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For a motivic spectrum E ∈ SH(k), let Γ(E) denote the 
global sections spectrum, where E is viewed as a sheaf of 
spectra on Smk. Voevodsky’s slice filtration determines a 
spectral sequence converging to the homotopy groups of Γ(E). 
In this paper, we introduce a spectral sequence converging 
instead to the mod 2 homology of Γ(E) and study the case 
E = BPGL〈m〉 for k = R in detail. We show that this spectral 
sequence contains the A∗-comodule algebra A∗�A(m)∗F2 as 
permanent cycles, and we determine a family of differentials 
interpolating between A∗�A(0)∗F2 and A∗�A(m)∗F2. Using 
this, we compute the spectral sequence completely for m ≤ 3.
In the height 2 case, the Betti realization of BPGL〈2〉 is 
the C2-spectrum BPR〈2〉, a form of which was shown by 
Hill and Meier to be an equivariant model for tmf1(3). 
Our spectral sequence therefore gives a computation of the 
comodule algebra H∗tmf0(3). As a consequence, we deduce a 
new (2-local) Wood-type splitting

tmf ∧X � tmf0(3)
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of tmf-modules predicted by Davis and Mahowald, for X a 
certain 10-cell complex.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).
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1. Introduction

The classical truncated Brown–Peterson spectrum BP 〈m〉 admits an action by the 
cyclic group of order 2, via the complex conjugation action on complex bordism, MU . 
The fixed points admit familiar geometric models for small heights m and give higher 
height analogues of connective real K-theory ko. We give a spectral sequence converging 
to the homology of these fixed point spectra by lifting the calculation to a simpler one 
in the R-motivic stable homotopy category.

1.1. Motivation

The chromatic approach to stable homotopy gives a method to compute the stable 
homotopy groups of spheres via a step-by-step procedure. This procedure comes from 
the height filtration on the moduli stack of formal groups, mirrored in stable homotopy 
by Bousfield localization. The chromatic convergence theorem of Hopkins–Ravenel [34]

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


C. Carrick et al. / Advances in Mathematics 458 (2024) 109955 3
states that the p-local sphere spectrum may be recovered as the limit of its chromatic 
tower

S0
(p) � lim←−−

(
· · · → LnS

0 → Ln−1S
0 → · · · → L0S

0)
where Ln denotes Bousfield localization at a height n Morava E-theory E(k, Γ), for Γ a 
height n formal group over a perfect field k of characteristic p. The spectrum LnS

0 is 
built in finitely many steps from the K(i)-local spheres LK(i)S

0 for i ≤ n, via chromatic 
fracture squares. The spectrum LK(n)S

0, in turn, admits a description as a homotopy 
fixed-point spectrum

LK(n)S
0 � E(k,Γ)hGn

by a theorem of Devinatz–Hopkins [11], where Gn = Aut(Γ) is the Morava stabilizer 
group. This, in principle, reduces many questions in stable homotopy theory to under-
standing the Gn-equivariant spectrum E(k, Γ).

However, this is not easy to access in practice, even at small heights. It was an ob-
servation of Ravenel [35] and Hopkins–Miller [36] that LK(n)S

0 is well approximated by 
the fixed points of E(k, Γ) at finite subgroups of Gn, and that these theories are more 
computable. These theories

EOn(G) := E(k,Γ)hG

are known as the Hopkins–Miller higher real K-theories.
The EOn(G)’s have proven very effective at carrying rich information in an accessible 

way. For instance, studying these theories led to the solution of the Kervaire invariant 
problem, at primes p ≥ 5 by Ravenel [35] and at p = 2 by Hill–Hopkins–Ravenel [19]. 
At the prime p = 3, they were used by Goerss–Henn–Mahowald–Rezk [13] to produce 
an explicit finite resolution of the K(2)-local sphere, giving a conceptual framework to 
the calculation of π∗LK(2)S

0 by Shimomura–Wang [37]. We refer the reader also to the 
introduction of [4] for a nice discussion of these theories and their history.

Connective models
Working with the EOn(G)’s in practice is limited by the size of these theories. The 

EOn(G)’s are non-connective, and their mod p homology vanishes, making it impossible 
to understand these theories directly from the point of view of the Adams spectral 
sequence. Moreover, the homotopy groups of the EOn(G)’s are not degreewise finitely 
generated, so passing to the connective cover does not give a substantial improvement. 
A key feature of the study of the EOn(G)’s is thus a search for good connective models 
eon(G) with strong finiteness properties.

At heights h = 2n−1m with p = 2, the group Gh contains a subgroup isomorphic 
to G = C2n , and Beaudry–Hill–Shi–Zeng defined and studied candidates for good con-
nective models of EOh(G) in this case via Real bordism [5]. These theories—known 
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as the BP ((G))〈m〉’s—are particularly accessible as they arise as the fixed points of a 
G-spectrum whose action comes from geometry, as opposed to the action on E(k, Γ), 
which is defined via obstruction theory. An important manifestation of this is that the 
BP ((G))〈m〉’s have a well understood slice filtration, in the sense of Hill–Hopkins–Ravenel 
[19].

In upcoming work [9], the first and second named authors use the slice filtration to 
establish the desired finiteness properties of the BP ((G))〈m〉’s, showing that their fixed 
points are fp spectra of type m|G|/2, in the sense of Mahowald—Rezk [29]. For explicit 
calculations, however, we would like to know the comodules H∗BP ((G))〈m〉G, and the 
main aim of the present paper is to initiate such homology computations by exploring 
the case G = C2.

The G = C2 case
The cyclic group of order 2 is often used as a test case for computations in equivariant 

homotopy in general and for the study of the EOn(G)’s and BP ((G))〈m〉’s in particular. 
Quite a lot is known in this case; for instance, the homotopy fixed point spectral sequence 
computing π∗EOn(C2) was completely computed at all heights by Hahn–Shi in [16]. Li–
Shi–Wang–Xu showed that a large class of elements in the homotopy groups of spheres 
is detected by the EOn(C2)’s [27]. The EOn(C2)’s were studied extensively by Kitchloo–
Wilson; they used these theories to prove new nonimmersion results for real projective 
spaces [25] [24], demonstrating that these theories are useful far beyond their role as a 
test case.

For G = C2, the connective models BP ((G))〈m〉 were first defined by Hu–Kriz [22] and 
are also known as the BPR〈m〉’s, as they model the classical truncated Brown–Peterson 
spectra BP 〈m〉 with their C2-action via complex conjugation. At small heights m, the 
BPR〈m〉’s and their fixed points admit familiar geometric models:

m BPR〈m〉 BPR〈m〉C2

-1 HF2 HF2
0 HZ(2) HZ(2)
1 kR ko
2 tmf1(3) tmf0(3)

Here kR denotes connective Real K-theory in the sense of Atiyah [1], and tmf1(3) and 
tmf0(3) are spectra of topological modular forms with level structure (see [20] and [21]).

R-motivic homotopy
For a real variety X, its set of complex points X(C) comes equipped with the complex 

analytic topology, with respect to which the action of C2 = Gal(C/R) is continuous. This 
extends to a symmetric monoidal left adjoint

β : SH(R) → SpC2
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from the R-motivic stable homotopy category to the category of genuine C2-spectra, 
called Betti realization. Real bordism and the BPR〈m〉’s lift along β to R-motivic ana-
logues, known as motivic bordism and the BPGL〈m〉’s.

Consequently, we lift the calculation of H∗BPR〈m〉C2 along β to a simpler and more 
fundamental calculation in the R-motivic stable homotopy category, and it is in this 
setting in which we do our computations. In the motivic setting, the role of fixed points 
(−)C2 is played by the global sections functor Γ : SH(k) → Sp, the right adjoint to the 
unique colimit-preserving symmetric monoidal functor

i∗ : Sp → SH(k)

For E ∈ SH(k), Γ(E) may be computed as the mapping spectrum F (Spec(k)+, E) in 
SH(k) and thus is the global sections of E, viewed as a sheaf of spectra on Smk, the 
category of smooth schemes over Spec(k).

The advantage of working motivically is that we may discard the so-called negative 
cone in our calculations. As we show in Section 6, the presence of the negative cone in 
the C2-equivariant homology of a point results in serious complications. In Section 2, 
we give a method of comparing C2-equivariant calculations of the kind studied here to 
the corresponding R-motivic calculations, and we use this to show that the results must 
agree in non-positive weights. In practice, this means we may discard the negative cone 
and still recover the correct result in degrees a +bσ for b ≤ 0 and, in particular, in integer 
degrees.

1.2. Main results

Section 2
We begin by defining the homological slice spectral sequence (HSSS) in Section 2. 

This spectral sequence arises by smashing the slice tower of E ∈ SH(k) with the motivic 
spectrum i∗HF2, giving a spectral sequence of A∗-comodules. We show that when E is 
slice connective, this spectral sequence has strong vanishing lines and converges to the 
comodule H∗Γ(E) (Proposition 2.6).

For our applications to the BPR〈m〉’s, we compare the global sections functor Γ and 
the genuine fixed points functor (−)C2 , producing a natural transformation

Γ(E) → β(E)C2

which we show to be an equivalence in many cases. In particular,

Proposition 1.1 (Corollary 2.20). For all m, there is an equivalence of spectra

Γ(BPGL〈m〉) → BPR〈m〉C2
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Section 3
In [6], Behrens–Shah lift the Tate square in C2-equivariant homotopy along β to an 

arithmetic square

E E[ρ−1]

Eρ̂[τ−1] Eρ̂[τ−1][ρ−1]

for E ∈ SH(R). In contrast to the Tate square, this is not usually a pullback, but we show 
that it becomes a pullback after applying Γ(−) in many cases. For E = i∗HF2 ⊗BPGL, 
we completely determine the effect of the arithmetic square on bigraded homotopy 
groups; the result in weight zero is as follows.

Proposition 1.2 (Proposition 3.13). On homotopy groups, the arithmetic square of 
i∗HF2 ⊗BPGL is given by

H∗Γ(BPGL) A∗ ξi

F2[z, χi|i ≥ 1]ẑ F2[z, χi|i ≥ 1]ẑ[z−1] χiz
2i−1 + χi−1z

−1

ϕ

with |z| = −1 and |χi| = 2(2i − 1).

This leads to a somewhat explicit description of the A∗-comodule H∗Γ(BPGL) via 
the associated Mayer–Vietoris sequence (Theorem 3.15). This corrects an error of Hu–
Kriz, who gave similar formulas in [23] (see Remark 3.9). The ρ-local part of this 
arithmetic square is complicated by the following unexpected fact about the reduction 
map BPGL → MF2 from the motivic Brown–Peterson spectrum to the mod 2 motivic 
Eilenberg–Maclane spectrum.

Theorem 1.3 (Theorem 3.10). The composite

HF2 � Γ(BPGL[ρ−1]) → Γ(MF2[ρ−1]) �
∏
i≥0

ΣiHF2

has components Sqi : HF2 → ΣiHF2.
Equivariantly, identifying ΦC2(HF2) with the connective cover of HF tC2

2 , the compos-
ite

HF2 � ΦC2BPR → ΦC2HF2 �
∏
i≥0

ΣiHF2

has components Sqi : HF2 → ΣiHF2.



C. Carrick et al. / Advances in Mathematics 458 (2024) 109955 7
We prove Theorem 1.3 as an application of Mahowald’s theorem on HF2. The descrip-
tion of the map appearing here comes via comparison with the Tate-valued Frobenius of 
Nikolaus–Scholze [31]. We expect this fact to be of independent interest.

Section 4
The HSSS for BPGL〈m〉 has a straightforward E2-page.

Proposition 1.4 (Corollary 4.5). The E2-page of the HSSS for BPGL〈m〉 is isomorphic, 
as an A∗-comodule algebra, to

(A∗�A(0)∗F2)[ρ, x1, v̄1, . . . , v̄m]

where

A∗�A(0)∗F2 ∼= H∗HZ ∼= F2[ζ2
1 , ζ2, . . .]

The tridegrees are given as follows

|ζi| = (2i − 1, 0, 1 − 2i)

|ρ| = (−1,−1, 1)

|x1| = (0,−1, 0)

|v̄i| = (2(2i − 1), 2i − 1, 0)

where we use Adams trigrading (t − s, w, s), representing (stem, weight, filtration). The 
classes ρ and v̄i are comodule primitives, and

ψ(x1) = 1 ⊗ x1 + ξ1 ⊗ ρ

Our main application of the results of Section 3 on the arithmetic square is to deter-
mine a large class of permanent cycles in the HSSS for BPGL〈m〉. This comes via the 
edge homomorphism

H∗Γ(BPGL〈m〉) → H∗Γ(P 0BPGL〈m〉) = H∗HZ

Theorem 1.5 (Theorem 4.18). In weight zero, the image of the edge homomorphism in 
the HSSS for BPGL〈m〉 is precisely

A∗�A(m)∗F2 ⊂ A∗�A(0)∗F2

The classes x1, ρ, and v̄i are all permanent cycles, so the subalgebra

(A∗�A(m)∗F2)[ρ, x1, v̄1, . . . , v̄m]
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of E2 consists of permanent cycles. We use the arithmetic square to identify also a class 
of permanent cycles in negative weights.

Proposition 1.6 (Corollary 3.19). The classes defined inductively x0 = ρ, x1 the class 
above, and

xn =
n−1∑
i=0

xiζ
2i

n−i

are permanent cycles in the HSSS for BPGL〈m〉, for all n and m. The tridegree of xn

is (2n − 2, −1, 2 − 2n), and the coaction is as follows

ψ(xn) =
n∑

i=0
ξ2n−i

i ⊗ xn−i

Heuristically, the xn classes may be thought of as indecomposable elements of the 
form [ξnρ]. We determine a family of differentials in the HSSS for BPGL〈m〉, which 
may be expressed in terms of the xn’s. The classes xn appear as Massey products when 
taking homology with respect to these differentials.

Theorem 1.7 (Theorem 4.16). In the HSSS for BPGL〈m〉, we have the differentials

d2i+1−1(ζ2i+1−j

j ) = viρ
2i−1

(
pj−1

(
x1

ρ
, . . . ,

xj−1

ρ

))2i+1−j

for all 1 ≤ i ≤ m and 1 ≤ j ≤ i + 1, where pj is the polynomial

ζj = pj(ξ1, . . . , ξj)

given by the inversion formulas in the Hopf algebra A∗.

The classes xn are not divisible by ρ, but all of the ρ exponents appearing are nonneg-
ative when this expression is expanded. Using the heuristic xn = [ξnρ], this expression 
may then be read more compactly as

d2i+1−1(ζ2i+1−j

j ) = vi[ρ2i−1ζ2i+1−j

j−1 ]

As each ζ2i+1−j

j supports a nonzero d2i+1−1, its square is a nonzero cycle on the next 
page. This stops when i = m + 1, thus interpolating between

A∗�A(0)∗F2 = F2[ζ2
1 , ζ2, . . .]

and

A∗�A(m)∗F2 = F2[ζ2m+1

1 , ζ2m

2 , . . . , ζ2
m+1, ζm+2, . . .]
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4 5 6 7 8 9 10 11 12 13 14

• • • • • • • • •

Fig. 1. The A(2)∗-comodule M2.

Section 5
These differentials are explicit but complicated due to the inversion formulas in A∗, 

which makes computing homology with respect to these differentials quite difficult, 
though purely algebraic. This limits our understanding of the behavior of this spec-
tral sequence in general beyond Theorems 1.7 and 1.5. However, we make the following 
conjecture.

Conjecture 1.8. All differentials in the HSSS for BPGL〈m〉 are generated under the 
Leibniz rule by those in Theorem 1.7. In particular, the spectral sequence collapses on 
E2m+1 .

Given Conjecture 1.8, computing H∗Γ(BPGL〈m〉) becomes the purely algebraic prob-
lem of computing homology with respect to these differentials, modulo comodule algebra 
extension problems. In Section 5, we verify this conjecture for m ≤ 3, and compute the 
corresponding spectral sequences completely.

At height 1, this recovers the classical computation of H∗ko, without the use of the 
Wood cofiber sequence or knowledge of π∗ko. At height 2, it is a theorem of Hill–Meier 
that the C2-spectrum tmf1(3) is a form of BPR〈2〉 [21], so our computation determines 
the A∗-comodule algebra H∗tmf0(3).

Theorem 1.9 (Theorem 5.11). There is an isomorphism of A∗-comodule algebras

H∗tmf0(3) ∼= A∗�A(2)∗M2

where M2 is the A(2)∗-comodule algebra given by the square zero extension F2{1} ⊕M2, 
and M2 is the A(2)∗-comodule is displayed below in Fig. 1.

Prior to the work of Hill–Lawson [20], it was not known how to produce a spectrum 
Tmf0(3) (and thereby a connective model tmf0(3) of the periodic spectrum TMF0(3) of 
topological modular forms with level structure) as the global sections of a derived stack. 
In [10], Davis and Mahowald proposed several hands-on definitions that were suitable 
for computation. In particular, they construct a certain 10-cell complex X [10, Theorem 
2.1] and propose tmf ∧X as such a connective model.
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Our computation in Theorem 1.9 allows us to join this definition with the derived 
algebro-geometric one of Hill–Lawson. We use the Adams spectral sequence to construct 
a map X → tmf0(3), resulting in the following Wood-type splitting.

Theorem 1.10 (Corollary 5.13). There is a 2-local equivalence of tmf-modules

tmf0(3) � tmf ∧X

Rationally, X has rank 4, corresponding to the fact that the map of stacks M0(3) →
Mell is a 4-fold cover. Base changing, this also gives the corresponding splittings for 
Tmf0(3) and TMF0(3).

At height 3, there is no known familiar geometric model of BPR〈3〉, but our computa-
tion extends the program of computing H∗eon(G) at p = 2 to height 3 for the first time, 
while also demonstrating the staggering complexity of these computations at heights 
> 2. We refer the reader to Section 5.3 for a description of the comodule algebra M3.

Theorem 1.11 (Theorem 5.22). The E∞ page of the HSSS for BPGL〈3〉 is isomorphic 
to the square zero extension

(A∗�A(3)∗M3) ⊕ (A∗�A(2)∗M2)

for M3 an explicit A(3)∗-comodule algebra of dimension 165, where M3 ·M2 = 0, and 
M2 is the comodule of Theorem 1.9.

We could, in principle, go further to height 4 and beyond; we see no reason our 
methods should not extend. However, we are unable to give a general description of a 
comodule Mm at height m, and already at height 3, it is a significant task to give a 
proper account of the computation.

Section 6
We finish in Section 6 by defining and exploring the HSSS in equivariant stable ho-

motopy. Whereas the slice spectral sequence of Hill–Hopkins–Ravenel [19] has proven an 
effective tool to compute the homotopy groups of the fixed points EG of a G-spectrum 
E, this gives a way to compute the homology of EG.

When G = C2, the HSSS for BPR〈m〉 is closely related to the motivic spectral se-
quences studied in the body of the paper. However, the presence of the negative cone in 
the equivariant homology of a point results in some unexpected differences. We show in 
particular the that the RO(C2)-graded HSSS of kR has an exotic differential of the form

d5(2u−1
2σ · ζ2

1ζ2) = v̄2
1

This differential leaves a class in the negative cone and kills a class in the positive cone.
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1.4. Notation and conventions

(1) We work at the prime p = 2 in this paper, so homology H∗(−) will always denote 
mod 2 homology H∗(−; F2) and our Steenrod algebras are the 2-primary versions.

(2) Smk denotes the category of smooth schemes over Spec(k), and SH(k) denotes the 
category of k-motivic spectra. SH(k)cell denotes the cellular category, the localizing 
subcategory generated by the bigraded spheres Ss,w.

(3) πR
s,w(−) denotes bigraded homotopy groups for an R-motivic spectrum, where s

denotes the stem or topological degree, and w denotes the weight.
(4) MZ and MF2 are the integral and mod 2 R-motivic homology spectra, so that 

πR
∗,∗MZ = Z[ρ, τ2]/(2ρ) and πR

∗,∗MF2 = F2[ρ, τ ] where |ρ| = (−1, −1) and |τ | =
(0, −1).

(5) A∗ denotes the classical mod 2 dual Steenrod algebra, so that

A∗ = F2[ξ1, ξ2, . . .]

where |ξi| = 2i − 1 are the usual Milnor generators, and ζi denotes the conjugate of 
ξi. A(m)∗ denotes the quotient Hopf algebra

A(m)∗ = F2[ξ1, . . . , ξm+1]/(ξ2m+1

1 , . . . , ξ2
m+1)

and

A∗�A(m)∗F2 ∼= F2[ζ2m+1

1 , ζ2m

2 , . . . , ζ2
m+1, ζm+2, . . .]

Dually, A denotes the mod 2 Steenrod algebra, A(m) the subalgebra generated by 
Sq2i for i ≤ m, and

A//A(m) = A⊗A(m) F2

(6) AR denotes the R-motivic mod 2 Steenrod algebra, and we use the following notation 
for generators

AR
∗,∗ = πR

∗,∗MF2[t1, t2, . . . , τ0, τ1, . . .]/(τ2
i = τti+1 + ρτi+1 + ρτ0ti+1)
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where |ti| = (2(2i − 1), 2i − 1) and |τi| = (2(2i − 1) + 1, 2i − 1). We use the following 
notation for the quotient Hopf algebra

ER
∗,∗(m) = πR

∗,∗MF2[τ0, τ1, . . . , τm]/(τ2
i = ρτi+1)

Moreover, c(−) denotes Hopf conjugation in AR
∗,∗.

(7) Sp denotes the category of spectra, and SpG denotes the category of genuine G-
spectra. For a G-spectrum X, π�(X) denotes the RO(G)-graded homotopy groups 
of X.

(8) We let i∗ : Sp → SH(k) denote the unique symmetric monoidal colimit-preserving 
functor and Γ(−) its right adjoint. β : SH(R) → SpC2 denotes the C2-equivariant 
Betti realization functor.

(9) Our spectral sequences are Adams trigraded, so that a class in tridegree (t − s, w, s)
is in stem t − s, weight w, and filtration s. All of the charts drawn in Section 5 are 
in weight w = 0.

2. The slice spectral sequence for generalized homology

In this section we define the HSSS in motivic stable homotopy and establish its basic 
properties. In Section 2.1, we work at the level of generality of SH(k), where k is a perfect 
field, and we use the very effective slice filtration of Spitzweck-Østvær [38]. This allows 
us to have strong convergence in a wide generality, due to Morel’s connectivity theorem. 
However, for the spectra we consider - namely, standard quotients of the algebraic cobor-
dism spectrum MGL - the corresponding slice towers for the effective, cellular effective, 
very effective, and cellular very effective all coincide, as shown by Heard [17].

This filtration determines a tower of motivic spectra, and our spectral sequences 
arise via smashing these towers pointwise with an ordinary spectrum, using that SH(k)
is tensored over Sp. This construction is analogous to one construction of the classical 
Atiyah–Hirzebruch spectral sequence, where one does the same with the Postnikov tower 
of a spectrum.

In Section 2.3, we specialize to SHcell(R), the cellular subcategory of R-motivic spec-
tra, where we use the results of Behrens and Shah [6] on Betti realization to compare 
with C2-equivariant stable homotopy.

2.1. General slice towers

We begin with the very effective slice filtration, a modification of Voevodsky’s slice 
filtration [42], developed by Spitzweck–Østvær [38] and further studied by Bachmann 
[3]. The reader will notice we double the usual grading conventions, so that our slice 
towers are run at half speed; we explain this below in Remark 2.2.

Following the discussion in [17, Section 3], we let

K2t = {Σ2a,aΣ∞
+ X; a ≥ t,X ∈ Smk} ⊂ SH(k)
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and we set K2t+1 = K2t. Letting SH(k)t,veff denote the full subcategory of SH(k) gen-
erated under colimits and extensions by Kt, we have a filtration

· · · ⊂ SH(k)t+1,veff ⊂ SH(k)t,veff ⊂ SH(k)t−1,veff ⊂ · · ·

of SH(k), and we say E is slice ≥ t if E ∈ SH(k)t,veff . Associated to any E ∈ SH(k), 
we have a natural cofiber sequence

Pt+1E → E → P tE

such that Pt+1E ∈ Kt+1, and

MapSH(k)(K,P tE) � ∗

for all K ∈ SH(k)t+1,veff . We define the fiber P t
tE of the map

P tE → P t−1E

to be the t-slice of E. The slice filtration gives a natural tower of spectra under E:

· · · → P tE → P t−1E → . . . .

The colimit is always contractible and the limit is E.
Now, given any K ∈ SH(k), we can smash the slice tower for E with K to produce 

a new filtered motivic spectrum K ⊗ P •E. Applying (bigraded) homotopy groups, this 
gives a spectral sequence.

Definition 2.1. The K-homology slice spectral sequence for E is the spectral sequence 
associated to the filtered motivic spectrum K ⊗P •E. We will generically denote this by

Es,w,t
∗ (E;K).

In particular, the E2-term is given by

Es,w,t
2 (E;K) = Kt−s,w

(
P t
tE

)
.

We use Adams grading (t − s, w, s) so that the dr differentials change tridegree by 
(−1, 0, r).

Remark 2.2. We have chosen to double the gradings to cohere with two closely related 
spectral sequences when k = R: slice spectral sequences in equivariant homotopy and the 
classical Atiyah–Hirzebruch spectral sequence. Applying Betti realization to the spectral 
sequences we consider recovers the analogous slice spectral sequences in C2-equivariant 
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homotopy (see Section 6), and if one base changes to C and inverts τ , one recovers 
a classical Atiyah–Hirzebruch spectral sequence. Our choice of gradings recovers the 
standard grading conventions on these spectral sequences, in both cases.

Example 2.3. When K = S0,0 is the sphere spectrum, this is the ordinary slice spectral 
sequence of E. When K = S0,0[ρ−1], this is the ρ-localized slice spectral sequence of E.

The ordinary slice spectral sequence converges strongly for any E, due to the Morel 
connectivity theorem [30, Section 5.3]. When we smash with an arbitrary motivic spec-
trum K, this is no longer guaranteed. For the following result, cf. [38, Proposition 5.11].

Proposition 2.4. Suppose K is slice bounded below. Then, the K-homology slice spectral 
sequence of E converges conditionally in the sense that the natural map

K ⊗E → lim
←

(K ⊗ P •E)

induces an isomorphism on bigraded homotopy groups, and colim(K ⊗ P •E) � ∗.
If, in addition, E is slice bounded below, the spectral sequence converges strongly in 

the sense that there are at most finitely many filtrations in which E2 is non-zero in any 
given stem.

Proof. The spectrum colimP •E is contractible as the categories Kt form a set of compact 
generators of SH(k). Smashing with K, we use that the smash product commutes with 
colimits.

One has a fiber sequence

lim
←

(K ⊗ Pt+1E) → K ⊗E → lim
←

(K ⊗ P tE)

By assumption K is slice ≥ n for some fixed n, so K ⊗ Pt+1E is slice ≥ n + t + 1
for all t. It follows from Morel’s connectivity theorem that if E ∈ SH(k)t,veff , then 
πs,wE = 0 for s < t/2 + w. In a fixed weight w, therefore, πs,w(K ⊗ Pt+1E) vanishes 
for s < w + (n + t + 1)/2. This vanishing range for s is strictly increasing in t, so the 
bigraded homotopy groups of the limit vanish. If E is slice bounded below, then the same 
connectivity constraints imply that, in a fixed weight, only finitely many slices contribute 
to a given stem. �
Remark 2.5. Without the bound on K, the result is much more delicate, even when E
is 0-connective, and the comparison map may fail to be an isomorphism. For example, 
when K = EGL(n) = v−1

n BPGL〈n〉 and E = MGL, smashing the slice associated 
graded for E with K gives the zero spectrum.

For our applications, both K and E will be slice connective, and this sharpens our 
convergence results to give strong vanishing lines.
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Proposition 2.6. If E and K are slice ≥ 0, the K-homology slice spectral sequence of E
in weight zero is a right half-plane spectral sequence concentrated between the lines y = x

and y = −x. That is, the groups

Es,0,t
2 (E;K)

vanish if s > t − s or t < 0.

Proof. If E is slice ≥ 0, then P t
tE � ∗ for t < 0, which gives the lower vanishing line. The 

upper vanishing line follows as above from Morel’s connectivity theorem, which implies 
in particular that since K⊗P t

tE is slice ≥ t, πt−s,0(K⊗P t
tE) vanishes for (t − s) < t/2. 

This vanishing line is equivalent to (t − s) < s. �
The slice filtration is multiplicative, so we have the following.

Proposition 2.7. If K and E are both ring spectra, then this is a spectral sequence of 
algebras.

In fact, we have more structure that we can consider from naturality in K. Since the 
spectral sequence arises from a filtration of E that is completely independent of K, all 
of the structure commutes with K-cooperations.

Proposition 2.8. If K is a flat homology theory, then the K-homology slice spectral se-
quence for any E is a spectral sequence of K∗,∗K-comodules. If E is a ring, this is a 
spectral sequence of K∗,∗K-comodule algebras.

Example 2.9. Let k = R and K = MF2, the motivic mod 2 Eilenberg–Maclane spectrum. 
This gives a spectral sequence of AR

∗,∗-comodules converging to the bigraded motivic 
homology of E with E2-page the bigraded motivic homology of the slice associated graded 
of E. If E is a ring spectrum, this is a spectral sequence of AR

∗,∗-comodule algebras.

2.2. The homological slice spectral sequence (HSSS)

2.2.1. Global sections homology
There is an essentially unique colimit-preserving symmetric monoidal functor

i∗ : Sp → SH(k).

This functor admits a right adjoint

Γ(−) : SH(k) → Sp

which sends a motivic spectrum E to the mapping spectrum



16 C. Carrick et al. / Advances in Mathematics 458 (2024) 109955
F (S0,0, E)

Viewing E as a sheaf of spectra on Smk, since S0,0 = Spec(k)+, we may think of this as 
taking the global sections of E. We now define our main spectral sequence of interest.

Definition 2.10. For E ∈ SH(k), the homological slice spectral sequence (HSSS) of E is 
the spectral sequence Es,w,t

∗ (E; i∗HF2) of Definition 2.1.

That is, we tensor the slice tower of E with i∗HF2 and take the spectral sequence 
associated to the resulting tower. We begin with the following lemma, which follows 
immediately from the adjunction i∗ � Γ.

Lemma 2.11. For E ∈ SH(k), we have an isomorphism of abelian groups

πs,wE ∼= πsΓ(Σ0,−wE)

When E is a ring spectrum, this is an isomorphism of bigraded rings.

Since the unit is compact in SH(k), i∗ preserves compact objects and hence Γ(−)
admits a right adjoint. In particular Γ(−) preserves colimits, and we deduce the following 
projection formula.

Proposition 2.12. For any spectrum K and E ∈ SH(k), we have

Γ(i∗K ⊗ E) � K ⊗ Γ(E)

Applying Lemma 2.11 in the case that K = HF2, we have the following.

Corollary 2.13. For any E ∈ SH(k), the homotopy groups of the spectrum Γ(i∗HF2⊗E)
are the mod 2 homology groups of Γ(E):

(i∗HF2)∗,0E ∼= H∗Γ(E)

Since HF2 is an E∞-ring spectrum, so is i∗HF2. Since HF2⊗HF2 is a tensor product 
of free associative algebras generated by spheres, the same is true upon taking i∗.

Proposition 2.14. We have an equivalence of associative i∗HF2-algebras

i∗HF⊗2
2 � i∗HF2[ζ1, . . . ],

where just as classically, the topological degree of ζi is (2i − 1), and it is in weight 0.

In homotopy, the induced coaction on the ζi’s is also the usual one, by functoriality. 
Put another way, the motivic spectrum i∗HF2 ⊗E records all of the information of the 
mod 2 homology of Γ(E), even with the dual Steenrod coaction.
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Corollary 2.15. The HSSS of E is a spectral sequence of bigraded A∗-comodules that 
converges to H∗Γ(Σ0,−∗E). If E is a ring spectrum, this is a spectral sequence of bigraded 
A∗-comodule algebras.

2.2.2. Global sections homology and motivic homology
The global sections functor is also lax monoidal, so given an E∞-monoid R in SH(k), 

Γ(R) is an E∞-ring spectrum. The counit of the adjunction i∗ � Γ gives an E∞-map

i∗Γ(R) → R.

It follows from Lemma 2.11 that when R = MZ or R = MF2, the motivic Eilenberg–
Maclane spectra, the global sections spectra are HZ and HF2, respectively. We therefore 
have canonical E∞-maps

i∗HZ → MZ and i∗HF2 → MF2

We will use these to identify the slice associated graded in many cases.
Applying the functor i∗ to ordinary homotopy groups, we have a canonical map of 

algebras

A∗ = π�(HF2 ⊗HF2)
i∗−→ π∗,∗(i∗HF2 ⊗ i∗HF2) → π∗,∗(MF2 ⊗MF2) =: Ak

∗,∗

If the latter dual Steenrod algebra is flat over πk
∗,∗(MF2), we have a Hopf algebroid 

structure, and our map of algebras is compatible with the coactions in the following 
sense.

Proposition 2.16. If E ∈ SH(k), then we have a natural map

H∗Γ(E) → H∗,∗(E;MF2)

When Ak
∗,∗ is flat, this is a map of Ak

∗,∗-comodules via the map

A∗ → Ak
∗,∗

2.3. Betti realization and the arithmetic square

In this section, we restrict our attention now to k = R and work in the cellular 
context. That is, we work in the category SHcell(R), the localizing subcategory of SH(R)
generated by the bigraded spheres Ss,w. Moreover, we implicitly work in the 2-complete 
context everywhere, so that our SHcell(R) stands for SHcell(R)2̂, and our SpC2 stands 
for (SpC2)2̂.

There is a strong relationship between R-motivic stable homotopy and C2-equivariant 
stable homotopy, which comes via the Betti realization functor
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β : SH(R) → SpC2

If X is a smooth scheme over Spec(R), its set of complex points X(C) can be equipped 
with the complex analytic topology, and the action of C2 = Gal(C/R) on X(C) is 
continuous. The functor β is obtained by left Kan extension of X �→ Σ∞

+ X(C) along the 
canonical functor SmR → SH(R).

Pushing and pulling computations along the functor β have been incredibly fruitful 
(see [12], [7], and [15] for example). There has therefore been an effort to make the 
connection provided by β conceptually precise (see [12], [18], [2], and [6]). Behrens–
Shah combined and extended these results to characterize β as a localization functor on 
SHcell(R). They showed, in particular, that after completing at a prime, the functor

Sing : SpC2 → SHcell(R)

is a fully faithful right adjoint to β, and we may therefore regard SpC2 as a reflective 
subcategory of SHcell(R) with reflection functor given by β [6, Theorem 1.12].

On the other hand, SpC2 may be described in terms of pullback squares. For E ∈ SpC2 , 
there is a commutative square

E ẼC2 ⊗ E

F (EC2+, E) ẼC2 ⊗ F (EC2+, E)

known as the Tate square of E, which is a pullback. Behrens–Shah [6, Theorem 1.10]
provided an extension of this construction to all E ∈ SHcell(R), forming a commutative 
square

E E[ρ−1]

Eρ̂[τ−1] Eρ̂[τ−1][ρ−1]

which we call the arithmetic square of E. This square is not in general a pullback, but 
the results of Behrens–Shah imply the following.

Proposition 2.17. E ∈ SHcell(R) is in the essential image of the fully faithful right adjoint

Sing : SpC2 → SHcell(R)

if and only if the arithmetic square of E is a pullback. In particular, the functor β(−)
may be regarded as the endofunctor of SHcell(R) given by the pullback
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β(E) E[ρ−1]

Eρ̂[τ−1] Eρ̂[τ−1, ρ−1]

This, in turn, describes the genuine fixed points functor (−)C2 : SpC2 → Sp as a 
special case of the global sections functor of Section 2.2.1.

Proposition 2.18. The genuine fixed points functor (−)C2 is equivalent to the composite 
Γ ◦ Sing.

The unit map for the reflection functor β gives a natural transformation

ηE : Γ(E) → Γ(β(E))

We will show that ηE is an equivalence in many cases of interest; that is, the arithmetic 
square of E becomes a pullback after applying Γ(−) in these cases. This follows by 
induction up the slice tower of E, given the following base case.

Proposition 2.19. The map

Γ(Σs,wMZ) → Γ(Σs,wβ(MZ))

is an equivalence if w > −2. Equivalently, the map

πR
∗,∗MZ → πR

∗,∗β(MZ)

is an iso in weights < 2.

Proof. On one hand, this is immediate from Lemma 2.11 and the fact that β induces an 
isomorphism

πR
∗,∗MZ → πC2

∗,∗HZ

in weights < 2 (see [12]).
However, we may argue directly. From Voevodsky’s computation [41]

πR
∗,∗MZ = Z[τ2, ρ]/(2ρ)

where |τ | = (0, −2) and |ρ| = (−1, −1), one sees that applying bigraded homotopy groups 
to the arithmetic square of MZ gives the square
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Z[τ2, ρ]/(2ρ) F2[τ2, ρ±]

Z[τ±2, ρ]/(2ρ) F2[τ±2, ρ±]

The resulting Mayer–Vietoris sequence is exact in weights w < 2, and the result now 
follows from Lemma 2.11 and Proposition 2.17. �

In particular, we also have that ηE is an equivalence when E is of the form Σ2t,tMZ

for t ≥ 0. If E is slice connective with slices of this form, a similar argument to that of 
Proposition 2.4 gives the following.

Corollary 2.20. Suppose E ∈ SHcell(R) has the property that, for all t ≥ 0,

P 2t
2tE =

⊕
It

Σ2t,tMZ

and P 2t
2tE vanishes for t < 0. Then

Γ(Σs,wE) → Γ(Σs,wβ(E))

is an equivalence for w > −2. Equivalently, the induced map

πR
∗,∗E → πR

∗,∗β(E)

is an isomorphism in weights w < 2.

Corollary 2.21. Suppose E ∈ SHcell(R) is as in Corollary 2.20. Then

H∗Γ(Σs,wE) → H∗Γ(Σs,wβ(E))

is an isomorphism for w > −2. Equivalently, the map

πR
∗,∗(i∗HF2 ⊗ E) → πR

∗,∗(i∗HF2 ⊗ β(E)) = πR
∗,∗(β(i∗HF2 ⊗E))

is an isomorphism in weights w < 2.

In particular, combining Corollary 2.21 with Proposition 2.17, one may compute the 
bigraded homology of Γ(E) in weights w < 2 in terms of that of the motivic spectra

Γ(E[ρ−1]) Γ(Eρ̂[τ−1]) Γ(Eρ̂[τ−1, ρ−1])

by applying the Mayer–Vietoris sequence. We will apply this in Section 3 for E = BPGL, 
the 2-local summand of the algebraic cobordism spectrum.
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Recall there is a classifying map L → MGLR
∗,∗ that is an isomorphism in bidegrees of 

the form (2k, k), where L ∼= Z[a1, a2, . . .] is the Lazard ring, and |ai| = (2i, i) (see [17]
for this isomorphism and [33] for the description of the Lazard ring). We say an MGL-
module is a standard quotient of MGL if it is equivalent to the quotient of MGL by some 
collection of polynomials that are ai modulo decomposables. Standard quotients of MGL

satisfy the hypotheses of Corollary 2.20, by the following theorem of Hopkins–Morel and 
Levine–Tripathi [26].

Proposition 2.22. Let I ⊂ L be the ideal generated by some collection of the ai’s. Then 
the slice associated graded of MGL/I is

MZ[a1, a2, . . .]/I := MZ[ai|i /∈ I]

Working 2-locally, MGL splits as a sum of shifts of the spectrum

BPGL := MGL/(ai|i �= 2k − 1)

As is standard, we let v̄i := a2i−1, and our computations with the HSSS will focus on 
the truncated versions

BPGL〈m〉 = BPGL/(v̄m+1, v̄m+2, . . .)

2.4. The edge homomorphism

For any E ∈ SHcell(R), we have a natural map of motivic spectra

E → P kE,

and so we can consider the induced map of slice towers. Since we have a map of filtered 
spectra, we have an induced map of spectral sequences. The slice spectral sequence for 
P kE is exactly the truncation of the slice spectral sequence for E where we throw away 
all classes in degrees (t − s, s) with t > k.

There is a very important case of the truncated slice tower: the case k = 0. For 
standard quotients E of MGL, Proposition 2.22 implies that P 0E � MZ. We therefore 
have a map of HSSS’s

Es,w,t
∗

(
E; i∗HF2

)
→ Es,w,t

∗
(
MZ; i∗HF2

)
.

The latter is concentrated on the line t = 0, but recognizing that this comes from a map 
of filtered spectra, we see that this gives the edge homomorphism

πR
∗,∗(i∗HF2 ⊗ E) → HR

∗,∗
(
i∗HF2;Z

)
.
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Again, this map is a map of AR
∗,∗-comodule (algebras). By definition, every class in the 

image of the edge homomorphism admits a lift along this map, so we have the following.

Proposition 2.23. The image of the edge homomorphism in the HSSS consists of perma-
nent cycles.

3. Homology of Γ(BPGL〈m〉) via the arithmetic square

We have seen in the previous section that computing the homology groups H∗Γ(E)
amounts to computing the motivic homotopy groups

πR
∗,0(i∗HF2 ⊗E)

and that, when E is as in Proposition 2.22, this A∗-comodule may be recovered from 
the arithmetic square of i∗HF2 ⊗E. In this section, we explore this approach in the case 
E = BPGL〈m〉.

3.1. The arithmetic square of i∗HF2 ⊗BPGL〈m〉

3.1.1. The τ -local part
In this section, we determine bottom row of the arithmetic square of i∗HF2 ⊗

BPGL〈m〉, namely the map

πR
∗,∗(i∗HF2 ⊗BPGL〈m〉)ρ̂[τ−1] → πR

∗,∗(i∗HF2 ⊗BPGL〈m〉)ρ̂[τ−1, ρ−1]

The main advantage of applying the functor (−)ρ̂[τ−1] is that it converts i∗HF2 homology 
to MF2-homology.

Proposition 3.1. The canonical map i∗HF2 → MF2 induces an equivalence

(i∗HF2 ⊗E)ρ̂[τ−1] → (MF2 ⊗E)ρ̂[τ−1]

for any E ∈ SHcell(R).

Proof. The map in question is obtained by taking the limit of the maps

i∗HF2 ⊗E ⊗ C(ρi)[τ−1] → MF2 ⊗E ⊗ C(ρi)[τ−1]

(see [6, Theorem 1.10]). By filtering C(ρi), it suffices to show this map is an equivalence 
when i = 1. By [6, Proposition 8.3], the map

C(ρ) → Spec(C+)



C. Carrick et al. / Advances in Mathematics 458 (2024) 109955 23
becomes an equivalence after applying 2-completion and cellularization. It therefore suf-
fices to show that the map

i∗HF2 ⊗ Spec(C+)[τ−1] → MF2 ⊗ Spec(C+)[τ−1]

is an equivalence, for which it suffices to base change to C and show that

i∗HF2[τ−1] → MF2[τ−1]

is an equivalence in SH(C), by [6, Theorem 1.7]. Finally, by [6, Theorem 1.1], it suffices 
to apply C-Betti realization, which gives the identity map of HF2. �

The motivic homology of BPGL〈m〉 for −1 ≤ m ≤ ∞ is described similarly to the 
classical case. We have the following computation of Ormsby [32, Theorem 3.8].

Proposition 3.2. The motivic homology of BPGL〈m〉 is

HR
∗,∗BPGL〈m〉 ∼= AR

∗,∗�ER
∗,∗(m)MF2∗,∗ = F2[ρ, τ, ti, c(τj)|i ≥ 1, j ≥ m + 1]

(c(τj)2 = c(τj+1)ρ + c(tj+1)τ)

Corollary 3.3. The map

πR
∗,∗(i∗HF2 ⊗BPGL)ρ̂[τ−1] → πR

∗,∗(i∗HF2 ⊗BPGL)ρ̂[τ−1, ρ−1]

is given by the inclusion

F2[ρ, τ±, ti, c(τj)|i ≥ 1, j ≥ m + 1]
(c(τj)2 = c(τj+1)ρ + c(tj+1)τ)

̂
ρ

↪→ F2[ρ, τ±, ti, c(τj)|i ≥ 1, j ≥ m + 1]
(c(τj)2 = c(τj+1)ρ + c(tj+1)τ)

̂
ρ

[ρ−1]

Proof. By Proposition 3.1, we may prove this claim instead for the map

πR
∗,∗(MF2 ⊗BPGL)ρ̂[τ−1] → πR

∗,∗(MF2 ⊗BPGL)ρ̂[τ−1, ρ−1]

which follows from Proposition 3.2. �
Remark 3.4. Ormsby’s computation may be recovered using the spectral sequence of 
Section 2.1 with K = MF2 and E = BPGL〈m〉. This computation mirrors exactly the 
classical computation of H∗BP 〈m〉 using the Atiyah–Hirzebruch spectral sequence.

3.1.2. The ρ-local part
Corollary 3.3 determines the bottom row of the arithmetic square for i∗HF2 ⊗

BPGL〈m〉. The key input for this calculation was the fact that, working τ -locally, i∗HF2
homology agrees with MF2-homology. On the other hand, working ρ-locally, we have the 
following [6, Theorem 1.2].



24 C. Carrick et al. / Advances in Mathematics 458 (2024) 109955
Proposition 3.5. The functor

Γ : SH(R)cell[ρ−1] → Sp

is an equivalence of categories with inverse given by i∗(−)[ρ−1].

The following is easy to obtain by appealing to C2-equivariant homotopy and using 
[6, Theorem 1.5] and [14, Proposition 4.9], or directly by simply adapting the arguments 
of [14, Proposition 4.9] to the motivic setting.

Lemma 3.6. Under this equivalence, Γ sends BPGL[ρ−1] to HF2. Coning off
(v̄m+1, ̄vm+2, . . .), we have Γ(BPGL〈m〉[ρ−1]) � HF2[y2m+1 ], as an HF2-module, where 
|y| = 1.

This tells us that the gluing map in the arithmetic square for i∗HF2 ⊗BPGL

i∗HF2 ⊗BPGL[ρ−1] → (i∗HF2 ⊗BPGL)ρ̂[τ−1, ρ−1]

is given on bigraded homotopy by some ring map of the form

A∗[ρ±] → F2[ρ, τ±, ti]ρ̂[ρ−1]

To determine this gluing map, we can embed both groups into

πR
∗,∗(MF2 ⊗MF2)ρ̂[τ−1, ρ−1]

via the Thom reduction map BPGL → MF2 and the canonical map i∗HF2 → MF2.
Understanding these embeddings reduces to understanding the composite

i∗HF2[ρ−1] � BPGL[ρ−1] → MF2[ρ−1]

Much of the subtlety in our computations comes from the observation that this map is 
not homotopic to the canonical map of 2.2.2

i∗HF2[ρ−1] → MF2[ρ−1]

The two maps of course have the same effect in homotopy; we need to pass to homology 
to tell them apart. The following allows us to describe the effect of the canonical map in 
homology.

Proposition 3.7. Regarding the classical Milnor generators ξi as elements of AR
∗,∗ via the 

composite

A∗ = π∗(HF2 ⊗HF2)
i∗−→ πR

∗,∗(i∗HF2 ⊗ i∗HF2) → πR
∗,∗(MF2 ⊗MF2) = AR

∗,∗
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one has the recursion formulas

t0 := 1

ρ2i

ti = ξ2
i−1(τ0ρ + τ) + ξiρ + ti−1τ

2i−1

Proof. We appeal to C2-equivariant homotopy, where the corresponding formulas were 
computed by Hu–Kriz [22, Theorem 6.18]. The result follows R-motivically by the fac-
torization

A∗ AR
∗,∗

AC2∗,∗

�

Let can denote the equivalence

can : HF2[y]
	−→ Γ(MF2[ρ−1])

where HF2[y] is the free E1-HF2-algebra on a class y in degree 1, and can is defined 
by giving Γ(MF2[ρ−1]) an HF2-algebra structure via the canonical map of 2.2.2 and by 
sending y to τ/ρ ∈ π1Γ(MF2[ρ−1]).

Proposition 3.8. The map

HF2 � Γ(BPGL[ρ−1]) → Γ(MF2[ρ−1]) can−1

−−−−→ HF2[y]

is not homotopic to the unit map η : HF2 → HF2[y].

Proof. If it were, the composite

i∗HF2 ⊗ i∗HF2[ρ−1] � i∗HF2 ⊗BPGL[ρ−1] → MF2 ⊗MF2[ρ−1]

would be homotopic to the canonical map

i∗HF2 ⊗ i∗HF2[ρ−1] → MF2 ⊗MF2[ρ−1]

By Proposition 3.7, this map sends the class ξ1 to ρt1 + τ0. This would imply that τ0 is 
in the image of the (injective) map

πR
∗,∗(MF2 ⊗MZ)ρ̂[τ−1, ρ−1] → πR

∗,∗(MF2 ⊗MF2)ρ̂[τ−1, ρ−1]

since the reduction map BPGL → MF2 factors through MZ. Voevodsky’s relations
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τ2
i = τti+1 + ρτi+1 + ρτ0ti+1

would then imply that all τi’s are in the image of this map, so that it is an isomorphism, 
a contradiction. �
Remark 3.9. In [23], Hu–Kriz compute the homology groups H∗BPC2

R using the isotropy 
separation sequence. By Corollary 2.20, this is the same as computing

πR
∗,0(i∗HF2 ⊗BPGL)

Our computations differ from theirs, and this is related to what seems to be an error on 
page 114, where they claim that ηR(u−1

σ ) is in the image of the reduction map

f : π�(ẼC2 ⊗ F (EC2+, HF2 ⊗BPR)) → π�(ẼC2 ⊗ F (EC2+, HF2 ⊗HF2))

In their notation, the claim is that f(ρ) = ηR(σ). As in the proof of the previous proposi-
tion, this would imply that τ0 is in the image of this map, which leads to contradictions.

The composite in Proposition 3.8 gives some ring map

HF2 → HF2[y]

and we identify it by showing it is structured enough to apply Mahowald’s theorem on 
HF2 [28].

Theorem 3.10. The composite

HF2 � Γ(BPGL[ρ−1]) → Γ(MF2[ρ−1]) can−1

−−−−→ HF2[y] �
∏
i≥0

ΣiHF2

has components Sqi : HF2 → ΣiHF2.

Proof. We note first that the map

HF2 = Γ(i∗HF2[ρ−1]) � Γ(BPGL[ρ−1]) → Γ(MF2[ρ−1])

is an E∞ map since it may be factored as

Γ(i∗HF2[ρ−1]) � Γ(BPGL[ρ−1]) → Γ(MGL(2)[ρ−1]) → Γ(MF2[ρ−1])

The first map is the unit map HF2 → MO, which is E∞, and the map MGL(2) → MF2
is E∞.

Mahowald’s theorem on HF2 implies that there is a pushout square in E2-algebras in 
Sp
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FreeE2(S) S

S HF2

0

2

which gives

π0MapE2
(HF2,Γ(MF2[ρ−1])) ∼= π1Γ(MF2[ρ−1]) = F2

There is thus a unique such E2-map not homotopic to the unit map η. We conclude by 
observing that the Tate-valued Frobenius

ϕ2 : HF2 → HF tC2
2

of Nikolaus–Scholze is an E∞ map that factors thru the connective cover

HF2[y] � Γ(MF2[ρ−1]) � ΦC2HF2

and admits the above description by [31, IV.1.5]. �
3.2. The Mayer–Vietoris sequence for i∗HF2 ⊗BPGL

Theorem 3.10 may be used to describe explicitly the gluing map in the arithmetic 
square for i∗HF2 ⊗BPGL. To determine its effect on homotopy, we need the following 
lemma.

Lemma 3.11. The map induced on homotopy by

HF2 ⊗HF2
1⊗Sqi−−−−→ HF2 ⊗ ΣiHF2

is the cap product

− ∩ Sqi : A∗
Δ−→ A∗ ⊗A∗

1⊗〈−,Sqi〉−−−−−−−→ A∗−i

Proof. The map induced on homotopy by 1 ⊗ Sqi is an A∗-comodule map, and A∗−i is 
a cofree A∗-comodule. It suffices to show the composite

A∗
(1⊗Sqi)∗−−−−−−→ A∗−i

ε−→ F2[i]

coincides with the composite

A∗
Δ−→ A∗ ⊗A∗

1⊗〈−,Sqi〉−−−−−−−→ A∗−i
ε−→ F2[i]
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where ε : A∗ → F2 is the coidentity map in the Hopf algebra A∗. Under the isomorphism 
A ∼= HomF2(A∗, F2), the latter map corresponds to Sqi. The same is true of the former 
map as the pairing A∗ ⊗F2 A → F2 is induced by the map in Sp

(HF2 ⊗HF2) ⊗HF2 F (HF2, HF2) → HF2 ⊗HF2
μ−→ HF2 �

Proposition 3.12. The map

πR
∗,∗(i∗HF2 ⊗BPGL)[ρ−1] → πR

∗,∗(MF2 ⊗BPGL)ρ̂[τ−1, ρ−1]

is given by the map

ϕ : A∗[ρ±] → F2[τ±, ρ, ti]ρ̂[ρ−1]

of F2[ρ±]-algebras sending

ϕ(ξi) = ρ2i−1ti +
(τ2i−1

ρ

)
ti−1

Proof. The diagram

(i∗HF2 ⊗BPGL)[ρ−1] (MF2 ⊗MF2)[ρ−1]

(MF2 ⊗BPGL)ρ̂[τ−1, ρ−1] (MF2 ⊗MF2)ρ̂[τ−1, ρ−1]

is given on bigraded homotopy by

A∗[ρ±] A∗[τ, ηR(τ), ρ±]

F2[ρ, τ±, ti]ρ̂[ρ−1] A∗[τ±, ηR(τ)±, ρ]ρ̂[ρ−1]

ϕ

Note that the top map is not a map of A∗-algebras; this is the content of Proposition 3.8. 
The bottom and righthand maps are injective, so it suffices to determine the top map. 
Combining Theorem 3.10 and Lemma 3.11, this is the map of F2[ρ±]-algebras sending

ξi �→
∑
j≥0

(ξi ∩ Sqj) ·
(
ηR(τ)
ρ

)j

Using the coproduct formula on A∗ and the fact that Sqj is dual to ξj1, we have

ξi �→ ξi + ξ2
i−1

ηR(τ)

ρ
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We conclude by applying the relations of Proposition 3.7 �
We move now to weight zero and set χi := τ2i−1ti and z := ρ/τ = y−1. We may 

summarize the results of Section 3 thus far as follows.

Proposition 3.13. The arithmetic square of i∗HF2 ⊗BPGL is given by

H∗Γ(BPGL) A∗ ξi

F2[z, χi|i ≥ 1]ẑ F2[z, χi|i ≥ 1]ẑ[z−1] χiz
2i−1 + χi−1z

−1

ϕ

with |z| = −1 and |χi| = 2(2i − 1).

To compute the associated Mayer–Vietoris sequence, we establish the following.

Proposition 3.14. The arithmetic square of Proposition 3.13 satisfies the following prop-
erties:

(1) The map ϕ is injective.
(2) The map F2[z, χi|i ≥ 1]ẑ⊕A∗ → F2[z, χi|i ≥ 1]ẑ[z−1] is injective in nonzero degrees.
(3) The maps

H∗Γ(BPGL) → H∗Γ(BPGL[ρ−1]) = A∗

and

H∗Γ(BPGL) → πR
∗,0(i∗HF2 ⊗BPGL)ρ̂[τ−1]

are both zero in nonzero degrees
(4) In positive degrees j, the following sequence is short exact

0 → (F2[z, χi|i ≥ 1]ẑ)j+1 ⊕Aj+1 → (F2[z, χi|i ≥ 1]ẑ[z−1])j+1
∂−→ HjΓ(BPGL) → 0

Proof. For (1), we have a diagram

πR
∗,∗(i∗HF2 ⊗BPGL)[ρ−1] πR

∗,∗(i∗HF2 ⊗MF2)[ρ−1]

πR
∗,∗(MF2 ⊗BPGL)ρ̂[τ−1, ρ−1] πR

∗,∗(MF2 ⊗MF2)ρ̂[τ−1, ρ−1]

ϕ

and the righthand and bottom maps are injective. We have seen the top map is induced 
by the map
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i∗HF2 ⊗ i∗HF2
1⊗1⊗i∗(ϕ2)−−−−−−−−→ i∗HF2 ⊗ i∗HF2[y]

ϕ2 differs from the unit map HF2
η−→ HF2[y] by an automorphism of HF2[y] and hence 

is the inclusion of a retract.
For (2), since ϕ is injective, the map

F2[z, χi|i ≥ 1]ẑ ⊕A∗ → F2[z, χi|i ≥ 1]ẑ[z−1]

fails to be injective in degree j �= 0 if and only if there exists a class 0 �= x ∈ Aj such 
that

ϕ(x) ∈ image
(
F2[z, χi|i ≥ 1]ẑ ↪→ F2[z, χi|i ≥ 1]ẑ[z−1]

)

Note, however, that since ϕ(ξi) = z−1(χiz
2i + χi−1), a monomial ξj1i1 · · · ξjnin is sent to

ϕ(ξj1i1 · · · ξjnin ) = z−j1(χi1z
2i1 + χi1−1)j1 · · · z−jn(χinz

2in + χin−1)jn

= z−(j1+···+jn)χj1
i1−1 · · ·χ

jn
in−1 + · · ·

where the omitted terms are of the form zmr(χi) with m > −(j1 + · · ·+ jn), where r(χi)
is some polynomial in the χi’s. In particular, for a polynomial

p(ξi) =
N∑

k=1

ξ
jk,1
ik,1

· · · ξjk,nk
ik,nk

in A∗, let

M := max{jk,1 + · · · + jk,nk
: 1 ≤ k ≤ N}

q(ξi) :=
∑

k : jk,1+···+jk,nk
=M

ξ
jk,1
ik,1

· · · ξjk,nk
ik,nk

so that p(ξi) = q(ξi) + r(ξi) where

r(ξi) :=
∑

k : jk,1+···+jk,nk
<M

ξ
jk,1
ik,1

· · · ξjk,nk
ik,nk

Then

ϕ(p(ξi)) = z−Mq(χi−1) + · · ·

where the omitted terms are of the form zms(χi) with m > −M , where s(χi) is some 
polynomial in the χi’s. Note that q(χi−1) �= 0, so this sum cannot be in the image of the 
bottom map in the arithmetic square, as M > 0. (3) and (4) are immediate from the 
Mayer–Vietoris sequence. �
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This is already enough to describe H∗Γ(BPGL) as an A∗-comodule. For the following 
discussion, cf. [23]. Let K(ρ) be defined by the cofiber sequence

K(ρ) → S0,0 → S0,0[ρ−1]

We have a long exact sequence of left A∗-comodules

· · · ∂−→ H∗Γ(BPGL⊗K(ρ)) → H∗Γ(BPGL) → A∗
∂−→ H∗−1Γ(BPGL⊗K(ρ)) → · · ·

Proposition 3.14 gives a splitting of left A∗-comodules

H∗Γ(BPGL) ∼= F2{1} ⊕ coker(∂)

To describe coker(∂), since our arithmetic square is a pullback in weight zero by Propo-
sition 2.17 and Corollary 2.20, we have a diagram

A∗ H∗−1Γ(BPGL⊗K(ρ))

F2[z, χi]ẑ[z−1] H∗−1Γ(BPGL⊗K(ρ))

∂

ϕ =

Since F2[z, χi]ẑ → F2[z, χi]ẑ[z−1] is an injection, we find that

ΣH∗Γ(BPGL⊗K(ρ)) = coker(F2[z, χi]ẑ → F2[z, χi]ẑ[z−1])

= F2[z−1, χi]{z−1}

Together with our explicit description of ϕ, we conclude:

Theorem 3.15. H∗Γ(BPGL) splits as a left A∗-comodule

H∗Γ(BPGL) = F2{1} ⊕ coker(∂)

where ∂ may be described as the map

∂ : A∗ → Σ−1F2[z−1, χi]{z−1}

ξi �→ χiz
2i−1 + ζi−1z

−1

which is to be understood as multiplicative on the generators ξi, while in the result, all 
nonnegative powers of y are set to 0. The map ∂ is injective in positive degrees.

Remark 3.16. It is possible to describe the A∗-comodule structure on coker(∂) with ex-
plicit formulas. We omit these formulas, however, as we believe they are too complicated 
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to be useful. By contrast, as we will see, the HSSS of BPGL describes H∗Γ(BPGL) as 
a subquotient of an explicit and straightforward A∗-comodule algebra.

We remark that it is also possible to describe H∗Γ(BPGL〈m〉) as an A∗-comodule 
somewhat explicitly in terms of the boundary map in the isotropy separation sequence, 
as in Theorem 3.15. Due to the complicated nature of these formulas, however, we again 
prefer to use the HSSS to describe the global structure of homology.

3.3. The image of the edge homomorphism for BPGL〈m〉

We will see in Section 5 that in the HSSS for BPGL〈m〉, the map E2 → E2[ρ−1] to 
the ρ-localized spectral sequence is an injection on E2, and this allows us to determine 
the image of the edge homomorphism from that of the localized spectral sequence, using 
our results on the arithmetic square.

The edge homomorphism is natural, giving a commutative diagram

πR
∗,∗(i∗HF2 ⊗BPGL〈m〉) πR

∗,∗(i∗HF2 ⊗BPGL〈m〉)[ρ−1]

πR
∗,∗(i∗HF2 ⊗MZ) πR

∗,∗(i∗HF2 ⊗MZ)[ρ−1]

In the lefthand side of this square, we have an isomorphism in weight zero

A∗�A(0)∗F2 ∼= H∗HZ ∼= πR
∗,0(i∗HF2 ⊗MZ)

coming from the canonical map i∗HZ → MZ. On the righthand side, using the equiva-
lence

i∗HF2[y2m+1
][ρ−1] � BPGL〈m〉[ρ−1]

of Lemma 3.6, the righthand map becomes the canonical inclusion

A∗[y2m+1
, ρ±] ↪→ A∗[y2, ρ±]

Describing the bottom map in terms of these identifications therefore places us in the 
context of Theorem 3.10, which determines two identifications

H∗Γ(MF2[ρ−1]) ∼= A∗[y]

To be explicit, the canonical map i∗HF2[ρ−1] → MF2[ρ−1] gives an equivalence HF2[y] �
Γ(MF2[ρ−1]), which determines an isomorphism of the above form denoted ∼=can. On the 
other hand, the map i∗HF2[ρ−1] � BPGL[ρ−1] → MF2[ρ−1] determines an isomorphism 
of the same form, which we denote ∼=BP . Theorem 3.10 and the proof of Proposition 3.12
tell us how to translate between these identifications.
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Proposition 3.17. The composition

A∗[y] ∼=can H∗Γ(MF2[ρ−1]) ∼=BP A∗[y]

sends

y �→ y

ζi �→ ζi + ζi−1y
2i−1

Proof. Theorem 3.10 and Lemma 3.11 describe the inverse of this composite as a sum 
of cap products. Using the congruence

ζm ≡ ξ2m−1
1 mod (ξ2, ξ3, . . .)

one has that the inverse of this composite sends

ζm �→
m∑
i=0

ζiy
2m−2i

which implies the claimed description. �
Corollary 3.18. The image of the edge homomorphism in the HSSS of BPGL〈m〉 contains 
A∗�A(m)∗F2 ⊂ H∗HZ.

Proof. We claim that the image of each of the generators

ζ2m+1

1 , ζ2m

2 , . . . , ζ2
m+1, ζm+2, . . . ,

of A∗�A(m)∗F2 along the map E2 → E2[ρ−1] is in the image of the edge homomor-
phism for the ρ-localized spectral sequence. Indeed, Proposition 3.17 implies that the 
localization map sends

ζ2m+2−i

i �→ ζ2m+2−i

i + ζ2m+2−i

i−1 y2m+1
for i ≤ m + 2

ζi �→ ζi + ζi−1y
2i−1

for i > m + 2

so that each of these generators lands in the subalgebra A∗[y2m+1 ] ⊂ E2[ρ−1].
We show in Corollary 4.5 that E2 → E2[ρ−1] is an injection, and it therefore suffices 

to show that each of the classes

ζ2m+2−i

i + ζ2m+2−i

i−1 y2m+1
for i ≤ m + 2

ζi + ζi−1y
2i−1

for i > m + 2
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admits a lift along the map

πR
∗,∗(i∗HF2 ⊗BPGL〈m〉) → πR

∗,∗(i∗HF2 ⊗BPGL〈m〉)[ρ−1]

The Mayer–Vietoris sequence for the arithmetic square of i∗HF2 ⊗ BPGL〈m〉 implies 
that it suffices to show that the image of each of these classes along the map

ϕm : πR
∗,∗(i∗HF2 ⊗BPGL〈m〉)[ρ−1] → πR

∗,∗(i∗HF2 ⊗BPGL〈m〉)ρ̂[τ−1, ρ−1]

is in the image of the map

πR
∗,∗(i∗HF2 ⊗BPGL〈m〉)ρ̂[τ−1] → πR

∗,∗(i∗HF2 ⊗BPGL〈m〉)ρ̂[τ−1, ρ−1]

The map ϕm is described by Proposition 3.12 along with the fact that it sends y2m+1 to 
(ηR(τ)/ρ)2m+1 .

Embedding into the case m = −1, the map ϕ sends these classes back along the 
inverse of the composition in Proposition 3.17, i.e. to the image of each of the generators 
above along the map

i∗ : A∗ → πR
∗,∗(MF2 ⊗MF2)ρ̂[τ−1, ρ−1]

The image of the map

πR
∗,∗(i∗HF2 ⊗BPGL〈m〉)ρ̂[τ−1] → πR

∗,∗(MF2 ⊗MF2)ρ̂[τ−1, ρ−1]

is a sub-A∗-comodule, so it suffices to show that its image contains

i∗(ζm+2), i∗(ζm+3), . . .

Conjugating the relations [27, Theorem 2.12], one has

i∗(ζi) = 1
τ

(
c(τi−1)ηR(τ)2

i−1
+ ρ2i

c(τi)
)

The result now follows from Proposition 3.2. �
Arguing similarly, we find the following classes in the image of the edge homomorphism 

in weight −1.

Corollary 3.19. For all m ≥ 0, the class ρξm admits a lift along the map

πR
∗,∗(i∗HF2 ⊗BPGL) → πR

∗,∗(i∗HF2 ⊗BPGL)[ρ−1]

Therefore any lift of ρξm ∈ E2[ρ−1] along E2 → E2[ρ−1] is in the image of the edge 
homomorphism.
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Proof. By Proposition 3.12, we have

ϕ(ρξm) = ρ2m

tm + τ2m−1
tm−1 �

4. The HSSS for BPGL〈m〉

4.1. The slice E2 page

By Proposition 2.22, the HSSS of BPGL〈m〉 has E2 page

πR
∗,∗(i∗HF2 ⊗MZ[v1, . . . , vm]) = πR

∗,∗(i∗HF2 ⊗MZ)[v1, . . . , vm]

We therefore proceed to calculate the bigraded homotopy ring

πR
∗,∗(i∗HF2 ⊗MZ)

This has some unexpected multiplicative features; we first determine the additive struc-
ture.

Proposition 4.1. The map MZ → i∗HF2 ⊗MZ determines an isomorphism of left A∗-
comodules

πR
∗,∗(i∗HF2 ⊗MZ) ∼= (A∗�A(0)∗F2)[τ2] ⊕

⊕
i≥0,j>0

A∗{τ2iρj}

Proof. Voevodsky’s computation [41] of πR
∗,∗MZ (see also [15]) implies that the HZ-

module

Γ
(⊕

b∈Z
Σ0,bMZ

)

splits as

⊕
i≥0

HZ{τ2i} ⊕
⊕

i≥0,j>0
HF2{τ2iρj}

and the result follows upon taking homology. �
There are subtleties in computing the products in this ring, and these arise from the 

following class.

Definition 4.2. Let x1 denote the class [ρζ1] in bidegree (0, −1). We use brackets to 
emphasize that x1 is indecomposable in



36 C. Carrick et al. / Advances in Mathematics 458 (2024) 109955
πR
∗,∗(i∗HF2 ⊗MZ)

In particular, there is no class ζ1, as ζ1 /∈ A∗�A(0)∗F2, and x1 is not divisible by ρ.

Most of the ring structure in πR∗,∗(i∗HF2 ⊗MZ) is determined by the ring maps

π∗(HF2 ⊗HZ) → πR
∗,∗(i∗HF2 ⊗MZ)

and

πR
∗,∗(MZ) → πR

∗,∗(i∗HF2 ⊗MZ)

However, the class x1 is not in the subalgebra generated by the images of these maps. 
To determine products involving x1, we instead work ρ-locally.

Proposition 4.3. There is an isomorphism of bigraded rings

A∗[y2, ρ
±] → πR

∗,∗(i∗HF2 ⊗MZ)[ρ−1]

where |y2| = 2, and the localization map

φ : πR
∗,∗(i∗HF2 ⊗MZ) → πR

∗,∗(i∗HF2 ⊗MZ)[ρ−1]

sends

τ2 �→ ρ2y2 x1 �→ ζ1ρ ζ2
1 �→ ζ2

1 + y2 ζi �→ ζi + ζi−1y
2i−2

2

where ζ2
1 , ζi are regarded as the elements in the

(A∗�A(0)∗F2)[τ2]

summand described in the previous proposition.

Proof. We define the map

A∗[y2, ρ
±] → πR

∗,∗(i∗HF2 ⊗MZ)[ρ−1]

via the map

A∗[ρ±] ∼= πR
∗,∗(i∗HF2 ⊗BPGL)[ρ−1] → πR

∗,∗(i∗HF2 ⊗MZ)[ρ−1]

by sending y2 to the image of τ2/ρ2 along the right unit map

πR
∗,∗(MZ)[ρ−1] → πR

∗,∗(i∗HF2 ⊗MZ)[ρ−1]
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This is an isomorphism as MZ[ρ−1] � i∗HF2[y2][ρ−1].
For the claims about the map φ, note that Proposition 4.1 implies that

πR
∗,∗(i∗HF2 ⊗MZ)

is ρ-torsion free, so φ is an injection. The map

A∗�A(0)∗F2 ∼= πR
∗,0(i∗HF2 ⊗MZ) → πR

∗,0(i∗HF2 ⊗MZ)[ρ−1] ∼= A∗[y2]

is described by Proposition 3.17 since the left and right presentations come from the 
canonical and BPGL HF2-algebra structures, respectively. Now x1 �→ ρξ1 since ρξ1 is 
the only nonzero class in this bidegree. �
Corollary 4.4. In the ring πR

∗,∗(i∗HF2 ⊗MZ), we have the relation

x2
1 = ζ2

1ρ
2 + τ2

Proof. The map φ of the previous proposition is an injective ring map, and one has

φ(ζ2
1ρ

2 + τ2) = ζ2
1ρ

2 + y2ρ
2 + y2ρ

2 = φ(x2
1) �

Corollary 4.5. The map

(A∗�A(0)∗F2)[ρ, x1] → πR
∗,∗(i∗HF2 ⊗MZ)

is an isomorphism of left A∗-comodule algebras, where ρ is primitive, and

ψ(x1) = 1 ⊗ x1 + ξ1 ⊗ ρ

Proof. The source and target of the map are bigraded F2-vector spaces of the same 
(finite) graded dimension. It therefore suffices to show the map is surjective, and this 
follows from Corollary 4.4, which implies that τ2 is in the image. �
4.2. Differentials on subalgebras of the Steenrod algebra

Corollary 4.5 gives a description of our E2-page

E∗,∗,∗
2 (BPGL〈m〉; i∗HF2) ∼= (A∗�A(0)∗F2)[ρ, x1, v1, . . . , vm]

The classes ρ, x1, v1, . . . , vm are all permanent cycles, and the subalgebra

A∗�A(m)∗F2 ⊂ A∗�A(0)∗F2
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consists of permanent cycles by Corollary 3.18. In this section, we describe a family of dif-
ferentials in this spectral sequence on A∗�A(0)∗F2 that interpolate between A∗�A(0)∗F2
and A∗�A(m)∗F2.

For all i, A∗�A(i−1)∗F2 is a free A∗�A(i)∗F2-module given by

A∗�A(i−1)∗F2 ∼= (A∗�A(i)∗F2) ⊗ E(ζ2i

1 , ζ2i−1

2 , . . . , ζi+1)

We show that, for i ≤ m each of these generators ζ2i+1−j

j supports a d2i+1−1 (Theo-
rem 4.16). Each of the squares of these generators is then a cycle and we are left with 
A∗�A(i)∗F2 on E2i+1 along with various Massey products (see Definition 4.7) due to the 
fact that the values of d2i+1−1 on these generators are not algebraically independent. We 
deduce from these differentials that the image of the edge homomorphism is precisely
A∗�A(m)∗F2 (Theorem 4.18).

To determine these differentials, we use an inductive argument on m and Corol-
lary 3.18 to deduce that the differential d2m+1−1 must take classes in A∗�A(m−1)∗F2
to a ρ-torsion free part of E2m+1−1. The differential is then determined by the structure 
of the ρ-localized spectral sequence, which we determine completely (Proposition 4.6).

In this section, we use the following notation for our HSSS’s.

E∗,∗,∗
r 〈m〉 := E∗,∗,∗

r (BPGL〈m〉; i∗HF2)

E∗,∗,∗
r 〈m〉[ρ−1] := E∗,∗,∗

r (BPGL〈m〉; i∗HF2[ρ−1])

4.2.1. The localized spectral sequence
We begin by determining the structure of the localized spectral sequence

Er[ρ−1] = E∗,∗,∗
r (BPGL; i∗HF2[ρ−1])

The spectral sequence Er〈m〉[ρ−1] for m finite can be read off from this by setting fi = 0
for i > m.

Proposition 4.6. In the spectral sequence Er[ρ−1], we have

(1) E2[ρ−1] ∼= A∗[y2, f1, f2, . . .][ρ±], where
• fm = ρ2m−1vm so that |fm| = (2m − 1, 0, 2m − 1)
• A∗ is the image of the edge homomorphism

A∗ ∼= πR
∗,∗(i∗HF2 ⊗BPGL)[ρ−1] → πR

∗,∗(i∗HF2 ⊗MZ)[ρ−1] = A∗[y2]

and y2 is the image of the class τ2/ρ2 along the map

πR
∗,∗(MZ)[ρ−1] → πR

∗,∗(i∗HF2 ⊗MZ)[ρ−1]
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• If q ∈ Ai, the tridegree of q is (i, 0, −i), and |y2| = (2, 0, −2)

(2) The differential dk[ρ−1] = 0 unless k = 2m+1 − 1 for m ≥ 1, and

E2m+1−1[ρ−1] = A∗[y2m−1

2 , fm, fm+1, . . .][ρ±]

(3) The differential d2m+1−1[ρ−1] is determined by

d2m+1−1[ρ−1](y2m−1

2 ) = fm

Proof. The description of E2[ρ−1] follows from Proposition 4.3. The image of the edge 
homomorphism consists of permanent cycles, so the only algebra generator that is not a 
permanent cycle is y2, and since the spectral sequence must converge to

πR
∗,∗(i∗HF2 ⊗BPGL)[ρ−1] ∼= A∗[ρ±]

each fi must be hit by a differential. For degree reasons, the claimed pattern of differ-
entials is the only possibility. �

Proposition 4.3 also gives us a description of the map E2 → E2[ρ−1], and there are 
important permanent cycles in E∗,∗,∗

2 (BPGL; i∗HF2) that lift the classes ρξm along this 
map.

Definition 4.7. Define x0 = ρ, x1 as in Definition 4.2, and inductively

xm =
m−1∑
i=0

xiζ
2i

m−i

for m > 1. The tridegree of xm is (2m − 2, −1, 2 − 2m) in E∗,∗,∗
r (BPGL; i∗HF2).

Proposition 4.8. The map E2 → E2[ρ−1] sends

ζ2
1 �→ ζ2

1 + y2 ζi �→ ζi + ζi−1y
2i−2

2 xm �→ ρξm

Proof. The first two follow immediately from Proposition 4.3, and the claim

xm �→ ρξm

follows by induction on m. �
The fact that E2 → E2[ρ−1] is an injection also gives us the coactions on these classes.
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Corollary 4.9. On E2, the classes xm satisfy the following coaction formula

ψ(x0) = 1 ⊗ x0

ψ(xm) =
m∑
i=0

ξ2m−i

i ⊗ xm−i

4.2.2. Differentials on (A(m)/ /A(m − 1))∗
The cofiber sequences

Σ2(2m−1),2m−1BPGL〈m〉 ·vm−−→ BPGL〈m〉 → BPGL〈m− 1〉

allow us to set up an inductive argument to determine a family of differentials in 
E∗,∗,∗

r 〈m〉. We first state a standard lemma on morphisms of spectral sequences.

Lemma 4.10. Suppose Es,t
r (1) → Es,t

r (2) is a morphism of spectral sequences with the 
property that the map is an isomorphism for t < N when r = 2. Then

(1) The map Es,t
r (1) → Es,t

r (2) is an isomorphism whenever t + r < N + 2.
(2) The map Es,t

r (1) → Es,t
r (2) is an injection whenever t < N .

In our case, we have the following.

Proposition 4.11. For t < 2m+1 − 2, the map

P tBPGL〈m〉 → P tBPGL〈m− 1〉

is an equivalence.

Proof. We have a cofiber sequence of BPGL-modules

Σ2(2m−1),2m−1BPGL〈m〉 v̄m−−→ BPGL〈m〉 → BPGL〈m− 1〉

The source of v̄m-multiplication is slice 2(2m − 1)-connective, and the result follows. �
We begin by showing that each of the classes ζ2i+1−j

j survives to E2i+1−1.

Proposition 4.12. For m ≥ 1, in E∗,∗,∗
r 〈m〉,

dr(ζ2i+1−j

j ) = 0

for all 1 ≤ i ≤ m, 1 ≤ j ≤ i + 1, and r < 2i+1 − 1.
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Proof. We proceed by induction on m. When m = 1, this follows from the fact that 
d2 = 0; in fact d2k = 0 for all k and m as the odd slices of BPGL〈m〉 vanish. By 
Proposition 4.11 and Lemma 4.10, the map of spectral sequences

Es,0,t
r 〈m〉 → Es,0,t

r 〈m− 1〉

is an injection whenever t < 2m+1 − 2. The classes ζ2i+1−j

j have t = 0, and thus the 
i < m case of the proposition follows by the inductive hypothesis. The i = m case then 
follows in the same way from the fact that the classes ζ2m+1−j

j are permanent cycles in 
E∗,∗,∗

r 〈m − 1〉 by Corollary 3.18. �
We know, therefore, that the first possible nonzero differential on ζ2i+1−j

j is a d2i+1−1. 
We show that this differential is nonzero and can be read off from the corresponding 
differential in the localized spectral sequence E∗,∗,∗

r 〈m〉[ρ−1]. For this, we need to know 
that the differential lands in an ρ-torsion free part of the spectral sequence, for which 
we need the following lemma.

Lemma 4.13. In E∗,∗,∗
k 〈m〉, for k < 2m+1 − 1, there are no differentials of the form

dk(x) = v̄mp(ρ, x1)q(ζi) + r(vi, ρ, x1)s(ζi)

where

q(ζi), s(ζi) ∈ A∗�A(0)∗F2

p(ρ, x1) ∈ F2[ρ, x1]

r(vi, ρ, x1) ∈ F2[ρ, x1, v1, . . . , vm−1]

such that pq is nonzero.

Proof. Suppose to the contrary that, for some k < 2m+1 − 1, there is some nonzero 
differential dk(x) = y for y of the above form, and let k be minimal with respect to this 
property. It follows that y is ρ-torsion free; since y is ρ-torsion free on E2, if we had 
ρNy = 0 ∈ Ek, we must have a nonzero differential dk′(x′) = ρNy for some k′ < k, 
contradicting minimality of k.

Since y ∈ Ek is ρ-torsion free, its image in the localized spectral sequence 
E∗,∗,∗

k 〈m〉[ρ−1] is nonzero. By naturality, this determines a nonzero differential dk in 
the localized spectral sequence. This contradicts the description of the differentials given 
in Proposition 4.6. �
Remark 4.14. In particular, letting rs = 0, it follows that the subspace

Bm := vm · Sym2m−1(F2{ρ, x1}) · (A∗�A(0)∗F2)
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of E2 receives no differentials dr for r < 2m+1 − 1. In particular, the subspace of Bm of 
d1, . . . , dr cycles for r < 2m+1 − 1 is a ρ-torsion free subspace of E2m+1−1, since Bm is 
ρ-torsion free on E2.

Proposition 4.15. In E2m+1−1〈m〉, the composition

A∗�A(m−1)∗F2 ↪→ E2m+1−1
d2m+1−1−−−−−−→ E2m+1−1

lands in the subspace of

vm · Sym2m−1(F2{ρ, x1}) · (A∗�A(0)∗F2)

that survives to E2m+1−1.

Proof. The class z := d2m+1−1(ζ2m+1−i

i ) may be written as a sum of monomials of the 
form

y := ρaxb
1m(vi)q(ζi)

written as an element in a subquotient of E2, where m(vi) is a monomial in F2[v1, . . . , vm]
and q(ζi) is a monomial in A∗�A(0)∗F2. Note that the class ζ2m+1−i

i has t = 0, hence y
has t = 2m+1 − 2. It follows that vm · vj does not divide m(vi) for any j ≤ m.

We therefore have that z can be written as

vmp(ρ, x1)q(ζi) + r(ρ, x1, vi)s(ζi)

as in the lemma. The class vmp(ρ, x1)q(ζi) lies in

vm · Sym2m−1(F2{ρ, x1}) · (A∗�A(0)∗F2)

since z is in weight zero. Note that pq is nonzero by naturality and the fact that

d2m+1−1[ρ−1](y2m−1

2 ) = fm

by Proposition 4.6. We claim that r(vi, ρ, x1)s(ζi) = 0 ∈ E2m+1−1, completing the proof.
If r(vi, ρ, x1)s(ζi) �= 0 ∈ E2m+1−1, since

ζ2m+1−i

i ∈ E∗,∗,∗
r 〈m− 1〉

is a permanent cycle, we must have that r(vi, ρ, x1)s(ζi) = 0 on E∗,∗,∗
2m+1−1〈m − 1〉. Hence 

there must be a differential in the latter spectral sequence of the form

dk(x) = r(vi, ρ, x1)s(ζi)
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for k < 2m+1 − 1. The class x lies in

E2m+1−i−1−k,0,2m+1−1−k
k 〈m− 1〉

and by Lemma 4.10 (1), the map

E2m+1−i−1−k,0,2m+1−1−k
k 〈m〉 → E2m+1−i−1−k,0,2m+1−1−k

k 〈m− 1〉

is an isomorphism. Therefore, the differential dk(x) lifts to a differential in E∗,∗,∗
k 〈m〉 of 

the form

dk(x̃) = vmp′(ρ, x1)q′(ζi) + r′(ρ, x1, vi)s′(ζi)

But we must have p′q′ = 0 by Lemma 4.13, and E∗,∗,∗
k 〈m〉 → E∗,∗,∗

k 〈m − 1〉 sends

r′(ρ, x1, vi)s′(ζi) �→ r(ρ, x1, vi)s(ζi)

An argument similar to that of Lemma 4.13 shows that r′s′ = rs ∈ Ek〈m〉. �
Theorem 4.16. In E∗,∗,∗

2i+1−1(BPGL〈m〉; i∗HF2), we have the differentials

d2i+1−1(ζ2i+1−j

j ) = viρ
2i−1

(
pj−1

(
x1

ρ
, . . . ,

xj−1

ρ

))2i+1−j

for all 1 ≤ i ≤ m and 1 ≤ j ≤ i + 1, where pj is the polynomial

ζj = pj(ξ1, . . . , ξj)

given by the inversion formulas in the Hopf algebra A∗.

Proof. We know from Lemma 4.13 and Proposition 4.15 that these differentials land in 
an ρ-torsion free part of the spectral sequence, so we use naturality and Proposition 4.6. 
In particular, the map E2 → E2[ρ−1] sends

ζ2i+1−j

j �→ ζ2i+1−j

j + ζ2i+1−j

j−1 y2i−1

2

and

d2i+1−1[ρ−1](ζ2i+1−j

j + ζ2i+1−j

j−1 y2i−1

2 ) = ζ2i+1−j

j−1 fi �
Remark 4.17. There is another way to view these differentials. The composition

A∗�A(i−1)∗F2 ↪→ E2i+1−1
d2i+1−1−−−−−→ ΣE2i+1−1 → ΣE2i+1−1[ρ−1]
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lands in ΣA∗ · fi ∼= A∗−2i , and the last map in the composition is an injection on

d2i+1−1(A∗�A(i−1)∗F2)

by Lemma 4.13 and Proposition 4.15. The formulas given in the theorem tell us this map 
coincides with the A∗-comodule map

A∗�A(i−1)∗F2
−∩Sq2i

−−−−−→ A∗−2i

Indeed, we have

Δ(ζ2i+1−j

j ) =
∑

l+k=j

ζ2i+1−j

l ⊗ ζ2i+1−j+l

k

≡
∑

l+k=j

ζ2i+1−j

l ⊗ (ξ2k−1
1 )2

i+1−j+l ∈ A∗ ⊗A∗/(ξ2, ξ3, . . .)

≡
∑

l+k=i

ζ2i+1−j

l ⊗ ξ2i+1−2i+1−j+l

1 ∈ A∗ ⊗A∗/(ξ2, ξ3, . . .)

where we have used the congruence

ζk ≡ ξ2k−1
1 mod (ξ2, ξ3, . . .)

The righthand tensor factor is ξ2i

1 if and only if l = j − 1, so pairing on the right with 
Sq2i gives ζ2i+1−j

j−1 .

Theorem 4.18. The image of the edge homomorphism in weight zero in

E∗,∗,∗
∞ (BPGL〈m〉; i∗HF2)

is precisely A∗�A(m)∗F2.

Proof. We proceed by induction, where the case m = 0 is clear. By induction, Proposi-
tion 4.12, and Lemma 4.10 (1), we see that a class x ∈ A∗�A(0)∗F2 is a d2, . . . , d2m+1−2-
cycle if and only if x ∈ A∗�A(m−1)∗F2. As in Remark 4.17, the restriction of d2m+1−1 to 
A∗�A(m−1)∗F2 may be identified with the map

A∗�A(m−1)∗F2
−∩Sq2m

−−−−−→ A∗−2m

The kernel of this map is precisely A∗�A(m)∗F2 because A∗�A(m)∗F2 is dual to the 
quotient A/ /A(m), and A(m) is the subalgebra of the Steenrod algebra generated by 
the classes

{Sq2i

: 0 ≤ i ≤ m} �
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5. The homology of Γ(BPGL〈m〉) for m ≤ 3

In Section 4, we determined the E2 page of the HSSS for BPGL〈m〉, the image of the 
edge homomorphism, and a family of differentials. Modulo comodule algebra extension 
problems, this reduces the computation of H∗Γ(BPGL〈m〉) to two problems:

(1) Show that the differentials of Theorem 4.16 are all the differentials in the HSSS for 
BPGL〈m〉. In particular, show that this spectral sequence collapses on E2m+1 .

(2) Compute homology with respect to these differentials.

We know of no way to solve problem (1) except by way of our knowledge of the image of 
the edge homomorphism from Section 3.3 and sparseness arguments afforded by solving 
problem (2) for small values of m. Problem (2) is purely algebraic; however, the compu-
tation quickly becomes very complicated as m grows, and it requires the use of algebraic 
Bockstein spectral sequences.

Nevertheless we solve both problems for m ≤ 3, completely determining the E∞ page 
of the HSSS as a comodule algebra. Moreover, we solve all comodule algebra extension 
problems for m ≤ 2. We can solve the extension problems for m = 3 case by case in an 
ad hoc manner, but the number of such extensions is very large, so we do not attempt 
to include such a computation here.

When m = 1, kgl is a form of BPGL〈1〉 and Γ(kgl) � ko, so this gives a quick 
computation of H∗ko that does not require knowledge of π∗ko or the Wood cofiber 
sequence. When m = 2, we have an equivalence

Γ(BPGL〈2〉) � BPR〈2〉C2

by Proposition 2.18, and it is a theorem of Hill and Meier that tmf1(3) is a form of BPR〈2〉
[21]. Since tmf1(3)C2 � tmf0(3), we give a complete computation of the comodule algebra

H∗tmf0(3)

which is new (Theorem 5.11). We use this to deduce a Wood-type splitting of tmf-
modules

tmf ∧X � tmf0(3)

where X is a certain 10-cell complex that was predicted by Davis and Mahowald [10].
When m = 3, it is not known if Γ(BPGL〈3〉) even admits a ring structure. However, 

we may use the ring structure of BPGL and the fact that the HSSS of BPGL〈3〉 is a 
module over that of BPGL.
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5.1. The homology of Γ(BPGL〈1〉)

Combining Corollary 4.5, Theorem 4.16, and Corollary 3.18, we have the following.

Theorem 5.1. There is a spectral sequence of A∗-comodule algebras with E2-term given 
by

E∗,∗,∗
2 = F2[ζ2

1 , ζ2, . . .][ρ, x1, v̄1]

that converges to H∗Γ(BPGL〈1〉). We have d3-differentials

d3(ζ2
1 ) = ρv̄1 d3(ζ2) = x1v̄1

and the subalgebra generated by

ρ, x1, x2, v̄1, ζ
4
1 , ζ

2
2 , ζ3, . . .

consists of permanent cycles.

We display the E3 page of this spectral sequence in Fig. 2. The black dots represent 
classes in the dual Steenrod algebra, and brown dots represent classes divisible by v̄1. 
Brown structure lines represent multiplication by ρv̄1, which detects η ∈ π1S

0 (see [27]), 
and we have drawn the vanishing lines of Proposition 2.6 in green. It is straightforward 
to compute homology with respect to these differentials.

Corollary 5.2. In the HSSS of BPGL〈1〉, we have

E∞ = E4 = F2[ζ4
1 , ζ

2
2 , ζ3, . . .][ρ, x1, x2, v̄1]

(ρv̄1, x1v̄1, x2v̄1, x2
2 + ρ2ζ2

2 + x2
1ζ

4
1 )

In weight zero, the relations imply that there is no contribution on E∞ from the 
generators in nonzero weights, and we recover the classical computation of the homology 
of ko (displayed in Fig. 3). Each nonzero stem has exactly one nonzero filtration, so there 
are no nontrivial comodule algebra extensions.

Corollary 5.3. There is an isomorphism of A∗-comodule algebras

H∗(ko) ∼= A∗�A(1)∗F2 = F2[ζ4
1 , ζ

2
2 , ζ3, . . .]

5.2. The homology of Γ(BPGL〈2〉)

We move to height 2, and we display the E7 page of the HSSS in Fig. 8. As before, 
black dots represent classes in the dual Steenrod algebra, and red dots represent classes 
divisible by v̄1. Orange structure lines represent multiplication by ρ3v̄2, which detects 
ν ∈ π3S

0, and we have drawn the vanishing lines of Proposition 2.6 in green.
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Fig. 2. The E3 page of the HSSS for BPGL〈1〉. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

Theorem 5.4. There is a spectral sequence of A∗-comodule algebras with E2-term given 
by

E∗,∗,∗
2 = F2[ζ2

1 , ζ2, . . .][ρ, x1, v̄1, v̄2]

that converges to H∗Γ(BPGL〈2〉). We have differentials

d3(ζ2
1 ) = ρv̄1 d3(ζ2) = x1v̄1 d7(ζ4

1 ) = ρ3v̄2

d7(ζ2
2 ) = ρx2

1v̄2 d7(ζ3) = (x3
1 + ρ2x2)v̄2



48 C. Carrick et al. / Advances in Mathematics 458 (2024) 109955
Fig. 3. The E∞ page of the HSSS for BPGL〈1〉.

The subalgebra of E2 generated by the classes

ρ, x1, x2, x3, v̄1, v̄2, ζ
8
1 , ζ

4
2 , ζ

2
3 , ζ4, . . .

consists of permanent cycles.

The formulas for d3 imply that, as a dga, one has an isomorphism

E∗,∗,∗
3 (BPGL〈2〉; i∗HF2) ∼= E∗,∗,∗

3 (BPGL〈1〉; i∗HF2)[v̄2]

and we deduce the following.

Corollary 5.5. The E4 = E7 page is given by

F2[ζ4
1 , ζ

2
2 , ζ3, . . .][ρ, x1, x2, v̄1, v̄2]

(ρv̄1, x1v̄1, x2v̄1, x2
2 + ρ2ζ2

2 + x2
1ζ

4
1 )

Computing homology with respect to d7 is much trickier as - unlike E3 - E7 is not 
ρ-torsion free, and hence there are a number of Massey products one must take into 
account. For example, we have the d7-cycle

v̄1ζ
4
1 ∈ 〈v̄1, ρ

3, v̄2〉

We are interested primarily in the computation in weight zero, however, and none of 
these classes can contribute to stems of weight zero. Indeed, we observe the following.

Proposition 5.6. The map of dga’s

E7 → E7/(v̄1) = F2[ζ4
1 , ζ

2
2 , ζ3, . . .][ρ, x1, x2, v̄2]
2 2 2 2 4
(x2 + ρ ζ2 + x1ζ1 )
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is an isomorphism in weights ≤ 0.

Proof. The relations ρv̄1 = x1v̄1 = x2v̄1 = 0 imply the map is an isomorphism in weights 
≤ 0. It is a map of dga’s because the ideal (v̄1) ⊂ E7 is contained in ker(d7). �

We therefore instead compute the homology of the simpler dga (E7/(v̄1), d7). We 
claim that ker(d7) is the subalgebra of E7/(v̄1) generated by the classes

ρ, x1, x2, x3, v̄2, ζ
8
1 , ζ

4
2 , ζ

2
3 , ζ4, . . .

It follows that we have the presentation

ker(d7) = F2[ζ8
1 , ζ

4
2 , ζ

2
3 , ζ4, . . .][ρ, x1, x2, x3, v̄2]

(x4
2 + ρ4ζ4

2 + x4
1ζ

8
1 , x

2
3 + ρ2ζ2

3 + x2
1ζ

4
2 + x2

2ζ
8
1 )

Writing our differentials in terms of this description of the kernel, we have

d7(ζ4
1 ) = ρ3v̄2 d7(ζ2

2 ) = ρx2
1v̄2

d7(ζ3) = (x3
1 + ρ2x2)v̄2 d7(ζ4

1ζ
2
2 ) = ρx2

2v̄2

d7(ζ4
1ζ3) = (x1x

2
2 + ρ2x3)v̄2 d7(ζ2

2ζ3) = (x2
1x3 + x3

2)v̄2

d7(ζ4
1ζ

2
2ζ3) = (x2

1x2ζ
8
1 + x2

2x3 + ρ2x1ζ
4
2 )v̄2

Letting I2 be the ideal in ker(d7) generated by this list of relations, it follows that

H∗(E7/(v̄1)) = F2[ζ8
1 , ζ

4
2 , ζ

2
3 , ζ4, . . .][ρ, x1, x2, x3, v̄2]

I2 + (x4
2 + ρ4ζ4

2 + x4
1ζ

8
1 , x

2
3 + ρ2ζ2

3 + x2
1ζ

4
2 + x2

2ζ
8
1 )

It remains to verify that the claimed list of elements indeed generates ker(d7). We 
achieve this by running the ρ-Bockstein spectral sequence, which converges since E7/(v̄1)
is (graded) ρ-complete. We begin by computing the associated graded of the ρ-adic 
filtration.

Proposition 5.7. The E0-page of the ρ-Bockstein spectral sequence is given by

F2[ζ4
1 , ζ

2
2 , ζ3, . . .][ρ, x1, x2, v̄2]
(x2

2 + x2
1ζ

4
1 )

This spectral sequence converges to the homology of E7/(v̄1). We have differentials

δ0(ζ3) = x3
1v̄2 δ1(ζ2

2 ) = ρx2
1v̄2 δ3(ζ4

1 ) = ρ3v̄2

The annihilator ideal of δ0(ζ3) in E0 is trivial, so δ0 does not create any Massey 
product cycles. We conclude the following.
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Proposition 5.8. The E1-page of the ρ-Bockstein spectral sequence is given by

F2[ζ4
1 , ζ

2
2 , ζ

2
3 , ζ4, . . .][ρ, x1, x2, v̄2]

(x2
2 + x2

1ζ
4
1 , x

3
1v̄2)

To compute the E2-page, we note that the class x3 is a cycle in E7/(v̄1) and therefore 
it projects to a permanent cycle in the ρ-Bockstein spectral sequence. We also denote its 
projection

x1ζ
2
2 + x2ζ

4
1

by x3.

Proposition 5.9. The E3-page of the ρ-Bockstein spectral sequence is given by

F2[ζ4
1 , ζ

4
2 , ζ

2
3 , ζ4, . . .][ρ, x1, x2, x3, v̄2]

(x2
3 + x2

2ζ
8
1 + x2

1ζ
4
2 , x

2
2 + x2

1ζ
4
1 , x

3
1v̄2, ρx2

1v̄2, (x2
1x3 + x3

2)v̄2)

Proof. The kernel of δ1 is generated as an algebra by the classes

ρ, x1, x2, v̄2, ζ
4
1 , ζ

4
2 , ζ

2
3 , ζ4, . . .

and ζ2
2 · annE1(ρx2

1v̄2), and we claim annE1(ρx2
1v̄2) = (x1). To see this, let

R := F2[ζ4
1 , ζ

2
2 , ζ

2
3 , ζ4, . . .][ρ, x1, x2, v̄2]
(x2

2 + x2
1ζ

4
1 )

There is a surjection π : R → R/(x3
1v̄2) = E1, so if

π(r) · ρx2
1v̄2 = 0

then rρx2
1v̄2 ∈ (x3

1v̄2) ⊂ (x3
1) in R. Using that R is of the form T [ρ, ̄v2] for T an x1-torsion 

free ring, it follows that r ∈ (x1).
Therefore, the map

S := F2[ζ4
1 , ζ

4
2 , ζ

2
3 , ζ4, . . .][ρ, x1, x2, x3, v̄2]

(x2
3 + x2

2ζ
8
1 + x2

1ζ
4
2 , x

2
2 + x2

1ζ
4
1 , x

3
1v̄2, (x2

1x3 + x3
2)v̄2)

→ ker(δ1)

is surjective. To see that it is injective, note that the map

S → S[y]/(y2 + ζ4
2 , x1y + x3 + x2ζ

4
1 )

is injective, and the latter is easily identified with E1 by setting y = ζ2
2 . Now, im(δ1) is 

the ideal in S generated by ρx2
1v̄2, and the result follows. �
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Proposition 5.10. The E4 page of the ρ-Bockstein spectral sequence is given by the quo-
tient of

F2[ζ8
1 , ζ

4
2 , ζ

2
3 , ζ4, . . .][ρ, x1, x2, x3, v̄2]

by the ideal generated by the elements

x2
3 + x2

2ζ
4
2 + x2

1ζ
8
1 x4

2 + x4
1ζ

8
1 x3

1v̄2

ρx2
1v̄2 ρ3v̄2 (x2

1x3 + x3
2)v̄2

x2
2x3v̄2 + ζ8

1x
2
1x2v̄2 x2

2ρv̄2 x1x
2
2v̄2

Proof. The kernel of δ3 is generated by the classes

ρ, x1, x2, x3, v̄2, ζ
8
1 , ζ

4
2 , ζ

2
3 , ζ4, . . .

and ζ4
1 · annE3(ρ3v̄2), and we claim annE3(ρ3v̄2) = (x2

1). To see this, set

R := F2[ζ4
1 , ζ

4
2 , ζ

2
3 , ζ4, . . .][ρ, x1, x2, x3, v̄2]

(x2
3 + x2

1ζ
4
2 + x2

2ζ
8
1 , x

2
2 + x2

1ζ
4
1 )

We have a surjection

π : R → R/(ρx2
1v̄2, x

3
1v̄2, (x2

1x3 + x3
2)v̄2) = E3

So if π(r) · ρ3v̄2 = 0, then

rρ3v̄2 ∈ (ρx2
1v̄2, x

3
1v̄2, (x2

1x3 + x3
2)v̄2) ⊂ (x2

1)

in R. Using that R is of the form T [ρ, ̄v2] for T an x1-torsion free ring, we see that 
r ∈ (x2

1).
In particular, we do not pick up any new Massey product cycles as x2

1ζ
4
1 = x2

2, and 
therefore the map

S := F2[ζ8
1 , ζ

4
2 , ζ

2
3 , ζ4, . . .][ρ, x1, x2, x3, v̄2]/J → ker(∂7)

is surjective, where J is the ideal generated by the list in the statement of the proposition, 
with the element ρ3v̄2 removed. To see that this map is injective, note that the map

S → S[y]/(y2 + ζ8
1 , x

2
1y + x2

2)

is injective, and the latter is easily identified with E3 by setting y = ζ4
1 . �

The remaining algebra generators are all permanent cycles, and so the ρ-Bockstein 
spectral sequence collapses on E4. This verifies the discussion following Proposition 5.6.
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5.2.1. The homology of tmf0(3)
Moving to weight zero, we have the subalgebra A∗�A(2)∗F2 along with the following 

ten elements

1 ∈ H0 ρ2x1v̄2 ∈ H4 ρ2x2v̄2 ∈ H6

ρx1x2v̄2 ∈ H7 x2
1x2v̄2 ∈ H8 ρ2x3v̄2 ∈ H10

ρx1x3v̄2 ∈ H11 x2
1x3v̄2 ∈ H12 ρx2x3v̄2 ∈ H13

x1x2x3v̄2 ∈ H14

These form an A(2)∗-comodule algebra M2 of dimension 10 with coactions determined 
by Corollary 4.9 and the fact that ρ and v̄2 are primitive. We display M2 in Fig. 1, where 
we have omitted the unit class as it generates a trivial comodule summand.

Theorem 5.11. The homology of tmf0(3) � Γ(BPGL〈2〉) is isomorphic as an A∗-
comodule algebra to

A∗�A(2)∗M2

where M2 is as in Fig. 1, and the multiplication in M2 is square zero.

Proof. The description follows for the E∞ page of the HSSS for BPGL〈2〉 by the dis-
cussion following Proposition 5.6. This page is displayed in Fig. 9.

It suffices now to observe that there are no nontrivial comodule algebra extensions in 
the HSSS. Indeed, each class in M2 is in the highest filtration in its respective stem so 
the projection H∗tmf0(3) → M2 is a map of A(2)∗-comodule algebras, which is adjoint 
to an isomorphism of A∗-comodule algebras

H∗tmf0(3) → A∗�A(2)∗M2 �
Prior to the results of Hill–Lawson [20], it was not known how to construct a connec-

tive model tmf0(3) of the periodic spectrum TMF0(3) via a derived algebraic geometry 
approach. Nonetheless, computational aspects of such a spectrum were studied in detail, 
and Davis-Mahowald proposed several definitions of such a spectrum. In particular, they 
constructed a certain 10-cell complex X and considered the spectrum tmf ∧X as a good 
connective model. They give an explicit construction of X, but we show that it exists by 
Toda obstruction theory.

Proposition 5.12. Let N be the A-module with one generator in each dimension 
3, 5, 6, 7, 9, 10, 11, 12, 13, where the following Steenrod squares are nonzero on the gener-
ator g of dimension 3

Sq2,Sq3,Sq4,Sq4Sq2,Sq5Sq2,Sq6Sq2 = Sq8,Sq6Sq3,Sq7Sq3
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and Sq6(g) = 0. Then there exists a unique 2-complete bounded below spectrum Y with 
H∗Y ∼= N . Moreover, there is a map Y → S0 extending 2ν.

Proof. Toda obstruction theory (see [8, Theorem 3.2] or [39]) implies that it suffices to 
show that the −2 stem in

Ext∗,∗A (N,N)

is trivial. This is easily checked using Bruner’s software, and we display the chart in Fig. 4. 
The −1-stem contains no classes in filtration higher than 1, so uniqueness follows. The 
existence of the map Y → S0 may also be checked directly from the Adams spectral 
sequence, and this is the argument used in [10, Theorem 2.1(b)]. �

It is easy to check that the A-module N has the property that its restriction to A(2)
is dual to the A(2)∗-comodule Σ−1M2. We conclude the following.

Corollary 5.13. Let X be the cofiber of the map Y → S0 constructed in Proposition 5.12. 
There is a 2-local equivalence of tmf-modules

tmf ∧X → tmf0(3)

Proof. The homotopy groups of tmf and tmf0(3) are degreewise finitely generated, so 
it suffices to produce a 2-complete equivalence, which follows from the existence of any 
map X → tmf0(3) that induces the map of A∗-comodules H∗X → A∗�A(2)∗M2 adjoint 
to the identity map of the A(2)∗-comodule M2.

For this, it suffices to show that in the Adams spectral sequence

ExtA∗(H∗X,H∗tmf0(3)) ∼= ExtA(2)∗(M2,M2) =⇒ [X, tmf0(3)]̂2

the identity map ι is a permanent cycle. By Proposition 5.12, the 4-skeleton of X is the 
2-cell complex C(2ν). Since 2ν = 0 ∈ π3tmf0(3) (see [21] or [27]), the unit map S0 →
tmf0(3) extends over C(2ν), which implies that the map of Adams spectral sequences

ExtA∗(H∗X,H∗tmf0(3)) → ExtA∗(H∗C(2ν), H∗tmf0(3))

sends ι to a permanent cycle.
We use Bruner’s ext software to produce the former in Fig. 5 and the latter in Fig. 6a. 

The map is an isomorphism in bidegrees (0, 0), (−1, 2) and (−1, 3), sending ι to the 
generator of the lefthand h0-tower in Fig. 6a. It follows by naturality that ι does not 
support a d<4 in Fig. 5. We claim the generator of the righthand h0-tower in Fig. 6a 
supports a nontrivial d2. Given this, the nontrivial d2 lifts to Fig. 5, and it follows from 
h0-linearity that the −1 stem is then trivial on the E3-page.
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Fig. 4. ExtA(N,N).

Fig. 5. ExtA∗ (H∗X,H∗tmf0(3)).

Fig. 6.

It remains to show the claimed d2 in Fig. 6a. This follows by naturality via the map

ExtA∗(H∗C(2ν),F2) → ExtA∗(H∗C(2ν), H∗tmf0(3))
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Fig. 7. ExtA∗ (F2, H∗tmf0(3)).

and we display the former E2 page in Fig. 6b. Since

D(C(2ν)) �� S−4 ∨ S0

the class in bidegree (0, 0) must support a differential. It follows easily from the long 
exact sequence in homotopy that π−1D(C(2ν)) = π3C(2ν) = Z/2, which implies the 
claimed d2. �
Corollary 5.14. The Adams spectral sequence for tmf0(3) does not collapse on E2. In 
particular, we have d2(x) = h0h2, where x is the nontrivial class in bidegree (4, 0).

Proof. The claimed d2 follows by naturality via the map C(2ν) → tmf0(3), where the 
Adams spectral sequence for C(2ν) supports the nontrivial d2 discussed in the proof of 
Corollary 5.13. We display the Adams E2-page for tmf0(3) in Fig. 7. �
Remark 5.15. Corollary 5.14 stands in contrast to the motivic Adams spectral sequence, 
which collapses for BPGL〈m〉 for all m (similarly for the C2-equivariant Adams spectral 
sequence for BPR〈m〉).

5.3. The homology of Γ(BPGL〈3〉)

We follow arguments similar to the m = 2 case to compute the HSSS for BPGL〈3〉. 
The E15 page is displayed in Fig. 10, with conventions as before, where v̄3 classes are 
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Fig. 8. The E7 page of the HSSS for BPGL〈2〉.

represented by blue dots, and blue structure lines indicate multiplication by ρ7v̄3, which 
detects σ ∈ π7S

0.

Theorem 5.16. There is a spectral sequence of A∗-comodule algebras with E2-term given 
by

E∗,∗,∗
2 = F2[ζ2

1 , ζ2, . . .][ρ, x1, v̄1, v̄2, v̄3]

We have differentials
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Fig. 9. The E∞ page of the HSSS for BPGL〈2〉.

d3(ζ2
1 ) = ρv̄1 d3(ζ2) = x1v̄1 d7(ζ4

1 ) = ρ3v̄2

d7(ζ2
2 ) = ρx2

1v̄2 d7(ζ3) = (x3
1 + ρ2x2)v̄2 d15(ζ8

1 ) = ρ7v̄3

d15(ζ4
2 ) = ρ3x4

1v̄3 d15(ζ2
3 ) = (ρx6

1 + ρ5x2
2)v̄3 d15(ζ4) = (x7

1 + ρ2x4
1x2 + ρ4x1x

2
2 + ρ6x3)v̄3

The subalgebra of E2 generated by the classes

ρ, x1, x2, x3, x4, v̄1, v̄2, v̄3, ζ
16
1 , ζ8

2 , ζ
4
3 , ζ

2
4 , ζ5, . . .

consists of permanent cycles.
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Fig. 10. The E15 page of the HSSS for BPGL〈3〉.

The formulas for d≤7 imply that, as a dga, one has an isomorphism

E∗,∗,∗
15 (BPGL〈3〉; i∗HF2) ∼= E∗,∗,∗

8 (BPGL〈2〉; i∗HF2)[v̄3]

The ideal (v1, v2) ⊂ E15 is contained in ker(d15), and we have maps of dga’s
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E15 → E15/(v1, v
2
2) → E15/(v1, v2)

There is nothing in weight 0 contributed by v1 because of the d3’s, and there is nothing in 
weight 0 contributed by v2

2 because of the d7’s. In fact, the first map is an isomorphism in 
non-positive weights, and the second map is surjective with square zero kernel consisting 
of d15-cycles (for degree reasons). Using this, it is not difficult to recover the E16 page 
from H∗(E15/(v1, v2)), and we have an isomorphism

E15/(v1, v2) ∼=
F2[ζ8

1 , ζ
4
2 , ζ

2
3 , ζ4, . . .][ρ, x1, x2, x3, v3]

(x4
2 + ζ8

1x
4
1 + ζ4

2ρ
4, x2

3 + ζ8
1x

2
2 + ζ4

2x
2
1 + ζ2

3ρ
2)

with d15 determined by the four explicit differentials given above.
We claim that ker(d15) is the subalgebra of E15/(v̄1, ̄v2) generated by the classes

ζ16
1 , ζ8

2 , ζ
4
3 , ζ

2
4 , ζ5, . . . , ρ, x1, x2, x3, x4, v̄3

It follows that we have the presentation

ker(d15) = F2[ζ16
1 , ζ8

2 , ζ
4
3 , ζ

2
4 , ζ5, . . .][ρ, x1, x2, x3, x4, v̄3]

(x8
2 + ρ8ζ8

2 + x8
1ζ

16
1 , x4

3 + ρ4ζ4
3 + x4

1ζ
8
2 + x4

2ζ
16
1 , x2

4 + ρ2ζ2
4 + x2

1ζ
4
3 + x2

2ζ
8
2 + x2

3ζ
16
1 )

Writing our differentials in terms of this description of the kernel, we have

d15(ζ8
1 ) = ρ7v̄3

d15(ζ4
2 ) = ρ3x4

1v̄3

d15(ζ2
3 ) = (ρx6

1 + ρ5x2
2)v̄3

d15(ζ4) = (x7
1 + ρ2x4

1x2 + ρ4x1x
2
2 + ρ6x3)v̄3

d15(ζ8
1ζ

4
2 ) = ρ3x4

2v̄3

d15(ζ8
1ζ

2
3 ) = (ρ5x2

3 + ρx2
1x

4
2)v̄3

d15(ζ8
1ζ4) = (x3

1x
4
2 + ρ2x5

2 + ρ4x1x
2
3 + ρ6x4)v̄3

d15(ζ4
2ζ

3
3 ) = (ρx4

1x
2
3 + ρx6

2)v̄3

d15(ζ4
2ζ4) = (x5

1x
2
3 + x1x

6
2 + ρ2x4

1x4 + ρ2x4
2x3)v̄3

d15(ζ2
3ζ4) = (x7

2 + x6
1x4 + x4

1x2x
2
3 + x2

1x
4
2x3 + ρ4x2

2x4 + ρ4x3
3)v̄3

d15(ζ8
1ζ

4
2ζ

2
3 ) = (ρx4

2x
2
3 + ρx4

1x
2
2ζ

16
1 + ρ5x2

1ζ
8
2 )v̄3

d15(ζ8
1ζ

4
2ζ4) = (x1x

4
2x

2
3 + x5

1x
2
2ζ

16
1 + ρ2x4

2x4 + ρ2x4
1x3ζ

16
1 + ρ4x3

1ζ
8
2 + ρ6x2ζ

8
2 )v̄3

d15(ζ8
1ζ

2
3ζ4) = (x2

1x
4
2x4 + x5

2x
2
3 + x4

1x
3
2ζ

16
1 + ρ4x3

3x4 + ρ4x2
2x3ζ

16
1 + ρ4x2

1x2ζ
8
2

+ ρ6x1ζ
4
3 )v̄3

d15(ζ4
2ζ

2
3ζ4) = (x4

1x
2
3x4 + x6

2x4 + x4
2x

3
3 + x4

1x
2
2x3ζ

16
1 + (x6

1x2 + ρ4x2
1x3 + ρ4x3

2)ζ8
2
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+ ρ2x5
1ζ

4
3 )v̄3

d15(ζ8
1ζ

4
2ζ

2
3ζ4) = (x4

2x
2
3x4 + x2

1x
5
2ζ

8
2 + x4

1x
2
2x4ζ

16
1 + x4

1x
3
3ζ

16
1 + x6

2x3ζ
16
1 + ρ2x1x

4
2ζ

4
3

+ ρ4x2
1x4ζ

8
2 + ρ4x2x

2
3ζ

8
2 )v̄3

Letting I3 be the ideal in ker(d15) generated by this list of relations, it follows that 
H∗(E15/(v̄1, ̄v2)) = ker(d15)/I3. It remains to verify that the claimed list of elements 
indeed generates ker(d15). We achieve this by running the ρ-Bockstein spectral sequence 
as before, and our arguments follow closely those of the m = 2 case.

Proposition 5.17. The E0-page of the ρ-Bockstein spectral sequence is given by

F2[ζ8
1 , ζ

4
2 , ζ

2
3 , ζ4, . . .][ρ, x1, x2, x3, v̄3]

(x4
2 + ζ8

1x
4
1, x

2
3 + ζ8

1x
2
2 + ζ4

2x
2
1)

We have differentials

δ0(ζ4) = x7
1v̄3 δ1(ζ2

3 ) = ρx6
1v̄3 δ3(ζ4

2 ) = ρ3x4
1v̄3 δ7(ζ8

1 ) = ρ7v̄3

The annihilator ideal of δ0(ζ4) in E0 is trivial, so δ0 does not create any Massey 
product cycles. We conclude the following.

Proposition 5.18. The E1-page of the ρ-Bockstein spectral sequence is given by

F2[ζ8
1 , ζ

4
2 , ζ

2
3 , ζ

2
4 , . . .][ρ, x1, x2, x3, v̄3]

(x4
2 + ζ8

1x
4
1, x

2
3 + ζ8

1x
2
2 + ζ4

2x
2
1, x

7
1v3)

The annihilator ideal of δ1(ζ2
3 ) in E1 is (x1), which gives our Massey product x4.

Proposition 5.19. The E3-page of the ρ-Bockstein spectral sequence is given by the quo-
tient of the polynomial ring

F2[ζ8
1 , ζ

4
2 , ζ

4
3 , ζ

2
4 , ζ5, . . .][ρ, x1, x2, x3, x4, v̄3]

by the ideal generated by the elements

x4
2 + ζ8

1x
4
1, x2

3 + ζ8
1x

2
2 + ζ4

2x
2
1,

x2
4 + x2

1ζ
4
3 + x2

2ζ
8
2 + x2

3ζ
16
1 , x7

1v̄3,

(x7
2 + x6

1x4 + x4
1x2x

2
3 + x2

1x
4
2x3)v̄3, ρx6

1v̄3.

Proof. The description of annE1(ρx6
1v3) implies that the map

S := F2[ζ8
1 , ζ

4
2 , ζ

4
3 , ζ

2
4 , ζ5, . . .][ρ, x1, x2, x3, x4, v̄3]/J → ker(δ1)
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is surjective, where J is the ideal generated by the list of elements in the statement of 
the proposition, with ρx6

1v̄3 removed. To see that it is injective, note that the map

S → S[y]/(y2 + ζ4
3 , x1y + x2ζ

4
2 + x3ζ

8
1 + x4)

is injective, and the latter is easily identified with E1 by setting y = ζ2
3 . �

Proposition 5.20. The E7-page of the ρ-Bockstein spectral sequence is given by the quo-
tient of the polynomial ring

F2[ζ8
1 , ζ

8
2 , ζ

4
3 , ζ

2
4 , ζ5, . . .][ρ, x1, x2, x3, x4, v̄3]

by the ideal generated by the elements

x4
2 + ζ8

1x
4
1, x4

3 + ζ16
1 x4

2 + ζ8
2x

4
1,

x2
4 + x2

1ζ
4
3 + x2

2ζ
8
2 + x2

3ζ
16
1 , x7

1v̄3,

(x7
2 + x6

1x4 + x4
1x2x

2
3 + x2

1x
4
2x3)v̄3, ρx6

1v̄3,

ρ3x4
1v̄3, (x5

1x
2
3 + x1x

6
2)v̄3,

(ρx4
1x

2
3 + ρx6

2)v̄3, (x4
1x

2
3x4 + x6

2x4 + x4
2x

3
3 + x4

1x
2
2x3ζ

16
1 + x6

1x2ζ
8
2 )v̄3.

Proof. We claim that annE3(ρ3x4
1v̄3) = (x2

1). To see this, let

R = F2[ζ8
1 , ζ

4
2 , ζ

4
3 , ζ

2
4 , . . .][ρ, x1, x2, x3, x4, v̄3]

(x4
2 + ζ8

1x
4
1, x

2
3 + ζ8

1x
2
2 + ζ4

2x
2
1, x

2
4 + x2

1ζ
4
3 + x2

2ζ
8
2 + x2

3ζ
16
1 )

There is a surjection

π : R → R/(x7
1v3, ρx

6
1v̄3, (x7

2 + x6
1x4 + x4

1x2x
2
3 + x2

1x
4
2x3)v̄3) ∼= E3

So if π(r) · ρ3x4
1v̄3 = 0, we have

rρ3x4
1v̄3 ∈ (x7

1v3, ρx
6
1v̄3, (x7

2 + x6
1x4 + x4

1x2x
2
3 + x2

1x
4
2x3)v̄3) ⊂ (x6

1)

Using that R = T [ρ, ̄v3] for T an x1-torsion free ring, it follows that rx4
1 ∈ (x6

1) and 
therefore r ∈ (x2

1). Since x2
1ζ

4
2 = x2

3 + ζ8
1x

2
2, this creates no new cycles.

It follows that the map

S := F2[ζ8
1 , ζ

8
2 , ζ

4
3 , ζ

2
4 , ζ5, . . .][ρ, x1, x2, x3, x4, v̄3]/J → ker(δ3)

is surjective, where J is the ideal generated by the list of elements in the statement of 
the proposition, with ρ3x4

1v̄3 removed. To see that it is injective, note that the map

S → S[y]/(y2 + ζ8
2 , x

2
1y + x2

2ζ
8
1 + x2

3)

is injective, and the latter is easily identified with E3 by setting y = ζ4
2 . �
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Proposition 5.21. The E8-page of the ρ-Bockstein spectral sequence is given by the quo-
tient of the polynomial ring

F2[ζ16
1 , ζ8

2 , ζ
4
3 , ζ

2
4 , ζ5, . . .][ρ, x1, x2, x3, x4, v̄3]

by the ideal generated by the elements

x8
2 + ζ16

1 x8
1, x4

3 + ζ16
1 x4

2 + ζ8
2x

4
1,

x2
4 + x2

1ζ
4
3 + x2

2ζ
8
2 + x2

3ζ
16
1 , x7

1v̄3,

(x7
2 + x6

1x4 + x4
1x2x

2
3 + x2

1x
4
2x3)v̄3, ρx6

1v̄3,

ρ3x4
1v̄3, (x5

1x
2
3 + x1x

6
2)v̄3,

(ρx4
1x

2
3 + ρx6

2)v̄3, (x4
1x

2
3x4 + x6

2x4 + x4
2x

3
3 + x4

1x
2
2x3ζ

16
1 + x6

1x2ζ
8
2 )v̄3,

ρ7v̄3, ρ3x4
2v̄3,

(ρ5x2
3 + ρx2

1x
4
2)v̄3, (x3

1x
4
2 + ρ2x5

2 + ρ4x1x
2
3 + ρ6x4)v̄3,

(ρx4
2x

2
3 + ρx4

1x
2
2ζ

16
1 + ρ5x2

1ζ
8
2 )v̄3.

(x1x
4
2x

2
3 + x5

1x
2
2ζ

16
1 + ρ2x4

2x4 + ρ2x4
1x3ζ

16
1 + ρ4x3

1ζ
8
2 + ρ6x2ζ

8
2 )v̄3

(x2
1x

4
2x4 + x5

2x
2
3 + x4

1x
3
2ζ

16
1 + ρ4x3

3x4 + ρ4x2
2x3ζ

16
1 + ρ4x2

1x2ζ
8
2 + ρ6x1ζ

4
3 )v̄3

(x4
2x

2
3x4 + x2

1x
5
2ζ

8
2 + x4

1x
2
2x4ζ

16
1 + x4

1x
3
3ζ

16
1 + x6

2x3ζ
16
1 + ρ2x1x

4
2ζ

4
3 + ρ4x2

1x4ζ
8
2 + ρ4x2x

2
3ζ

8
2 )v̄3

Proof. We claim that annE7(ρ7v̄3) = (x4
1). To see this, let

R = F2[ζ8
1 , ζ

8
2 , ζ

4
3 , ζ

2
4 , . . .][ρ, x1, x2, x3, x4, v̄3]

(x4
2 + ζ8

1x
4
1, x

4
3 + ζ16

1 x4
2 + ζ8

2x
4
1, x

2
4 + x2

1ζ
4
3 + x2

2ζ
8
2 + x2

3ζ
16
1 )

There is a surjection π : R → R/I ∼= E7 where I is the ideal generated by the elements

x7
1v̄3, (x7

2 + x6
1x4 + x4

1x2x
2
3 + x2

1x
4
2x3)v̄3,

ρx6
1v̄3, ρ3x4

1v̄3,

(x5
1x

2
3 + x1x

6
2)v̄3, (ρx4

1x
2
3 + ρx6

2)v̄3,

(x4
1x

2
3x4 + x6

2x4 + x4
2x

3
3 + x4

1x
2
2x3ζ

16
1 + x6

1x2ζ
8
2 )v̄3.

So if π(r) · ρ7v̄3 = 0 ∈ E7, then rρ7v̄3 ∈ I. It is not hard to check that I ⊂ (x4
1), so 

since R is of the form T [ρ, ̄v3] for T an x1-torsion free ring we have r ∈ (x4
1). Arguing as 

before, we arrive at the claimed presentation. �
The remaining algebra generators are all permanent cycles, and so the ρ-Bockstein 

spectral sequence collapses on E8. This verifies the discussion preceding Proposition 5.17, 
so that H∗(E15/(v̄1, ̄v2)) has the claimed description as an A∗-comodule algebra. In 
weight zero, we have

H∗(E15/(v̄1, v̄2)) ∼= A∗�A(3)∗M3
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and machine computation gives the following basis of the A(3)∗-comodule algebra M3, 
which has dimension 165.

1 ∈ H0 ρ6x1v̄3 ∈ H8 ρ5x2
1v̄3 ∈ H9

ρ6x2v̄3 ∈ H10 ρ4x3
1v̄3 ∈ H10 ρ5x1x2v̄3 ∈ H11

ρ4x2
1x2v̄3 ∈ H12 ρ2x5

1v̄3 ∈ H12 ρ5x2
2v̄3 ∈ H13

ρ3x3
1x2v̄3 ∈ H13 ρ6x3v̄3 ∈ H14 ρ4x1x

2
2v̄3 ∈ H14

ρ2x4
1x2v̄3 ∈ H14 ρ5x1x3v̄3 ∈ H15 ρ3x2

1x
2
2v̄3 ∈ H15

ρx5
1x2v̄3 ∈ H15 ρ4x2

1x3v̄3 ∈ H16 ρ4x3
2v̄3 ∈ H16

ρ2x3
1x

2
2v̄3 ∈ H16 x6

1x2v̄3 ∈ H16 ρ5x2x3v̄3 ∈ H17

ρ3x3
1x3v̄3 ∈ H17 ρ3x1x

3
2v̄3 ∈ H17 ρx4

1x
2
2v̄3 ∈ H17

ρ4x1x2x3v̄3 ∈ H18 ρ2x4
1x3v̄3 ∈ H18 ρ2x2

1x
3
2v̄3 ∈ H18

x5
1x

2
2v̄3 ∈ H18 ρ3x2

1x2x3v̄3 ∈ H19 ρx5
1x3v̄3 ∈ H19

ρx3
1x

3
2v̄3 ∈ H19 ρ4x2

2x3v̄3 ∈ H20 ρ2x3
1x2x3v̄3 ∈ H20

ρ2x1x
4
2v̄3 ∈ H20 x6

1x3v̄3 ∈ H20 x4
1x

3
2v̄3 ∈ H20

ρ5x2
3v̄3 ∈ H21 ρ3x1x

2
2x3v̄3 ∈ H21 ρx4

1x2x3v̄3 ∈ H21

ρ6x4v̄3 ∈ H22 ρ4x1x
2
3v̄3 ∈ H22 ρ2x2

1x
2
2x3v̄3 ∈ H22

ρ2x5
2v̄3 ∈ H22 x5

1x2x3v̄3 ∈ H22 ρ5x1x4v̄3 ∈ H23

ρ3x2
1x

2
3v̄3 ∈ H23 ρ3x3

2x3v̄3 ∈ H23 ρx3
1x

2
2x3v̄3 ∈ H23

ρx1x
5
2v̄3 ∈ H23 ρ4x2

1x4v̄3 ∈ H24 ρ4x2x
2
3v̄3 ∈ H24

ρ2x3
1x

2
3v̄3 ∈ H24 ρ2x1x

3
2x3v̄3 ∈ H24 x4

1x
2
2x3v̄3 ∈ H24

x2
1x

5
2v̄3 ∈ H24 ρ5x2x4v̄3 ∈ H25 ρ3x3

1x4v̄3 ∈ H25

ρ3x1x2x
2
3v̄3 ∈ H25 ρx4

1x
2
3v̄3 ∈ H25 ρx2

1x
3
2x3v̄3 ∈ H25

ρ4x1x2x4v̄3 ∈ H26 ρ2x4
1x4v̄3 ∈ H26 ρ2x2

1x2x
2
3v̄3 ∈ H26

ρ2x4
2x3v̄3 ∈ H26 x5

1x
2
3v̄3 ∈ H26 x3

1x
3
2x3v̄3 ∈ H26

ρ3x2
1x2x4v̄3 ∈ H27 ρ3x2

2x
2
3v̄3 ∈ H27 ρx5

1x4v̄3 ∈ H27

ρx3
1x2x

2
3v̄3 ∈ H27 ρx1x

4
2x3v̄3 ∈ H27 ρ4x3

3v̄3 ∈ H28

ρ2x3
1x2x4v̄3 ∈ H28 ρ2x1x

2
2x

2
3v̄3 ∈ H28 x6

1x4v̄3 ∈ H28

x4
1x2x

2
3v̄3 ∈ H28 x2

1x
4
2x3v̄3 ∈ H28 ρ4x2

2x4v3 ∈ H28

ρ3x1x
2
2x4v3 ∈ H29 ρ5x3x4v̄3 ∈ H29 ρ3x1x

3
3v̄3 ∈ H29

ρx4
1x2x4v̄3 ∈ H29 ρx2

1x
2
2x

2
3v̄3 ∈ H29 ρx5

2x3v̄3 ∈ H29

ρ2x2
1x

2
2x4v3 ∈ H30 ρ4x1x3x4v̄3 ∈ H30 ρ2x2

1x
3
3v̄3 ∈ H30
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ρ2x3
2x

2
3v̄3 ∈ H30 x5

1x2x4v̄3 ∈ H30 x3
1x

2
2x

2
3v̄3 ∈ H30

x1x
5
2x3v̄3 ∈ H30 ρ3x2

1x3x4v̄3 ∈ H31 ρ3x2x
3
3v̄3 ∈ H31

ρx3
1x

2
2x4v̄3 ∈ H31 ρx3

1x
3
3v̄3 ∈ H31 ρx1x

3
2x

2
3v̄3 ∈ H31

ρ3x3
2x4v3 ∈ H31 ρ4x2x3x4v̄3 ∈ H32 ρ2x3

1x3x4v̄3 ∈ H32

ρ2x1x
3
2x4v̄3 ∈ H32 ρ2x1x2x

3
3v̄3 ∈ H32 x4

1x
2
2x4v̄3 ∈ H32

x4
1x

3
3v̄3 ∈ H32 x2

1x
3
2x

2
3v̄3 ∈ H32 x6

2x3v̄3 ∈ H32

ρ3x1x2x3x4v̄3 ∈ H33 ρx4
1x3x4v̄3 ∈ H33 ρx2

1x
3
2x4v̄3 ∈ H33

ρx2
1x2x

3
3v̄3 ∈ H33 ρ2x2

1x2x3x4v̄3 ∈ H34 ρ2x2
2x

3
3v̄3 ∈ H34

x5
1x3x4v̄3 ∈ H34 x3

1x
3
2x4v̄3 ∈ H34 x3

1x2x
3
3v̄3 ∈ H34

ρ2x4
2x4v3 ∈ H34 ρx3

1x2x3x4v̄3 ∈ H35 ρx1x
4
2x4v̄3 ∈ H35

ρx1x
2
2x

3
3v̄3 ∈ H35 ρ3x2

2x3x4v3 ∈ H35 ρ4x2
3x4v̄3 ∈ H36

x4
1x2x3x4v̄3 ∈ H36 x2

1x
4
2x4v̄3 ∈ H36 x2

1x
2
2x

3
3v̄3 ∈ H36

ρ2x1x
2
2x3x4v3 ∈ H36 ρ3x1x

2
3x4v̄3 ∈ H37 ρx2

1x
2
2x3x4v̄3 ∈ H37

ρx5
2x4v̄3 ∈ H37 ρx3

2x
3
3v̄3 ∈ H37 ρ2x2

1x
2
3x4v̄3 ∈ H38

x3
1x

2
2x3x4v̄3 ∈ H38 x1x

5
2x4v̄3 ∈ H38 x1x

3
2x

3
3v̄3 ∈ H38

ρ2x3
2x3x4v3 ∈ H38 ρ3x2x

2
3x4v̄3 ∈ H39 ρx3

1x
2
3x4v̄3 ∈ H39

ρx1x
3
2x3x4v̄3 ∈ H39 ρ2x1x2x

2
3x4v̄3 ∈ H40 x4

1x
2
3x4v̄3 ∈ H40

x2
1x

3
2x3x4v̄3 ∈ H40 x6

2x4v̄3 ∈ H40 ρ6x3
1x

3
2x

2
3v̄

2
3 ∈ H40

ρx2
1x2x

2
3x4v̄3 ∈ H41 ρx4

2x3x4v̄3 ∈ H41 x3
1x2x

2
3x4v̄3 ∈ H42

x1x
4
2x3x4v̄3 ∈ H42 ρ2x2

2x
2
3x4v3 ∈ H42 ρ3x3

3x4v̄3 ∈ H43

ρx1x
2
2x

2
3x4v̄3 ∈ H43 ρ2x1x

3
3x4v̄3 ∈ H44 x2

1x
2
2x

2
3x4v̄3 ∈ H44

x5
2x3x4v̄3 ∈ H44 ρ6x3

1x
2
2x

3
3v̄

2
3 ∈ H44 ρx2

1x
3
3x4v̄3 ∈ H45

ρx3
2x

2
3x4v̄3 ∈ H45 ρ2x2x

3
3x4v̄3 ∈ H46 x3

1x
3
3x4v̄3 ∈ H46

x1x
3
2x

2
3x4v̄3 ∈ H46 ρ6x2

1x
3
2x

3
3v̄

2
3 ∈ H46 ρx1x2x

3
3x4v̄3 ∈ H47

ρ5x3
1x

3
2x

3
3v̄

2
3 ∈ H47 x2

1x2x
3
3x4v̄3 ∈ H48 ρ6x3

1x
3
2x3x4v

2
3 ∈ H48

ρx2
2x

3
3x4v̄3 ∈ H49 x1x

2
2x

3
3x4v̄3 ∈ H50 x3

2x
3
3x4v̄3 ∈ H52

Note that multiplication in M3 is not square zero, as there are five generators divisible 
by v̄2

3 . For example, there is the nontrivial product H8 ⊗H32 → H40

ρ6x1v̄3 · x2
1x

3
2x

2
3v̄3 = ρ6x3

1x
3
2x

2
3v̄

2
3



C. Carrick et al. / Advances in Mathematics 458 (2024) 109955 65
However, all products in M3 are determined by the relations in the discussion preceding 
Proposition 5.17. The coactions follow from Corollary 4.9 and the fact that ρ and v̄3 are 
primitive.

For the following, we refer to Fig. 11. Here we use rectangles in a given bidegree if it 
has rank ≥ 3.

Theorem 5.22. The HSSS for BPGL〈3〉 collapses on E16, and there is an isomorphism 
of A∗-comodule algebras (in weight zero)

E∞ ∼= (A∗�A(3)∗M3) ⊕ (A∗�A(2)∗M2)

where the latter is a square zero extension with M3 · M2 = 0, where M i denotes the 
augmentation ideal in Mi.

Proof. We run the v̄2-Bockstein spectral sequence to calculate E16, using that we have 
an isomorphism in weight zero

E16 ∼= H∗(E15/(v̄1, v̄
2
2))

The description of the d15’s implies that, on E15

image(d15) ∩ (v̄2) = 0

and so this spectral sequence collapses. All of the relations in H∗(E15/(v̄2)) hold in E16
again by the differentials given in Theorem 5.16, and the claimed description follows for 
E16.

It remains to show that the HSSS collapses on E16, and the only classes on E16
that are not in the subalgebra of permanent cycles described in Theorem 5.16 lie in the 
subspace

V · E(ζ8
1 , ζ

4
2 , ζ

2
3 , ζ4)

where V is the subspace of E16 generated by classes divisible by v̄2, which lie on the line 
of red dots (the line y = 6 −x) in Fig. 11. It suffices therefore to show that the subspace

v̄2 ·E(ζ8
1 , ζ

4
2 , ζ

2
3 , ζ4)

of E2 consists of permanent cycles. Since this is a spectral sequence of A∗-comodules, 
the coproduct formulas imply that it suffices to show the class

v̄2ζ
8
1ζ

4
2ζ

2
3ζ4

is a permanent cycle. It follows for degree reasons that the only possible differential on 
this class is a d23 with target a sum of monomials of the form
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Fig. 11. The E∞ page of the HSSS for BPGL〈3〉.

p(ζi)ρaxb
1v̄

2
3

written as an element of E2. It is straightforward to compute the v̄2
3 part of E16 in 

this weight following closely the computation above, from which a machine computation 
shows there is no class in the required degree on E16. �
Remark 5.23. Modulo comodule algebra extension problems, this describes

H∗Γ(BPGL〈3〉)
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Unlike the m = 2 computation, there is room here for nontrivial comodule algebra 
extensions. We can resolve these case by case using ad hoc restriction and transfer 
arguments, but we do not include this, as the size of M3 makes this prohibitively lengthy.

For the same reasons, we do not include a schematic for the comodule M3, although 
all of its structure may be determined from the coactions on the xm’s described in 
Corollary 4.9.

6. The HSSS in equivariant homotopy

In the equivariant stable homotopy category SpG for a finite group G, Hill–
Hopkins–Ravenel [19] constructed a filtration analogous to Voevodsky’s slice filtration. 
Later, Ullman [40] constructed a filtration with better multiplicative properties called 
the regular slice filtration. To fix notions, we work with Ullman’s filtration, though for 
the spectra we consider, the filtrations coincide.

Most of our results on the arithmetic square and the HSSS for BPGL〈m〉 apply 
without change in the equivariant setting for BPR〈m〉 by applying Betti realization 
and using Corollary 2.20. As in Section 2, we can smash the slice tower of E with any 
G-spectrum K, obtaining a spectral sequence. The proofs in Section 2 go through in 
this setting essentially verbatim, so we omit details. Whereas the slice spectral sequence 
gives a very powerful tool to compute the homotopy groups of the fixed points EG of a 
G-spectrum, our spectral sequence computes the homology of EG.

Computations in R-motivic homotopy and C2-equivariant homotopy often differ due 
to the presence of the negative cone in the equivariant homology of a point. We fully com-
pute the RO(C2)-graded HSSS for kR and we find an exotic differential (Corollary 6.9) 
of the form

d5(2u−1
2σ · ζ2

1ζ2) = v̄2
1

This differential, in particular, originates in the negative cone and lands in the positive 
cone. We deduce this differential from the following fact.

Proposition 6.1. The map

π�BPR → π�(i∗HF2 ⊗BPR)

sends v2m

m �→ 0.

Proof. By Theorem 4.16, we have a differential

d2m+1−1(ζ2m

1 ) = a2m−1
σ vm

on E2m+1−1(BPR; i∗HF2). There is nothing in higher filtration in this stem, so we have 
the relation
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a2m−1
σ vm = 0 ∈ π�(i∗HF2 ⊗BPR)

By induction, we may assume that a2m−i
σ vim = 0 for 1 ≤ i < 2m, which implies that the 

class a2m−(i+1)
σ vim is in the image of the transfer. Since the restriction of vm is zero, the 

Frobenius relation implies that a2m−(i+1)
σ vi+1

m = 0. �
Remark 6.2. Note that the map

π�BPR → π�(HF2 ⊗BPR)

sends vm �→ 0, since the latter is a constant Mackey functor in degrees ∗ρ, and vm = 0
in H∗(BP ; F2). However, it is not hard to see from the HSSS that

vm �= 0 ∈ π�(i∗HF2 ⊗BPR)

It seems likely that 2m is the minimal nilpotence degree for all m.

The computation of the E2-page of the homological slice spectral sequence in the 
equivariant setting follows in the same way, where now we include the negative cone. We 
recall Stong’s computation of π�HZ.

Proposition 6.3. The RO(C2)-graded homotopy π�HZ is the square zero extension of the 
ring Z[aσ, u2σ]/(2aσ) by the module

NC := Z{e2nσ|n > 0} ⊕ F2{e(2n+1)σ/a
j
σ|n > 0, j ≥ 0}

where ekσ = tr(u−k
σ ). The module structure on NC is determined by the relations

aσekσ = u2σe2σ = u2σe3σ = 0

and

u2σekσ = e(k−2)σ

for k ≥ 4.

Proposition 6.4. There is an isomorphism of RO(C2)-graded rings

π�(i∗HF2 ⊗HZ) ∼= (A∗�A(0)∗F2)[aσ, x1] ⊕NC

where the latter ring is a square zero extension of the ring (A∗�A(0)∗F2)[aσ, x1] by the 
module

NC := (A∗�A(0)∗F2){e(2i+1)σ/a
j
σ, x1 · e(2i+1)σ/a

j
σ : i ≥ 1, j ≥ 0}
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defined by the relation

x1 · (x1 · e(2i+1)σ/a
j
σ) = ζ2

1 · e(2i+1)σ/a
j−2
σ + e(2i−1)σ/a

j
σ

and the usual relations in π�HZ.

Proof. This follows from Proposition 6.3 and the isomorphisms

A∗{e(2i+1)σ/a
j
σ} ∼= (A∗�A(0)∗F2){e(2i+1)σ/a

j
σ} ⊕ ζ1 · (A∗�A(0)∗F2){e(2i+1)σ/a

j
σ}

∼= (A∗�A(0)∗F2){e(2i+1)σ/a
j
σ} ⊕ x1 · (A∗�A(0)∗F2){e(2i+1)σ/a

j+1
σ }

and

(A∗�A(0)∗F2){e2iσ} ∼= (A∗�A(0)∗F2){x1 · e(2i+1)σ}

For the latter, we are using that

x1 · e(2i+1)σ = e2iσ

as follows from the Frobenius relation and that x1 restricts to uσ. The relations (and the 
fact that NC is square zero) then follow from the fact that

π�HZ → π�(i∗HF2 ⊗HZ)

is a ring map, along with Corollary 4.4. �
Corollary 6.5. We have an isomorphism

E∗,�
2 (BPR〈m〉; i∗HF2) ∼=

(
(A∗�A(0)∗F2)[aσ, x1] ⊕NC

)
[v1, . . . , vm]

An element p ∈ (A∗�A(0)∗F2)i has bidegree (i, −i), and we have the following bidegrees

|vi| = ((2i − 1)ρ, 0)

|aσ| = (−σ, 1)

|x1| = (1 − σ, 0)

|e(2i+1)σ/a
j
σ| = (−(2i + 1) + (2i + j + 1)σ,−j)

Proposition 6.6. In the spectral sequence

E∗,�
r (kR; i∗HF2)

the subalgebra
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(
(A∗�A(1)∗F2)[aσ, x1] ⊕NC

)
[v1, . . . , vm]

of the E2-page consists of permanent cycles.

Proof. This follows from Corollary 3.19, Theorem 4.18, and the fact that the negative 
cone in π�HZ consists of permanent cycles in the slice spectral sequence for BPR. �

By Theorem 4.16, the first differentials we see are

d3(ζ2
1 ) = aσv1

d3(ζ2) = x1v1

and d3 vanishes on the rest of the algebra generators by Proposition 6.6. This gives the 
following.

Proposition 6.7. E∗,�
4 (kR; i∗HF2) is the subalgebra of

(
(A∗�A(0)∗F2)[aσ, x1] ⊕NC

)
[v1]

(aσv1, x1v1)

generated by
(

(A∗�A(1)∗F2)[aσ, x1] ⊕NC

)
[v1]

(aσv1, x1v1)

x2 := x1ζ
2
1 + aσζ2 ∈ 〈aσ, v1, x1〉

yn := enσζ
2
1 = tr(u−n

σ ζ2
1 )

zm := x1 ·
e−3σ

amσ
ζ2

w := e2σζ
2
1ζ2 = tr(u−2

σ ζ2
1ζ2)

for n ≥ 2 and m ≥ 0

The subalgebra
(

(A∗�A(0)∗F2)[aσ, x1] ⊕NC

)
[v1]

(aσv1, x1v1)

consists of permanent cycles, x2 is a permanent cycle by Corollary 3.19, the yn’s are 
permanent cycles since they are transfers of permanent cycles, and we show that the 
zm’s are permanent cycles for degree reasons.
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Proposition 6.8. The classes zm are permanent cycles for all m ≥ 0.

Proof. For this, note that

|zm| = (1 + (m + 2)σ,−3 −m)

So that

|dr(zm)| = ((m + 2)σ,−3 −m + r)

Using our description of E4, and the relations

v1x2 = v1yn = v1zm = v1w = 0

the target dr(zm) can be written as a sum of monomials of the form

m(ζi) · xε
1 ·

e(2i+1)σ

ajσ

written as elements in a subquotient of E2, for ε = 0, 1 and m(ζi) a monomial in 
A∗�A(0)∗F2. If m ∈ (A∗�A(0)∗F2)k, this monomial has bidegree

(k,−k) + (−(2i + 1 − ε) + (2i + 1 − ε + j)σ,−j)

It follows that k = 2i + 1 − ε so that the filtration is −(2i + 1 − ε + j). On the other 
hand, looking at the σ degree, we have

2i + 1 − ε + j = m + 2

This is a contradiction, as r ≥ 4 tells us the filtration must be at least 1 −m. �
Corollary 6.9. The differential d5 is determined by

d5(w) = v2
1

Proof. By Proposition 6.8, the only algebra generator of E4 that is not a permanent 
cycle is w. By Proposition 6.1, there must be a differential killing v2

1, and for degree 
reasons, the stated differential is the only possibility. �
Corollary 6.10. The spectral sequence E∗,�

r (kR; i∗HF2) collapses on E6, which is the sub-
algebra of

(
(A∗�A(0)∗F2)[aσ, x1] ⊕NC

)
[v1]

2
(aσv1, x1v1, v1)
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generated by
(

(A∗�A(1)∗F2)[aσ, x1] ⊕NC

)
[v1]

(aσv1, x1v1, v
2
1)

and the classes x2, yn, zm for n ≥ 2 and m ≥ 0.

Proof. There are no new cycles because

w2 = aσw = uσw = wzm = wyn = wx2 = 0 ∈ E6

since these relations hold on E2. The generators are all permanent cycles, so E6 =
E∞. �
Remark 6.11. In this section, we relied heavily on ad hoc degree arguments to control 
the algebra generators of the RO(C2)-graded HSSS for BPR〈1〉. For larger values of m, 
it becomes harder to determine when classes coming from the negative cone in the HSSS 
for BPR〈m〉 are permanent cycles, so it seems that one needs additional input in these 
cases. However, by Proposition 6.1 there must be some pattern of differentials leaving 
the negative cone that kill powers of v̄m.
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