.
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Form the Σn-equivariant map

filn−1(cyl(A→ X)⊗n)→ X⊗n → cyl(A⊗n → X⊗n)

using the map cyl(A → X) → X. To extend it to filn(cyl(A → X)⊗n) =

cyl(A → X)⊗n, note that the top row of (A.68) can be identified with the

tensor product of the identity map of A⊗n with

∂{0}I
n → In.

This identification is compatible with the action of the symmetric group. The

desired extension is then constructed using any Σn-equivariant retraction of

In to the diagonal that takes ∂{0}I
n to {0} �

Working fiberwise one concludes

Proposition A.69. Suppose that C is as above and p : I → J is a cover-

ing category. The indexed monoidal product

p⊗∗ : CI → CJ

preserves the class of h-cofibrations.

We end with a technical result that is useful for establishing some of the ba-

sic homotopy theoretic properties of equivariant orthogonal spectra, especially

in connection with the monoidal geometric fixed point functor (Section B.10).

Though it does not appear explicitly in the literature in this form, it is a minor

variation of [50, Appendix, Prop. 3.9] and is proved in the same manner.

Lemma A.70. An h-cofibration in SG is an objectwise closed inclusion.

Proof. The assertion reduces immediately to showing that h-cofibrations

in the category of compactly generated weak Hausdorff spaces are closed inclu-

sions. For this latter fact, suppose that A ⊂ X is an h-cofibration of compactly

generated weak Hausdorff spaces. Then the mapping cylinder cyl(A → X) is

an equalizer of two maps from X × [0, 1] to itself. Since X × [0, 1] is weak

Hausdorff, it is closed. But A ⊂ X is the inverse image of cyl(A → X) under

the inclusion X × {1} → X × [0, 1]. See [50, pp. 488–489]. �

Appendix B. Homotopy theory of equivariant orthogonal spectra

We now turn to the stable homotopy theory of equivariant orthogonal

spectra, the basis of which is the notion of stable weak equivalence defined in

Section 2.2.4. Our goal is to set up the infrastructure needed for the proofs of

properties SpG
1 –SpG

6 and for working with the formation of indexed wedges,

smash products, symmetric powers, and their compositions. These latter are

explicit constructions, and to work with them in homotopy theory means de-

termining, in each case, a full subcategory of SG on which the construction

preserves weak equivalences, and which is homotopically wide in the sense that

it contains at least one object of each weak equivalence class.
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The standard way of doing this is to complete the set of weak equiva-

lences to a Quillen model category structure, in such a way that each of the

constructions takes weak equivalences between cofibrant objects to weak equiv-

alences. This can be done in this case, but a problem arises when composing

these operations. For example, in all of the standard model structures on SG,

the symmetric powers of a cofibrant object are not cofibrant (or at least not

known to be). The situation is reminiscent of the theory of unbounded oper-

ators, in which a domain of definition needs to be specified, and in which one

can run into trouble trying to compose operators. It might be possible to find

a model structure whose collection of cofibrant objects is preserved by all of

these constructions. But this is more than is really required.

This is a situation where the language of model categories tends to obscure

the basic task at hand. What is needed is to determine, for a given functor,

a homotopically wide full subcategory on which the functor preserves weak

equivalences. This problem depends only on the weak equivalences, and is

most naturally considered in the context of homotopical categories. With this

in mind we begin our work using homotopical categories, where the entire focus

is on weak equivalences and derived functors, and put off introducing a model

category structure until it is really needed.

Here is a summary of the contents of this appendix. In Section B.1 we

review the theory of homotopical categories. Section B.2 introduces various

notions of “flatness,” which depend only on the class of weak equivalences and

play an important role in determining the homotopical properties of various

functors. In Section B.3 we develop a considerable amount of the stable ho-

motopy theory of SG using only the language of homotopical categories. This

includes most of the results used in Section 2.2.5 to verify SpG
1 –SpG

5 . Our

analysis is facilitated by an approximation πstSG to ho SG, which we study as

a homotopical category in its own right. To go further it is helpful to have

a model structure around, and in Section B.4 we define the positive complete

model structure on SG. This is a variation on the positive stable model struc-

ture of [55] having the convenient property that indexed wedges and smash

products of cofibrant objects are cofibrant. Sections B.5 and B.6 describe the

homotopy properties of indexed smash and symmetric powers. Section B.7

contains a proof that the forgetful functor comm SG → SG creates a model

structure. The proofs of this that appear in the literature are incomplete, and

it does not seem possible to give a complete proof without first analyzing the

homotopy properties of indexed smash products. Section B.8 contains the im-

portant result that the formation of indexed smash products is homotopical

on a subcategory of SG containing both the cofibrant objects and the spec-

tra underlying cofibrant commutative rings. This result is crucial for making

use of the norm functor and is part of the reason that we work outside of
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the framework of model categories. Sections B.10 and B.11 contain results on

the geometric fixed point functor and its interaction with the constructions de-

scribed above. Finally, Section B.12 contains a construction of the real bordism

spectrum MUR on which all of the results of this paper are based.

B.1. Homotopical categories and model categories. We begin by reviewing

some notions from [23].

Definition B.1. A homotopical category is a category C equipped with a

class of morphisms called weak equivalences that contains all identity maps and

satisfies the two out of six property described below.

The two out of six property asserts that in the situation

• u−→ • v−→ • w−→ •,

if vu and wv are inW, then so are u, v, w, and vwu. It implies the “two out of

three” property (that two of three maps in composition being weak equivalences

implies the third is) and that isomorphisms are weak equivalences.

Remark B.2. If the weak equivalences have the property that a map is

a weak equivalence if and only if some functor applied to the map becomes

an isomorphism, then identity maps are weak equivalences, the two out of

six property automatically holds, and retracts of weak equivalences are weak

equivalences.

Suppose that C is a homotopical category.

Definition B.3. A homotopy functor is a functor F : C → D with the

property that F (w) is an isomorphism whenever w ∈ W.

There is a universal homotopy functor L : C → ho C called the the lo-

calization of C with respect to W . It is characterized uniquely up to unique

isomorphism by the following universal property: for every category D and ev-

ery homotopy functor F : C → D, there is a unique functor ho C → D making

the diagram

C

F !!

L // ho C

��
D

commute. While this characterization may seem stronger than is natural for

characterizing an arrow in a 2-category, it simplifies the presentation. The

difference between this and the 2-categorical formulation amounts to the con-

vention that the map C → ho C be the identity map on objects. The category

ho C is the homotopy category of C. Since the localization functor L is the

identity map on objects, it tends not to appear in notation.
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Two issues emerge when working with homotopical categories. One is to

find a description of ho C(X,Y ) and the other is to describe conditions under

which a functor F : C → D between homotopical categories induces a functor

hoF : ho C → hoD. For the first question, the following can be helpful.

Proposition B.4. The transformation C(X, − ) → ho C(X, − ) is the

universal natural transformation from C(X, − ) to a homotopy functor.

Proof. This is one situation where it is clearer to actually make use of the

notation L : C → ho C. Spelled out, the assertion is that if F : C → Sets is a

homotopy functor and C(X, − ) → F a natural transformation, then there is

a unique dotted arrow making the diagram

(B.5) C(X, − ) //

L
��

F

ho C(LX,L(− ))

88

commute. Before describing the proof we make an observation about the prop-

erty characterizing the functor L : C → ho C. For homotopy functors F and G

on C, this property supplies unique factorizations F = F̃ ◦ L and G = G̃ ◦ L.

It also implies that composition with L gives a bijection between the set of

natural transformations G̃→ F̃ and G→ F .

With this in mind we now turn to the proof of the proposition. By the

Yoneda Lemma, the horizontal arrow in (B.5) is given by an element of F (X).

By the remark above, the set of natural transformations

ho C(LX,L(− ))→ F

is in bijection with the set of natural transformations

ho C(LX, − )→ F̃

which, again by Yoneda, is in one to one correspondence with the elements of

F̃ (LX) = F (X). The map between these sets corresponding to the two ways

of going around (B.5) is the identity. �

Corollary B.6. Suppose that C is a homotopical category and that X ∈
C has the property that C(X, − ) is a homotopy functor. Then the natural

transformation C(X, − )→ ho C(X, − ) is a bijection.

Proof. Immediate from Proposition B.4. �

For the second question, there is an apparatus of definitions to organize

the situation.

Definition B.7. A functor between homotopical categories is homotopical

if it sends weak equivalences to weak equivalences.
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By the universal property, a homotopical functor F : C → D induces

a functor hoF : ho C → hoD. Furthermore, adjoint homotopical functors

induce adjoint functors on the homotopy categories. But there are more general

situations under which such a functor is induced. Suppose that F : C → D is

a functor between homotopical categories and that one can find a subcategory

C′ ⊂ C on which F is homotopical (where the weak equivalences in C′ are taken

to be those morphisms that are weak equivalences in C). Then F induces a

functor

ho C′ → hoD.
If, in addition, ho C′ → ho C is an equivalence of categories, then one gets an

induced functor ho C → hoD by composing with an inverse to this equivalence.

The situation becomes more manageable when there is a pair (r, s) con-

sisting of a functor r : C → C with the property that F ◦ r is homotopical,

and a natural weak equivalence s : r → Id. In that case, C′ can be taken

to be the full subcategory generated by the image of r, the induced functor

LF : ho C → hoD can be computed as

LFX = F ◦ r(X),

and because of s, comes equipped with a natural transformation between the

two ways of going around the diagram

C F //

��

D

��
ho C

LF
//

T

7?

hoD.

Together with this transformation, LF is characterized by a universal property.

It is most easily stated if we overload some of the notation by using the symbol

F to denote the composite functor

C F−→ D → hoD

and identify functors ho C → hoD with homotopy functors C → hoD. With

these conventions we may regard the transformation T as going from LF to F

T : LF → F.

The universal property is that if G : C → hoD is a homotopy functor and

S : G → F is a natural transformation, then there is a unique natural trans-

formation G→ LF making

G //

S !!

LF

T
��
F

commute. Put differently, LF is the closest homotopy functor to the left of F .
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The functor characterized by the above properties is the left derived func-

tor of F . It is guaranteed to exist when F is left deformable in the sense that

there is a pair (r, s) as above, and F ◦ r is homotopical.

A common situation arises when the weak equivalences on C refine to a

model category structure, and F takes weak equivalences between cofibrant

objects to weak equivalences. In that case F is left deformable, and one may

take (r, s) to be a functorial cofibrant replacement.

There are evident dual notions of a right deformable functors F and a

right derived functor RF . For more on the definition of derived functors, the

reader is referred to [69] for the case of model categories and to [23, Ch. VII]

for the more general case of homotopical categories.

When

F : C � D : G

are adjoint functors between homotopical categories, and F is left deformable

and G is right deformable, then the derived functors

LF : ho C � hoD : RG

are adjoint. See [23, Ch. VII, §44].

It is common, when there is no confusion likely, to drop the L from LF

and not distinguish in notation between a functor and its derived functors. We

follow this convention in the main body of the paper, where the emphasis is

on homotopy theory.

B.2. Flat maps. The notion of a flat map and a flat functor was introduced

in the unpublished manuscript [33] in order to isolate useful classes of maps

and objects on which left derived functors can be computed. Though the

original context involved model categories, the definitions involve only the

weak equivalences and belong most naturally to the theory of homotopical

categories. The dual notion was coined a “sharp map” by Charles Rezk and

used for a different purpose in [74].

Definition B.8. A functor F : C → D between categories with weak equiv-

alences is flat if it is homotopical and preserves colimits.

Typically the functor F will be a left adjoint, and so will automatically

preserve colimits.

Definition B.9. Suppose that C is a homotopical category possessing small

colimits. A map f : A → X in C is flat if for every A → B and every weak

equivalence B → B′, the map

X ∪
A
B → X ∪

A
B′

is a weak equivalence.
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In other words, a morphism f is flat if and only if “cobase change along

f” preserves weak equivalences. Since cobase change is a left adjoint, this is

equivalent to the flatness of the cobase change functor.

Example B.10. A model category is left proper if and only if every cofi-

bration is flat.

Proposition B.11.

(i) Finite coproducts of flat maps are flat.

(ii) Composites of flat maps are flat

(iii) Any cobase change of a flat map is flat.

(iv) If a retract of a weak equivalence is a weak equivalence, then a retract of

a flat map is flat.

Proposition B.12. Suppose that

X1

∼
��

A1
[oo [ //

∼
��

Y1

∼
��

X2 A2
oo [ // Y2

is a diagram in which A2 → Y2 and both maps in the top row are flat. If the

vertical maps are weak equivalences, then so is the map

X1 ∪
A1

Y1 → X2 ∪
A2

Y2

of pushouts.

Proof. First suppose that A1 = A2 = A. Then

X1 ∪
A
Y1 → X1 ∪

A
Y2

is a weak equivalence since A → X1 is flat. The map X1 → X1 ∪
A
Y2 is flat

since it is a cobase change of A
[−→ Y2 along A→ X1. But this implies that

X1 ∪
A
Y2 → X2 ∪

X1

Å
X1 ∪

A
Y2

ã
= X2 ∪

A
Y2

is a weak equivalence. Putting these together gives the result in this case.
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For the general case, consider the following diagram:

X1

��

A1
//oo

��

Y1

��
X1 ∪

A1

A2

��

A2
//oo A2 ∪

A1

Y1

��
X2 A2

//oo Y2.

The flatness of the maps A1 → X1 and A1 → Y1 implies that the upper vertical

maps (hence all the vertical maps) are weak equivalences and that the maps

in the middle row are flat. It also implies that

A1 → X1 ∪
A1

Y1

is flat. Since A1 → A2 is a weak equivalence, this means that

X1 ∪
A1

Y1 → A2 ∪
A1

Å
X1 ∪

A1

Y1

ã
is a weak equivalence. But this is the map from the pushout of the top row to

the pushout of the middle row. By the case in which A1 = A2, the map from

the pushout of the middle row to the pushout of the bottom row is a also a

weak equivalence. This completes the proof. �

Remark B.13. If C has the property that every map can be factored into a

flat map followed by a weak equivalence, then the above result holds with the

assumption that only one of the maps in the top row is a weak equivalence.

Suppose for instance that it is the map A1 → X1, and factor A1 → Y1 into a

flat map A1 → Y ′1 followed by a weak equivalence Y ′1 → Y1. Now consider the

diagram

X1 A1
[oo [ // Y ′1

∼
��

X1

∼
��

A1
[oo //

∼
��

Y1

∼
��

X2 A2
oo

[
// Y2.

By Proposition B.12, the map from the pushout of the top row to the pushout

of the middle row is a weak equivalence, as is the map from the pushout of the

top row to the pushout of the bottom row. The map from the pushout of the

middle row to the pushout of the bottom row is then a weak equivalence by

the two out of three property of weak equivalences.
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Remark B.14. In the category SG equipped with the stable weak equiva-

lences (B.3.1), the h-cofibrations will turn out to be flat. The mapping cylinder

construction then factors every map into a flat map followed by a weak equiv-

alence, so Remark B.13 applies.

Suppose that (C,⊗,1) is a closed symmetric monoidal category, equipped

with a class W of weak equivalences, making C into a homotopical category.

Definition B.15. An object X ∈ C is flat if the functor X ⊗ (− ) is flat.

Showing that a symmetric monoidal structure on C induces one on ho C
essentially comes down to exhibiting enough flat objects in C. In Section B.3.7

we will show that the cellular objects of SG are flat.

Remark B.16. Suppose that every object Z ∈ C admits a weak equivalence

equivalence Z̃ → Z from a flat object Z̃. If X → Y is a weak equivalence of

flat objects, so is X ⊗ Z → Y ⊗ Z for any Z. This follows from the diagram

X ⊗ Z̃ ∼ //

∼
��

X ⊗ Z

��
Y ⊗ Z̃ ∼

// Y ⊗ Z.

B.3. Equivariant stable homotopy theory. The weak equivalences were de-

fined in Section 2.2.4 as the maps inducing isomorphisms of stable homotopy

groups. Equipped with them SG becomes a homotopical category, and the

functor SG → ho SG is defined. In this section we establish many of the basic

properties of ho SG, including most of the results used in Section 2.2.5, to verify

SpG
1 –SpG

5 of Section 2.2.1.

B.3.1. Stable weak equivalences and basic homotopical functors. We begin

with some basic homotopical functors.

Proposition B.17. The formation of filtered colimits along objectwise

closed inclusions is homotopical.

Proof. This is immediate from the fact that formation of homotopy groups

commutes with filtered colimits of closed inclusions. �

Since h-cofibrations are objectwise closed inclusions (Lemma A.70), Propo-

sition B.17 applies to the formation of filtered colimits along h-cofibrations.

The following three results, which are part of [55, Th III.3.5] (see also [56,

Th. 7.4(iv)]), imply that many basic functors are homotopical.
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Proposition B.18. Suppose f : X → Y is a map, and let F → X be the

homotopy fiber, defined by the pullback square

F //

��

PY

��
X

f
// Y

in which PY is the path spectrum of Y . For every H ⊂ G, there is a long

exact sequence

· · · → πHk F → πHk X → πHk Y → πHk−1F → · · · .

Sketch of proof. This sequence is gotten by passing to the colimit from

the exact sequence

· · · → πHk+V FV → πHk+VXV → πHk+V YV → πHk−1+V FV → · · · . �

Proposition B.19. For any X , any H ⊂ G, and any k ∈ Z, the suspen-

sion map

πHk X → πHk+1S
1 ∧X

is an isomorphism.

Sketch of proof. Choose an exhausting sequence {Vn} with the property

that Vn⊕R ⊂ Vn+1. Then the map πHk+Vn
XVn → πHk+Vn+1

XVn+1 factors through

the suspension map πHk+1+Vn
S1 ∧ XVn , and so the sequence for computing

πHk+1S
1 ∧X threads through the sequence for computing πHk X. �

Proposition B.20. Let X → Y be an h-cofibration.

(i) The map Y ∪ CX → Y/X is a weak equivalence.

(ii) There is a natural long exact sequence of stable homotopy groups

· · · → πHk X → πHk Y → πHk (Y/X)→ πHk−1X → . . . ,

in which the map πkY → πkY/X is induced by the evident quotient map,

and the connecting homomorphism πHk Y/X → πHk−1X is induced by the

maps

Y/X ← Y ∪ CX → ΣX

and the suspension isomorphism of Proposition B.19

Sketch of proof. For the first part, since A → X is an h-cofibration, the

map X ∪ CA → X/A is a homotopy equivalence and hence induces an iso-

morphism of stable homotopy groups. The result can then be deduced from

Proposition B.19 as in [50, III.2.1]. �

Corollary B.21. The h-cofibrations in SG are flat.
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Proposition B.20 implies that the formation of mapping cones is homo-

topical as is the formation of quotients of h-cofibrations. It also gives parts

(i) and (iii) of the proposition below. Part (ii) follows from the fact that the

formation of unstable homotopy groups commutes with products and the fact

that filtered colimits commute with finite products.

Proposition B.22.

(i) For any any set of spectra {Xα}, the map⊕
πG∗ Xα → πG∗

∨
Xα

is an isomorphism, hence the formation of wedges is homotopical.

(ii) For any any finite set of spectra {Xα}, the map

πG∗
∏

Xα →
∏

πG∗ Xα

is an isomorphism, hence the formation of finite products is homotopical.

(iii) For any finite set of spectra {Xα}, the map∨
Xα →

∏
Xα

is a weak equivalence.

Corollary B.23. The category ho SG is additive and admits finite prod-

ucts and arbitrary coproducts. The coproducts are given by wedges and the

finite products by finite products.

Proof. Let us begin with the case of coproducts. Let J be a set. The

adjoint functors ∨
:
Ä
SG
äJ
� SG : diag

are homotopical by Proposition B.22. They therefore induce adjoint functors∨
:
Ä

ho SG
äJ
� ho SG : diag

on the homotopy categories. This shows that arbitrary coproducts exist in

ho SG and that they may be computed as wedges. A similar argument shows

that finite products exist, are computed as products in SG, and that the map

from a finite coproduct to a finite product is an isomorphism. This endows

the morphism sets in ho SG with the structure of commutative monoids. That

they are in fact abelian groups can be seen by checking that for all X, the

“shearing map” X ∨X → X ×X, with first component the projection to the

first summand and second component the coproduct of the identity map with

itself, is a weak equivalence. �

The “indexed” analogue of Proposition B.22 is also true and appears as

Proposition B.56. It expresses a kind of “equivariant additivity” on ho SG.



KERVAIRE INVARIANT ONE 179

B.3.2. Suspension and zero space. The suspension and zero space functors

were defined in Definition 2.7. Formation of the suspension spectrum is nearly

homotopical.

Proposition B.24. The suspension spectrum functor is homotopical on

the subcategory of nondegenerately based G-spaces. The right derived functor

RΩ∞X may be computed as

RΩ∞X = ho lim−→ΩVnXVn ,

where {Vn} is any choice of exhausting sequence and ΩVn(− ) is the G-space

of nonequivariant maps.

Proof. The assertion about suspension spectra follows from the fact that if

K → L is an equivariant weak equivalence of nondegenerately based G-spaces,

then so is

SV ∧K → SV ∧ L

for any representation V . This reduces to the statement that for every H ⊂ G,

the map

SV
H ∧KH → SV

H ∧ LH

is a weak equivalence, assuming KH → LH is. But this is a standard fact. The

functor RΩ∞X = holim−→ΩVnXVn is clearly homotopical, so what is needed for

the second assertion is to construct a functorial weak equivalence X → X ′, in

which X ′ has the property that the map

RΩ∞X ′ → Ω∞X ′

is a weak equivalence. One way to do this is to define X → X ′ objectwise by

XV → holim−→n
ΩVnXV⊕Vn = X ′V . (One can also take X ′ to be the functorial

fibrant replacement coming from the small object construction in the positive

complete model structure of Section B.4.1.) �

Adding a “whisker” provides a left deformation to Σ∞, and the natural

transformation X → X ′ appearing in the proof above gives a right deformation

of Ω∞. The derived suspension spectrum and zero space functors therefore

induce adjoint functors on the homotopy categories

LΣ∞ : ho T G � ho SG : RΩ∞.

B.3.3. An approximation to the homotopy category. Our further analysis

of ho SG is facilitated by an approximation, πstSG.

Let

(B.25) εV : S−V ∧ SV → S0
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be the map adjoint to the identity map of SV . Associated to a linear isometric

embedding t : V →W is a map

(B.26) S−W ∧ SW → S−V ∧ SV .

One way to describe it is to note that the space of such maps is the space of

equivariant maps

SW →
Ä
S−V ∧ SV )W

and thatÄ
S−V ∧ SV )W ≈ Thom(O(V,W ); (W − V )⊕ V ) ≈ O(V,W )+ ∧ SW .

The map (B.26) corresponds to smashing the identity map of SW with the

map S0 → O(V,W )G+ sending the nonbase point to t. The map (B.26) can also

be expressed as Id∧εU after rewriting the domain as

S−V ∧ SV ∧ S−U ∧ SU ,

with U = W − t(V ). When V < W , the fixed point space O(V,W )G is

connected, and so the homotopy class (B.26) is independent of the choice of t.

For X,Y ∈ SG, let

πstSG(X,Y ) = lim−→
V

π0S
G(S−V ∧ SV ∧X,Y ),

in which the limit is taken over the partially ordered set of representations

of G (Section 2.2.4). We wish to make πstSG(X,Y ) into the morphisms in a

category. For this we need to define the composition law. An element f ∈ πstSG

is represented by a map fV : S−V ∧ SV ∧X → Y . Given f ∈ πstSG(X,Y ) and

g ∈ πstSG(Y, Z) represented by

fV : S−V ∧ SV ∧X → Y,

gW : S−W ∧ SW ∧ Y → Z,

the composition g ◦ f is defined to be the equivalence class of the map

(g ◦ f)W⊕V : S−W⊕V ∧ SW⊕V ∧X → Z

constructed from the isomorphism

S−W⊕V ∧ SW⊕V ≈ S−W ∧ SW ∧ S−V ∧ SV

and the composite

S−W ∧ SW ∧ S−V ∧ SV ∧X Id∧fV−−−−→ S−W ∧ SW ∧ Y gW−−→ Z.

Associativity of the composition follows from the associativity of the smash

product.
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Definition B.27. The category πstSG is the category whose objects are

those of SG, with morphisms πstSG(X,Y ), and the composition law described

above.

One thing that makes πstSG so useful is that the hom sets are easy to

describe, and yet the functors πHk factor through it and are co-representable.

Proposition B.28. For all k ∈ Z, there is a natural isomorphism

(B.29) πstSG(G/H+ ∧ Sk, Y ) ≈ πHk (Y ).

Proof. Suppose k ≥ 0. Then

πstSG(G/H+ ∧ Sk, Y ) = lim−→π0S
G(S−V ∧ SV ∧G/H+ ∧ Sk, Y )

= lim−→π0S
H(S−V ∧ SV ∧ Sk, Y )

= lim−→π0 T H(SV ∧ Sk, YV )

= lim−→πHk+V YV = πHk Y.

Similarly,

πstSG(G/H+ ∧ S−k, Y ) = lim−→π0S
G(S−V ∧ SV ∧G/H+ ∧ S−k, Y )

= lim−→π0S
H(S−V ∧ SV ∧ S−k, Y )

= lim−→π0 T H(SV , YV+k)

= lim−→
V

πHV YV+k = lim−→
W>k

πHW−kYW = πH−kY. �

Proposition B.28 implies that a map X → Y ∈ SG that becomes an

isomorphism in πstSG is a weak equivalence. An important example is

Proposition B.30. Suppose that V is a representation of G. For every

X , the map

(B.31) S−V ∧ SV ∧X → X

is an isomorphism in πstSG and hence a weak equivalence.

Proof. We will show that for all Y , the map

πstSG(X,Y )→ πstSG(S−V ∧ SV ∧X,Y )

is an isomorphism. By definition,

(B.32) πstSG(X,Y ) = lim−→
W

(S−W ∧ SW ∧X,Y ),

while

πstSG(S−V ∧ SV ∧X,Y ) = lim−→
U

π0 S
G(S−U ∧ SU ∧ S−V ∧ SV ∧X,Y ).
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Writing W = U ⊕ V and using the identification

S−W ∧ SW ≈ S−U ∧ SU ∧ S−V ∧ SV ,

this last colimit may be replaced by

lim−→
W>V

π0S
G(S−W ∧ SW ∧X,Y ),

since the set {U | U ⊕ V > V } is cofinal in the poset of all representations.

But this clearly coincides with (B.32), since {W | W > V } is also cofinal in

the poset of representations. �

Remark B.33. The weak equivalence (B.31) is often written in the form

S−V⊕W ∧ SW ∧X → S−V ∧X.

This is gotten from (B.31) by writing S−V⊕W as S−V ∧ S−W and writing the

map as

S−W ∧ SW ∧
Ä
S−V ∧X

ä
→
Ä
S−V ∧X

ä
.

Corollary B.34. Suppose that V is a representation of G. Smashing

with SV and S−V are inverse equivalences of πstSG.

Remark B.35. Corollary B.34 does not directly imply the analogous state-

ment for ho SG. For that one needs to know that smashing with SV and S−V

are homotopical. This will be proved in Section B.3.5.

One consequence of Corollary B.34 is that πstSG is tensored over the

equivariant Spanier-Whitehead category SWG defined in Section 2.2.1. The

main point is to show that a map K → L in SWG gives a natural map X∧K →
X ∧ L in πstSG. For this, suppose that the map K → L is represented by a

map of spaces SV ∧K → SV ∧ L. This latter map gives us an element of

πstSG(X ∧ SV ∧K,X ∧ SV ∧ L)

and hence an element of πstSG(X ∧K,Y ∧L) under the isomorphism of Corol-

lary B.34.

This fact leads to a form of Spanier-Whitehead duality in πstSG. Suppose

that K is a finite G-CW complex and that L is a “V -dual” in the sense that

there is a representation V of G and maps in SWG

K ∧ L→ SV ,

SV → L ∧K

with the property that the composites

SV ∧ L→ L ∧K ∧ L→ L ∧ SV ,

K ∧ SV → K ∧ L ∧ SV → SV ∧K
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are the symmetry isomorphism. Then for X,Y ∈ πstSG, the composite

πstSG(X,Y ∧K)→ πstSG(X ∧ L, Y ∧K ∧ L)(B.36)

→ πstSG(X ∧ L, Y ∧ SV ) ≈ πstSG(S−V ∧X ∧ L, Y )

is an isomorphism, by the standard duality manipulation.

Given X → Y ∈ SG and any Z, there is a long exact sequence

· · · → πstSG(Z, Sk ∧X)→ πstSG(Z, Sk ∧ Y )→ πstSG(Z, Sk ∧ (Y ∪ CX))

(B.37)

→ πstSG(Z, Sk+1 ∧X)→ · · · .

As in the proof of B.20, this is proved with the argument of [50, III.2.1], using

the analogue of Proposition B.19 given as the special case of Corollary B.34 in

which V is trivial.

There is also an easier long exact sequence in the other variable. Let

A → X be a map in SG and Y any spectrum. Then there is a long exact

sequence

(B.38)

· · · → πstSG(Sk∧(X∪CA), Y )→ πstSG(Sk∧X,Y )→ πstSG(Sk∧A, Y )→ · · · .

Under the isomorphism given by Proposition B.28, this is the long exact se-

quence of Proposition B.18 associated to the fibration sequence of function

spectra

Y X∪CA → Y X → Y A.

B.3.4. πstSG as a homotopical category. We now study πstSG as a homo-

topical category, and in doing so establish the fact that the functor SWG →
ho SG is fully faithful.

By Proposition B.28 the functors πHk factor through πstSG. We make

πstSG into a homotopical category by defining a map to be a weak equivalence

if it induces an isomorphism in πHk for all H ⊂ G and all k ∈ Z. Since a map in

SG is a weak equivalence if and only if it is so in πstSG, the canonical functor

(B.39) ho SG → hoπstSG

is an isomorphism. Corollary B.6 asserts that if X ∈ SG happens to have

the property that πstSG(X, − ) is a homotopy functor, then πstSG(X, − ) →
hoπstSG(X, − ) is an isomorphism. Combining this with the isomorphism

(B.39) gives

Lemma B.40. If X ∈ SG has the property that πstSG(X, − ) is a homotopy

functor, then for all Y , the maps

(B.41) πstSG(X,Y ) −→ hoπstSG(X,Y )
∼←− ho SG(X,Y )

are isomorphisms, and so ho SG(X,Y ) may be computed as πstSG(X,Y ).
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Proposition B.42. For k ∈ Z, the maps (B.29) and (B.41) give isomor-

phisms

πHk X ≈ πstSG(G/H+ ∧ Sk, X) ≈ ho SG(G/H+ ∧ Sk, X).

Proof. The first isomorphism is given by Proposition B.28, and it implies

that πstSG(G/H+ ∧ Sk, X) is a homotopy functor of X. Lemma B.40 then

gives the second isomorphism. �

Corollary B.43. A map X → Y in SG is a weak equivalence if and only

if it becomes an isomorphism in ho SG.

Proposition B.44. When X is of the form X = S` ∧K with K a finite

G-CW complex, and ` ∈ Z, the functor πstSG(X, − ) is a homotopy functor,

and so for all Y , ho SG(X,Y ) may be computed as πstSG(X,Y ).

Proof. Working through the skeletal filtration of K and using the exact

sequence (B.38) reduces the claim to the case in which K = G/H+ ∧ Sn. But

that case is Corollary B.28. �

Note that

πstSG(S0 ∧K,S0 ∧ L) = lim−→π0 T G(SV ∧K,SV ∧ L).

When L is a finite G-CW complex, this is the definition of SWG(K,L). Thus

Proposition B.44 contains as a special case

Proposition B.45. The functor Σ∞ induces a fully faithful embedding

SWG → ho SG.

B.3.5. Equivariant additivity. Our next goal is to show that the forma-

tion of indexed wedges in SG is homotopical. We will do this, as in [5], via a

Spanier-Whitehead duality argument. To make this work we need to show that

smashing with SV and S−V are homotopical. As mentioned in Remark B.35,

this implies that they induce inverse functors on ho SG. It also lays the ground-

work for our investigation of the homotopical properties of the smash product

in Section B.3.7.

Lemma B.46. For a map X→Y in πstSG, the following are equivalent :

(i) the map X → Y is a weak equivalence;

(ii) for all H ⊂ G, and all k ∈ Z, the map

πst(G/H+ ∧ Sk, X)→ πst(G/H+ ∧ Sk, Y )

is an isomorphism ;

(iii) for some representation V of G, all H ⊂ G, and all k ∈ Z, the map

πst(G/H+ ∧ Sk ∧ SV , X)→ πst(G/H+ ∧ Sk ∧ SV , Y )

is an isomorphism ;
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(iv) for all representations V of G, all H ⊂ G and all k ∈ Z, the map

πst(G/H+ ∧ Sk ∧ SV , X)→ πst(G/H+ ∧ Sk ∧ SV , Y )

is an isomorphism.

Proof. The equivalence of the first two statements is Proposition B.42, and

they imply the fourth by Proposition B.44. The fourth statement obviously

implies the third. That the third statement implies the first two are proved

by induction on |G|, the assertion being trivial when G is trivial. We may

therefore assume that part (iii) holds, and that part (ii) holds for all proper

H ⊂ G. Let V0 ⊂ V be the subspace of invariant vectors. Using the long exact

sequence (B.38), and working by downward induction through an equivariant

cell decomposition of SV , one sees that for all k ∈ Z and all H ⊂ G, our

assumptions imply that the map

πst(G/H+ ∧ Sk ∧ SV0 , X)→ πst(G/H+ ∧ Sk ∧ SV0 , Y )

is an isomorphism. But in πstSG there is an isomorphism Sk ∧ SV0 ≈ Sk+`

with ` = dimV0, so this implies part (ii). �

We next show that both smashing with SV and smashing with S−V are

homotopical functors. Combined with Corollary B.34 this implies that they

induce inverse equivalences of ho SG.

Proposition B.47. Let V be a representation of G. The following con-

ditions on a map X → Y ∈ πstSG are equivalent :

(i) the map X → Y is a weak equivalence;

(ii) the map SV ∧X → SV ∧ Y is a weak equivalence;

(iii) the map S−V ∧X → S−V ∧ Y is a weak equivalence.

Proof. Since smashing with SV is the inverse equivalence of smashing with

S−V , it suffices to establish the equivalence of the first two assertions. Now

for any X, smashing with SV gives an isomorphism

πst(G/H+ ∧ Sk, S−V ∧X) ≈ πst(G/H+ ∧ Sk ∧ SV , X),

so the equivalence of the first two assertions is a consequence of Lemma B.46.

�

Corollary B.48. Suppose that V is a representation of G. Smashing

with SV and S−V are inverse equivalences of ho SG.

With Proposition B.47 in place, we have the following generalization of

Proposition B.44.

Proposition B.49. When X is of the form X = S−V ∧ K , with K a

finite G-CW complex, the functor πstSG(X, − ) is a homotopy functor, and
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hence

πstSG(X, − )→ ho SG(X, − )

is an isomorphism.

Proof. By Corollary B.34 there is an isomorphism.

πstSG(S−V ∧K, (− )) ≈ πstSG(K,SV ∧ (− )).

But SV ∧ (− ) is a homotopy functor by Proposition B.47, and πstSG(K, (− ))

is a homotopy functor by Proposition B.44. �

Expanded out, Proposition B.49 gives the formula

ho SG(S−V ∧K,Y ) = lim−→
W

[SW ∧K,YV⊕W ]G

advertised in Section 2.2.4 as (2.19). Taking S−V ∧K to be S−V ∧Sk∧G/H+,

k ∈ Z, this specializes to the isomorphism

(B.50) ho SG(S−V ∧ Sk ∧G/H+, X) ≈ lim−→
W>−k

πHW+kXV⊕W .

In particular, the expression lim−→W>−k π
H
W+kXV⊕W is a homotopy functor of X.

This fact is used in the proof of Proposition B.69, which plays a fundamen-

tal role in establishing the positive complete stable model category structure

on SG.

The fact that πstSG is tensored over SWG also gives control over homo-

topical properties of the smash product and of indexed wedges.

Corollary B.51. If X is of the form S−W ∧K , with K a G-CW complex

and W a representation of G, then the functor

(− ) ∧X : SG → SG

is homotopical.

Proof. By Proposition B.17 we may assume K to be finite. In addition, it

suffices to show that smashing with S−W ∧K is homotopical as a functor from

πstSG to itself. Suppose that Y → Y ′ is a weak equivalence. Let L ∈ SWG

be a V -dual of K. By the isomorphism of Proposition B.28 it suffices to show

that for all H ⊂ G and all k ∈ Z, the map

πstSG(G/H+ ∧ Sk, Y ∧X)→ πstSG(G/H+ ∧ Sk, Y ′ ∧X)

is an isomorphism. Using the first part of the duality isomorphism (B.36), we

can identify this map with

πstSG(G/H+ ∧Sk ∧SW ∧L, SV ∧Y )→ πstSG(G/H+ ∧Sk ∧SW ∧L, SV ∧Y ′),

and finally by Proposition B.44, with

ho SG(G/H+ ∧Sk ∧SW ∧L, SV ∧Y )→ ho SG(G/H+ ∧Sk ∧SW ∧L, SV ∧Y ′).
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But this latter map is an isomorphism since SV ∧ Y → SV ∧ Y ′ is a weak

equivalence (Proposition B.47). �

Proposition B.52. Let J be a finite G-set. For any X ∈ SG, the canon-

ical map
∨
j∈J X →

∏
j∈J X is an isomorphism in πstSG and hence a weak

equivalence.

Proof. The finite G-sets are self-dual in SWG. Since∨
j∈J

X ≈ J+ ∧X,

the result follows from the duality isomorphism

πstSG(Z, J+ ∧X) ≈ πstSG(J+ ∧ Z,X) ≈ πstSG
(
Z,
∏
j∈J

X
)

once one checks that the composite map is the same as the one coming from the

canonical map from the (constant) finite indexed wedge to the finite indexed

product. We leave this to the reader. �

Corollary B.53. Let J be a finite G-set and X an equivariant J-diagram.

The map ∨
j∈J

Xj →
∏
j∈J

Xj

is an isomorphism in πstSG and hence a weak equivalence.

Proof. Let U : SG → SBJG be the pullback map associated to the unique

equivariant map J → pt. The indexed wedge is the left adjoint to U and the

indexed product is the right adjoint. The natural transformation from the

indexed wedge to the indexed product is easily checked to satisfy the condi-

tion of Lemma B.54 below. This reduces us to checking the case in which

the J-diagram is constant at a G-spectrum X. But that case is covered by

Proposition B.52. �

We have used

Lemma B.54. Suppose that U : D → C is a functor with a left adjoint

L and right adjoint R and that L → R is a natural transformation. If the

composition

(B.55) Id→ UR→ Id

of the adjoint to L→ R with the counit of the adjunction is the identity, then

L→ R is a retract of LUR→ RUR.
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Proof. Just apply L→ R on the left to the composition (B.55) to get

L //

��

LUR //

��

L

��
R // RUR // R. �

Corollary B.53 implies the only nontrivial part of the following “indexed”

analogue of Proposition B.22.

Proposition B.56.

(i) The formation of finite indexed products is homotopical.

(ii) Suppose that J is a finite G-set and X : BJG→ S is a functor. The map∨
j∈J

Xj →
∏
j∈J

Xj

is a stable weak equivalence in SG. Hence the formation of finite indexed

wedges is homotopical.

(iii) The formation of all indexed wedges is homotopical.

B.3.6. Change of group. Let H ⊂ G be a subgroup. Specializing Proposi-

tion B.56 to the case J = G/H gives the homotopical properties of the “change

of group” functors. The functor i∗H : SG → SH is homotopical by definition

and so induces a functor on the homotopy categories

i∗H : ho SG → ho SH .

Taking J = G/H in Proposition B.56 we see that the left and right adjoints to

i∗H are also homotopical and that the canonical natural transformation between

them is a weak equivalence. They therefore induce left and right adjoints to the

restriction map on the homotopy categories, and the canonical map between

them is an isomorphism. This is the Wirthmüller isomorphism [84], [5].

B.3.7. Weak equivalences and the smash product. The smash product is

not known to preserve weak equivalences, but it does so in good cases.

Definition B.57. An equivariant orthogonal spectrum is cellular if it is in

the smallest subcategory of SG containing the spectra of the form G+∧
H
S−V ∧Sk

with V a representation of H and k ≥ 0 and that is closed under the formation

of arbitrary coproducts, the formation of mapping cones, retracts, and the

formation of filtered colimits along h-cofibrations. A cellular spectrum is built

entirely from induced cells if it is in the smallest subcategory containing the

spectra of the form G+ ∧
H
S−V ∧ Sk, with H a proper subgroup of G, and that

is closed under the properties above.
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The small object argument shows that every X receives, functorially, a

weak equivalence X̃ → X from a cellular X̃.

Proposition B.58. If K is cellular, then K is flat: the functor sending

X to X ∧K preserves weak equivalences.

Proof. By Corollary B.51 and the fact that the formation of indexed

wedges is homotopical (Proposition B.56), the result is true when

K = G+ ∧
H
S−V ∧ Sk.

The functor X ∧K is built from

X ∧G+ ∧
H
S−V ∧ Sk

by forming wedges, mapping cones, and filtered colimits along h-cofibrations,

all of which are homotopical by Proposition B.56. �

Since every object is weakly equivalent to a cellular object, and cellular

objects are flat, Remark B.16 implies

Proposition B.59. Suppose that X → Y is a weak equivalence of flat

spectra. Then for any Z , the map X ∧ Z → Y ∧ Z is a weak equivalence.

Let SGfl ⊂ SG be the full subcategory of flat objects, considered as a ho-

motopical category using the stable weak equivalences. Since every object of

SG is weakly equivalent to an object of SGfl , the functor

(B.60) ho SGfl → ho SG

is an equivalence of categories. The above results show

Proposition B.61. The smash product functor

SGfl × SG → SG

is homotopical.

The equivalence (B.60) and Proposition B.58 are enough to show that the

smash product descends to give ho SG a symmetric monoidal structure and that

the map SWG → ho SG is symmetric monoidal. For a more refined statement,

see Section B.4.2.

B.4. Spectra as a model category.

B.4.1. The positive complete model structure. Let Acof be the set of maps

(B.62) Acof = {G+ ∧
H
S−V ∧ Sn−1

+ → G+ ∧
H
S−V ∧Dn

+}
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with n ≥ 0, H a subgroup of G, and V a representation of H containing a

nonzero invariant vector. We define the class

SGcof ⊂ SG

of positive complete cofibrations to be the smallest collection of maps in SG con-

taining the maps in (B.62) and that is closed under coproducts, cobase change

along arbitrary maps, and filtered colimits. A positive complete fibration (or

just fibration) is a map having the right lifting property with respect to the

class of maps in SGcof that are stable weak equivalences.

Proposition B.63. The category SG equipped with the stable weak equiv-

alences, the positive complete cofibrations, and the positive complete fibrations

forms a (cofibrantly generated) Quillen model category.

We will call this model structure the positive complete model structure,

and when we need to recruit a model structure for some task, this will be

the one we use. Henceforth the terms “cofibration,” “fibration,” and “weak

equivalence” will refer to “positive complete cofibration,” “positive complete

fibration,” and “stable weak equivalence.”

Remark B.64. Since the maps in Acof are mapping cylinders, they are

h-cofibrations. This implies that the cofibrations in SG are h-cofibrations

(cf. [55, Lemma III.2.5]) and hence flat. The cofibrant objects in SG are cellular

and hence flat.

The “positive” condition is needed for the study of commutative algebras.

On the other hand, it creates some peculiarities in the model structure. For

example, the zero sphere S0 is not cofibrant, nor is S0∧K when K is a G-CW

complex. The cofibrant replacements are given by

S−1 ∧ S1 ∧K → S0 ∧K.

This means that the adjunction

Σ∞ : T G � SG : Ω∞

is not a Quillen adjunction, even though the left adjoint preserves all weak

equivalences between nondegenerately based G-spaces, and so barely needs to

be derived.

The positive complete model structure does not quite appear in the liter-

ature. It is closely related to the positive stable model structure of [55].

The positive complete model structure is cofibrantly generated. The set

Acof is the set of generating cofibrations. The set Bacyclic of generating acyclic

cofibrations consists of the analogous maps

(B.65) G+ ∧
H
S−V ∧ In−1

+ → G+ ∧
H
S−V ∧ In
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together with the corner maps formed by smashing

(B.66) G+ ∧
H

Ä
S−V⊕W ∧ SW

ä
→ G+ ∧

H
S̃−V

with the maps Sn−1
+ → Dn

+. The H-representation V is assumed to have a

nonzero invariant vector, while W need not. The map (B.66) is extracted from

the factorization

(B.67) S−V⊕W ∧ SW → S̃−V → S−V

formed by applying the small object construction in SH , using the maps inAcof.

A map X → Y has the right lifting property with respect to the class

of maps Acof if and only for each H ⊂ G and each representation V of H

containing a nonzero invariant vector, the map XV → YV is an acyclic fibration

in T H . Among other things this implies that X → Y is a weak equivalence

and that the map S̃−V → S−V is a homotopy equivalence. From this one

concludes that a map X → Y has the right lifting property with respect to

Bacyclic if and only if for each subgroup H ⊂ G and each representation V of

H containing a nonzero invariant vector, the map XV → YV is a fibration in

SH , and for each representation W of H, the square

(B.68) XV
//

��

ΩWXV⊕W

��
YV // ΩWYV⊕W

is homotopy cartesian in T H .

Proposition B.69. If a map X → Y is a weak equivalence and has the

right lifting property with respect to Bacyclic then it has the right lifting property

with respect to Acof.

Proof. We must show that the conditions imply that for each H ⊂ G and

each representation V of H containing a nonzero invariant vector, the map

XV → YV is an acyclic fibration in T H . Part of our assumption is that it is

a fibration, so it remains to show that it is a weak equivalence. Choose an

exhausting sequence {Vn}. Letting W range through this sequence in (B.68)

leads to a homotopy cartesian square

XV
//

��

ho lim−→ΩVnXV⊕Vn

��
YV // ho lim−→ΩVnYV⊕Vn .

Since X → Y is a weak equivalence, the rightmost vertical map is a weak

equivalence (by (B.50)), and hence so is XV → YV . �
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Proposition B.70. Any cobase change along a map in Bacyclic is a weak

equivalence.

Proof. Since the maps in Bacyclic are flat, it suffices to check that the maps

in Bacyclic are weak equivalences. The only ones for which this is not obvious

are the corner maps. Since they are flat, it suffices to check that the quotients

G+ ∧
H

Ä
S̃−W /

Ä
S−V⊕W ∧ SV

ää
∧Dn/Sn−1

are weakly contractible. Since Dn/Sn−1 is flat, and G+ ∧
H

(− ) is homotopical,

it suffices to show that

S̃−W /
Ä
S−V⊕W ∧ SV

ä
is weakly contractible in SH or, equivalently that the leftmost map in (B.67) is

a weak equivalence in SH . But that is a consequence of Proposition B.30 and

the two out of three property. �

Proposition B.71. A map X → Y is a fibration if and only if it has the

right lifting property with respect to Bacyclic.

Proof. Suppose that A → B is an acyclic cofibration. Using the small

object construction with the maps in Bacyclic factor it as A → B̃ → B, where

A → B̃ is a filtered colimit of maps constructed by iterated cobase change

along maps in Bacyclic and B̃ → B has the right lifting property with respect to

Bacyclic. The map A→ B̃ is a weak equivalence by Propositions B.70 and B.17.

It follows that B̃ → B is a weak equivalence, and so by Proposition B.69, has

the right lifting property with respect to Acof. This means that A → B is a

retract of A → B̃. Since X → Y has the right lifting property for A → B̃, it

also has this property for A→ B. �

The verification of the model category axioms is now completely straight-

forward and left to the reader.

Let H ⊂ G be a subgroup. In the positive complete model category

structures, the restriction functor

i∗H : SG → SH

preserves weak equivalences, fibrations and cofibrations. This implies

Proposition B.72. Let H ⊂ G be a subgroup. The restriction functor

and its left adjoint form a Quillen pair

G+ ∧
H

(− ) : SH � SG : i∗H ,

as do the restriction functor and its right adjoint

i∗H : SG � SH :
∏

j∈G/H
(− )j .
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Corollary B.73. An indexed wedge of cofibrations is a cofibration.

Corollary B.73 is one of our reasons for introducing the positive complete

model structure. The positive stable model structure of [55] does not have this

property.

Associated to any map i : G′→G of finite groups is a functor i∗ : SG→SG
′
.

This functor has both a left and right adjoint. The functor i∗ sends the generat-

ing cofibrations to indexed wedges of generating cofibrations and hence cofibra-

tions by Corollary B.73. Since it is a left adjoint, it therefore sends cofibrations

to cofibrations. It also sends the generating acyclic cofibrations to weak equiv-

alences. To see this note that the generators of the form X ∧ (In−1
+ → In+)

are homotopy equivalences and hence go to homotopy equivalences. To check

that the corner maps go to weak equivalences, it suffices to show that the

maps (B.66) go to weak equivalences. Since S̃−V → S−V is a homotopy equiv-

alence, this is equivalent to showing that maps of the form

G+ ∧
H

Ä
S−V⊕W ∧ SW

ä
→ G+ ∧

H
S−V

go to weak equivalences. But these maps go to an indexed wedge of maps of

the form

(B.74)
Ä
S−V

′⊕W ′ ∧ SW ′
ä
→ S−V

′

that are weak equivalences. Thus i∗ also sends acyclic cofibrations to acyclic

cofibrations. This gives

Proposition B.75. If i : G′ → G is any homomorphism of finite groups,

then the pullback functor

i∗ : SG → SG
′

is a left Quillen functor.

For more along these lines, see [55, Rem. V.3.13].

B.4.2. Smash product. Equipped with the smash product and the positive

complete model category structure, SG is a symmetric monoidal model category

in the sense of Hovey [35, Def. 4.2.6] and Schwede-Shipley [77]. This means

that the analogue of Quillen’s axiom SM7 holds (the pushout product axiom),

and for any cofibrant X, the map

S̃0 ∧X → X

is a weak equivalence, where S̃0 → S0 is a cofibrant approximation. As will be

apparent to the reader the proof applies equally well if “cofibrant” is replaced

by “cellular.”

Proposition B.76. Equipped with the smash product, the positive com-

plete model structure is a symmetric monoidal model category.
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The positive complete model structure also satisfies the monoid axiom [78,

Def. 3.3].

Proposition B.77. If X → Y is an acyclic cofibration in SG and Z is

arbitrary, then X ∧ Z → Y ∧ Z is a flat weak equivalence.

We have stated these together to slightly streamline the proof. When

cofibrations are flat, the monoid axiom implies the “weak equivalence” part

of the pushout product axiom once one knows the “cofibration” part. Indeed,

suppose A1 → B1 is an acyclic cofibration and A2 → B2 is a cofibration. Then

the vertical arrows in the diagram

A1 ∧A2
//

∼
��

A1 ∧B2

∼
��

B1 ∧A2
// B1 ∧B2

are weak equivalences by the monoid axiom, and all of the arrows are cofibra-

tions by the “cofibration” part (Remark B.79). Since cofibrations are flat, the

map from A1 ∧B2 to the pushout is a weak equivalence, and the desired weak

equivalence assertion then follows from two out of three.

Proofs of Propositions B.76 and B.77. Proposition B.59 implies the unit

axiom since cofibrant objects are cellular and hence flat (Remark B.64). The

pushout product axiom asserts that if f1 : A1 → B1 and f2 : A2 → B2 are

cofibrations, then the corner map from the pushout of the left and top arrows in

(B.78) A1 ∧A2
//

��

A1 ∧B2

��
B1 ∧A2

// B1 ∧B2

to the bottom right term is a cofibration, and is acyclic if one of f1 or f2 is. It

suffices to check the cofibration condition when f1, and f2 are in Acof and so

of the form

G ∧
H1

S−V1 ∧
Ä
Sk−1 → Dk

ä
,

G ∧
H2

S−V2 ∧
Ä
S`−1 → D`

ä
.

But in that case the corner map is the smash product of G ∧
H1

S−V1 with

G ∧
H2

S−V2 with the pushout product of Sk−1 → Dk and S`−1 → D`. This

is an indexed wedge of cofibrations hence a cofibration. As remarked above,

once Proposition B.77 is proved, we are done. Since X → Y is a cofibration,

it is an h-cofibration, so it suffices to show that (Y/X) ∧ Z is weakly con-

tractible if Y/X is. But Y/X is cofibrant, hence flat, so the claim follows from

Proposition B.59. �
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Remark B.79. The special case of the pushout product axiom for ∗ → A

and ∗ → B asserts that if A and B are cofibrant, then so is A ∧B.

Hovey [35, Th. 4.3.2] now implies

Corollary B.80. The left derived smash product makes ho SG into a

closed symmetric monoidal category.

B.4.3. The canonical homotopy presentation. Let

· · · ⊂ Vn ⊂ Vn+1 ⊂ · · ·

be an exhausting sequence of orthogonal G-representations, and consider the

transition diagram

(B.81) S−Vn+1 ∧JG(Vn, Vn+1) ∧Xn
//

��

S−Vn+1 ∧Xn+1

S−Vn ∧Xn.

Write

Wn = Vn+1 − Vn
for the orthogonal complement of Vn in Vn+1. The inclusion Vn ⊂ Vn+1 gives

an embedding

SWn →JG(Vn, Vn+1),

and so from (B.81) a diagram

S−(Vn⊕Wn) ∧ SWn ∧XVn
//

��

S−Vn+1 ∧Xn+1

S−Vn ∧Xn.

Putting these together as n varies results in a system

(B.82) A0 B0
∼oo // A1 B1

∼oo // A2 B2
∼oo // A3 B3

∼oo // · · · .

The system (B.82) maps to X and a simple check of equivariant stable homo-

topy groups shows that the map from its homotopy colimit to X is a weak

equivalence. Now for each n let Cn be the homotopy colimit of the portion

(B.83) A0 B0
∼oo // · · · // An−1 Bn−1

∼oo // An

of (B.82). Then Cn is naturally weakly equivalent to An = S−Vn ∧XVn , and

the Cn fit into a sequence

(B.84) C0 → C1 → C2 → · · ·

whose homotopy colimit coincides with that of (B.82). This gives the canonical

homotopy presentation of X. One can functorially replace the sequence (B.84)
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with a weakly equivalent sequence of cofibrations between cofibrant-fibrant

objects. The colimit of this sequence is naturally weakly equivalent to X. It

will be cofibrant automatically, and fibrant since the model category SG is

compactly generated.

We write the canonical homotopy presentation of X as

X ≈ holim−→
Vn

(S−Vn ∧XVn)cf,

or when more precision is needed, as a diagram

X ← holim−→
Vn

(S−Vn ∧XVn)c → holim−→
Vn

(S−Vn ∧XVn)cf,

with the subscript indicating cofibrant and cofibrant-fibrant replacement.

B.5. Homotopy properties of the norm. The purpose of this section is to

establish Proposition B.104 which asserts that indexed smash products have a

left derived functor which may be computed on cofibrant objects. As will be

apparent to the reader, they can also be computed on cellular objects. Many

of the technical results in this section are also required for our analysis of

symmetric powers and of commutative algebras.

Before formulating our main results, we generalize the situation slightly.

B.5.1. Equivariant J-diagrams. Given a nonempty G-set J , consider the

category SBJG of functors BJG → S. A choice of point t in each G-orbit of J

gives an equivalence

SBJG ≈
∏
t

SGt ,

where Gt is the stabilizer of t. We give SBJG the model structure corresponding

to the product of the positive complete model structures under this equivalence.

The model structure is independent of the chosen points in each orbit. We

will refer to the model category SBJG as the model category of equivariant

J-diagrams of spectra.

To be more explicit, a map of J-diagrams X → Y is a weak equivalence

if and only if for each j ∈ J , the map Xj → Y j is a weak equivalence in SGj .

The generating cofibrations are the maps whose jth component has the form

Gj+ ∧Hj
S−Vj ∧ Smj−1

+ → Gj+ ∧Hj
S−Vj ∧Dmj

+ ,

with Vj a representation of Hj having a nonzero invariant vector. They can be

expressed without reference to points and stabilizers as an indexed wedge

(B.85) p∨∗
Ä
S−V ∧

Ä
Sn−1

+ → Dn
+

ää
with p : J ′ → J a finite surjective map of G-sets, and V a G-equivariant

orthogonal vector bundle over J ′ having a nowhere-zero invariant section. The
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generating acyclic cofibrations are the maps of the form

p∨∗S
−V ∧

Ä
In−1

+ → In+
ä

and those constructed as the corner map formed by smashing

(B.86) p∨∗
Ä
S−V⊕W ∧ SW → S̃−V

ä
with the maps Sn−1

+ → Dn
+. As in (B.66), the map (B.86) is extracted from

the factorization

(B.87) S−V⊕W ∧ SW → S̃−V → S−V

by applying the small object construction in the category of equivariant J ′-

diagrams using the generating cofibrations. The map S̃−V → S−V is a homo-

topy equivalence.

If J → K is a map of finite G-sets, the restriction functor

SBKG → SBJG

has both a left and right adjoint, given by the two Kan extensions. All three

functors are homotopical, and the both the restriction functor and its left ad-

joint send cofibrations to cofibrations. This means that the restriction functor

is both a left and right Quillen functor.

Let p : J → K be an equivariant map of finite G-sets. The indexed smash

product gives a functor

p∧∗ = (− )∧J/K : SBJG → SBKG.

When J → K is the map G/H → pt this is the norm. The various homotopi-

cal properties of indexed and symmetric smash products we require are most

naturally expressed as properties of (− )∧J/K . Working fiberwise, establishing

these reduces to the case K = pt. To keep the discussion uncluttered we focus

on that case in this section, leaving the extension to the case of more general

K to the reader.

B.5.2. Indexed smash products and cofibrations. Let p : J → pt be the

unique equivariant map, and write the indexed smash product as (− )∧J . Note

that if V is an equivariant orthogonal vector bundle over J , then

(S−V )∧J = S−V
′
,

where V ′ is the orthogonal G-space of global sections of V .

Lemma B.88. Suppose that A → B is a generating cofibration in SBJG.

The indexed corner map ∂AB
∧J → B∧J is an indexed wedge∨

Γ

S−V ∧
Ä
S(W )+ → D(W )+

ä
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in which Γ is a G-set, V and W are equivariant vector bundles over Γ, and V

has a nonzero invariant section. In particular, ∂AB
∧J → B∧J is a cofibration.

Proof. This is a straightforward consequence of the distributive law (The-

orem A.37) applied to (B.85) and the compatibility of the formation of ∂AB
∧J

with indexed wedges, as described at the end of Section A.3.4. �

Proposition B.89. Suppose that J is a nonempty finite G-set. If X → Y

is a cofibration of equivariant J-diagrams, the indexed smash product

X∧J → Y ∧J

is an h-cofibration. It is a cofibration between cofibrant objects in SG if X is

cofibrant.

Proof. The assertion that X∧J → Y ∧J is an h-cofibration is contained in

Proposition A.69. For the cofibration assertion, we work by induction on |J |
and may therefore assume the result to be known for any nonempty J0 ⊂ J

and any H ⊂ G stabilizing J0 as a subset. In particular, we may assume that if

X is cofibrant, then X∧J0 is a cofibrant H-spectrum for any nonempty proper

J0 ⊂ J and any H ⊂ G stabilizing J0 as a subset.

We will establish the theorem in the case in which X → Y arises from a

pushout square of J-diagrams

A //

��

B

��
X // Y

in which A → B is a generating cofibration. We will show in this case that

X∧J → Y ∧J is an h-cofibration and is a cofibration if X is cofibrant. Since

the formation of indexed smash products commutes with directed colimits and

retracts, the proposition then follows from the small object argument.

Give Y ∧J the filtration described in Section A.3.4. The successive terms

are related by the pushout square

(B.90)
∨

J=J0qJ1
|J1|=n

X∧J0 ∧ ∂AB∧J1 //

��

∨
J=J0qJ1
|J1|=n

X∧J0 ∧B∧J1

��
filn−1 Y

∧J // filn Y
∧J .

By Lemma B.88, each of the maps

∂AB
∧J1 → B∧J1
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is a cofibration. If X is cofibrant, then X∧J0 is either S0 or cofibrant by

induction, hence

X∧J0 ∧ ∂AB∧J1 → X∧J0 ∧B∧J1

is a cofibration by the pushout product axiom. Since indexed wedges preserve

cofibrations, the top row of (B.90) is then a cofibration and hence so is the

bottom row. �

To show that the indexed smash product has a left derived functor we need

to augment Proposition B.89 and show that what when X → Y is an acyclic

cofibration, then X∧J → Y ∧J is a weak equivalence. This can be proved with

the above argument once we know that the indexed corner maps ∂AB
∧J → B∧J

associated to the generating acyclic cofibrations are weak equivalences. But

the generating acyclic cofibrations contain the maps of the form (B.86) so

dealing with them requires understanding something about indexed corner

maps of fairly general cofibrations. These can be studied as the indexed smash

products of maps in a different symmetric monoidal category.

B.5.3. The category of arrows. Let SG1 denote the category of maps X =

(X0 → X1) in SG, with morphisms the commutative diagrams. As mentioned

in Remark A.42, SG1 can be made into a closed symmetric monoidal category

by defining

(X1 → X2) ∧ (Y1 → Y2)

to be the corner map, from the pushout of the top and left arrows in

X1 ∧ Y1
//

��

X2 ∧ Y1

��
X1 ∧ Y2

// X2 ∧ Y2

to the bottom right corner. The tensor unit is ∗ → S0.

We give SG1 the projective model structure in which a map

(B.91) (X1 → X2)→ (Y1 → Y2)

is a weak equivalence or fibration if each of Xi → Yi is, and is a cofibration if

both X1 → Y1 and the corner map

(B.92) X2 ∪
X1

Y1 → Y2

are cofibrations. An object X1 → X2 is therefore cofibrant if X1 is cofibrant

and X1 → X2 is a cofibration.

The model structure on SG1 is compactly generated. The model category

structure on generating (acyclic) cofibrations in SG1 are of two types. Type I

are the maps

(K → K)→ (L→ L)
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and type II are the maps

(∗ → K)→ (∗ → L),

where K → L is running through the set Acof defined in (B.62) (respectively

Bacyclic).

Proposition B.93. Equipped with the structure just described, SG1 is a

symmetric monoidal model category satisfying the monoid axiom.

Proof. The proof follows the proof of Propositions B.76 and B.77 and,

because of the special nature of the generators, essentially reduces to it. It

suffices to check the “cofibration” assertion on generators. In each of the three

cases (type I and type I, type II and type II, and mixed type) the result reduces

to the case of SG. Since the cofibrations are h-cofibration, the monoid axiom

reduces showing that if (∗ → ∗) → (X1 → X2) is an acyclic cofibration and

(Z1 → Z2) is arbitrary, then both the domain and range in the corner map of

X1 ∧ Z1
//

��

X1 ∧ Z2

��
X2 ∧ Z1

// X2 ∧ Z2

are weakly contractible. But by the monoid axiom for SG, every term in the

diagram is weakly contractible. The claim then follows since the left vertical

arrow is an h-cofibration and hence flat. As pointed out before the statement

of Proposition B.76, this implies the “weak equivalence” part of the pushout

product axiom. The unit axiom is also straightforward and left to the reader.

�

The proof of Proposition B.93 is more or less completely formal, and can

be rewritten to apply to the arrow category of any symmetric monoidal model

category. This is done in the recent paper [36] of Hovey.

B.5.4. Indexed corner maps and cofibrations. Proposition B.93 addresses

the homotopy properties of ordinary smash products in SG1 . For the indexed

smash products we work in the arrow category S
BJG
1 of maps of equivariant

J-diagrams, in the projective model structure. Our aim is to establish Propo-

sition B.96 which gives control over the indexed corner maps in SG (Propo-

sition B.97). It is the analogue in S
BJG
1 of Proposition B.89. In preparation,

we need to identify the generating (acyclic) cofibrations. As mentioned in the

previous section, those in SG1 are of two types. Type I are the maps

(K → K)→ (L→ L)
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and type II are the maps

(∗ → K)→ (∗ → L),

where K → L is running through the set Acof defined in (B.62) (respectively

Bacyclic). The generating (acyclic) cofibrations in S
BJG
1 can be taken to be the

equivariant J-diagrams consisting entirely of type I or type II generators.

Remark B.94. A map (B.91) is an h-cofibration if both X1 → Y1 and the

corner map (B.92) are. Since the cofibrations in SG are h-cofibrations, the

same is true of the cofibrations in SG1 .

Lemma B.95. If X → Y is a generating cofibration in the category of

equivariant J-diagrams in SG1 , then the indexed corner map

∂XY
∧J → Y ∧J

is a cofibration between cofibrant objects in SG1 .

Proof. First note that for generating cofibrations of type I, the corner map

is

(∂KL
∧J → ∂KL

∧J)→ (L∧J → L∧J)

and in type II it is

(∗ → ∂KL
∧J)→ (∗ → L∧J).

The assertion therefore reduces to Lemma B.88. �

Proposition B.96. Suppose that J is a finite G-set. If

X → Y

is a cofibration in SG1 and X is cofibrant, then the indexed smash product

X∧J → Y ∧J

is a cofibration between cofibrant objects.

Proof. The proof proceeds exactly as in the case of Proposition B.89. The

filtration of Section A.3.4 and induction on |J | reduce the problem to showing

that the indexed corner map (in S
BJG
1 )

∂AY
∧J → B∧J

is a cofibration between cofibrant objects when A→ B is a cofibrant generator.

This is the content of Lemma B.95. �

Specializing, we now have

Proposition B.97. If X → Y is a cofibration of equivariant J-diagrams

and X is cofibrant, then the indexed corner map ∂XY
∧J → Y ∧J is a cofibration

between cofibrant objects.



202 M. A. HILL, M. J. HOPKINS, and D. C. RAVENEL

Proof. If X → Y is a cofibration of cofibrant J-diagrams, then (X → Y )

is cofibrant J-diagram in SG1 , and so

(X → Y )∧J = (∂XY
∧J → Y ∧J)

is cofibrant by Proposition B.96. �

B.5.5. Indexed smash products and acyclic cofibrations. With the indexed

corner maps of cofibrations under control we can now turn to the acyclic cofi-

brations.

Lemma B.98. If X → Y is a generating acyclic cofibration in SBJG, then

the indexed corner map

∂XY
∧J → Y ∧J

is an acyclic cofibration of cofibrant objects in SG.

Proof. We know from Proposition B.97 that the indexed corner maps are

cofibrations between cofibrant objects, so what remains is the assertion that

they are weak equivalences. This can be reduced further. Suppose that X → Y

is an acyclic cofibration in SBJG and we wish to show that the indexed corner

map ∂XY
∧J → Y ∧J is a weak equivalence. Give Y ∧J the filtration described in

Section A.3.4, in which the successive terms are related by the pushout square∨
J=J0qJ1
|J1|=n

X∧J0 ∧ ∂XY ∧J1 //

��

∨
J=J0qJ1
|J1|=n

X∧J0 ∧ Y ∧J1

��
filn−1 Y

∧J // filn Y
∧J .

By Proposition B.97 and the pushout product axiom, the upper arrow is a

cofibration which, by induction on |J |, we may assume to be acyclic when

n < |J |. Since the cofibrations are flat, this means that the bottom arrow is an

acyclic cofibration when n < |J |. It follows that in this case, the indexed corner

map is a weak equivalence if and only if the absolute map X∧J → Y ∧J is.

We now turn to the generating acyclic cofibrations. The generators of

the form X ∧
Ä
In−1

+ → In+
ä

are homotopy equivalences, and hence so are the

absolute maps. The other generators are of the form

(B.99)
Ä
Sn−1

+ → Dn+
ä
∧
Ä
p∨∗S

−V⊕W ∧ SW → p∨∗ S̃
−V
ä
,

where p : J ′ → J is a map of finite G-sets and V and W are equivariant vec-

tor bundles over J ′. The fact that the norm is multiplicative, together with

the monoid axiom for SG1 , reduces us to considering only the right-hand factor

in (B.99). The distributive law further reduces us to the case J ′ = J . Fi-

nally, since the map S̃−V → S−V is a homotopy equivalence, we may replace



KERVAIRE INVARIANT ONE 203

S̃−V with S−V . Evaluating both sides using Proposition A.59 we see that the

assertion amounts to checking that

S−V
′⊕W ′ ∧ SW ′ → S−V

′

is a weak equivalence, where V ′ and W ′ are the G-spaces of global sections.

But this is Proposition B.30 (see Remark B.33). �

As with Lemma B.95, the separate cases of type I and type II generators

reduce the result below to Lemma B.98.

Lemma B.100. If X → Y is a generating acyclic cofibration in the cate-

gory of equivariant J-diagrams in SG1 , then the indexed corner map

∂XY
∧J → Y ∧J

is an acyclic cofibration of cofibrant objects in SG1 .

Proposition B.101. Suppose that J is a finite G-set. The functor

(− )∧J : SBJG1 → SG1

sends acyclic cofibrations between cofibrant objects to acyclic cofibration be-

tween cofibrant objects, and hence weak equivalences between cofibrant objects

to weak equivalences between cofibrant objects.

Proof. The proof proceeds exactly as in the case of Proposition B.89.

That the second assertion follows from the first is Ken Brown’s Lemma (see,

for example, [35, Lemma 1.1.12]). �

Specializing Proposition B.101, we have

Proposition B.102. If X → Y is an acyclic cofibration in SBJG and X

is cofibrant, then both the indexed corner map ∂XY
∧J → Y ∧J and the absolute

map X∧J → Y ∧J are acyclic cofibrations between cofibrant objects.

B.5.6. Homotopy properties of the norm. With all this in hand we can now

show that indexed smash products have left derived functors. From Proposi-

tions B.89 and B.102 and Ken Brown’s Lemma, we have

Proposition B.103. The indexed smash product

(− )∧J : SBJG → SG

takes weak equivalences between cofibrant objects to weak equivalences between

cofibrant objects.

This gives

Proposition B.104. The indexed smash product has a left derived functor

(− )
L
∧J : SBJG → ho SG,
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which may be computed as

X
L
∧J = (Xc)

∧J ,

where Xc → X is a cofibrant approximation.

B.6. Symmetric powers. We now turn to the homotopical properties of

symmetric smash powers, or just “symmetric powers” for short.

B.6.1. Indexed symmetric powers. The nth symmetric (smash) power of a

G-spectrum is the orbit spectrum

Symn(X) = X∧n/Σn.

The homotopy properties of this functor are fundamental to understanding

the homotopy theory of equivariant commutative algebras. For indexed smash

products of commutative algebras, the distributive law leads one to consider

indexed smash products of symmetric powers

(SymnX)∧J .

These can be written as

(B.105) (SymnX)∧J = (X∧n/Σn)∧J ≈ X∧(n×J)/ΣJ
n

with n = {1, . . . , n}. This last expression is an indexed symmetric power.

The definition and homotopy properties of indexed symmetric powers are the

subject of this section.

Before turning to the definition, we consider a more basic situation. Sup-

pose that i : G̃ → G is a surjective map of groups with kernel N . Then the

functor i∗ : SG → SG̃ has both a left and a right adjoint. This is most readily

understood by thinking of G-spectra as objects of S equipped with a G-action.

The left adjoint i! : SG̃ → SG sends a spectrum Y to the orbit spectrum Y/N

equipped with its residual G-action. The expression on the right of (B.105) is

a special case of this. As in any diagram category, the orbit spectrum Y/N is

computed objectwise: if U is an orthogonal vector space, then (Y/N)U is the

G-space YU/N . For the homotopical properties we need information about the

W -space for a representation W of G. It is given by the formula

(Y/N)W = O(U,W )+ ∧
O(U)

(Y/N)U ,

where U is any vector space of the same dimension as W but with trivial

G-action. Interchanging the colimits, this space can be written as

(O(U,W )+ ∧
O(U)

YU )/N

which, in turn, is isomorphic to

YW /N,

where now W is regarded as a G̃ representation through the map G̃→ G.
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We can now define indexed symmetric powers. Let I be a finite G-set

and ΣI the group of (not necessarily equivariant) automorphisms of I, with G

acting by conjugation. Fix a G-stable subgroup Σ ⊂ ΣI , and regard I as a

ΣoG-set through the projection map to G. For a ΣoG-equivariant I-diagram

X, the indexed symmetric power is the orbit G-spectrum

SymI
ΣX = X∧I/Σ.

When the indexing set I has a trivial G-action, Σ is the full symmetry group

of I, and the equivariant I-diagram is the constant diagram with value X ∈ SG,

then this construction is the usual symmetric power Sym|I|X discussed above.

We will usually not distinguish in notation between a Σ oG-spectrum X and

the constant equivariant I-diagram with value X.

If X → Y is a map of ΣoG-equivariant I-diagrams, the indexed symmetric

corner map is the map of orbit G-spectra

∂X SymI
Σ Y → SymI

Σ Y

obtained by passing to Σ orbits from

∂XY
∧I → Y ∧I .

It can also be regarded as the symmetric power SymI
Σ(X → Y ) of (X → Y )

regarded as an object of the arrow category S
BΣoGI
1 .

Remark B.106. Since the orbit spectrum functor is a continuous left ad-

joint, it sends h-cofibrations to h-cofibrations. For example, suppose that

X → Y is a cofibration of cofibrant Σ oG-equivariant I-diagrams. By Propo-

sitions B.89 and B.97 both the indexed smash product

X∧I → Y ∧I

and the corner map

∂XY
∧I → Y ∧I

are cofibrations, and hence h-cofibrations, of Σ oG-spectra. This means that

all four of the maps

SymI
ΣX → SymI

Σ Y,

∂X SymI
Σ Y → SymI

Σ Y,

(EGΣ)+ ∧
Σ
X∧I → (EGΣ)+ ∧

Σ
Y ∧I ,

(EGΣ)+ ∧
Σ
∂XY

∧I → (EGΣ)+ ∧
Σ
Y ∧I

are h-cofibrations of G-spectra.
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Note that X∧I with its Σ o G-action is a special case of an indexed

monoidal product. This means that the distributive law applies to symmetric

powers and, given a pushout square

A //

��

B

��
X // Y,

there is a filtration of SymI
Σ Y whose successive terms are related by passing

to Σ-orbits from the filtration described in Section A.3.4.

As described in [55], the homotopy theoretic analysis of indexed symmetric

powers requires certain equivariant principal bundles. For the moment, let Σ

be any finite group with a G-action.

Definition B.107. An equivariant universal Σ-space is a ΣoG-space EGΣ

with the property that for each finite ΣoG-set S, the space of ΣoG-equivariant

maps

S → EGΣ

is empty if some element of S is fixed by a nonidentity element of Σ, and

contractible otherwise.

The defining property characterizes an equivariant universal Σ-space up

to ΣoG-equivariant weak homotopy equivalence. The space EGΣ is the total

space of the universal G-equivariant principal Σ-bundle. It can be constructed

as a Σ o G-CW complex, with cells of the form S ×Dm, where S is a Σ-free

Σ o G-set. We will always assume our equivariant universal Σ-spaces are

Σ oG-CW complexes, in which case the characterization is up to equivariant

homotopy equivalence.

The symmetric powers of a cofibrant spectrum are rarely cofibrant. How-

ever they still have very good homotopy theoretic properties. Our main result

is the following.

Proposition B.108. Suppose that X → Y is a cofibration between cofi-

brant Σ oG-equivariant I-diagrams. In the square of G-spectra

(B.109) (EGΣ)+ ∧
Σ
∂XY

∧I //

∼
��

(EGΣ)+ ∧
Σ
Y ∧I

∼
��

∂X SymI
Σ Y

// SymI
Σ Y,

every object is flat, the upper row is a cofibration between cofibrant objects, the

vertical maps are weak equivalences, and the bottom row is an h-cofibration.

The horizontal maps are weak equivalences if X → Y is.
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Remark B.110. By Proposition B.59 the maps in (B.109) asserted to be

weak equivalences remain so after smashing with any spectrum Z.

Remark B.111. The situation that comes up in studying the free commu-

tative algebra functor is that X → Y is a cofibration of cofibrant G-spectra,

regarded as a ΣI o G-spectrum through the map to G, and then regarded

as a constant equivariant I-diagram. This map of equivariant I-diagrams is

cofibrant by Proposition B.75, and so Proposition B.108 applies.

Along the way to proving Proposition B.108 we will also show

Proposition B.112. The functors (EGΣ)+ ∧
Σ

(− )∧I and SymI
Σ(− ) take

weak equivalences between cofibrant objects to weak equivalences.

Remark B.113. Proposition B.108 is part of the reason for the positive

condition in the model structure we have chosen. The result is not true for

general cellular objects described in Section B.3.7, though it is true for cellular

object built from cells of the form G+ ∧
H
S−V ∧ Dk

+ with V nonzero. The

condition that V is nonzero is used in the proof of Proposition B.116.

The assertions about the top row in Proposition B.108 are most easily

analyzed in the arrow category S
BIG
1 .

Lemma B.114. The functor

EGΣ+ ∧
Σ

(− )∧I : S
BΣoGI
1 → SG1

takes acyclic cofibrations between cofibrant objects to acyclic cofibrations be-

tween cofibrant objects and hence weak equivalences between cofibrant objects

to weak equivalences between cofibrant objects.

Proof. Let X → Y be an acyclic cofibration. By working through an

equivariant cell decomposition of EGΣ and using SM7 for the topological en-

richment, we reduce to showing that if S is a Σ-free Σ oG-set, then the map

S+ ∧
Σ
X∧I → S+ ∧

Σ
Y ∧I

is an acyclic cofibration between cofibrant objects. This is an indexed wedge

of maps, indexed by the Σ-orbits O ⊂ S. The summand corresponding to O
is the map of GO-spectra

O+ ∧
Σ
X∧I → O+ ∧

Σ
Y ∧I ,

where GO ⊂ G is the subgroup of G preserving O. Since O is a Σ-torsor, this

is just the map of indexed smash products

X∧I
′ → Y ∧I

′
,
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with I ′ = O ×
Σ
I, and is an acyclic cofibration between cofibrant objects by

Proposition B.101. The second assertion follows from the first by Ken Brown’s

lemma. �

The vertical maps in (B.109) require a more detailed analysis.

Definition B.115. Suppose that Σ is a group with an action of G and that

X is a Σ o G-spectrum. We will say that X is Σ-free as a G-spectrum if for

each orthogonal G-representation W , the Σ-action on XW is free away from

the base point.

Proposition B.116. If X is a cofibrant ΣoG-equivariant I-diagram and

Z is any Σ oG-spectrum, then X∧I ∧ Z is a Σ-free G-spectrum. The map

(B.117) (EGΣ)+ ∧
Σ

(X∧I ∧ Z)→ (X∧I ∧ Z)/Σ.

is a weak equivalence in SG.

Remark B.118. We will mostly be interested in the case in which the Σ-

action on Z is trivial. In that case the equivalence (B.117) takes the formÄ
(EGΣ)+ ∧

Σ
X∧I

ä
∧ Z ∼−→ SymI

Σ(X) ∧ Z.

Remark B.119. The proof of Proposition B.116 is nearly identical to that

of [55, Lemma III.8.4]. We go through the details because the statement is

slightly more general, and in order to correct a minor error in [55]. The state-

ments of [55, Lemma III.8.4] and the related [55, Lemma IV.4.5] both use EΣi,

whereas the object that should really be used is EGΣi. This makes the proofs

of [55, Th. III.8.1] and [57, Theorem 4] on equivariant commutative rings in-

complete. The actual homotopical analysis of commutative rings is more or

less equivalent to the homotopical analysis of the norm. So it would seem that

any correct treatment needs to be built on the theory of the norm.

Proof of Proposition B.116. For the first assertion, it suffices to show that

if A→ B is a generating cofibration,

A //

��

B

��
X0

// X1

is a pushout square, and X∧I0 ∧Z is Σ-free, then X∧I1 ∧Z is Σ-free. We use the

filtration described in Section A.3.4 and consider the pushout square below:

(B.120)
∨

I=I0qI1
|I1|=m

X∧I00 ∧ ∂AB∧I1 ∧ Z //

��

∨
I=I0qI1
|I1|=m

X∧I00 ∧B∧I1 ∧ Z

��
film−1X1 ∧ Z // filmX1 ∧ Z.



KERVAIRE INVARIANT ONE 209

Since A → B is a cofibration, the map in the top row is an h-cofibration

(Proposition B.97) and hence a closed inclusion. It therefore suffices to show

that Σ acts freely away from the base point on the upper right term (see

Remark A.9). Induction on |I| reduces this to m = |I|. In this way the first

assertion of the proposition reduces to checking the special case

X = p∨∗S
−V ∧Dk

+,

with p : Ĩ → I a surjective map of Σ o G-sets and V an equivariant vector

bundle over Ĩ having a nowhere vanishing invariant global section. Since the

factor (Dk
+)∧I can be absorbed into Z, we might as well suppose

X = p∨∗S
−V .

The distributive law gives

X∧I =
∨
γ∈Γ

S−Vγ ,

where Γ is the Σ oG-set of sections I → Ĩ, and

Vγ =
⊕
i∈I

Vγ(i).

For an orthogonal Σ oG-representation W we have, by Lemma A.18,

(X∧I ∧ Z)W =


∗ dimW < dimVγ ,∨
γ∈Γ

O(Vγ ⊕ Uγ ,W )+ ∧
O(Uγ)

ZUγ dimW ≥ dimVγ

in which U = {Uγ} is any Σ o G-equivariant vector bundle over Γ satisfying

dimUγ = dimW − dimVγ . We are interested in representations W that are

pulled back from the projection map Σ o G → G. In the first case there is

nothing to prove. In the second case the complement of the base point is

homeomorphic to ∐
γ∈Γ

O(Vγ ⊕ Uγ ,W ) ×
O(Uγ)

(ZUγ − {∗})

(see Remark A.9). The Σ-freeness then follows from the fact that this space

has an equivariant map to the disjoint union of Stiefel-manifolds∐
γ∈Γ

O(Vγ ,W ) =
∐
γ∈Γ

O(Vγ ⊕ Uγ ,W )/O(Uγ),

which is Σ-free since each Vγ(i) is nonzero, and Σ acts faithfully on I but

trivially on W .

With one additional observation, a similar argument reduces the assertion

about weak equivalences to the same case

(B.121) X = p∨∗S
−V .
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To spell it out, abbreviate (B.120) as

K //

��

L

��
Y // Y ′

and form

(EGΣ)+ ∧
Σ
Y

∼
��

(EGΣ)+ ∧
Σ
Koo [ //

∼
��

(EGΣ)+ ∧
Σ
L

∼
��

Y/Σ K/Σoo [ // L/Σ.

By Remark B.106 the rightmost maps in both rows are h-cofibrations and hence

flat. This means that if the vertical maps are weak equivalences, then the map

of pushouts is a weak equivalence (Remark B.13). With this in hand, one now

reduces the second claim to the cases X = p∨∗S
−V ∧Sk−1

+ and X = p∨∗S
−V ∧Dk

+.

Absorbing the factors (Sk−1
+ )∧I and (Dk

+)∧I into Z completes the reduction

to (B.121).

With this X, the map on W -spaces induced by (B.117) is the identity map

of the terminal object if dimW < dimVγ and otherwise the map of Σ-orbit

spaces induced by

(EGΣ)+ ∧
∨
γ∈Γ

O(Vγ ⊕ Uγ ,W )+ ∧
O(Uγ)

ZUγ →
∨
γ∈Γ

O(Vγ ⊕ Uγ ,W )+ ∧
O(Uγ)

ZUγ ,

in which U = {Uγ} is any Σ o G-equivariant vector bundle over Γ satisfying

dimUγ = dimW − dimVγ . The proposition then follows from the fact that

EGΣ×
∐
γ∈Γ

O(Vγ ⊕ Uγ ,W )→
∐
γ∈Γ

O(Vγ ⊕ Uγ ,W )

is an equivariant homotopy equivalence for the compact Lie group

G =
Ä∏
γ∈Γ

O(Uγ) o Σ
ä
oG.

To see this, note that by [38] and [39], both sides are G -CW complexes so it

suffices to check that the map is a weak equivalence of H-fixed point spaces for

all H ⊂ G . If the image of H in Σ oG is not a subgroup of Σ, then EGΣH is

contractible and the map of fixed points is a homotopy equivalence. If H is a

subgroup of
∏
O(Uγ), then it acts trivially on EGΣ, and once again EGΣH is

contractible. Finally, suppose that there is an element h ∈ H whose image in

Σ oG is a nonidentity of Σ. Since W is pulled back from a G-representation,

this element acts trivially on W . If γ ∈ Γ is not fixed by h, then no point

of O(Vγ ⊕ Uγ ,W ) can be fixed by h. If γ ∈ Γ is fixed by h, then h acts on

Vγ . This action is nontrivial since Σ acts faithfully on I. This means that
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O(Vγ⊕Uγ ,W ) has no points fixed by h since h acts trivially on W . Both sides

therefore have empty H-fixed points in this case. �

Proof of Proposition B.108. The assertion that the upper arrow is a cofi-

bration between cofibrant objects and a weak equivalence if X → Y is, is

contained in Lemma B.114. Indeed, consider the map of arrows

(X → Y )→ (Y → Y ).

If X → Y is a cofibration between cofibrant objects, then both the domain and

range of the above map of arrows are cofibrant. By Lemma B.114 the mapÄ
(EGΣ)+ ∧

Σ
∂XY

∧I → (EGΣ)+ ∧
Σ
Y ∧I
ä
→
Ä
(EGΣ)+ ∧

Σ
Y ∧I → (EGΣ)+ ∧

Σ
Y ∧I
ä

is a map of cofibrant objects, which is a weak equivalence if X → Y is. This

gives the assertion about the upper row. The fact that the bottom row is an

h-cofibration is part of Remark B.106.

For the remaining assertions it will be helpful to reference the expanded

diagram

(EGΣ)+ ∧
Σ
∂XY

∧I ∧ Z //

��

(EGΣ)+ ∧
Σ
Y ∧I ∧ Z //

��

(EGΣ)+ ∧
Σ

(Y/X)∧I ∧ Z

��
∂X SymI

Σ Y ∧ Z // SymI
Σ Y ∧ Z // SymI

Σ(Y/X) ∧ Z,

in which Z is any G-spectrum. By Proposition B.116 the two right vertical

maps are weak equivalences. Since the left horizontal maps are h-cofibrations,

hence flat, this implies that the left vertical map is a weak equivalences. Taking

Z = S0 gives the weak equivalence of the vertical arrows in the statement of

Proposition B.108. Letting Z vary through a weak equivalence and using the

fact that cofibrant objects are flat gives the flatness assertion. By what we

have already proved, when X → Y is a weak equivalence, the vertical and top

arrows in the left square are weak equivalences and hence so is the bottom left

map. This completes the proof. �

Proof of Proposition B.112. Suppose that X → Y is a weak equivalence

of cofibrant objects, and consider the diagram

(EGΣ)+ ∧
Σ
X∧I //

��

(EGΣ)+ ∧
Σ
Y ∧I

��
SymI

ΣX
// SymI

Σ Y.

The vertical maps are weak equivalences by Proposition B.116. The top hor-

izontal map is a weak equivalence by Lemma B.114 (applied to, say, the map

(∗ → X)→ (∗ → Y )). The bottom map is therefore a weak equivalence. �
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B.6.2. Iterated indexed and symmetric powers. In our analysis of the norms

of commutative rings in Section B.8 we will encounter iterated indexed smash

products and symmetric powers. These work out just to be other indexed

smash or symmetric powers. The point of this section is to spell this out.

Suppose that I and J are G-sets and that X is an equivariant I × J-

diagram. The factorization

I × J → J → pt

gives an isomorphism

(B.122) (X∧I)∧J ≈ X∧(I×J),

in which X∧I is shorthand for p∧∗X with p : I×J → J the projection mapping.

Applying this to the arrow category we get an isomorphism of the corner map

∂XY
∧(I×J) → X∧(I×J)

with the iterated corner map

∂WZ
∧J → Z∧J

in which W → Z is the map

∂XY
∧I → Y ∧I .

There is also a version with symmetric powers. Suppose in addition that

Σ ⊂ ΣI is a G-stable subgroup. Then the action of ΣJ on I × J by

φ · (i, j) = (φ(j) · i, j)

is G-stable, making J×I into a ΣJ oG-set, and the projection map I×J → J

equivariant, with ΣJ oG acting on J through G. When X is a ΣJ oG-equi-

variant J×I-diagram, the isomorphism (B.122) is ΣJoG-equivariant. Passing

to orbits gives an isomorphism of G-spectra

(B.123) (SymI
ΣX)∧J ≈ SymI×J

ΣJ
X.

By working in the arrow category we get an isomorphism of the corner map

∂X SymI×J
ΣJ

Y → SymI×J
ΣJ

Y

with the iterated indexed corner map

(B.124) ∂WZ
∧J → Z∧J

in which W → Z is the map

∂X SymI
Σ Y → SymI

Σ Y.
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Our analysis of the homotopy properties of symmetric powers depended on

a convenient cofibrant approximation. Let EGΣ be a universal G-equivariant

Σ-space. The above discussion leads to an isomorphismÄ
EGΣ+ ∧

Σ
X∧I

ä∧J ≈ EGΣJ
+ ∧

ΣJ
X∧(I×J),

and an identification of the corner map

∂W̃ Z̃
∧J → Z̃∧J

in which W̃ → Z̃ is the map

EGΣ+ ∧
Σ

Ä
∂XY

∧I → Y ∧I
ä

with Ä
EGΣJ

ä
+
∧
ΣJ

Ä
∂XY

∧(I×J) → Y ∧(I×J)
ä
.

To reduce this expression to one we have already considered we need to know

that EGΣJ is a universal equivariant ΣJ -space.

Lemma B.125. Let J be a finite G-set. If EGΣ is an equivariant universal

Σ-space then, under the product action, (EGΣ)J is an equivariant universal

ΣJ -space.

Proof. The functor T 7→ T J (from Σ oG-spaces to ΣJ oG-spaces) has a

left adjoint. To describe it, let M be the set ΣoG×J and define a left action

of Σ oG by the product of the translation action on Σ oG and the action of

G on J . There is a commuting right ΣJ oG-actionÄ
Σ oG× J

ä
×
Ä
ΣJ oG

ä
→ Σ oG× J

whose component in the second factor is just the projection and in the first

factor is composed of the evaluation map

J × ΣJ oG→ Σ oG

and the right action of Σ oG on itself. The functor T 7→ T J can be identified

with

homΣoG(M,T ),

and so its left adjoint is given by

S 7→M ×
ΣJoG

S.

Breaking M into right ΣJ oG-orbits gives the decomposition

M ×
ΣJoG

S =
∐
j∈J

S/ΣJ−{j}.

In this latter expression, the action of t ∈ Σ on s ∈ S/ΣJ−{j} can be computed

as the orbit class of σs, where σ ∈ ΣJ is any element with σ(j) = t. For
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example, the entire Σ-action can be computed by restricting to the diagonal

subgroup of ΣJ .

Observe that a ΣJ oG-set S is ΣJ -free if and only if M ×
ΣJoG

S is Σ-free.

Clearly if S is ΣJ -free, then for each j ∈ J , S/ΣJ−{j} is Σ-free. On the other

hand, if σ ∈ ΣJ is a nonidentity element fixing s ∈ S, then there is a j ∈ J ,

with σ(j) not the identity element. For this j we have σ(j)·ΣJ−{j}s = ΣJ−{j}s.

Now to the proof. Let S be a finite ΣJ o G-set. We need to show that

the space of ΣJ oG-maps

S → EGΣJ

is empty or contractible depending on whether or not S has a point fixed by

a nonidentity element of ΣJ . By adjunction, this space can be identified with

the space of Σ oG-maps from

M ×
ΣJoG

S → EGΣ,

and so the result follows from the observation above. �

We will be interested in the following case. Suppose that X → Y is a

cofibration of cofibrant ΣJ oG-equivariant I × J-diagrams. By Lemma B.125

and Proposition B.108, in the diagram

(EGΣ)J+ ∧
ΣJ
∂XY

∧(I×J) //

∼
��

(EGΣ)J+ ∧
ΣJ
Y ∧(I×J)

∼
��

∂X SymI×J
ΣJ

Y // SymI×J
ΣJ

Y

every object is flat, the top row is a cofibration of cofibrant objects, the bottom

row is an h-cofibration, and the vertical maps are weak equivalences and remain

so after smashing with any spectrum. The same conclusion therefore holds for

the corresponding diagram of iterated indexed (symmetric) powers

∂W̃ (Z̃∧(J)) //

��

Z̃∧(J)

��
∂W (Z∧(J)) // Z∧(J)

in which

W̃ //

��

Z̃

��
W // Z
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is the diagram

EGΣ+ ∧
Σ
∂XY

∧I //

��

EGΣ+ ∧
Σ
Y ∧I

��
∂X SymI

Σ Y
// SymI

Σ Y.

Working fiberwise leads to an analogous result about the indexed smash

product along a map q : J → K of finite G-sets. It plays an important role

in our analysis of the homotopy properties of the norms of commutative rings.

Aside from the map J → K of finite G-sets, the situation is the same as what

we have been discussing in this section. We have fixed a finite G-set I, a

G-stable subgroup Σ ⊂ ΣI , and a universal G-equivariant Σ-space EGΣ.

Proposition B.126. Let X → Y be a cofibration of cofibrant ΣJ o G-

equivariant I × J-diagrams, and write

W̃ //

��

Z̃

��
W // Z

for the diagram

EGΣ+ ∧
Σ
∂XY

∧I //

��

EGΣ+ ∧
Σ
Y ∧I

��
∂X SymI

Σ Y
// SymI

Σ Y.

In the G-equivariant K-diagram of corner maps

∂W̃ (Z̃∧(J/K)) //

��

Z̃∧(J/K)

��
∂W (Z∧(J/K)) // Z∧(J/K)

every object is flat, the vertical maps are weak equivalences after smashing

with any object, the upper map is a cofibration of cofibrant objects, and the

lower map is an h-cofibration. The horizontal maps are weak equivalences if

X → Y is.

Remark B.127. The actual hypothesis on X → Y required for the fiber-

wise argument is that for each k ∈ K, the map X → Y is a cofibration of

ΣJk oGk-equivariant I × Jk-diagrams, where Jk ⊂ J is the inverse image of k

and Gk is the stabilizer of k. For the sake of a cleaner statement, we have made
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the slightly stronger assumption that it is a cofibration of cofibrant ΣJ o G-

equivariant I × J-diagrams. That this implies the “fiberwise” hypothesis is a

consequence of Proposition B.75.

Remark B.128. As in Remark B.111, Proposition B.126 applies to the sit-

uation in which X → Y is a cofibration of cofibrant G-equivariant J-diagrams,

regarded as a Σ o G-equivariant I × J diagram by pulling back along the

projection mappings Σ oG→ G and I × J → J .

B.7. Rings and modules. Aside from the alteration in model structure,

the following is stated as [55, Th. III.8.1]. The proof depends on our analysis

of symmetric powers which, as mentioned in Remark B.119, makes essential

use of the norm.

Proposition B.129. The forgetful functor

CommG → SG

creates a topological model category structure on CommG in which the fibra-

tions and weak equivalences in CommG are the maps that are fibrations and

weak equivalences in SG.

Proof. Most of the proof is formal. One takes as generating cofibrations

the maps SymA → SymB, where A → B ∈ Acof, and generating acyclic

cofibrations the maps SymA → SymB with A → B ∈ Bacyclic. The only real

point to check is that if

(B.130) SymA //

��

SymB

��
X // Y

is a pushout diagram in which A→ B is a generating acyclic cofibration, then

X → Y is a weak equivalence. That is contained in Lemma B.131 below. The

rest of the proof is left to the reader. �

Lemma B.131. Suppose that A→ B is a map of G-spectra and

SymA //

��

SymB

��
X // Y

is a pushout diagram of equivariant commutative rings. If A→ B is an acyclic

cofibration of cofibrant objects, then X → Y is a weak equivalence.
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The proof of Lemma B.131 involves a filtration of Y by X-modules that

we will use again in Section B.8. For a map A→ B of G-spectra, define

film SymB =
∨
n

film SymnB,

where the film SymnB is obtained from the filtration described in Section A.3.4

by passing to Σn-orbits and fits into a pushout square

Symn−mA ∧ ∂A SymmB //

��

Symn−mA ∧ SymmB

��
film−1 Symn(B) // film SymnB,

with

∂A SymmB =
(
∂AB

∧m) /Σm.

Wedging over n, one sees that the filmB are SymA-submodules and that there

is a pushout square of A-modules

SymA ∧ ∂A SymmB //

��

SymA ∧ SymmB

��
film−1 SymB // film SymB.

If a map X → Y of commutative rings fits into a pushout diagram

SymA //

��

SymB

��
X // Y,

then we can define a filtration of Y by X-modules by

film Y = X ∧
SymA

film SymB.

Evidently these film Y are related by the pushout square of X-modules

(B.132) X ∧ ∂A SymmB //

��

X ∧ SymmB

��
film−1 Y // film Y.

Proof of Lemma B.131. We use the filtration just described. In the dia-

gram (B.132), if A → B is an acyclic cofibration between cofibrant objects,

then
∂A SymmB → SymmB

is a weak equivalence and an h-cofibration of flat spectra by Proposition B.108.

It follows that the bottom map is a weak equivalence. �
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Corollary B.133. For H ⊂ G, the adjoint functors

CommH � CommG

form a Quillen pair.

Proof. The restriction functor obviously preserves the classes of fibrations

and weak equivalences. �

Corollary B.134. The norm functor on commutative algebras

NG
H : CommH → CommG

is a left Quillen functor. It preserves the classes of cofibrations and acyclic

cofibrations and hence weak equivalences between cofibrant objects.

Proof. This is immediate from Corollary B.133 and Proposition A.56. The

assertion about weak equivalences is Ken Brown’s Lemma (see, for example,

[35, Lemma 1.1.12]). �

The categoryMR of left modules over an equivariant associative algebra R

is as defined in Section A.2.7. As pointed out there, when R is commutative,

a left R-module can be regarded as a right R-module, and MR becomes a

symmetric monoidal category under the operation

(B.135) M ∧
R
N.

The following result is a consequence of Propositions B.76, B.77, and [78,

Th. 4.1]. Except for the slight change of model structure, it is [55, Th. III.7.6].

Proposition B.136. The forgetful functor

MR → SG

creates a model structure on the category MR in which the fibrations and weak

equivalences are the maps that become fibrations and weak equivalences in SG.

When R is commutative, the operation (B.135) satisfies the pushout product

and monoid axioms making MR into a symmetric monoidal model category.

Though not explicitly stated, the following formal result was surely known

to the authors of [78]; see the proof of [78, Th. 4.3].

Corollary B.137. Let f : R → S be a map of equivariant associative

algebras. The functors

S ∧
R

(− ) :MR �MS : U

given by restriction and extension of scalars form a Quillen pair. If S is cofi-

brant as a left R-module, then the restriction functor is also a left Quillen

functor.
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Proof. Proposition B.136 implies that the restriction functor preserves

fibrations and acyclic fibrations. This gives the first assertion. The second

follows from the fact that the restriction functor preserves colimits and the

consequence of Proposition B.136 that the generating (acyclic) cofibrations

for MS are formed as the smash product of S with the generating (acyclic)

cofibrations for SG. �

The following result is [55, Prop. III.7.7]. Using the fact that h-cofibrations

are flat, the proof reduces to checking the case M = G+ ∧
H
S−V ∧ R, which is

Proposition B.58.

Proposition B.138. Suppose that R is an associative algebra and M is

a cofibrant right R-module. The functor M ∧
R

(− ) preserves weak equivalences.

In other words, the functor M ∧
R

(− ) is flat if M is cofibrant, and so it

need not be derived.

Corollary B.139. Suppose that R is an associative algebra and M is

a cofibrant right R-module. If N → N ′ is a map of left R-modules whose

underlying map of spectra is an h-cofibration, then the sequence

M ∧
R
N →M ∧

R
N ′ →M ∧

R
(N ′/N)

is weakly equivalent to a cofibration sequence.

Note that the assumption is not that N → N ′ is an h-cofibration in the

category of left R-modules. In that case the result would not require any

hypothesis on M .

Proof. We must show that the map from the mapping cone of

(B.140) M ∧
R
N →M ∧

R
N ′

to M ∧
R

(N ′/N) is a weak equivalence. The mapping cone of (B.140) is isomor-

phic to
M ∧

R
(N ′ ∪ CN),

and the spectrum underlying the R-module mapping cone N ′ ∪N is the map-

ping cone formed in spectra. Since N → N ′ is an h-cofibration, the map

N ′ ∪ CN → N ′/N is a weak equivalence (Proposition B.20). The result now

follows from Proposition B.138. �

Corollary B.139 can be used to show that many constructions derived from

the formation of monomial ideals have good homotopy theoretic properties. It

is used in Section 2.4.3 and in Section 6.1. In those cases the map of spectra

underlying N → N ′ is the inclusion of a wedge summand and so obviously an

h-cofibration.
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B.8. Indexed smash products of commutative rings.

B.8.1. Description of the problem. Proposition B.104 asserts that the in-

dexed smash product functor

(− )∧J : SBJG → SG

has a left derived functor

(− )
L
∧J : ho SBJG → ho SG

that can be computed by applying the norm to a cofibrant approximation.

We also know from Corollary B.133 (and the fact that coproducts of weak

equivalences are weak equivalences) that the restriction functor and its left

adjoint form a Quillen pair

p! : comm SBJG � comm SG : p∗.

Furthermore, the following diagram commutes, in which the vertical functors

are the forgetful functors (Corollary A.56):

comm SBJG
p! //

��

comm SG

��
SBJG

(− )∧J
// SG.

However, what we really want is the commutativity of the following diagram:

ho comm SBJG
Lp! //

��

ho comm SG

��
ho SBJG

(− )
L
∧J

// ho SG,

in which the vertical maps are the forgetful functors (which are homotopical,

so do not need to be derived), and the horizontal arrows are the left derived

functors indicated. The point of this section is to establish this.

To clarify the issue, suppose R ∈ comm SBJG is a cofibrant J-diagram of

commutative rings. Let R̃→ R be a cofibrant approximation of the underlying

J-diagram of spectra. What needs to be checked is that the map

(B.141) (R̃)∧J → (R)∧J

is a weak equivalence. The proof involves an elaboration of the notion of

flatness. To motivate it we describe a bit of the argument.
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The main point in the proof is to investigate the situation of a pushout

diagram of equivariant J-diagrams of commutative rings

SymA //

��

SymB

��
R1

// R2

in which the top row is constructed by applying the symmetric algebra functor

Sym to a generating cofibration A → B, and in which one knows that the

map (B.141) is a weak equivalence for R = R1. One would like to conclude

that (B.141) is a weak equivalence for R = R2.

To pass from R1 to R2 we use the R1-module filtration described after the

statement of Lemma B.131, whose stages fit into a pushout square

(B.142) R1 ∧ ∂A SymmB //

��

R1 ∧ SymmB

��
film−1R2

// filmR2,

where

∂A SymmB =
(
∂AB

∧m) /Σm.

The filtration of Section A.3.4 mediates between (film−1R2)∧J and (filmR2)∧J

by another sequence of pushout squares. The upper right-hand corner of a

typical stage is an indexed wedge of terms of the form

(B.143) (film−1R2)∧J0 ∧ (R1 ∧ SymmB)∧J1 ,

indexed by the set-theoretic decompositions J = J0 q J1.

We need to know two things about this expression. One is that the left

derived functor of its formation (in all variables) is computed in terms of the

expression itself, and the other is that formation of each of the pushout squares

we encounter is homotopical. Motivated by this we are led to consider a tech-

nical condition slightly stronger than the requirement that (B.141) be a weak

equivalence. That is the subject of the next section.

B.8.2. Very flat diagrams. As in Section B.6.2, to make the diagrams more

readable we will use the notation

X∧(K/L) = q∧∗X

for the indexed smash product along a map q : K → L of finite G-sets.

Definition B.144. An equivariant J-diagram X very flat if it has the fol-

lowing property: for every cofibrant approximation X̃ → X, every diagram of

finite G-sets

J
p←− K q−→ L,
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and every weak equivalence of equivariant L-diagrams Z̃ → Z, the map

(B.145) (p∗X̃)∧(K/L) ∧ Z̃ → (p∗X)∧(K/L) ∧ Z

is a weak equivalence.

Our main goal is to establish the following result.

Proposition B.146. If R ∈ SBJG is cofibrant commutative ring, then the

equivariant J-diagram of spectra underlying R is very flat.

The condition that R be very flat certainly implies that (B.141) is a weak

equivalence. Proposition B.146 therefore implies

Corollary B.147. The following diagram of left derived functors com-

mutes up to natural isomorphism :

ho comm SBJG
Lp! //

��

ho comm SG

��
ho SBJG

(− )
L
∧J

// ho SG.

Remark B.148. Since identity maps are weak equivalences, the condition

of being very flat implies that every arrow in the diagram

(p∗X̃)∧(K/L) ∧ Z̃ //

��

(p∗X̃)∧(K/L) ∧ Z

��
(p∗X)∧(K/L) ∧ Z̃ // (p∗X)∧(K/L) ∧ Z

is a weak equivalence. In particular, it implies that (p∗X)∧(K/L) is flat.

Remark B.149. Since X̃∧(K/L) is cofibrant (Proposition B.89), and cofi-

brant objects are flat (Proposition B.58), the top arrow in the above diagram is

always a weak equivalence. It therefore suffices to check the very flat condition

when Z̃ → Z is the identity map.

Remark B.150. If (B.145) is a weak equivalence for one cofibrant approx-

imation, it is a weak equivalence for any cofibrant approximation. It therefore

suffices to check the “very flat” condition for a single cofibrant approximation

X̃ → X.

Lemma B.151. Arbitrary wedges of very flat spectra are very flat. Smash

products of very flat spectra are very flat. Filtered colimits of very flat equi-

variant J-diagrams along h-cofibrations are very flat.
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Proof. The first assertion follows easily from the distributive law and the

fact that the formation of indexed wedges is homotopical. The second fol-

lows from the fact that the formation of indexed smash products is symmetric

monoidal. The third makes use of Proposition A.69. The details are left to

the reader. �

Example B.152. Here is one motivation for the definition of “very flat.”

Suppose we are given a pushout square of equivariant J-diagrams

A //

��

B

��
X // Y

and we are interested in the filtration of Y ∧(K/L) described in Section A.3.4,

whose stages are related by pushout squares

(B.153)
∨

(`,K1)∈Gn

X∧K0 ∧ ∂AB∧K1 //

��

∨
(`,K1)∈Gn

X∧K0 ∧B∧K1

��
filn−1 Y

∧K/L // filn Y
∧K/L,

where Gn = Gn(K/L) is the G-set of pairs (`,K1) with ` ∈ L and K1 ⊂ q−1(`)

a subset of cardinality n, and the map Gn → L sends (`,K1) to `. For (`,K1) ∈
Gn, we have written K0 to denote the complement of K1 in q−1(`).

The condition that B be very flat gives some control over the upper right

term. To see this let Vn = Vn(K/L) be the set of triples (`,K1, k) for which

(`,K1) ∈ Gn and k ∈ K1. We define maps

J
f←− Vn

g−→ Gn

by

f(`,K1, k) = q(k),

g(`,K1, k) = (`,K1).

The spectra X∧K0 form an equivariant Gn-diagram, which we denote Z. The

B∧K1 are the constituents of (f∗B)∧(Vn/Gn), and so the indexed wedge occur-

ring in the pushout square is∨
Gn

Z ∧ (f∗B)∧(Vn/Gn).

Since the formation of indexed wedges is homotopical, its homotopy proper-

ties come down to understanding the homotopy properties of the equivariant

Gn-diagram Z∧f∗B∧(Vn/Gn), some of which are specified by the condition that

B be very flat.
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Replacing the category of equivariant J-diagrams with its arrow category,

we arrive at the notion of a very flat object of S
BJG
1 . The formal properties

of being very flat persist in this context and, in particular, the analogues of

Remarks B.148, B.149, B.150, and Lemma B.151 hold.

To get a feel for the more particular aspects of very flat arrows, suppose

that (A → B) is an object of SBJG1 and that (Ã → B̃) is a cofibrant approxi-

mation. Consider a weak equivalence of the form

(X̃ → ∗)→ (X → ∗).

In this case the very flat condition becomes that

(p∗(B̃/Ã)∧(K/L) ∧ X̃ → ∗)→ (p∗(B/A)∧(K/L) ∧X → ∗)

is a weak equivalence. This is so if and only if B/A is very flat.

Next consider a weak equivalence of the form

(∗ → X̃)→ (∗ → X).

The very flat condition in this case is that

(∂p∗Ãp
∗B̃∧(K/L) ∧ X̃ → p∗B̃∧(K/L) ∧ X̃)

→ (∂p∗Ap
∗B∧(K/L) ∧X → p∗B∧(K/L) ∧X)

is a weak equivalence. This holds if and only if B is very flat and (A → B)

satisfies the condition that

(B.154) ∂p∗Ãp
∗B̃∧(K/L) ∧ X̃ → ∂p∗Ap

∗B∧(K/L) ∧X

is a weak equivalence. If we happen to know that the indexed corner maps

∂p∗Ãp
∗B̃∧(K/L) → B̃∧(K/L)

and

∂p∗Ap
∗B∧(K/L) → B∧(K/L)

are h-cofibrations, then the leftmost horizontal maps in

∂p∗Ãp
∗B̃∧(K/L) ∧ X̃ //

��

p∗B̃∧(K/L) ∧ X̃ //

��

p∗(B̃/Ã)∧(K/L) ∧ X̃

��
∂p∗Ap

∗B∧(K/L) ∧X // p∗B∧(K/L) ∧X // p∗(B/A)∧(K/L) ∧X

are h-cofibrations and hence flat. Thus the middle and left vertical arrows are

weak equivalences if and only if the middle and right vertical arrows are, or in

other words if and only if both B and B/A are very flat. So in the presence of

the condition above, a necessary condition that (A→ B) be a very flat arrow

is that B and B/A are very flat. This turns out to be sufficient. We single out

the condition.
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Condition B.155. For every J
p←− K q−→ L, the corner map

∂p∗A(p∗B)∧(K/L) → (p∗B)∧(K/L)

is an h-cofibration.

Remark B.156. By Proposition B.96 and the monoid axiom for S
BLG
1 , a

cofibrant object (A→ B) of SBJG1 is very flat and satisfies Condition B.155.

Lemma B.157. If A1 → A2 satisfies Condition B.155 and both A1 and

A2/A1 are very flat, then A = (A1 → A2) is very flat.

Proof. Fix a diagram of finite G-sets

J
p←− K q−→ L,

let Ã = (Ã1 → Ã2) be a cofibrant approximation to A = (A1 → A2), and let

X̃ → X,

X̃ = (X̃1 → X̃2),

X = (X1 → X2)

be a weak equivalence in S
BLG
1 . By Remark B.156, Ã also satisfies the condi-

tions of the lemma. Let

X ′ → X → X ′′

be the sequence

(∗ → X2)→ (X1 → X2)→ (X1 → ∗)

and X̃ ′ → X̃ → X̃ ′ the analogous sequence for X̃. The maps X ′ → X and

X̃ ′ → X̃ are not h-cofibrations, but they are so objectwise and hence are flat.

Consider the diagram

(B.158) p∗Ã∧(K/L) ∧ X̃ ′ //

��

p∗Ã∧(K/L) ∧ X̃ //

��

p∗Ã∧(K/L) ∧ X̃ ′′

��
p∗A∧(K/L) ∧X ′ // p∗A∧(K/L) ∧X // p∗A∧(K/L) ∧X ′′.

Our aim is to show that the middle vertical map is a weak equivalence.

The first step is to show that the left horizontal maps are flat. This reduces

us to checking that the left and right vertical maps are weak equivalences. For

this, let us examine the bottom left horizontal map in more detail. It is given

by

(B.159) (∂p∗A1p
∗A
∧(K/L)
2 ∧X2 → p∗A

∧(K/L)
2 ∧X2)→ (C → p∗A

∧(K/L)
2 ∧X2),
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in which C is defined by the pushout diagram

(B.160) ∂p∗A1p
∗A
∧(K/L)
2 ∧X1

//

��

p∗A
∧(K/L)
2 ∧X1

��
∂p∗A1p

∗A
∧(K/L)
2 ∧X2

// C.

When A1 → A2 satisfies Condition B.155, the top map in (B.160) is an

h-cofibration, hence so is the bottom map. This means that (B.159) is an

objectwise h-cofibration and so is flat. Since Ã1 → Ã2 also satisfies Condi-

tion B.155, the upper left horizontal map in (B.158) is also flat. Thus we are

reduced to checking that the maps

p∗Ã∧(K/L) ∧ X̃ ′ → p∗A(∧K/L) ∧X ′,

p∗Ã∧(K/L) ∧ X̃ ′′ → p∗A(∧K/L) ∧X ′′

are weak equivalences. As described above, this fact for the second map follows

from the assumption that A2/A1 is very flat. The assertion in the case of the

first map is that the middle and left vertical arrows in

∂p∗Ã1
p∗Ã

∧(K/L)
2 ∧ X̃2

//

∴∼
��

p∗Ã
∧(K/L)
2 ∧ X̃2

//

∼
��

p∗(Ã2/Ã1)∧(K/L) ∧ X̃2

∼
��

∂p∗A1p
∗A
∧(K/L)
2 ∧X2

// p∗A
∧(K/L)
2 ∧X2

// p∗(A2/A1)∧(K/L) ∧X2

are weak equivalences. Since A2 and A2/A1 are very flat, the middle and

right vertical maps are weak equivalences. Condition B.155 shows that the

left horizontal maps are h-cofibrations and hence flat. It follows that the left

vertical map is a weak equivalence. �

We can now establish an important technical fact used in the proof of

Proposition B.146.

Lemma B.161. Suppose that A→ B is a cofibrant object of SBJG1 , I is a

G-set, and Σ ⊂ ΣI is a G-stable subgroup. Then

SymI
Σ(A→ B) = (∂A SymI

ΣB → SymI
ΣB)

is very flat.

Proof. Proposition B.126 implies that in this situation the map

SymI
Σ(A→ B)

satisfies Condition B.155 and that for every cofibrant B, SymI
ΣB is very flat.

(Thus both SymI
ΣB and SymI

Σ(B/A) are very flat.) The result then follows

from Lemma B.157. �
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Example B.162. Continuing with Example B.152, the top map in (B.153)

arises naturally in the arrow category as∨
Gn(K/L)

Z ∧ (p∗(A→ B)∧(K/L)),

where Z is the identity arrow of the diagram X∧J0 . Since the formation of

indexed wedges is homotopical, the information in the homotopy type of this

expression is contained in the Gn(K/L)-diagram Z ∧ (p∗(A→ B)∧(K/L)). The

condition that (A→ B) be very flat thus specifies good homotopical properties

of the top map in (B.153).

Lemma B.163. Consider a pushout square

(B.164) A //

��

B

��
X // Y

in which (A→ B) is a very flat object of SBJG1 satisfying Condition B.155. If

X is very flat, then so is Y .

Proof. Using the fact that cofibrations are flat, we can arrange things so

that the cofibrant approximation Ỹ → Y fits into a pushout square

(B.165) Ã //

��

B̃

��

X̃ // Ỹ

of cofibrant approximations to (B.164), in which Ã → B̃ is a cofibration. We

give Ỹ ∧(K/L) and Y ∧(K/L) the filtration described in Section A.3.4. We will

prove by induction on n that for any weak equivalence Z̃ → Z of equivariant

J-diagrams, the map

(B.166) filn Ỹ
∧K ∧ Z̃ → filn Y

∧K ∧ Z

is a weak equivalence. The case n = 0 is the assertion that X is very flat,
which is true by assumption. For the inductive step, consider the diagram

filn−1 Ỹ
∧K ∧ Z̃

��

∨
Gn(K/L)

X̃∧K0 ∧ ∂ÃB̃∧K1 ∧ Z̃oo //

��

∨
Gn(L)

X̃∧K0 ∧ B̃∧K1 ∧ Z̃

��

filn−1 Y
∧K ∧ Z

∨
Gn(K/L)

sX∧K0 ∧ ∂AB∧K1 ∧ Zoo //
∨

Gn(K/L)

X∧K0 ∧B∧K1 ∧ Z.
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The map from the pushout of the top row to the pushout of the bottom

row is (B.166). The rightmost horizontal maps are h-cofibrations by Con-

dition B.155. The left vertical map is a weak equivalence by induction, and

the other two vertical maps are weak equivalences since (A → B) is very flat

(Example B.162). The map of pushouts is therefore a weak equivalence since

h-cofibrations are flat. �

B.8.3. Proof of Proposition B.146. Since, as shown in Lemma B.151, the

class of very flat G-diagrams is closed under the formation of filtered colimits

along h-cofibrations, it suffices to show that ifA→ B is a generating cofibration

in SBJG,

SymA //

��

SymB

��
X // Y

is a pushout square of commutative J-algebras, and X is very flat, then Y

is very flat. Working fiberwise, the filtration described after the statement of

Lemma B.131 gives a filtration of Y by X-modules, whose stages are related

by the pushout squares

(B.167) X ∧ ∂A SymmB //

��

X ∧ SymmB

��
film−1 Y // film Y.

We show by induction on m that each film Y is very flat. Since fil0 Y =X,

the induction starts. The arrow (∂A SymmB → SymmB) is very flat by

Lemma B.161. This means that the top row of (B.167) is a very flat ar-

row, since smash products of very flat objects are very flat (Lemma B.151).

This places us in the situation of Lemma B.163, which completes the inductive

step.

B.9. The slice tower, symmetric powers and the norm. The main goal of

this section is to show that if R is an equivariant commutative ring in SG≥0,

and n ≥ 0 is an integer, then the slice section PnR is also an equivariant

commutative ring in SG≥0. The proof makes use of the technology used to show

that cofibrant commutative rings are very flat and so has been deferred to this

appendix. The reader may wish to look through the first three subsections of

Section 4 for the basic definitions concerning the slice tower.

Our presentation of the slice tower was made in a context where the em-

phasis was on homotopy theory, and the slice sections Pn, etc were character-

ized by homotopy theoretic properties. Here we will be making use of some
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explicit constructions, and some care needs to be taken to ensure that the de-

rived functors we are ultimately interested in can be computed on the objects

that arise. Using the fact that indexed smash products of cofibrant objects are

cofibrant, and that indexed symmetric powers of cofibrant spectra are flat, one

can check that this is indeed the case. We will take as the definition of Pn the

colimit of the inductive construction described in Section 4.2, using the cofi-

brant approximations S−1∧S1∧G+∧
H
SkρH and S−1∧S1∧G+∧

H
SkρH−1 for the

slice cells. This particular choice of Pn is homotopical, and the natural map

X → PnX is a cofibration. Our task will be to show that something functori-

ally weakly equivalent to Pn takes commutative rings in SG≥0 to commutative

rings in SG≥0.

We begin with the interaction of the slice filtration with the formation of

indexed smash products. As in Section B.5 we fix a finite G-set and work with

the homotopy theory of equivariant J-diagrams. We define slice cells and the

slice filtration in the evident manner, so that the slice filtration on equivariant

J-diagrams corresponds to the product of slice filtrations on Gt-spectra under

the equivalence

SBJG ≈
∏
t

SGt .

The proposition below follows easily from Proposition 4.13.

Proposition B.168. Suppose that J is a nonempty G-set, X is a cofi-

brant equivariant J-diagram, and n is an integer. If each Xj is slice (n − 1)

positive, then the indexed wedge ∨
j∈J

Xj

is slice (n− 1) positive.

The next two results make use of the implication

(B.169) X ≥ 0 and Y ≥ k =⇒ X ∧ Y ≥ k

proved in Section 4.3 (Proposition 4.26).

Proposition B.170. Suppose that J is a nonempty G-set, X is a cofi-

brant equivariant J-diagram, and n ≥ 0 is an integer. If each Xj is slice (n−1)

positive, then the indexed smash product∧
j∈J

Xj

is slice (n− 1) positive.

Proof. By induction on |G| we may suppose that i∗HX
∧J is slice (n − 1)-

positive for any proper subgroup H ⊂ G. This implies that T ∧ X∧J ≥ n
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if T is any G-CW complex built entirely from induced G-cells. Since the

formation of indexed smash products commutes with filtered colimits, it suffices

by Proposition 4.15 to consider a cofibration A→ B of equivariant J-diagrams

in which B/A is a wedge of slice cells of dimension greater than n and show that

(B.171) A∧J ≥ n =⇒ B∧J ≥ n.

Using the filtration of Section A.3.4 for the identity pushout square

A //

��

B

��
A // B

gives a filtration of B∧J whose stages fit into cofibration sequences

(B.172) film−1B
∧J → filmB

∧J →
∨
A∧J0 ∧ (B/A)∧J1

in which the indexing G-set for the coproduct is the set of all set theoretic

decomposition J = J0
∐
J1 with |J1| = m. The implication (B.169) and

Proposition B.168 above reduce the claim to showing that if J1 6= ∅, then

(B/A)∧J1 (regarded as an equivariant spectrum for the stabilizer of J1) is slice

(n− 1)-positive. In other words, it suffices to prove the proposition when X is

a wedge of slice cells of dimension greater than or equal to n.

Making use of the distributive law, and once again (B.169) and Proposi-

tion B.168, one reduces to the case in which J = G/H is a single orbit, and X

corresponds to SkρH with k|H| ≥ n or SkρH−1, with k|H| − 1 ≥ n. In the first

case

X∧J ≈ SkρG

has dimension k|G| ≥ k|H| ≥ n. In the second case

X∧J ≈ S(n−1)ρG+V ,

where V = ρG − indGH 1. Write W = indGH −1 so that SW ∧ SV ≈ SρG−1, and

there is a cofibration sequence

(B.173) S(W )+ ∧X∧J → X∧J → S(n−1)ρG+(ρG−1).

The G-space S(W ) is homeomorphic to the boundary of the simplex with

vertices G/H and has no G-fixed points. The barycentric subdivision gives

S(W )+ the structure of a G-CW complex built entirely from induced G-cells.

It therefore follows from our induction hypothesis that

S(W )+ ∧X∧J

is slice (n−1)-positive. The rightmost term in (B.173) is a slice cell of dimension

k|G| − 1 ≥ k|H| − 1 ≥ n.

It follows that X∧J is slice (n− 1)-positive. �
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Remark B.174. We will later need to know that in the situation of Propo-

sition B.170, one has

(B.175) Σ−1(ΣX)∧J ≥ n.

To see this, rewrite the spectrum in (B.175) asÄ
Σ−1(S1)∧J) ∧ (X∧J).

The factor Σ−1(S1)∧J is weakly equivalent to the sphere SV with V = RJ − 1.

This gives

Σ−1(S1)∧J ≥ 0,

and the relation (B.175) then follows from Proposition B.170 and (B.169).

We next turn to indexed symmetric powers. As in Section B.6 we consider

a finite G-set I, a G-stable subgroup Σ ⊂ ΣI , and the indexed symmetric power

SymI
ΣX = X∧I/Σ.

Proposition B.176. Let n ≥ 0 be an integer, I a nonempty G-set, and

X a cofibrant equivariant I-diagram. If X is slice (n − 1)-positive, then both

the indexed symmetric power SymI
ΣX and Σ−1 SymI

Σ(ΣX) are slice (n − 1)-

positive.

Proof. Using the equivalences

(EGΣ)+ ∧
Σ
X∧I ≈ SymI

ΣX,

Σ−1(EGΣ)+ ∧
Σ

(ΣX)∧I ≈ Σ−1 SymI
Σ(ΣX)

of Proposition B.116 and working through an equivariant cell decomposition

of EGΣ reduces the claim to showing that

(B.177) S+ ∧
Σ
X∧I and Σ−1S+ ∧

Σ
(ΣX)∧I

are slice (n−1)-positive when S is a finite Σ-free ΣoG-set. But the first spec-

trum in (B.177) is an indexed wedge of indexed smash products of X (see the

proof of Lemma B.114) and hence slice (n− 1)-positive by Propositions B.170

and B.168. The second spectrum is an indexed wedge of de-suspensions of in-

dexed smash products of ΣX and hence slice (n−1)-positive by Remark B.174

and Proposition B.168. �

We can now investigate the slice sections of commutative rings. Let Pnalg :

CommG → CommG be the multiplicative analogue of Pn, constructed as the

colimit of a sequence of functors

W alg
0 R→W alg

1 R→ · · · .
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The W alg
i R are defined inductively starting with W alg

0 R = R, and in which

W alg
k R is defined by the pushout square

Sym
Ä∨
I

ΣtŜ
ä

//

��

Sym
Ä∨
I

C ΣtŜ
ä

��

W alg
k−1R

// W alg
k R

in which the indexing set I is the set of maps ΣtŜ → W alg
k−1R with Ŝ > n a

cofibrant slice cell and t ≥ 0. The functor Pnalg is homotopical, and for any R,

the map R → PnalgR is a cofibration of equivariant commutative rings. The

arrow R → PnalgR is characterized up to weak equivalence by the following

universal property: if S is an equivariant commutative ring whose underlying

spectrum is slice (n+ 1)-null, then the map

ho CommG(PnalgR,S)→ ho CommG(R,S)

is an isomorphism.

For clarity let us temporarily denote by U the forgetful functor

U : CommG → SG.

By the small object argument, the spectrum UPnalgR is slice (n + 1)-null, so

there is a natural transformation

PnUR→ UPnalgR

of functors to SG.

Proposition B.178. If R is a slice (−1)-positive cofibrant equivariant

commutative ring, then for all n ∈ Z, the map

PnUR→ UPnalgR

is a weak equivalence.

Proof. When n is negative, PnUR is contractible, and PnalgR is a commu-

tative ring whose unit is nullhomotopic and hence also contractible. We may

therefore assume n is nonnegative.

It suffices to show that each of the maps

UW alg
k−1R→ UW alg

k R

is a Pn-equivalence. We do this by working through the filtration used in the

proof of Lemma B.131, whose successive terms are related by the homotopy
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cocartesian square

UW alg
k−1R ∧ ∂A SymmB //

��

UW alg
k−1R ∧ SymmB

��

film−1W
alg
k R // filmW

alg
k R,

in which A→ B is the map

(B.179)
∨
I

ΣtŜ →
∨
I

C ΣtŜ.

By induction we may assume that the maps

UR→ UW alg
k−1R→ film−1W

alg
k R

are Pn equivalences, and so among other things, that the three spectra are all

in SG≥0. The homotopy fiber of film−1W
alg
k R→ filmW

algR is

UW alg
k−1R ∧ Σ−1 Symm(B/A).

Now B/A is the suspension of the left term in (B.179), which is slice n-positive.

It follows (Proposition B.176) that Σ−1 Symm(B/A) is also slice n-positive,

and hence so is UW alg
k−1R ∧ Σ−1 Symm(B/A) since UW alg

k−1R ≥ 0. The fact

that film−1W
alg
k R → filmW

algR is a Pn-equivalence is now a consequence of

Lemma 4.28. �

B.10. Geometric and monoidal geometric fixed points. The geometric fixed

point functor was defined and its main properties summarized in Section 2.5.2.

In this section we gives proofs of some of these properties and describe the

variation constructed in Mandell-May [55, §V.4]. We refer to the Mandell-

May construction as the monoidal geometric fixed point functor and denote it

ΦG
M , in order not to confuse it with the usual geometric fixed point functor.

B.10.1. Geometric fixed points. The geometric fixed point functor was de-

fined in Section 2.5.2 by

ΦG(X) =
Ä
(ẼP ∧X)f

äG
,

in which the G-CW complex ẼP is the one characterized up to equivariant

homotopy equivalence by the propertyÄ
ẼP
äH ∼ S0 H = G,

∗ H 6= G.

Since smashing with ẼP is homotopical, and the fixed point functor (− )G

is a right Quillen functor, the functor ΦG is homotopical. Since the formation



234 M. A. HILL, M. J. HOPKINS, and D. C. RAVENEL

of mapping cones is homotopical, for a map A→ X, the map

(B.180) ΦG(X) ∪ CΦG(A)
∼−→ ΦG(X ∪ CA)

is a weak equivalence. Among other things this provides a long exact sequence

of homotopy groups π∗Φ
G(X) associated to a cofibration sequence in the X

variable.

The characterizing property of ẼP implies that for any G-space Z and

any G-CW complex A, the restriction map

[A, ẼP ∧ Z]G → [AG, ẼP ∧ Z]G

is an isomorphism. Since G-acts trivially on AG, the right-hand side is isomor-

phic to

[AG,
Ä
ẼP ∧ Z

äG
] = [AG, ZG].

Combining these gives the isomorphism

(B.181) [A, ẼP ∧ Z]G ≈ [AG, ZG].

This isomorphism is the foundation for our investigation into ΦG.

Let ι : S → SG be the functor that regards a spectrum as a G-spectrum

with trivial action. As described in Section 2.5.1, the fixed point functor (− )G

is right adjoint to ι

ι : S� SG : (− )G

and together they form a Quillen morphism in the positive complete model

structures.

For spectra that are cellular in the sense of Definition B.57, the geometric

fixed point functor is an inverse to ι.

Proposition B.182. For a cellular spectrum X ∈ S, the map

(B.183) X → ΦG(ιX)

adjoint to

ιX → ẼP ∧ ιX → (ẼP ∧ ιX)f

is a weak equivalence.

Proof. The long exact sequence of homotopy groups coming from (B.180)

reduces the claim to the case in which X has the form S−V ∧A with V a vector

space and A a CW-complex. This case can be checked by a direct computation.

For a G-representation W , we have

ιXW = JG(V,W ) ∧A
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and

(ιXW )G = JG(V,W )G ∧A

= JG(V,WG) ∧A
= XWG .

We can then compute

πkΦ
G(ιX) ≈ ho S(Sk,

Ä
ẼP ∧X)Gf

ä
≈ ho S(Sk,

Ä
ẼP ∧X)G

ä
≈ ho SG(Sk, ẼP ∧X)

≈ lim−→
W>−k

πGk+W ẼP ∧XW

≈ lim−→
W>−k

πk+WG(XW )G

≈ lim−→
W>−k

πk+WGXWG ,

with the penultimate isomorphism coming from (B.181) and the last isomor-

phism from the above. Under the composite isomorphism, the map on stable

homotopy groups induced by (B.183) is

lim−→
V >−k

πk+VXV → lim−→
W>−k

πGk+WGXWG ,

in which V is ranging through the poset of finite dimensional orthogonal vec-

tor spaces and W through the poset of G-representations. This is clearly an

isomorphism. �

Since ẼP is H-equivariantly contractible when H is a proper subgroup of

G, the smash product ẼP ∧X is contractible if X is a cellular spectrum built

entirely from G-cells induced from a proper subgroup of G. More generally,

Lemma B.184. Let A and Y be G-spectra. If X is constructed from A

by attaching G-cells induced from proper subgroups, then the inclusion A→ X

induces a weak equivalence

ẼP ∧A ∧ Y ∼−→ ẼP ∧X ∧ Y

hence a weak equivalence

ΦG
Ä
A ∧ Y

ä ∼−→ ΦG
Ä
X ∧ Y

ä
.

Corollary B.185. Let V be a G-representation and A a G-CW complex.

The maps

S−V
G ∧AG → S−V

G ∧A← S−V ∧A,
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constructed from the inclusions AG ⊂ A and V G ⊂ V , induce weak equivalences

S−V
G ∧AG ∼ ΦG

Ä
S−V

G ∧AG
ä ∼−→ ΦG

Ä
S−V

G ∧A
ä ∼←− ΦG

Ä
S−V ∧A

ä
,

giving a zig-zag of weak equivalences

ΦG
Ä
S−V ∧A

ä ∼←→ S−V
G ∧AG.

Proof. We work our way from the left. The first weak equivalence is

Proposition B.182. The next map is a weak equivalence by Lemma B.184

since A is constructed from AG by adding induced G-cells. The last map can

be constructed by applying ΦG to the composition

S−V ∧A→ S−V ∧ SV−V G ∧A→ S−V
G ∧A.

The right arrow is a weak equivalence. Since SV−V
G

is a G-CW complex with

fixed point space S0, it is constructed from S0 by adding induced G-cells.

The left map therefore induces an equivalence of geometric fixed points by

Lemma B.184. �

B.10.2. Motivation and definition of the monoidal geometric fixed point

functor. For an orthogonal representation V of G, let V G ⊂ V be the space of

invariant vectors and V ⊥ the orthogonal complement of V G. Note that

(B.186) JG(V,W )G ≈J (V G,WG) ∧O(V ⊥,W⊥)G+,

so that there is a canonical map

JG(V,W )G →J (V G,WG),

given in terms of (B.186) by smashing the identity map of J(V G,WG) with

the map O(V ⊥,W⊥)G → pt.

We wish to define a functor ΦG
M with the property that

(B.187) ΦG
M (S−V ∧A) = S−V

G ∧AG

and that commutes with colimits as far as is possible. A value needs to be

assigned to the effect of ΦG
M on the map

S−W ∧JG(V,W )→ S−V .

The only obvious choice is to take

ΦG
M (S−W ∧JG(V,W ))→ ΦG

M (S−V )

to be the composite

(B.188) S−W
G ∧JG(V,W )G → S−W

G ∧J (V G,WG)→ S−V
G
.

If ΦG
M actually were to commute with colimits, it would be determined by

the specifications given by (B.187) and (B.188). Indeed, using the tautolog-

ical presentation to write a general equivariant orthogonal spectrum X as a
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reflexive coequalizer∨
V,W

S−W ∧JG(V,W ) ∧XV ⇒
∨
V

S−V ∧XV → X,

the value of ΦG
M (X) would be given by the reflexive coequalizer diagram

(B.189)
∨
V,W

S−W
G ∧JG(V,W )G+ ∧XG

V ⇒
∨
V

S−V
G ∧XG

V → ΦG
MX.

We take this as the definition of ΦG
M (X).

Definition B.190. The monoidal geometric fixed point functor

ΦG
M : SG → S

is the functor defined by the coequalizer diagram (B.189).

Remark B.191. In case X = S−V ∧ A, the tautological presentation is a

split coequalizer, and one recovers both (B.187) and (B.188).

A fundamental property of the usual geometric fixed point functor ΦG

is that for proper H ⊂ G, the spectrum ΦG(G+ ∧
H
X) is contractible. The

monoidal geometric fixed point functor has this property on the nose.

Proposition B.192. Suppose that J is a G-set and X an equivariant

J-diagram. If J has no G-fixed points then the map

ΦG
M

Ä ∨
j∈J

Xj)→ ∗

is an isomorphism. In particular, if H ⊂ G is a proper subgroup and X an

orthogonal H-spectrum, then the map

ΦG
M (G+ ∧

H
X)→ ∗

is an isomorphism.

Proof. Since indexed wedges are computed componentwise, the assump-

tion that J has no fixed points implies that for all representations W of G,Ä ∨
j∈J

Xj

äG
W

=
Ä ∨
j∈J

(Xj)W
äG

= ∗.

The claim then follows from the definition of ΦG
M . �

Working through an equivariant cell decomposition gives

Corollary B.193. Let A and Y be G-spectra. If X is constructed from

A by attaching G-cells induced from proper subgroups, then the map

ΦG
M (A ∧ Y )→ ΦG

M (X ∧ Y )

is an isomorphism.
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There is a natural map

(B.194) XG → ΦG
MX

from the fixed point spectrum of X to the monoidal geometric fixed point

spectrum. To construct it, note that the fixed point spectrum of X is computed

termwise and so is given by the coequalizer diagram

(B.195)
∨

V,W∈J

S−W ∧J (V,W )+ ∧XG
V ⇒

∨
V ∈J

S−V ∧XG
V → XG.

The map (B.194) is given by the evident inclusion of (B.195) into (B.189).

The functor ΦG
M cannot commute with all colimits. However, since colimits

of orthogonal G-spectra are computed objectwise, the definition implies that

ΦG
M commutes with whatever enriched colimits are preserved by the fixed point

functor on G-spaces. This means that there is a functorial isomorphism

(B.196) ΦG
M (X ∧A) ≈ ΦG

M (X) ∧AG

for each pointed G-space A and that ΦG
M commutes with the formation of

wedges, directed colimits, and cobase change along a closed inclusion. Because

h-cofibrations and cofibrations are objectwise closed inclusion (Lemma A.70

and Remark 5.38), the functor ΦG
M has good homotopy theoretic properties.

B.10.3. Homotopy properties of ΦG
M . Several variations on the following

appear in in [55, §V.4].

Proposition B.197. The functor ΦG
M sends cofibrations to cofibrations

and acyclic cofibrations to acyclic cofibrations. It therefore sends weak equiva-

lences between cofibrant objects to weak equivalences.

Proof. That ΦG
M sends cofibrations to cofibrations follows from the fact

that it preserves cobase change along closed inclusions and sends generating

cofibrations to generating cofibrations. A similar argument applies to the

acyclic cofibrations, once one checks that ΦG
M sends both maps in the fac-

torization (B.67)

S−V⊕W ∧ SW → S̃−V → S−V

to weak equivalences. But the second map is a homotopy equivalence and the

composite map is sent to a weak equivalence by (B.187). The last assertion is

a consequence of Ken Brown’s Lemma. �

Proposition B.197 implies that the monoidal geometric fixed point functor

has a left derived functor that can be computed on any cofibrant approxima-

tion. A similar argument with a slightly different model structure could be

used to show that the left derived functor can be computed on a cellular ap-

proximation. We will show in Section B.10.5 that the left derived functor LΦG
M

is the geometric fixed point functor ΦG.
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B.10.4. Monoidal geometric fixed points and smash product. The proper-

ties (B.187) and (B.188) give an identification

ΦG
M (S−V ∧A ∧ S−W ∧B) ≈ ΦG

M (S−V ∧A) ∧ ΦG
M (S−W ∧B)

making the diagram

ΦGM (S−V1 ∧JG(W1, V1)) ∧ ΦGM (S−V2 ∧JG(W2, V2)) //

��

ΦGM (S−W1) ∧ ΦGM (S−W2)

��
ΦGM (S−V1 ∧JG(W1, V1) ∧ S−V2 ∧JG(W2, V2)) // ΦGM (S−W1 ∧ S−W2)

commute. Applying ΦG
M termwise to the smash product of the tautological

presentations of X and Y , and using the above identifications, gives a natural

transformation

(B.198) ΦG
M (X) ∧ ΦG

M (Y )→ ΦG
M (X ∧ Y ),

making ΦG
M lax monoidal. From the formula (B.187) this map is an isomor-

phism if X = S−V ∧A and Y = S−W ∧B. This leads to

Proposition B.199 ([55, Prop. V.4.7]). The lax monoidal functor ΦG
M is

weakly monoidal : the map (B.198) is a weak equivalence (in fact an isomor-

phism) if X and Y are cellular.

Proof. The class of spectra X and Y for which (B.198) is an isomorphism

is stable under smashing with a G-space, the formation of wedges, directed

colimits, and cobase change along an objectwise closed inclusion. Since (B.198)

is an isomorphism when X = G+ ∧
H
S−V ∧ A and Y = G+ ∧

H
S−W ∧ B, this

implies it is an isomorphism when X and Y are cellular. Since isomorphisms

are weak equivalences, the result follows. �

Remark B.200. Blumberg and Mandell [10, App. A] have shown that

Proposition B.199 remains true under the assumption that only one of X or

Y is cellular. This implies that Proposition B.203 below remains true if only

one of N or N ′ is cofibrant.

B.10.5. Relation with the geometric fixed point functor. We now turn to

identifying the left derived functor LΦG
M with the geometric fixed point func-

tor ΦG. The inclusion S0 → ẼP and the fibrant replacement functor give

maps

X → ẼP ∧X → (ẼP ∧X)f .

Proposition B.201 ([55, Prop. V.4.17]). If X is cofibrant, then the maps

ΦGX = (ẼP ∧Xf )G → ΦG
M ((ẼP ∧X)f )← ΦG

M (X)

are weak equivalences.
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Sketch of proof. For the arrow on the left, note that both functors are

homotopical and, up to weak equivalence, preserve filtered colimits along h-co-

fibrations. Using the canonical homotopy presentation, it suffices to check that

the arrow on the left is a weak equivalence when X = S−V ∧A, with A a G-CW

complex. This follows from Corollary B.185, the identity (B.187), and a little

diagram chasing to check compatibility.

The right arrow is the composition of

ΦG
M (X)→ ΦG

M (ẼP ∧X),

which is an isomorphism by (B.196), and

ΦG
M (ẼP ∧X)→ ΦG

M ((ẼP ∧X)f ),

which is an acyclic cofibration by Proposition B.197. �

B.10.6. The relative monoidal geometric fixed point functor. The functor

ΦG
M can be formulated relative to an equivariant commutative or associative

algebra R. As described below, care must be taken in using the theory in

this way.

Because it is lax monoidal, the functor ΦG
M gives a functor

ΦG
M :MR →MΦGMR

that is lax monoidal in case R is commutative.

Proposition B.202. The functor

ΦG
M :MR →MΦGMR

commutes with cobase change along a cofibration and preserves the classes of

cofibrations and acyclic cofibrations.

Proof. This follows easily from the fact that the maps of spectra underly-

ing the generating cofibrations for MR are h-cofibrations. �

Proposition B.203. When R is commutative, the functor

ΦG
M :MR →MΦGMR

is weakly monoidal and, in fact,

(B.204) ΦG
M (N ′) ∧

ΦGM (R)
ΦG
M (N)→ ΦG

M (N ′ ∧
R
N)

is an isomorphism if N ′ and N are cofibrant.

Proof. The proof is the same as that of Proposition B.199 once one knows

that the class of modules N ′ and N for which (B.204) is an isomorphism is

stable under cobase change along a generating cofibration. This, in turn, is a

consequence of the fact that both sides of (B.204) preserve h-cofibrations in

each variable, since h-cofibrations are closed inclusions. The functor ΦG
M does
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so since it commutes with the formation of mapping cylinders, and N ′ ∧
R

(− )

does so since MR is a closed symmetric monoidal category. �

As promising as it looks, it is not so easy to make use of Proposition B.203.

The trouble is that unless X is cofibrant, ΦG
M (X) may not have the weak

homotopy type of ΦG(X). So in order to use Proposition B.203 one needs a

condition guaranteeing that N ′ ∧
R
N is a cofibrant spectrum. The criterion of

Proposition B.205 below was suggested to us by Mike Mandell.

Proposition B.205. Suppose R is an associative algebra with the prop-

erty that S−1∧R is cofibrant. If N ′ is a cofibrant right R-module, and S−1∧N
is a cofibrant left R-module, then

N ′ ∧
R
N

is cofibrant.

Proof. First note that the condition on R guarantees that for every rep-

resentation U with dimUG > 0 and every cofibrant G-space T , the spectrum

(B.206) S−U ∧R ∧ T

is cofibrant. Since the formation of N ′ ∧
R
N commutes with cobase change

in both variables, the result reduces to the case N ′ = S−V ∧ R ∧ X and

N = S−W ∧ R ∧ Y with V having a nonzero fixed point space and X and Y

cofibrant G-spaces. But in that case

N ′ ∧
R
N ≈ S−V⊕W ∧R ∧X ∧ Y,

which is of the form (B.206) and hence cofibrant. �

Corollary B.207. Suppose R is an associative algebra with the prop-

erty that S−1 ∧ R is cofibrant. If N ′ is a cofibrant right R-module, then the

equivariant orthogonal spectrum underlying N ′ is cofibrant.

Proof. Just take N = R in Proposition B.205. �

The following result plays an important role in determining ΦGR(∞) (Sec-

tion 7.3).

Proposition B.208. Suppose that R is an equivariant associative algebra

whose underlying G-spectrum is cellular and that R → S0 is an equivariant

associative algebra map. If N ′ is a cofibrant right R-module, then N ′ ∧
R
S0 is a

cofibrant spectrum and the map

ΦG
M (N ′) ∧

ΦGMR
S0 → ΦG

M (N ′ ∧
R
S0)

is an isomorphism.
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Proof. One easily reduces to the case N ′ = S−V ∧X ∧R, in which V is a

representation with V G 6= 0 and X is a cofibrant G-space. In this case N ′∧
R
S0

is isomorphic to S−V ∧ X, which is cofibrant. The assertion about monoidal

geometric fixed points follows easily from Proposition B.199. �

B.11. Geometric fixed points and the norm. Our original version of the

following result merely concluded that the transformation in question was a

weak equivalence on cofibrant objects. Andrew Blumberg and Mike Mandell

pointed out that it is in fact an isomorphism. At their request we have included

the stronger statement.

Proposition B.209. Suppose H ⊂ G. There is a natural transformation

ΦH
M (− )→ ΦG

M ◦NG
H (− )

that is an isomorphism and hence a weak equivalence on cellular objects.

Proof. To construct the natural transformation, first note that there is a

natural isomorphism

AH ≈ (NG
HA)G

for H-equivariant spaces A. Next note that for an orthogonal representation

V of H, Proposition A.59 and the property (B.187) give isomorphisms

ΦG
MN

G
HS
−V ≈ ΦG

MS
− indGH V ≈ S−V H ≈ ΦHS−V .

The monoidal properties of ΦG
M and the norm then combine to give an isomor-

phism

(B.210) ΦH(S−V ∧A) ≈ ΦGNG
H (S−V ∧A),

which one easily checks to be compatible with the maps

S−V ∧JH(W,V )→ S−W .

To construct the transformation, write a general H-spectrum X in terms of its

tautological presentation∨
V,W

S−W ∧JH(V,W ) ∧XV ⇒
∨
V

S−V ∧XV → X,

and apply (B.210) termwise to produce a diagram∨
V,W

S−W
H ∧JH(V,W )H ∧XH

V ⇒
∨
V

S−V
H ∧XH

V → ΦGNG
HX.

The coequalizer of the two arrows is, by definition, ΦH
M (X). This gives the

natural transformation.

The isomorphism assertion for cellular X reduces to the special case

(B.210), once one shows that ΦG
M ◦ NG

H (− ) commutes with the formation
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of wedges, cobase change along cofibrations between cofibrant objects, and fil-

tered colimits along closed inclusions. The last property is clear since both

of the functors being composed commutes with filtered colimits along closed

inclusions. For the other two assertions, it will be easier to work in terms of

equivariant J-diagrams for J = G/H.

Suppose that T is an indexing set and Xt, t ∈ T is a set of equivariant

J-diagrams. We wish to show that the natural map

(B.211)
∨
t∈T

ΦG
MX

∧J
t → ΦG

M

Ä ∨
t∈T

Xt

ä∧J
is an isomorphism. For this use the distributive law to rewrite the argument

of the right-hand side as ∨
γ∈Γ

X∧γ

where γ is the G-set of functions J → T and

X∧γ =
∧
j∈J

Xγ(j).

The map asserted to be an isomorphism on monoidal geometric fixed points is

the inclusion of the summand indexed by the constant functions. But since G

acts trivially on T , the other summands form an indexed wedge over a G-set

with no fixed points. The claim then follows from Proposition B.192.

The cobase change property is similar. Suppose we are given a pushout

square of equivariant J-diagrams

A //

��

B

��
X // Y

in which A→ B is a cofibration and A is cofibrant. We consider the filtration

of Y ∧J given in Section A.3.4 whose stages fit into a pushout square∨
J=J0qJ1
|J1|=m

X∧J0 ∧ ∂AB∧J1 //

��

∨
J=J0qJ1
|J1|=m

X∧J0 ∧B∧J1

��
film−1 Y

∧J // film Y
∧J .

By Proposition B.97, the upper arrow is an h-cofibration, so the resulting

diagram of monoidal geometric fixed points is a pushout. But since J is a

transitive G-set, unless m = |J |, the group G has no fixed points on the G-set

indexing the wedges. Applying Proposition B.192 then shows that for m < |J |,
the map

ΦG
MX

∧J → ΦG
M film Y

∧J
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is an isomorphism and that the pushout square when m = |J | becomes

ΦG
M∂AB

∧J //

��

ΦG
MB

∧J

��
ΦG
MX

∧J // ΦG
MY

∧J .

However the term ∂AB
∧J is the term fil|J |−1B

∧J in the case in which X = A

and Y = B, and so ΦG
MA

∧J → ΦG
M∂AB

∧J is an isomorphism. This completes

the proof. �

Thinking in terms of left derived functors one can get a slightly better

result. As long as X has the property that the map (LNG
H )X → NG

HX is a

weak equivalence, there will be a weak equivalence between ΦHX and ΦGNG
HX.

Since it plays an important role in our work, we spell it out. Start with X ∈ SH ,

and let Xc → X be a cofibrant approximation. Now consider the diagram

(B.212) ΦHXc

∼
��

oo ∼
zig zag

// ΦH
MXc

∼ // ΦG
MN

G
HXc

oo ∼
zig zag

// ΦGNG
HXc

��
ΦHX ΦGNG

HX.

The left vertical arrow is a weak equivalence since the geometric fixed point

functor preserves weak equivalences. The weak equivalences in the top row are

given by Propositions B.201, B.89, and B.209. Since ΦG is homotopical, we

have

Proposition B.213. Suppose that X ∈ SH has the property that for some

(hence any) cofibrant approximation Xc → X , the map

NG
HXc → NG

HX

is a weak equivalence. Then the functorial relationship between ΦHX and

ΦGNG
HX given by (B.212) is a weak equivalence.

Remark B.214. Proposition B.213 can be proved without reference to ΦG
M

by using the canonical homotopy presentation.

Remark B.215. Proposition B.213 applies, in particular, when X is very

flat in the sense of Section B.8.2. By Proposition B.146 this means that if

R ∈ SH is a cofibrant commutative ring, then ΦHR and ΦGNG
HR are related

by a functorial zig-zag of weak equivalences. The case of interest to us is when

H = C2, G = C2n and R = MUR. In this case NG
HR = MU ((G)), and we get

an equivalence

ΦGMU ((G)) ≈ ΦC2MUR ≈MO.
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Remark B.216. Proposition B.213 also applies to the suspension spectra of

cofibrant H-spaces. Indeed, if X is a cofibrant H-space, then S−1∧S1∧X → X

is a cofibrant approximation. Applying NG
H leads to the map

S−V ∧ SV ∧NG
H (X)→ NG

H (X)

with V = indGH R, which is a weak equivalence (in fact a cofibrant approxima-

tion). This case is used to show that ΦG ◦NG
H is a ring homomorphism on the

RO(G)-graded cohomology of G-spaces (Proposition 2.59).

B.12. Real bordism. In this section we give a construction of the real bor-

dism spectrum MUR as a commutative algebra in SC2 . As will be apparent to

the reader, this construction owes a great deal to the Stefan Schwede’s con-

struction of MU in [76, Ch. 2]. We are indebted to Schwede for some very

helpful correspondence concerning these matters.

Our goal is to construct a C2-equivariant commutative ring MUR admit-

ting the canonical homotopy presentation

(B.217) MUR ≈ holim−→S−C
n ∧MU(n),

in which MU(n) is the Thom complex of the universal bundle over BU(n).

The group C2 is acting on everything by complex conjugation, so we could

also write this expression as

(B.218) MUR ≈ holim−→S−nρ2 ∧MU(n).

The map

S−ρ2 ∧MU(1)→MUR

defines a real orientation. These things form the basis for everything we proved

about MUR.

The most natural construction of MUR realizes this structure in the cat-

egory SR of real spectra, which is related to the category of C2-equivariant

orthogonal spectra by a multiplicative Quillen equivalence

i! : SR � SC2 : i∗.

We will construct a commutative algebraMUR ∈ comm SR, whose underlying

real spectrum has a canonical homotopy presentation of the form

(B.219) MUR
∼←− holim−→S−nC ∧MU(n)

∼−→ holim−→S−nC ∧MU(n)cf.

Applying i! to (B.219) and making the identification i!S
−C = S−ρ2 leads to

the diagram

(B.220) i!MUR ← holim−→S−nρ2 ∧MU(n)→ holim−→S−nρ2 ∧MU(n)cf.

We define MUR to be the spectrum i!MU ′R, whereMU ′R →MUR is a cofibrant

commutative algebra approximation. The functor i! is strictly monoidal, so

MUR is a commutative ring in SC2 . The map on the right in (B.220) is a weak
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equivalence since i! is a left Quillen functor. The problem is to show that the

one on the left is.

This involves two steps. The first is to show that the forgetful functor

comm SR → SR

creates a model category structure on comm SR. This involves analyzing

the symmetric powers of cofibrant real spectra which, as pointed out in Re-

mark B.119, depends in an essential way on understanding the homotopy the-

oretic properties of indexed symmetric powers. The second is to show that the

functor i! is homotopical on a subcategory of SR containing the real spectra

underlying cofibrant real commutative rings. As in our analysis of norms of

commutative rings, this involves a generalized notion of flatness. There is no

real way to short circuit the model structure on comm SR. Its role is to identify

the cofibrant real commutative algebras. But the only real work in establishing

the model structure is showing that what one thinks is a cofibrant approxima-

tion is actually a weak equivalence and that is what is needed to show that

every real commutative algebra is weakly equivalent to a cofibrant one.

B.12.1. Real and complex spectra. In this section we describe the basics

of real and complex spectra. The additive results are more or less all a special

case of the results of [56], but the important multiplicative properties require

a separate analysis.

For finite dimensional complex Hermitian vector spaces A and B, let

U(A,B) be the Stiefel manifold of unitary embeddings A ↪→ B. There is

a natural Hermitian inner product on the complexification VC of a real orthog-

onal vector space V , so there is a natural map

O(V,W )→ U(VC,WC).

The group C2 acts on U(VC,WC) by complex conjugation, and the fixed point

space is O(V,W ).

Definition B.221. The category JC is the topological category whose ob-

jects are finite dimensional Hermitian vector spaces and whose morphism space

JC(A,B) is the Thom complex

JC(A,B) = Thom(U(A,B);B −A).

The category JR is the C2-equivariant topological category whose objects are

finite dimensional orthogonal real vector spaces V and with

JR(V,W ) = JC(VC,WC),

on which C2 acts by complex conjugation.
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Definition B.222. The category SC of complex spectra is the topological

category of (continuous) functors

JC → T .

The category SR of real spectra is the topological category of C2-enriched func-

tors

JR → TC2

and equivariant natural transformations.

We will write

V 7→ XVC

for a typical real spectrum X and let S−VC ∈ SR be the functor co-represented

by V ∈JR. From the Yoneda lemma there is a natural isomorphism

SR(S−VC , X) = XVC .

As with equivariant orthogonal spectra, every real spectrum X has a tautolog-

ical presentation

(B.223)
∨

V,W∈JR

S−WC ∧JR(V,W ) ∧XWC ⇒
∨

V ∈JR

S−VC ∧XVC → X.

A similar apparatus exist for complex spectra.

Remark B.224. The category JR is equivalent to its full subcategory with

objects Rn and, similarly, JC is equivalent to its full subcategory with objects

Cn. Thus a real spectrum X is specified by the spaces XVC with V = Rn
together with the structure maps between them, and an object Y ∈ SC is

specified by its spaces YCn together with the structure maps between them.

The group C2 acts on SC through its action on JC. We write this as

X 7→ X̄, where

(X̄)V = XV̄ .

A fixed point for this action is a complex spectrum X equipped with an iso-

morphism X → X̄ having the property that X → X̄ → ¯̄X = X is the identity

map. Restricting to the spaces XCn and using the standard basis to identify

Cn with C̄n, one sees that a fixed point for this C2-action consists of a sequence

C2-spaces XCn , together with an associative family C2-equivariant maps

JC(Cn,Cm) ∧U(Cn) XCn → XCm ,

where C2 is acting by conjugation. But this is the same thing as giving a real

spectrum indexed on the spaces Rn. This shows that the category of fixed

points for the C2-action on SC is SR.
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B.12.2. Smash product and indexed smash products. The orthogonal sum

makes JC into a symmetric monoidal category and JR an T C2-enriched sym-

metric monoidal category. Using this one can define the smash product X ∧Y
giving both SR and SC the structure of symmetric monoidal categories. The

smash product in SR is specified by the formula

S−VC ∧ S−WC = S−(V⊕W )C

and the fact that it commutes with colimits in each variable. A similar char-

acterization holds for SC.

There are indexed monoidal products in this context. Let J be a finite

set with a C2-action. The actions of C2 on J and on SC combine to give an

action on the product category SJC. The category of SJR of real J-diagrams is

the category of fixed points for this action. The category of real J-diagrams for

J = {pt} is equivalent to SR. When J = C2, the category of real J-diagrams

is equivalent to SC. For general J = n1 + n2C2, one has an equivalence

SJR ≈ Sn1
R × Sn2

C .

There are indexed wedges and indexed smash products from SJR to SR.

B.12.3. Homotopy theory of real and complex spectra. We now turn to the

homotopy theory of real and complex spectra. We describe the case of SR and

leave the analogous case of SC to the reader.

Suppose that X is a real spectrum. For H ⊂ C2 and k ∈ Z, set

πHk (X) = lim−→
V

πHk+VCXVC .

The colimit is taken over the poset of finite dimensional orthogonal vector

spaces over R, ordered (in agreement with Definition 2.3) by dimension. A

stable weak equivalence in SR is a map X → Y inducing an isomorphism

πHk X → πHk Y for all H ⊂ C2 and k ∈ Z. For fixed k, the groups πHk form a

Mackey functor, which we denote πk.

Equipped with the stable weak equivalences, the category SR becomes a

homotopical category. We refine it to a model category by defining a map

to be a fibration if for each nonzero V , the map XVC → YVC is a fibration in

T C2 . The cofibrations are the maps having the left lifting property against the

acyclic fibrations. This is the positive stable model structure on SR.

The positive stable model structure is cofibrantly generated. The gener-

ating cofibrations can be taken to be the maps of the form

S−VC ∧
Ä
Sn−1

+ → Dn
+

ä
and

(C2)+ ∧ S−VC ∧
Ä
Sn−1

+ → Dn
+

ä
,
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with V > 0. The generating acyclic cofibrations are the analogous maps

S−VC ∧
Ä
In−1

+ → In
ä

and

(C2)+ ∧ S−VC ∧
Ä
In−1

+ → In
ä

together with the corner maps formed by smashing

(B.225) S−VC⊕WC ∧ SWC → S̃−VC

with the maps Sn−1
+ → Dn

+ and (C2)+ ∧ (Sn−1
+ → Dn

+). We assume V > 0,

while W need not be. The map (B.225) is extracted from the factorization

S−VC⊕WC ∧ SWC → S̃−VC → S−VC

formed by applying the small object construction with the generating cofibra-

tions. As in the case of the complete positive stable model structure on SG, the

map S̃−VC → S−VC is a homotopy equivalence. The verification of the model

category axioms is straightforward. See Section B.4.1 or [56].

B.12.4. Real spectra and C2-spectra. Let

i : JR →JC2

be the functor sending V to

Vρ2 = V ⊗ ρ2.

Then the restriction functor

i∗ : SC2 → SR

has both a left and right adjoint which we denote i! and i∗ respectively. The

left adjoint sends S−VC to S−Vρ2 and is described in general by applying the

functor termwise to the tautological presentation.

Since the functor i is symmetric monoidal, the left adjoint i! is strongly

symmetric monoidal.

Proposition B.226. The functors

i! : SR � SC2 : i∗

form a Quillen equivalence.

Remark B.227. A similar discussion leads to a Quillen equivalence

SC � S.
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Proof. Since i! is a left adjoint and

i!(S
−VC ∧A) = S−Vρ2 ∧A,

it is immediate that i! sends the generating (acyclic) cofibrations to (acyclic)

cofibrations and hence is a left Quillen functor. Using the fact that the sequence

{Rn ⊗ ρ2} is exhausting, one can easily check that a map X → Y in SC2 is a

weak equivalence if and only if i∗X → i∗Y is. This means that to show that i!
and i∗ form a Quillen equivalence, it suffices to show that the unit map

(B.228) X → i∗i!X

is a weak equivalence for every cofibrant X ∈ SR. Since i∗ is also a left

adjoint, it preserves colimits, and therefore so does i∗i!. Since both functors

also commute with smashing with a C2-space, we are reduced to checking that

for each 0 6= V ∈JR, the map

(B.229) S−VC → i∗S−Vρ2

is a weak equivalence.

For W ∈JR, the WC-space of S−VC is

JR(V,W ) = Thom(U(VC,WC);WC − VC)

and the W -space of i∗S−Vρ2 is

JC2(Vρ2 ,Wρ2) = Thom(O(Vρ2 ,Wρ2);Wρ2 − Vρ2).

The unit of the adjunction is derived from the inclusion

U(VC,WC)→ O(Vρ2 ,Wρ2).

We must therefore show that for each k, the map

(B.230) lim−→
W∈JR

πk+WCJR(VC,WC)→ lim−→
W∈JR

πk+WCJC2(Vρ2 ,Wρ2)

is an isomorphism.

We may suppose that dimW > dimV . For a fixed W , choose an orthog-

onal embedding V ⊂W , write W = V ⊕ U , and consider the diagram

SUC //

≈
��

JR(V,W )

��
SUρ2 // JC2(Vρ2 ,Wρ2).

The left vertical map is an equivariant isomorphism. A straightforward argu-

ment using the connectivity of Stiefel manifolds shows that for dimW � 0,

the horizontal maps are isomorphisms in both πuk+WC
and πC2

k+WC
. It follows

that the right vertical map is as well, and hence so is (B.230). �
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For later reference, we record one fact that emerged in the proof of Propo-

sition B.226.

Lemma B.231. The functor i∗ reflects weak equivalences ; that is, a map

X → Y ∈ SC2 is a weak equivalence if and only if i∗X → i∗Y is.

B.12.5. Multiplicative aspects of real spectra. The multiplicative homo-

topy theory of real spectra is similar to that of SG. Though there does not

seem to be a simple way to directly deduce the results from the case of SC2 ,

the proofs are very similar.

Proposition B.232. If J is a set with a C2-action and X → Y is a

cofibration of cofibrant real J-diagrams, then both the indexed corner map

∂XY
∧J → Y ∧J and the absolute map X∧J → Y ∧J are cofibrations between

cofibrant objects. They are weak equivalences if X → Y is.

Proof. This is an analogue of Propositions B.96 and B.102, and it is proved

in the same way, using the arrow category and the filtration of Section A.3.4.

�

For the symmetric powers, we fix a C2-set J and a C2-stable subgroup

Σ ⊂ ΣI . The following is an analog of Proposition B.116 and, making use of

Proposition B.232, is proved in the same manner.

Proposition B.233. If X ∈ SR is cofibrant and Z is any real spectrum

equipped with an action of Σ o C2 extending the G-action, then the map

(EC2Σ)+ ∧
Σ

(X∧J ∧ Z)→ (X∧J ∧ Z)/Σ

is a weak equivalence.

Proposition B.234. If A → B is a cofibration of cofibrant real spectra

and J is a finite set with a C2-action, then in the diagram

EC2Σ+ ∧
Σ
∂AB

∧J //

��

EC2Σ+ ∧
Σ
B∧J

��
∂A SymJ B // SymJ B

the upper row is a cofibration between cofibrant objects, the vertical maps are

weak equivalences and remain so after smashing with any object, and the bot-

tom row is an h-cofibration of flat spectra. The horizontal maps are weak

equivalences if A→ B is.

Proof. This is an analogue of Proposition B.108 and is proved in the same

way, making use of Proposition B.233. �
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Proposition B.235. The forgetful functor

comm SR → SR

creates a model category structure on commutative algebras in SR, in which a

map of commutative algebras is a fibration or weak equivalence if and only if

the underlying map of real spectra is.

Proof. This is proved in the same manner as Proposition B.129, making

use of Proposition B.234. �

B.12.6. Generalized flatness. Our next task is to show that the left derived

functor of i! can be computed on a subcategory of real spectra containing those

that underlie real commutative rings.

Definition B.236. A real spectrum X ∈ SR is i!-flat if it satisfies the

following property: for every cofibrant approximation X̃ → X and every weak

equivalence Z̃ → Z ∈ SC2 , the map

(B.237) i!X̃ ∧ Z̃ → i!X ∧ Z

is a weak equivalence.

Remark B.238. Since i! is a left Quillen functor and cofibrant objects of

SC2 are flat, cofibrant objects of SR are i!-flat.

Remark B.239. If (B.237) is a weak equivalence for one cofibrant approx-

imation, it is a weak equivalence for any cofibrant approximation.

Our main result is

Proposition B.240. If R ∈ SR is a cofibrant commutative algebra, then

R is i!-flat.

The proof of Proposition B.240 follows the argument for the proof of

Proposition B.146.

Lemma B.241. If A ∈ SR is cofibrant, and n ≥ 1, then SymnA is i!-flat.

Proof. By Proposition B.233, the map

(EC2Σn)+ ∧
Σn
A∧n → SymnA

is a cofibrant approximation. Since i! is a continuous left adjoint, we may

identify

(B.242) i!
Ä
(EC2Σn)+ ∧

Σn
A∧n
ä
∧ Z̃ → i!

Ä
SymnA

ä
∧ Z

with

(B.243) (EC2Σn)+ ∧
Σn

(i!A)∧n ∧ Z̃ → Symn(i!A) ∧ Z.
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Since i! is a left Quillen functor, i!(A) is cofibrant, and Proposition B.116

implies that (B.243), hence (B.242) is a weak equivalence. �

We also require an analogue of Lemma B.163, though the statement and

proof are much simpler in this case, since i! is a left adjoint.

Lemma B.244. If S → T is an h-cofibration in SR and two of S, T , T/S

are i!-flat, then so is the third.

Proof. We may choose a map S̃ → T̃ of cofibrant approximations that is

a cofibration and hence an h-cofibration. Our assumption is that two of the

vertical maps in

i!S̃ ∧ Z̃ //

��

i!T̃ ∧ Z̃ //

��

i!(T̃/S̃) ∧ Z̃

��
i!S ∧ Z // i!T ∧ Z // i!(T/S) ∧ Z

are weak equivalences. This implies that the third is, since the two left hori-

zontal maps are h-cofibrations and hence flat. �

Lemma B.245. Consider a pushout square in SR,

(B.246) S //

��

T

��
X // Y,

in which S → T is an h-cofibration. If T , T/S and X are i!-flat, then so is Y .

Proof. Since T and T/S are i!-flat, so is S by Lemma B.244. We may

choose cofibrant approximations of everything fitting into a pushout diagram

S̃ //

��

T̃

��

X̃ // Ỹ

in which the top row is an h-cofibration. Now consider

i!X̃ ∧ Z̃

��

i!S̃ ∧ Z̃oo //

��

i!T̃ ∧ Z̃

��
i!X ∧ Z i!S ∧ Zoo // i!T ∧ Z.

The left horizontal maps are h-cofibrations hence flat, and the vertical maps

are weak equivalences by assumption. It follows that the map of pushouts is a

weak equivalence. �
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Proof of Proposition B.240. It suffices to show that if A → B is a gener-

ating cofibration in SR, then

SymA //

��

SymB

��
X // Y

is a pushout square of commutative algebras in SR and X is i!-flat, and then

Y is i!-flat. We induct over the filtration described in Section A.3.4. Since

fil0 Y = X, the induction starts. For the inductive step, consider the pushout

square

(B.247) X ∧ ∂A SymmB //

��

X ∧ SymmB

��
film−1 Y // film Y,

and assume that film−1 Y is i!-flat. Both SymmB and

SymmB/∂A SymmB = Symm(B/A)

are i!-flat by Lemma B.241. Since smash products of i!-flat spectra are i!-flat,

both X ∧ SymmB and X ∧ Symm(B/A) are i!-flat. The top row of (B.247) is

an h-cofibration, so Lemma B.245 implies that film Y is i!-flat. This completes

the inductive step and the proof. �

Though we do not quite need the following result, having come this far

we record it for future reference.

Proposition B.248. The functors i! and i∗ restrict to a Quillen equiva-

lence
i! : comm SR � comm SC2 : i∗.

Proof. It is immediate from the definition of the model structures on

comm SR and comm SC2 , and from the fact that

i! : SR � SC2 : i∗

is a Quillen pair, that

i∗ : comm SC2 → comm SR

preserves the classes of fibrations and acyclic fibrations. It remains to show

that if A ∈ comm SR is cofibrant, then the composition

A→ i∗i!A→ i∗(i!Af )

is a weak equivalence, where i!A → i!Af is a fibrant replacement. Since i∗

reflects weak equivalences (Lemma B.231), this is equivalent to showing that

A→ i∗i!A
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is a weak equivalence. Let A′ → A be a cofibrant approximation in SR, and

consider the following diagram in SR:

(B.249) A′
∼ //

∼
��

i∗i!A
′

∼
��

A // i∗i!A.

By Proposition B.240 the map i!A
′ → i!A is a weak equivalence. The rightmost

arrow in (B.249) is therefore a weak equivalence. The top arrow is a weak

equivalence by Proposition B.226, and the left arrow is a weak equivalence by

assumption. This implies that the bottom arrow is a weak equivalence. �

B.12.7. The real bordism spectrum. For V ∈JR, let

MU(VC) = Thom(BU(VC), VC)

be the Thom complex of the bundle EU(VC) ×
U(VC)

VC over BU(VC), equipped

with the C2-action of complex conjugation. We will take our model of BU(VC)

to be the one given by Segal’s construction [79], so that

(B.250) V 7→ Thom(BU(VC), VC)

is a lax symmetric monoidal functor JR → TC2 and so defines a commutative

ring MUR ∈ comm SR. Let MU ′R → MUR be a cofibrant approximation to

MUR in comm SR.

Definition B.251. The real bordism spectrum is the spectrum MUR is the

spectrum i!MU ′R.

To get at the homotopy type of MUR, we examine the canonical homotopy

presentation of MUR using the exhausting sequence Vn = Rn. This gives a

weak equivalence

(B.252) holim−→S−C
n ∧MU(n)

∼−→MU ′R

in which MU(n) = MU(Cn). Applying i! and using Proposition B.240 gives

holim−→S−nρ2 ∧MU(n)
∼−→MUR.

In this presentation the universal real orientation of MUR (Example 5.5) is

given by restricting to the term n = 1

S−ρ2 ∧MU(1)→MUR.

The next result summarizes some further consequences of the presenta-

tion (B.252).
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Proposition B.253.

(i) The nonequivariant spectrum underlying MUR is the usual complex cobor-

dism spectrum MU .

(ii) The equivariant cohomology theory represented by MUR coincides with

the one studied in [45], [26], [6], [37].

(iii) There is an equivalence

ΦC2MUR ≈MO.

(iv) The Schubert cell decomposition of Grassmannians leads to a cofibrant

approximation of MUR by a C2-CW complex with one 0-cell (S0) and the

remaining cells of the form emρ2 , with m > 0.
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