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Abstract. In this paper we detect invariants in the comodule consisting of

β-elements over the Hopf algebroid (A(m + 1), G(m + 1)) defined in[Rav02],
and we show that some related Ext groups vanish below a certain dimension.

The result obtained here will be extensively used in [NR] to extend the range

of our knowledge for π∗(T (m)) obtained in[Rav02].
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1. Introduction

In this paper we describe some tools needed in the method of infinite descent,
which is an approach to finding the E2-term of the Adams-Novikov spectral se-
quence converging to the stable homotopy groups of spheres. It is the subject of
[Rav86, Chapter 7], [Rav04, Chapter 7] and [Rav02].

We begin by reviewing some notation. Fix a prime p. Recall the Brown-Peterson
spectrum BP . Its homotopy groups and those of BP ∧ BP are known to be
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polynomial algebras

π∗(BP ) = Z(p)[v1, v2 . . .] and BP∗(BP ) = BP∗[t1, t2 . . .].

In [Rav86, Chapter 6] the second author constructed intermediate spectra

S0
(p) = T (0) // T (1) // T (2) // T (3) // · · · // BP

with T (m) is equivalent to BP below the dimension of vm+1. This range of dimen-
sions grows exponentially with m. T (m) is a summand of p-localization of the Thom
spectrum of the stable vector bundle induced by the map ΩSU(pm)→ ωSU = BU .
In [Rav02] we constructed truncated versions T (m)(j) for j ≥ 0 with

T (m) = T (m)(0)
// T (m)(1)

// T (m)(2)
// · · · // T (m+ 1)

These spectra satisfy

BP∗(T (m)) = π∗(BP )[t1, . . . , tm]

and BP∗(T (m)(j)) = BP∗(T (m))
{
t`m+1 : 0 ≤ ` < pj

}
Thus T (m)(j) has pj ‘cells,’ each of which is a copy of T (m).

For each m ≥ 0 we define a Hopf algebroid

Γ(m+ 1) = (BP∗, BP∗(BP )/(t1, t2, . . . , tm))
= BP∗[tm+1, tm+2, . . . ]

with structure maps inherited from BP∗(BP ), which is Γ(1) by definition. Let

A = BP∗,

A(m) = Z(p)[v1, . . . , vm]
and G(m+ 1) = A(m+ 1)[tm+1]

with tm+1 primitive. Then there is a Hopf algebroid extension

(1.1) (A(m+ 1), G(m+ 1))→ (A,Γ(m+ 1))→ (A,Γ(m+ 2)).

In order to avoid excessive subscripts, we will use the notation

v̂i = vm+i, and t̂i = tm+i.

We will use the usual notation without hats when m = 0. We will use the notation

v̂i = vm+i, t̂i = tm+i, β̂i/e1,e0 =
v̂i2

pe0ve11

and β̂′i/e1 =
v̂i2
pive11

.

We will also use the notations β̂i/e1 = β̂i/e1,1 and β̂′i/e1 = β̂′i/e1,1 for short. We will
use the usual notation without hats when m = 0.

Given a Hopf algebroid (B,Γ) and a Γ-comodule M , we will abbreviate
ExtΓ(B,M) by ExtΓ(M) and ExtΓ(B) by ExtΓ. With this in mind, there are
change-of-rings isomorphisms

ExtBP∗(BP )(BP∗(T (m))) = ExtΓ(m+1)

and ExtBP∗(BP )(BP∗(T (m)(j))) = ExtΓ(m+1)

(
T (j)
m

)
where T (j)

m = A
{
t̂`1 : 0 ≤ ` < pj

}
.
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Very briefly, the method of infinite descent involves determining the groups

ExtΓ(m+1)

(
T (j)
m

)
and π∗

(
T (m)(j)

)
by downward induction on m and j.

To begin with, we know that

Ext0
Γ(m+1)

(
A
{
t`m+1 : 0 ≤ ` < pj

})
= A(m)

{
v̂`1 : 0 ≤ ` < pj

}
.

To proceed further, we make use of a short exact sequence of Γ(m+ 1)-comodules

(1.2) 0 // BP∗
ι0 // D0

m+1

ρ0 // E1
m+1

// 0,

where D0
m+1 is weak injective (meaning that its higher Ext groups vanish) with ι0

inducing an isomorphism in Ext0. It has the form

D0
m+1 = A(m)[λ̂1, λ̂2, . . . ] ⊂ Q⊗BP∗

with
λ̂i = p−1v̂i + · · · .

Thus we have an explicit description of E1
m+1, which is a certain subcomodule of

the chromatic module N1 = BP∗/(p∞).
It follows that the connecting homomorphism δ0 associated with (1.2) is an

isomorphism

ExtsΓ(m+1)(E
1
m+1)

∼= // Exts+1
Γ(m+1)

and more generally

ExtsΓ(m+1)(E
1
m+1 ⊗ T

(j)
m )

∼= // Exts+1
Γ(m+1)(T

(j)
m )

for each s ≥ 0. The determination of this group for s = 0 will be the subject of
[Nak]. In this paper we will limit our attention to the case s > 0.

Unfortunately there is no way to embed E1
m+1 in a weak injective comodule

in a way that induces an isomorphism in Ext0 as in (1.2). (This is explained in
[NR, Remark7.4].) Instead we will study the Cartan-Eilenberg spectral sequence
for ExtΓ(m+1)(E1

m+1 ⊗ T
(j)
m ) associated with the extension (1.1). Its E2-term is

Ẽs,t2 (T (j)
m ) = ExtsG(m+1)(ExttΓ(m+2)(T

(j)
m ⊗ E1

m+1))

= ExtsG(m+1)(T
(j)

m ⊗ ExttΓ(m+2)(E
1
m+1))(1.3)

where T
(j)

m = A(m+ 1)
{
t̂`1 : 0 ≤ ` < pj

}
and differentials d̃r : Ẽs,t2 → Ẽs+r,t−r+1

2 . Note that T (j)
m = A⊗A(m+1) T

(j)

m . We use
the tilde to distinguish this spectral sequence from the resolution spectral sequence.
We did not use this notation in [Rav02].

The short exact sequence of Γ(m+ 1)-comodules (1.2) is also a one of Γ(m+ 2)-
comodules, and D0

m+1 is also weak injective over Γ(m + 2) (this was proved in
[Rav02, Lemma 2.2]), but this time the map ι0 does not induce an isomorphism in
Ext0. However, the connecting homomorphism

δ0 : ExttΓ(m+2)(E
1
m+1 ⊗ T (j)

m )→ Extt+1
Γ(m+2)(T

(j)
m )
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is an isomorphim of G(m+ 1)-comdules for t > 0. Note that over Γ(m+ 2), T (j)
m is

a direct sum of pj suspended copies of A, so the isomorphism above is the tensor
product with T

(j)

m with

δ0 : ExttΓ(m+2)(E
1
m+1)→ Extt+1

Γ(m+2).

We will abbreviate the group on the right by U t+1
m+1. Its structure up to dimension

(p2 + p)|v̂2| was determined in [NR, Theorem 7.10]. It is p-torsion for all t ≥ 0 and
v1-torsion for t > 0. Moreover, it is shown that each U tm+1 for t ≥ 2 is a certain
suspension of U2

m+1 below dimension p|v̂3|.
Let E

1

m+1 = Ext0
Γ(m+2)(E

1
m+1). For j = 0, the Cartan-Eilenberg E2-term of

(1.3) is

Ẽs,t2 (T (0)
m ) =

{
ExtsG(m+1)(E

1

m+1) for t = 0
ExtsG(m+1)(U

t+1
m+1) for t ≥ 1.

While it is impossible to embed the Γ(m+1)-comodule E1
m+1 into a weak injective

by a map inducing an isomorphism in Ext0, it is possible to do this for the G(m+1)-
comodule E

1

m+1. In Theorem 2.4 below we will show that there is a pullback
diagram of G(m+ 1)-comodules

(1.4) 0 // E
1

m+1

ι1 // Wm+1

��

ρ1 // Bm+1

��

// 0

0 // E
1

m+1
// v−1

1 E
1

m+1
// E

1

m+1/(v
∞
1 ) // 0

where Wm+1 is weak injective, ι1 induces an isomorphism in Ext0, and Bm+1 is the
A(m+ 1)-submodule of E

1

m+1/(v
∞
1 ) generated by{
v̂i2
ipvi1

: i > 0
}
.

The object of this paper is to study Bm+1 and related Ext groups. Since the ith
element above is β̂′i/i, the elements of Bm+1 are the beta elements of the title.

In [NR] we construct a variant of the Cartan-Eilenberg spectral sequence con-
verging to ExtΓ(m+1)(T

(j)
m ). Its Ẽ1-term has the following chart:
...

...
...

...

t = 2 0 Ext0(U3) Ext1(U3) Ext2(U3) · · ·

t = 1 0 Ext0(U2) Ext1(U2) Ext2(U2) · · ·

t = 0 Ext0(D) Ext0(W ) Ext0(B) Ext1(B) · · ·

s = 0 s = 1 s = 2 s = 3
where all Ext groups are over G(m+1) and the tensor product signs and subscripts
(equal to m+ 1) on U t+1, D

0
, W and B have been omitted to save space.
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Tensoring (1.4) with T
(j)

m , we also have the following diagram:

(1.5)

...
...

...
...

t = 2 0 Ext0(T
(j)

m U3) Ext1(T
(j)

m U3) Ext2(T
(j)

m U3) · · ·

t = 1 0 Ext0(T
(j)

m U2) Ext1(T
(j)

m U2) Ext2(T
(j)

m U2) · · ·

t = 0 Ext0(T
(j)

m D) Ext0(T
(j)

m W ) Ext0(T
(j)

m B) Ext1(T
(j)

m B) · · ·

s = 0 s = 1 s = 2 s = 3

The construction of Bm+1 will be given in §2. After introducing our basic
methodology in §3, we determine the groups

Ext0(T
(j)

m ⊗Bm+1)

for the cases j = 0, j = 1 and j > 1 in the next three sections. Here

T
(j)

m = A(m+ 1)
{
t`m+1 : 0 ≤ ` < pj

}
.

In §7 we determine the higher Ext groups for j = 1 in a range of dimensions. Our
calculations require some results about binomial coefficients and Quillen operations
that are collected in Appendices A and B respectively.

2. The construction of Bm+1

Proposition 2.1. A 4-term exact sequence of G(m + 1)-comodules. The
short exact sequence (1.2) gives a 4-term exact sequence

A(m+ 1)

0 // U0
m+1

ι0 // A(m)[p−1v̂1]
ρ0 // E

1

m+1

δ0 // U1
m+1

// 0.

Let

Vm+1 = A(m)[p−1v̂1]/A(m+ 1)

= A(m+ 1)
{
v̂i1
pi

: i > 0
}
⊂ BP∗/(p∞).

There is a short exact sequence of G(m+ 1)-comodules

0 // Vm+1
// E

1

m+1
// U1
m+1

// 0

which is not split.

Proof. The comodule D0
m+1 was described explicitly in [Rav02, Theorem 3.9]. It

has the form

D0
m+1 = A(m)[λ̂1, . . . ] ⊂ p−1BP∗
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with

λ̂i =



v̂1

p
for i = 1

v̂2

p
+
v̂1v

pω
1

p2
+

(pp−1 − 1)v1v̂
p
1

pp+1
for i = 2

v̂i
p

+ . . . for i > 2

and

ηR(λ̂i) =


λ̂1 + t̂1 for i = 1

λ̂2 + t̂2 + (pp−1 − 1)v1

∑
0<j<p

p−1

(
p

j

)
λ̂p−j1 t̂j1 for i = 2

λ̂i + t̂i + . . . for i > 2

It follows that Ext0
Γ(m+2)(D

0
m+1) = A(m)[λ̂1] as claimed.

In order to understand the relation between E
1

m+1 and U1
m+1, consider the fol-

lowing diagram of Γ(m+ 2)-comodules with exact rows.

0 // BP∗ // D0
m+1

//

��

E1
m+1

//

��

0

0 // BP∗ // p−1BP∗ // BP∗/(p∞) // 0

0 // BP∗ // D0
m+2

//

OO

E1
m+2

//

OO

0

The vertical maps are monomorphisms, and there is no obvious map either way
between D0

m+1 and D0
m+2. The description of the U1

m+1 = Ext1
Γ(m+2) above is in

terms of the connecting homomorphism for the bottom row. The element

v̂i2
pi
∈ E1

m+2

is invariant and maps to the similarly named element in U1
m+1. To describe its

image in terms of the cobar complex, we pull it back to v̂i2/pi ∈ D0
m+2 and compute

its coboundary, which is

d
(
v̂i2/pi

)
=
(
(v̂2 + pt̂2)i − v̂i2

)
/pi = v̂i−1

2 t̂2 + . . .

However, the element v̂i2/pi is not present in E1
m+1. To see this, consider the

case i = 1. In p−1BP∗ we have

v̂2

p
= λ̂2 −

v̂1v
pω
1

p2
+

(1− pp−1)v1v̂
p
1

pp+1

= λ̂2 −
λ̂1v

pω
1

p
+

(1− pp−1)v1λ̂
p
1

p

/∈ D0
m+1 = A(m)[λ̂1, λ̂2, . . . ].

Instead of v̂2/p, consider the element λ̂2 itself. Its image in E1
m+1 is invariant, so

it defines a nontrivial element in E
1

m+1. The computation of the image of (pλ̂2)i/pi
under the connecting homomorphism gives the same answer as before.
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The right unit formula above implies that the short exact sequence does not
split. �

Definition 2.2. Let M be a graded torsion G(m+ 1)-comodule of finite type, and
let Mi have order pai . Then the Poincaré series for M is defined by

(2.3) g(M) =
∑

ait
i.

Given two such power series f1(t) and f2(t), the inequality f1(t) ≤ f2(t) means that
each coefficient of f1(t) is dominated by the corresponding one in f2(t).

Theorem 2.4. Construction of Bm+1. Let Bm+1 ⊂ E
1

m+1/(v
∞
1 ) be the sub-

A(m+ 1)-module generated by the elements

β̂′i/i =
v̂i2
ipvi1

for all i > 0. It is a G(m+ 1)-subcomodule whose Poincaré series is

g(Bm+1) = gm+1(t)
∑
k≥0

xp
k+1

(1− ypk

)

(1− xpk+1)(1− xpk

2 )
,

where

y = t|v1|,

x = t|v̂1|,

xi = t|v̂i| for i > 1

and gm+1(t) =
∏

1≤i≤m+1

1
1− t|vi|

.

Let Wm+1 be the pullback in the diagram (1.4). Then Wm+1 is a weak injective
with Ext0

G(m+1)(Wm+1) = Ext0
G(m+1)(E

1

m+1), i.e., the map E
1

m+1 →Wm+1 induces
an isomorphism in Ext0.

Proof. To show that Bm+1 is a G(m+ 1)-subcomodule, note that

ηR(v̂2) ≡ v̂2 + v1t̂
p
1 − v

pω
1 t̂1 mod p

so ηR(v̂2)i) =
(
v̂2 + v1t̂

p
1 − v

pω
1 t̂1

)p
mod pi

and ηR(β̂′i/i) ∈ Bm+1 ⊗G(m+ 1).

so Bm+1 is a G(m+ 1)-comodule.
For the Poincaré series, let FkBm+1 ⊂ Bm+1 denote the submodule of exponent

pk with F0Bm+1 = φ. Then the Poincaré series of

FkBm+1/Fk−1Bm+1 = A(m+ 1)/I1
{
β̂ipk−1/ipk−1,pk : i > 0

}
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is

g (FkBm+1/Fk−1Bm+1) = g(A(m+ 1)/I2)
∑
i>0

xip
k 1− yipk−1

1− y

= gm+1(t)
∑
i>0

(
xip

k

− (xpy)ip
k−1
)

= gm+1(t)
∑
i>0

(
xip

k

− xip
k−1

2

)
= gm+1(t)

(
xp

k

1− xpk −
xp

k−1

2

1− xpk−1

2

)
.

Summing these for all positive k gives the desired formula.
To show Ext0

G(m+1)(Wm+1) is as claimed it is enough to show that the connecting
homomorphism

Ext0
G(m+1)(Bm+1) Ext1

G(m+1)(E
1

m+1)w

is monomorphic. Since the target group is in the Cartan-Eilenberg Ẽ2-term con-
verging to Ext1

Γ(m+1)(E
1
m+1), we have the composition

η : Ext0
G(m+1)(Bm+1) Ext1

Γ(m+1)(E
1
m+1) Ext2

Γ(m+1).w w

δ0

So it is sufficient to show that η is monomorphic. Since Bm+1 is in Ext0
Γ(m+2)(N

2),
we have the following diagram

Ext0
Γ(m+1)(M

1) // Ext0
Γ(m+1)(N

2) // Ext1
Γ(m+1)(N

1)

v−1
1 Ext1

Γ(m+1) Ext0
G(m+1)(Bm+1)

?�

OO

η // Ext2
Γ(m+1)

The right equality holds because Ext1
Γ(m+1)(M

0) = 0, and the top row is exact.
Since Ext0

Γ(m+1)(M
1) is the v−1

1 A(m)-module generated by v̂i1/ip the map η is
monomorphic as desired.

The Poincaré series of Wm+1 is given by

g(Wm+1) = g(E
1

m+1) + g(Bm+1) = g(Vm+1) + g(U1
m+1) + g(Bm+1)

= gm+1(t)

 x

1− x
+
∑
j≥0

xp
j

2

1− xpj

2

+
∑
j≥0

xp
j+1

(1− ypj

)

(1− xpj+1)(1− xpj

2 )


= gm+1(t)

 x

1− x
+
∑
j≥0

xp
j+1

1− xpj+1

 = gm+1(t)
∑
j≥0

xp
j

1− xpj

=
g(Ext1

Γ(m+1))
1− x

by [Rav02, Theorem 3.17]

=
g
(

Ext0
G(m+1)(Wm+1)

)
1− x

.



ON β-ELEMENTS IN THE ADAMS-NOVIKOV SPECTRAL SEQUENCE 9

This means that Wm+1 is weak injective by [Rav02, Theorem 2.6]. �

3. Basic methods for finding comodule primitives

From now on, all Ext groups are understood to be over G(m+ 1).

Definition 3.1. [Rav04, Definition 7.1.8] A G(m+1)-comodule M is called j-free

if the comodule tensor product T
(j)

m ⊗A(m+1) M is weak injective, i.e.,

Extn(A(m+ 1), T
(j)

m ⊗A(m+1) M) = 0

for n > 0. The elements of Ext0 are called j-primitives.

We will often abbreviate Ext(A(m+ 1), N) by Ext(N) for short. We will see in
Proposition 3.3 that it is enough to consider a certain subgroup Lj(M) of M to

detect elements of Ext0(T
(j)

m ⊗M). Given a right G(m + 1)-comodule M and the
structure map ψM : M → G(m+ 1)⊗M , define the Quillen operation r̂i : M →M

(i ≥ 0) on z ∈ M by ψM (z) =
∑
i r̂i(z) ⊗ t̂i1. In this paper all comodules are right

comodules. In most cases the structure map is determined by the right unit formula.

Definition 3.2. The group Lj(M). Denote the subgroup
⋂
n≥pj ker r̂n of M by

Lj(M). By definition, we have a sequence of inclusions

L0(M) ⊂ L1(M) ⊂ · · · · · · ⊂ Lj(M) ⊂ · · · · · ·

and L0(M) = Ext0(M).

The following result allows us to identify j-primitives with Lj(M).

Proposition 3.3. [Rav02, Lemma 1.12] Identification of the j-primitives with
Lj(m). For a G(m+ 1)-comodule M , the map

(c⊗ 1)ψM : Lj(M) Ext0(T
(j)

m ⊗M)w

is an isomorphism between A(m+ 1)-modules, where c is the conjugation map.

When we detect elements of Lj(M), it is enough to consider elements killed by
r̂pj (j ≥ 0), as one sees by the following proposition.

Proposition 3.4. A property of Quillen operations. If the Quillen operation
r̂pj on a G(m+ 1)-comodule M is trivial, then all operations r̂n for pj ≤ n < pj+1

are trivial.

Proof. Since r̂ir̂j =
(
i+j
i

)
r̂i+j [Nak, Lemma 3.1] we have a relation

r̂n−pj r̂pj =
(
n
pj

)
r̂n. Observing that the congruence

(
n
pj

)
≡ s mod (p) for

spj ≤ n < (s + 1)pj ,
(
n
pj

)
is invertible in Z(p) whenever pj ≤ n < pj+1, and

the result follows. �

In the following sections we will determine the structure of L0(Bm+1) in Propo-
sition 4.2 and 4.4 and L1(Bm+1) in Proposition 5.1 and 5.4 in all dimensions, and
Lj(Bm+1) (j > 1) in Theorem 6.1 below dimension |v̂p

j+1
2 /vp

j

1 |. Then we need a
method for checking whether all j-primitives (j > 1) are listed or not.

The following lemma gives an explicit criterion the j-freeness of a comodule M .
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Lemma 3.5. A Poincaré series characterization of j-free comodules. For a
graded torsion connective G(m+1)-comodule M of finite type, we have an inequality

(3.6) g(M)(1− xp
j

) ≤ g(Lj(M)) where x = t|v̂1|

with equality holding iff M is j-free.

Proof. Let I ⊂ A(m+ 1) be the maximal ideal. We have the inequality

g(T
(j)

m ⊗M) ≤ g(Ext0(T
(j)

m ⊗M)) · g(G(m+ 1)/I)

by [Rav04] Theorem 7.1.34, where the equality holds iff M is a weak injective.
Observe that

g(T
(j)

m ⊗M) = g(M)
1− xpj

1− x
,

g(G(m+ 1)/I) =
1

1− x
and g(Ext0(T

(j)

m ⊗M)) = g(Lj(M)).

�

Lemma 3.7. A Poincaré series formula for the first Ext1 group. For a
graded torsion connective G(m+ 1)-comodule M of finite type, suppose

g(Lj(M))
1− xpj − g(M) ≡ ctd mod td+1

Then the first nontrivial element in Ext1(T
(j)

m ⊗M) occurs in dimension d, and the
order of the group G = Ext1,d(T

(j)

m ⊗M) is pc.

Proof. Since the inequality of (3.6) is an equality below dimension d, M is j-free in
that range, so Ext1(T

(j)

m ⊗M) vanishes below dimension d. Each element x ∈ G is
represented by a short exact sequence of the form

0 // T
(j)

m ⊗M
// M ′ // ΣdA(m+ 1) // 0.

If x has order pi, then we get a diagram

0 // T
(j)

m ⊗M
// M ′ //

��

ΣdA(m+ 1) //

��

0

0 // T
(j)

m ⊗M
// M ′′ // ΣdA(m+ 1)/(pi) // 0

Since G is a finite abelian p-group, it is a direct sum of cyclic groups. We can do
the above for each of its generators and assemble them into an extension

0 // T
(j)

m ⊗M
// M ′′′ // ΣdG⊗Z(p) A(m+ 1) // 0

with Ext0
G(m+1)(M

′′′) = Lj(M) through dimension d and Ext1,d
G(m+1)(M

′′′) = 0, so
M ′′′ is weak injective through dimension d.
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If |G| = pb, then we have

g(M ′′′) = g(T
(j)

m ⊗M) + g(ΣdG⊗Z(p) A(m+ 1))

= g(M)

(
1− xpj

1− x

)
+ btdgm+1(t)

Since M ′′′ is weak injective through dimension d, we have

g(M ′′′) ≡
g
(

Ext0
G(m+1)(M

′′′)
)

1− x
mod td+1

≡ g (Lj(M))
1− x

≡ g(M)

(
1− xpj

1− x

)
+ ctd

so b = c. �

4. 0-primitives in Bm+1

In this section we determine the structure of Ext0(Bm+1), i.e., the primitives in
Bm+1 in the usual sense. We treat the cases m > 0 and m = 0 separately. The
latter is more complicated because v1 is not invariant over Γ(1). Recall that the
G(m+ 1)-comodule structure of Bm+1 is given by the right unit map ηR.

Lemma 4.1. An approximation of the right unit. The right unit map
ηR : A(m+ 2)∗ → G(m+ 2) on the Hazewinkel generators are expressed by

ηR(v̂1) = v̂1 + pt̂1,

ηR(v̂2) ≡ v̂2 + v1t̂
p
1 − v

pω
1 t̂1 mod (p)

where ω = pm.

Proof. These directly follow from [MRW] (1.1) and (1.3). �

For a given integer n, denote the exponent of a prime p in the factorization of
n by νp(n) as usual. In particular, νp(0) = ∞. When the integer is a binomial
coefficient

(
n
k

)
, we will write νp

(
n
k

)
instead of νp

((
n
k

))
.

Let ĥj be the 1-dimensional cohomology class of t̂p
j

1 .

Proposition 4.2. Structure of Ext0(Bm+1) for m > 0. For m > 0, Ext0(Bm+1)
is the A(m)-module generated by{

pkv̂s1β̂
′
ipk/t : i > 0, s ≥ 0, k ≥ 0, 0 < t ≤ pk and νp(i) ≤ νp(s)

}
.

The first nontrivial element in Ext1(Bm+1) is

ĥ0β̂1 ∈ Ext1,2(p+1)(pω−1)(Bm+1).
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Proof. We may put s = ap` and i = bp` with p|/ b and a ≥ 0. Observe that

ψ

(
v̂ap

`

1 v̂bp
`+k

2

bp`+1vt1

)
=

v̂ap
`

1 (v̂p
k

2 + vp
k

1 t̂p
k+1

1 − vp
k+1ω

1 t̂k1)bp
`

bp`+1vt1
since p|/ b

=
v̂ap

`

1 v̂bp
`+k

2

bp`+1vt1
since t ≤ pk

and so the exhibited elements are invariant. On the other hand, we have nontrivial
Quillen operations

r̂1(pkv̂s1β̂
′
ipk/t) = − v̂s1v̂

ipk−1
2

p1−kvt−pω1

+
s

i
· v̂

s−1
1 v̂ip

k

2

vt1
if νp(s) < νp(i)

and r̂pk+1(pkv̂s1β̂
′
ipk/t) =

v̂s1v̂
pk(i−1)
2

pvt−p
k

1

+ · · · if t > pk,

where the missing terms in the second expression involve lower powers of v̂1 in the
numerator or smaller powers of v1 in the denominator.

This means each element pkv̂s1β̂
′
ipk/t with νp(s) < νp(i) supports a nontrivial r̂1,

the targets of which are linearly independent. Similarly, each such monomial with
t > pk supports a nontrivial r̂pk+1 . It follows that no linear combination of such
elements is invariant, so Ext0 is as stated.

For the second statement, note that ĥ0 and β̂1 are the first nontrivial elements
in Ext1 and Ext0(Bm+1) respectively, so if their product is nontrivial, the claim
follows. It is nontrivial because there is no x ∈ Bm+1 with r̂1(x) = β̂1. �

We now turn to the case m = 0.

Lemma 4.3. Right unit in G(1). The right unit ηR : A(1) → G(1) on the
chromatic fraction 1

ipvt
1

is

ηR

(
1
ipvt1

)
=
∑
k≥0

(
t+ k − 1

k

)
(−t1)k

ip1−kvt+k1

.

Note that this sum is finite because a chromatic fraction is nontrivial only when
its denominator is divisible by p.

Proof. Recall the expansion

1
(x+ y)t

= (x+ y)−t = x−t(1 + y/x)−t = x−t
∑
k≥0

(
−t
k

)
yk

xk

=
∑
k≥0

(
t+ k − 1

k

)
(−y)k

xk+t

and the formula ηR(vt1) = (v1 + pt1)t by Lemma 4.1. �

Proposition 4.4. Structure of Ext0(B1). For m = 0, Ext0(B1) is the Z(p)-
module generated by{

pkβ′ipk/t : i > 0, k ≥ 0, 0 < t ≤ pk and νp(i) ≤ νp(t)
}
.
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The first nontrivial element in Ext1(B1) is

h0β1 ∈ Ext1,2(p2−1)(Bm+1)

Proof. When i and t are as stated, we may set t = ap` and i = bp` with p|/ b and
a > 0. Observe that

ηR

(
vbp

`+k

2

bp`+1vap
`

1

)
=

(
vp

k

2 + vp
k

1 tp
k+1

1 − vp
k+1

1 tp
k

1

)bp`

∑
n≥0

(
ap` + n− 1

n

)
(−t1)n

bp`+1−nvap
`+n

1

.

For n > 0, the binomial coefficient is divisible by p`+1−n by Lemma A.3 below, so
the expression simplifies to

ηR

(
vbp

`+k

2

bp`+1vap
`

1

)
=

(vp
k

2 + vp
k

1 tp
k+1

1 − vp
k+1

1 tp
k

1 )bp
`

bp`+1vap
`

1

and pkβ′ipk/t is invariant by an argument similar to that of Lemma 4.2. On the
other hand if either of the conditions on i and t fails, we have nontrivial Quillen
operations

r1

(
pkβ′ipk/t

)
= − vip

k−1
2

p1−kvt−p1

− t

i
· v

ipk

2

vt+1
1

if νp(i) > νp(t)

or rpk+1

(
pkβ′ipk/t

)
=

v
(i−1)pk

2

pvt−p
k

1

if t > pk .

The rest of the argument, inclduing the identifation of the first nontrivial element
in Ext1(B1), is the same as in the case m > 0. �

5. 1-primitives in Bm+1

In this section we determine the structure of L1(Bm+1), which includes all el-
ements of Ext0(Bm+1) determined in the previous section. By observing that
r̂1(v̂1β̂

′
p) = β̂p and r̂pj (v̂1β̂

′
p) = 0 for j ≥ 1, the first element of the quotient

L1(Bm+1)/L0(Bm+1) is v̂1β̂
′
p for m > 0. In general, we have

Proposition 5.1. Structure of L1(Bm+1) for m > 0. For m > 0, L1(Bm+1) is
isomorphic to the A(m)-module generated by pkv̂s1β̂

′
ipk/t, where i > 0, s ≥ 0, k ≥ 0

and 0 < t ≤ pk, and the integers i and s satisfy the following condition: there is a
non-negative integer n such that s ≡ 0, 1, . . . p− 1 mod (pn+1) and νp(i) < n+ p.

Note that the description of L1(Bm+1) differs from that of L0(Bm+1) given in
Proposition 4.2 only in the restriction on i and s. In that case it was νp(i) ≤ νp(s).
If νp(s) = n+ 1 (i.e., s ≡ 0 mod (pn+1)), then an integer i satisfying νp(i) ≤ n+ 1
also satisfies νp(i) < n+ p. Hence we have L0(Bm+1) ⊂ L1(Bm+1) as desired.
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Proof. In Proposition 4.2 we have already seen that pkβ̂′ipk/t is invariant iff 0 < t ≤
pk. If follows that

r̂p`(pkv̂s1β̂
′
ipk/pk) = r̂p`(v̂s1) · pkβ̂′ipk/pk = pp

`

(
s

p`

)
v̂s−p

`

1 · v̂
ipk

2

ipvp
k

1

.

Since we are dealing with 1-primitives, we can ignore the case ` = 0. For ` = 1,
this is clearly trivial if s < p. When s ≥ p, choose an integer n such that pn |

(
s
p

)
.

By Lemma A.4 this means n = 0 unless s is p-adically close to an integer ranging
from 0 to p − 1. Then r̂p is trivial if νp(i) < n + p. We can show that all Quillen
operations r̂p` for ` > 1 are trivial under the same condition since

νp

(
pp
(
s

p

))
≤ νp

(
pp

`

(
s

p`

))
which follows from

qνp

(
pp

`

(
s

p`

))
= p` + 1 + α(s− p`)− α(s)

by Lemma A.2

and q

[
νp

(
pp

`

(
s

p`

))
− νp

(
pp
(
s

p

))]
= p` − p+ α(s− p`)− α(s− p)

≥ α(p` − p) + α(s− p`)− α(s− p)
≥ 0.

�

Note also that the condition on i and s in Proposition 5.1 is automatically
satisfied whenever i < pp, which means that we may set n = 0. Since

r̂p(v̂s1) = pp
(
s

p

)
v̂s−p1

and pp kills all of Bm+1 below the dimension of β̂pp/pp , v̂1 is effectively invariant in
this range, making Bm+1 an A(m+ 1)-module.

Corollary 5.2. Poincaré series for L1(Bm+1). For m > 0, the Poincaré series
for L1(Bm+1) below dimension pp|v̂2| is

(5.3) gm+1(t)
∑
k≥0

xp
k+1 − xp

k

2

1− xpk

2

,

and in the same range we have

L1(Bm+1) = A(m+ 1)
{
pkβ̂′ipk/t : i > 0, k ≥ 0 and 0 < t ≤ pk

}
.

Proof. As is explained in the above, we may consider L1(Bm+1) as an A(m + 1)-
module in that range. To determine the Poincaré series g(L1(Bm+1)), decompose
L1(Bm+1) into the following two direct summands:

(1) S0 = A(m+ 1)/I2
{
β̂′i : i > 0

}
(2) Sk = A(m+ 1)/I2

{
pkβ̂′ipk/t : i > 0 and pk−1 < t ≤ pk

}
for k > 0
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The Poincaré series for these sets are given by

g(S0) = gm+1(t) · (1− y)
∑
n≥0

y−1 xp
n

2

1− xpn

2

and g(Sk) = gm+1(t) · (1− y)
∑
n>0

y−p
k

(1− ypk−pk−1
)

1− y
· xp

n+k−1

2

1− xpn+k−1

2

= gm+1(t)
∑
n≥0

(y−p
k

− y−p
k−1

)
xp

n+k

2

1− xpn+k

2

which gives

g(L1(Bm+1))
gm+1(t)

=
∑
n≥0

(y−1 − 1)
xp

n

2

1− xpn

2

+
∑

0<k≤n

(y−p
k

− y−p
k−1

)
xp

n

2

1− xpn

2

=
∑
n≥0

(y−1 − 1)
xp

n

2

1− xpn

2

+
∑
n>0

(y−p
n

− y−1)
xp

n

2

1− xpn

2

= (y−1 − 1)
x2

1− x2
+
∑
n>0

(y−p
n

− 1)
xp

n

2

1− xpn

2

=
∑
n≥0

xp
n

2 (y−p
n − 1)

1− xpn

2

which is equal to (5.3). �

Now we turn to the case m = 0, for which we make use of Lemma 4.3 again.
Observing that r̂1(β′p) = −βp/2 and r̂pj (β′p) = 0 for j ≥ 1, the first element of the
quotient L1(Bm+1)/L0(Bm+1) is β′p. In general, we have

Proposition 5.4. Structure of L1(B1). For m = 0, L1(B1) is isomorphic to the
Z(p)-module generated by pkβ′ipk/t, where k ≥ 0, i > 0 and 0 < t ≤ pk satisfying the
following condition: there is a non-negative integer n such that −t = 0, 1, . . . , p− 1
mod (pn+1) and pp+n|/ i.

Proof. We have

ψ

(
vip

k

2

ipvt1

)
= (vp

k

2 + vp
k

1 tp
k+1

1 − vp
k+1

1 tp
k

1 )i
∑
r≥0

(
t+ r − 1

r

)
(−pt1)r

ipvt+r1

in which there are terms

v
(i−1)pk

2 tp
k+1

1

pvt−p
k

1

, −v
(i−1)pk

2 tp
k

1

pvt−p
k+1

1

and (−p)p
`

(
t+ p` − 1

p`

)
vip

k

2 tp
`

1

ipvt+p
`

1

for ` ≥ 0.

Since t ≤ pk, the first and the second are trivial, which gives

r̂p`

(
pkβipk/t

)
= (−p)p

`

(
t+ p` − 1

p`

)
vip

k

2

ipvt+p
`

1

.
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Choose an integer n such that pn |
(
t+p−1
p

)
, which occurs iff

−t = 0, 1, . . . , p − 1 mod (pn+1) by Lemma A.4. Then r̂p is trivial if pp+n|/ i.
We can also observe that all the higher Quillen operations r̂` (` ≥ 1) are trivial
since νp

(
pp
(
t+p−1
p

))
≤ νp

(
pp

`(t+p`−1
p`

))
(see the proof of Proposition 5.1). �

Corollary 5.5. L1(B1) as an A(1)-module. For m = 0, we have

L1(B1) = A(1)
{
pkβ′ipk/t : i > 0, k ≥ 0 and 0 < t ≤ pk

}
below dimension pp|v2|. The Poincaré series for L1(B1) in this range is the same
as (5.3).

Applying Lemma 3.5 and 3.7 to the Poincaré series (5.3), we have the following
result.

Corollary 5.6. 1-free range for Bm+1. For m ≥ 0, Bm+1 is 1-free below dimen-
sion p(p+ 1)|v̂1|, and the first element in Ext1(T

(1)

m ⊗Bm+1) is β̂p/pĥ1.

Here we use the notation β̂p/p for its image under the map (c⊗1)ψBm+1 (cf. (3.3)).

Proof. By comparing g(Bm+1) and g(L1(Bm+1)) and using Lemma 3.7, we see that
the first nontrivial element of Ext1(T

(1)

m ⊗Bm+1) occurs in the indicated dimension,
where the group has order p. The fact that β̂p/pĥ1 is nontrivial in Ext1 follows by
direct calculation. �

6. j-primitives in Bm+1 for j > 1

In this section we determine the structure of Lj(Bm+1) for j ≥ 2 and m > 0
(See [Rav04] Lemma 7.3.1 for the m = 0 case). The first element of the quotient
Lj(Bm+1)/Lj−1(Bm+1) is β̂pj−2+1/pj−2+1, which has nontrivial Quillen operation

r̂pj−1

(
β̂pj−2+1/pj−2+1

)
= β̂1.

In general, we have

Theorem 6.1. Structure of Lj(Bm+1) in low dimensions for j > 1.

(i) Below dimension pj+1|v̂2|, Lj(Bm+1) is the A(m+ 1)-module generated by{
β̂′i/t : 0 < t ≤ min(i, pj−1)

}
∪
{
β̂apj+b/t : pj−1 < t ≤ pj, a > 0 and 0 ≤ b < pj−1

}
.

(ii) Bm+1 is j-free below dimension |v̂p
j+1

1 v̂2|.
(iii) The first element in Ext1 is the p-fold Massey product

〈β̂1+pj−1/pj−1 , ĥ1,j , . . . , ĥ1,j︸ ︷︷ ︸
p−1

〉.

For the basic properties of Massey products, we refer the reader to [Rav86, A1.4]
or [Rav04, A1.4]
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Proof. (i) The listed elements are the only j-primitives below dimensions pj+1|v̂2|
by Proposition B.3, and the first statement follows.

(ii) To show that Bm+1 is j-free below the indicated dimension, we need to
compute some Poincaré series. This will be a lengthy calculation.

Decompose Lj(Bm+1) into the following three direct summands:

S0,1 = A(m+ 1)
{
β̂′i/t : 0 < t ≤ i < pj−1

}
,

S0,2 = A(m+ 1)
{
β̂′i/t : 0 < t ≤ pj−1 ≤ i

}
,

Sj = A(m+ 1)
{
β̂apj+b/t : pj−1 < t ≤ pj , a > 0 and 0 ≤ b < pj−1

}
.

We will always work below the dimension of β̂2pj/pj , which is |v̂p
j+1

1 v̂p
j

2 |. This means
that in the description of Sj above, the only relevant value of a is 1.

Observe that

S0,1 =
⋃

0<k<j

A(m+ 1)/I2

{
v̂ip

k−1

2

pkvip
k−1−`

1

: 0 ≤ ` < ipk−1, 0 < i < pj−k

}
,

so

g(S0,1) = g(A(m+ 1)/I2)
∑

0<k<j

∑
0<i<pj−k

(1− yipk−1
)(xp

k

)i

1− y

= gm+1(t)
∑

0<k<j

∑
0<i<pj−k

(xip
k

− xip
k−1

2 )

g(S0,1)
gm+1(t)

=
∑

0<k<j

(
xp

k

(1− (xp
k

)p
j−k−1)

1− xpk − xp
k−1

2 (1− (xp
k−1

2 )p
j−k−1)

1− xpk−1

2

)

=
∑

0<k<j

(
xp

k − xpj

1− xpk −
xp

k−1

2 − xp
j−1

2

1− xpk−1

2

)

For S0,2, we have

S0,2 = A(m+ 1)

{
v̂i2

ipvp
j−1−`

1

: 0 ≤ ` < pj−1, i ≥ pj−1

}
,

which is the quotient of

⋃
k>0

A(m+ 1)/I2

{
v̂ip

k−1

2

pkvp
j−1−`

1

: 0 ≤ ` < pj−1, i > 0

}

by
⋃

0<k<j

A(m+ 1)/I2

{
v̂ip

k−1

2

pkvp
j−1−`

1

: 0 ≤ ` < pj−1, 0 < i < pj−k

}
.
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Hence the Poincaré series of S0,2 is

g(S0,2) = g(A(m+ 1)/I2) · (1− ypj−1
)y−p

j−1

1− y∑
k>0

∑
i>0

(xp
k−1

2 )i −
∑

0<k<j

∑
0<i<pj−k

(xp
k−1

2 )i


g(S0,2)
gm+1(t)

= (y−p
j−1
− 1)∑

k>0

xp
k−1

2

1− xpk−1

2

−
∑

0<k<j

xp
k−1

2 (1− (xp
k−1

2 )p
j−k−1)

1− xpk−1

2


= (y−p

j−1
− 1)

∑
k>0

xp
k−1

2

1− xpk−1

2

−
∑

0<k<j

xp
k−1

2 − xp
j−1

2

1− xpk−1

2


= (y−p

j−1
− 1)

∑
k>j

xp
k−1

2

1− xpk−1

2

+
∑

0<k≤j

xp
j−1

2

1− xpk−1

2


≡ (y−p

j−1
− 1)xp

j

2 +
∑

0<k≤j

xp
j − xp

j−1

2

1− xpk−1

2

in our range of dimensions.
Adding these two gives

g(S0,1 ∪ S0,2)
gm+1(t)

=
g(S0,1) + g(S0,2)

gm+1(t)

=
∑

0<k<j

(
xp

k − xpj

1− xpk −
xp

k−1

2 − xp
j−1

2

1− xpk−1

2

)

+(y−p
j−1
− 1)xp

j

2 +
∑

0<k≤j

xp
j − xp

j−1

2

1− xpk−1

2

=
∑

0<k<j

(
xp

k − xpj

1− xpk +
xp

j − xp
k−1

2

1− xpk−1

2

)
+
xp

j − xp
j−1

2

1− xpj−1

2

+(y−p
j−1
− 1)xp

j

2

=
∑

0<k<j

(1− xpj

)(xp
k − xp

k−1

2 )

(1− xpk)(1− xpk−1

2 )
+
xp

j − xp
j−1

2

1− xpj−1

2

+xp
j+1

(yqp
j−1
− yp

j

).

We also observe that

g(Sj) = g(A(m+ 1)/I2)
xp

j+1
(1− yqpj−1

)
1− y

· 1− xp
j−1

2

1− x2

= gm+1(t) · x
pj+1

(1− yqpj−1
)(1− xp

j−1

2 )
1− x2

.
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Summing these three Poincaré series, we obtain

g(S0,1 ∪ S0,2 ∪ Sj)
gm+1(t)

=
g(S0,1) + g(S0,2) + g(Sj)

gm+1(t)

=
∑

0<k<j

(1− xpj

)(xp
k − xp

k−1

2 )

(1− xpk)(1− xpk−1

2 )
+
xp

j − xp
j−1

2

1− xpj−1

2

+xp
j+1

(yqp
j−1
− yp

j

) +
xp

j+1
(1− yqpj−1

)(1− xp
j−1

2 )
1− x2

=
∑

0<k<j

(1− xpj

)(xp
k − xp

k−1

2 )

(1− xpk)(1− xpk−1

2 )
+
xp

j − xp
j−1

2

1− xpj−1

2

+
xp

j+1
((1− yqpj−1

)(1− xp
j−1

2 ) + (yqp
j−1 − ypj

)(1− x2))
1− x2

=
∑

0<k<j

(1− xpj

)(xp
k − xp

k−1

2 )

(1− xpk)(1− xpk−1

2 )
+
xp

j − xp
j−1

2

1− xpj−1

2

+
xp

j+1
(1− xp

j−1

2 + yqp
j−1

xp
j−1

2 − ypj − x2y
qpj−1

+ x2y
pj

)
1− x2

=
∑

0<k<j

(1− xpj

)(xp
k − xp

k−1

2 )

(1− xpk)(1− xpk−1

2 )
+
xp

j − xp
j−1

2

1− xpj−1

2

+
xp

j+1
(1− xp

j−1

2 − yqpj−1
(x2 − xp

j−1

2 )− ypj

(1− x2))
1− x2

.

On the other hand, Theorem 2.4 gives

g(Bm+1)
gm+1(t)

≡
∑

0<k≤j+1

xp
k − xp

k−1

2

(1− xpk)(1− xpk−1

2 )

≡
∑

0<k<j

xp
k − xp

k−1

2

(1− xpk)(1− xpk−1

2 )
+

xp
j − xp

j−1

2

(1− xpj )(1− xpj−1

2 )
+
xp

j+1 − xp
j

2

1− xpj+1

below dimension |xpj+1
xp

j

2 |, so

g(Bm+1)(1− xpj

)
gm+1(t)

=
∑

0<k<j

(xp
k − xp

k−1

2 )(1− xpj

)

(1− xpk)(1− xpk−1

2 )
+
xp

j − xp
j−1

2

1− xpj−1

2

+
xp

j+1
(1− ypj

)(1− xpj

)
1− xpj+1 .
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This means

g(S0,1 ∪ S0,2 ∪ Sj)− g(Bm+1)(1− xpj

)
gm+1(t)

=
xp

j+1
(1− xp

j−1

2 − yqpj−1
(x2 − xp

j−1

2 )− ypj

(1− x2))
1− x2

−x
pj+1

(1− ypj

)(1− xpj

)
1− xpj+1

≡ xp
j+1

(1− yqpj−1
x2 − yp

j

(1− x2))
1− x2

− xp
j+1

(1− ypj − x2 + x2y
pj

1− x2)

below dimension |v̂p
j(p+1)

1 |

=
xp

j+1
x2(1− yqpj−1

)
1− x2

.

By Lemma 3.5, this means that Bm+1 is j-free in the range claimed and that
the first nontrivial Ext1 has order p.

(iii) To show that the generator of is Ext1 the element specified, we first show
that the indicated Massey product is defined.

For j > 1 and 1 < k < p we claim

d(β̂1+kpj−1/kpj−1) = 〈β̂1+pj−1/pj−1 , ĥ1,j , . . . , ĥ1,j︸ ︷︷ ︸
k−1

〉.

This can be shown by induction on k and direct calculation as follows. Let

s = t̂p1 − v
pω−1
1 t̂1 ∈ T

(j)

m ⊂ G(m+ 1).

It follows that w = v̂2− v1s is invariant. Note that its pj−1th power does not lie in
T

(j)

m . Then we have

ηR

(
β̂1+kpj−1/kpj−1

)
= ηR

(
v̂kp

j−1

2 w

pvkp
j−1

1

)

=
∑

0<`≤k

(
kpj−1

`pj−1

)
v̂`p

j−1

2 w

pv`p
j−1

1

⊗ s(k−`)pj−1

=
∑

0<`≤k

(
k

`

)
v̂`p

j−1

2 w

pv`p
j−1

1

⊗ s(k−`)pj−1

=
∑

0<`≤k

(
k

`

)
β̂1+`pj−1/`pj−1 ⊗ s(k−`)pj−1

= 〈β̂1+pj−1/pj−1 , ĥ1,j , . . . , ĥ1,j︸ ︷︷ ︸
k−1

〉.

This means that our p-fold Massey product is defined.
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We claim the first element in Ext1 is represented by∑
0<`<p

1
p

(
p

`

)
β̂1+`pj−1/`pj−1 ⊗ s(p−`)pj−1

=
∑

0<`<p

1
p

(
p

`

)
β̂1+`pj−1/`pj−1 ⊗

(
t̂p

j

1 − v
pj−1(pω−1)
1 t̂p

j−1

1

)p−`
=

∑
0<`<p

1
p

(
p

`

)
β̂1+`pj−1/`pj−1 ⊗ t̂p

j(p−`)
1

= β̂1+qpj−1/qpj−1 ⊗ t̂p
j

1 + · · ·

The only element in Bm+1 in this dimension is β̂1+pj/pj , which is primitive, so this
element in Ext1 is notrivial. �

7. Higher Ext groups for j = 1

In this section we exhibit some calculations of Exts(T
(j)

m ⊗ Bm+1) for s > 0.
Recall the small descent spectral sequence, constructed in [Rav02, Theorem 1.17],
which converges to Ext(T

(j)

m ⊗Bm+1) with

E∗,s1 = E(ĥj)⊗ P (̂bj)⊗ Ext(T
(j+1)

m ⊗Bm+1)

with ĥj ∈ E1,0
1 and b̂j ∈ E2,0

1 , and dr : Es,tr → Es+r,t−r+1
r . In particular, d1 is

induced by the action of r̂pj on Bm+1 for s even and r̂qpj for s odd. The case
m = 0 has already been treated in [Rav04, Chapter 7], so we may assume that
m > 0. We examine the simplest case, j = 1. Recall that Bm+1 is 2-free below
dimension |v̂p

2+1
2 /vp

2

1 | and Ext0(T
(2)

m ⊗ Bm+1) is the A(m + 1)-module generated
by

(7.1)
{
β̂′i/t : 0 < t ≤ min(i, p)

}
∪
{
β̂p2/t : p < t ≤ p2

}
by Theorem 6.1. Then the spectral sequence collapses from E2. We can compute
d1 on elements (7.1) using Proposition B.2: The action of r̂p on Ext0(T

(2)

m ⊗Bm+1)

is given by r̂p

(
β̂′i/e1

)
= β̂i−1/e1−1 and r̂p

(
β̂pi/e1

)
= 0, and the action of r̂qp is

obtained by composing r̂p up to unit scalar. In order to understand the behavior
of d1, the following picture for p = 3 may be helpful.

(7.2)

β̂1 β̂2 β̂′3 β̂3

β̂2/2 β̂′3/2 β̂3/2 β̂4/2

β̂′3/3 β̂3/3 β̂4/3 β̂5/3

[
[̂

r̂3 [
[̂

r̂3 [
[̂

r̂3

[
[̂

r̂3 [
[̂

r̂3 [
[̂

r̂3
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Here each arrow represents the action of the Quillen operation r̂3 up to unit scalar.
For a general prime p, the analogous picture would show a directed graph with
2p components, two of which have p vertices, and in which the arrow shows the
action of the Quillen operation r̂p up to unit scalar. Each component corresponds
to an A(m+ 1)-summand of the E2-term, with the caveat that pβ̂′p/e1 = β̂p/e1 and

v1β̂
′
i/e = β̂′i/e−1. Notice that the entire configuration is v̂p2-periodic. Corresponding

to the diagonal containing β̂1 in (7.2), the subgroup of E1 generated by{
β̂1, β̂2/2, β̂

′
3/3

}
⊗ E(ĥ1,1)⊗ P (̂b1,1)

reduces on passage to E2 to simply {β̂1}. Similarly, the subset{
β̂2, β̂

′
3/2

}
⊗ E(ĥ1,1)⊗ P (̂b1,1)

reduces to
{
β̂2, β̂

′
3/2ĥ1,1

}
⊗ P (̂b1,1), where

β̂′3/2ĥ1,1 = 〈ĥ1,1, ĥ1,1, β̂2〉

and ĥ1,1(β̂′3/2ĥ1,1) = ĥ1,1〈ĥ1,1, ĥ1,1, β̂2〉 = 〈ĥ1,1, ĥ1,1, ĥ1,1〉β̂2 = b̂1,1β̂2.

These observations give us the following result.

Proposition 7.3. Structure of Ext(T
(1)

m ⊗ Bm+1). In dimensions less than
|v̂p

2+1
2 /vp

2

1 |, Ext(T
(1)

m ⊗ Bm+1) is a free module over A(m+ 1)/I2 with basis

{
β̂1+pi, β̂p+pi; β̂p2/k

}
⊕ P (̂b1,1)⊗


{
β̂′pi+s; β̂pi+p/s; β̂p2/`

}
⊕

ĥ1,1

{
β̂′pi+p/t; β̂pi+r/p; β̂p2/`

}
,

where 0 ≤ i < p, 1 ≤ k ≤ p2 − p+ 1, p2 − p+ 2 ≤ ` ≤ p2, 2 ≤ s ≤ p, 1 ≤ t ≤ p− 1
and p ≤ u ≤ 2p − 2, subject to the caveat that v1β̂p/e = β̂p/e−1 and pβ̂′p/e = β̂p/e.

In particular Ext0(T
(1)

m ⊗ Bm+1) has basis{
β̂′1+pi, . . . , β̂

′
p+pi; β̂p+pi/p, . . . , β̂p+pi/1; β̂p2/p2 , . . . , βp2/1

}
.

Note that for m > 0, this range of dimensions exceeds p|v̂3|.

Appendix A. Some results on binomial coefficients

Fix a prime number p.

Definition A.1. α(n), the sum of the p-adic digits of n. For a nonnegative
integer n, α(n) denotes sum of the digits in the p-adic expansion of n, i.e., for
n =

∑
i≥0 aip

i with 0 ≤ ai ≤ p− 1, we define α(n) =
∑
i≥0 ai.

As before, let νp(n) denote the p-adic valuation of n, i.e., the exponent that
makes n a p-local unit multiple of pνp(n). When the integer is a binomial coefficient(
i
j

)
, we will write νp

(
i
j

)
instead of νp

((
i
j

))
. Then we have
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Lemma A.2. p-adic valuation of a binomial coefficient.

qνp

(
n

k

)
= α(k) + α(n− k)− α(n)

where q = p− 1. In particular,

qνp

(
n

pj

)
= 1 + α(n− pj)− α(n).

Proof. Recall that qνp(n!) = n− α(n), and observe that

qνp

(
n

k

)
= qνp

(
n!

(n− k)!k!

)
= q (νp(n!)− νp((n− k)!)− νp(k!))
= n− α(n)− (n− k) + α(n− k)− k + α(k)
= −α(n) + α(n− k) + α(k)

�

Using this lemma we can determine the number how many times a binomial
coefficient is divisible by a prime p. For example, we have

Lemma A.3. Divisibility of a binomial coefficient. Assume that p|/ a and
0 < n ≤ `. Then the binomial coefficient

(
ap`+n−1

n

)
is divisible by p`+1−n.

Proof. Since a 6≡ 0 mod (p), we have α(a − 1) = α(a) − 1. Let m = νp(n) and
n = n′pm. Then α(n′ − 1) = α(n′)− 1, and we have

qνp

(
ap` + n− 1

n

)
= qνp

(
ap` + n′pm − 1

n′pm

)
= α(n′pm) + α(ap` − 1)− α(ap` + n′pm − 1)

= α(n′) + α(a− 1) + q`− α(ap`−m + n′ − 1)− qm
= α(n′) + α(a− 1) + q`− α(a)− α(n′ − 1)− qm
= q(`−m) ≥ q(`+ 1− n).

�

We consider this type of binomial coefficients in Proposition 4.4. The other types
we need are the followings:

Lemma A.4. Divisibility of another binomial coefficient. Assume that p
is a prime and that a positive integer s is expressed as s = s1p

` + s0 > 0 with
0 ≤ s0 < p`. Then we have νp

(
s
p`

)
= νp(s1). In particular, we have pn |

(
s
p`

)
iff

s ≡ 0, 1, . . . , p` − 1 mod (pn+`).

Proof. Observe that

qνp

(
s

p`

)
= α(p`) + α(s− p`)− α(s)

= 1 + α((s1 − 1)p` + s0)− α(s1p
` + s0)

= α(1) + α(s1 − 1)− α(s1)
= qνp(s1).
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This implies that νp
(
s
p`

)
= n iff s ≡ s0 mod (pn+`). �

In Appendix B it is required to know how many times the binomial coefficient(
i−1

pj−1−1

)
is divisible by p.

For 0 < i < pj−1 it is clear that
(

i−1
pj−1−1

)
= 0. For i ≥ pj−1, the number

νp
(

i−1
pj−1−1

)
can be determined explicitly in the following results.

Proposition A.5. A third divisibility statement. For i ≥ pj−1, define non-
negative integers i0 and i1 by

(A.6) i = i1p
j−1 + i0 ( i1 > 0 and 0 ≤ i0 < pj−1 ).

Then we have
(1)

(
i−1

pj−1−1

)
is divisible by p iff i0 6= 0;

(2) More generally,
(

i−1
pj−1−1

)
is divisible by pj−k (0 ≤ k < j) iff

(A.7) νp(i0) ≤ k − 1 + νp(i1).

or equivalently i0 6= 0 and pk+νp(i1)|/ i0.
In particular, the inequality (A.7) is automatically satisfied if νp(i1) ≥ j − k − 1.

Proof. Observe that

νp

(
i− 1

pj−1 − 1

)
= νp(pj−1) + νp

(
i

pj−1

)
− νp(i)

= (j − 1) + νp(i1)−
{

(j − 1 + νp(i1)) if i0 = 0
νp(i0) if i0 6= 0 by Lemma A.4

=
{

0 if i0 = 0
j − 1 + νp(i1)− νp(i0) if i0 6= 0 .

If i0 6= 0, then we have j − 1 + νp(i1) − νp(i0) > 0 since νp(i0) ≤ j − 2, and so
the binomial coefficient is divisible by p. Since i0 = 0 is equivalent to pj−1 | i, the
statement (1) follows.

The condition pj−k |
(

i−1
pj−1−1

)
is equivalent to the inequality νp

(
i−1

pj−1−1

)
≥ j − k,

and if we suppose that j − k > 0 then this inequality gives (A.7).
Note that (A.7) is always satisfied if νp(i1) ≥ j − k − 1 since νp(i0) ≤ j − 2 by

definition. �

The following is the obvious translation of Proposition A.5.

Corollary A.8. A fourth divisibility statement. Let i0 and i1 be as in (A.6)
and assume that pj−1 < i ≤ pj−1+m. Then, we have pj−k |

(
i−1

pj−1−1

)
for 0 ≤ k < j

iff

νp(i0) ≤ k − 1 + νp(i1) with 0 ≤ νp(i1) ≤ m.

Proof. The given range pj−1 < i ≤ pj−1+m means that 0 ≤ νp(i1) ≤ m and the
result follows from Proposition A.5. �
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Appendix B. Quillen operations on β-elements

In this section we discuss the action of the Quillen operations r̂pj for j > 0 on
the β-elements.

First we consider the following easy cases.

Proposition B.1. Primitive β-elements. For i > 0, the elements β̂i/t are
primitive if 0 < t ≤ pνp(i), i.e., it satisfies r̂`(β̂i/t) = 0 for all ` ≥ 0.

Proof. Set νp(i) = n and i = i′pn. By direct calculations we have

ηR

(
v̂i2
pvt1

)
=

(v̂p
n

2 + vp
n

1 t̂p
n+1

1 − vp
n+1ω

1 t̂p
n

1 )i
′

pvt1
=

v̂i2
pvt1

.

�

For the other cases, the Quillen operation r̂pj is computed as follows:

Proposition B.2. Quillen operations on β-elements. When j > 0, we have

r̂pj (β̂′i/t) =
(
i− 1
pj−1

)
β̂′i−pj−1/t−pj−1 for t < pj−1 + pm+2.

Proof. First assume that m > 0. Observe that

ηR(β̂′i/t) = ηR

(
v̂i2
ipvt1

)
=

(
v̂2 + v1t̂

p
1 − v

pω
1 t̂1

)i
ipvt1

=
∑

0≤k≤`≤i

(−1)k
(
i

`

)(
`

k

)
v̂i−`2

(
v1t̂

p
1

)`−k (
vpω1 t̂1

)k
ipvt1

=
∑

0≤k≤`≤i

(−1)k
(
i− 1
`

)(
`

k

)
v̂i−`2 t̂

p(`−k)+k
1

(i− `)pvt−`+k−pωk1

.

Since r̂pj (β̂′i/t) is the coefficient of t̂p
j

1 in the above, we need to consider the terms
satisfying p(` − k) + k = pj . Note that k must be divisible by p and that we may
set k = pn. Thus we have

pj = p(`− pn) + pn.

Now let

`(n) = ` = pj−1 + qn where q = p− 1
and g(n) = t− `+ k − pωk

= t− pj−1 − qn+ pn− pm+2n

= t− pj−1 − n(pm+2 − 1).

Then we have

r̂pj (β̂′i/t) =
∑

0≤n≤pj−1

(−1)pn
(
i− 1
`(n)

)(
`(n)
np

)
v̂
i−`(n)
2

(i− `(n))pvg(n)
1

.
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Given our assumption about t, the only value of n satisfying g(n) > 0 is n = 0,
which gives

r̂pj (β̂′i/t) =
(
i− 1
pj−1

)
v̂i−p

j−1

2

(i− pj−1)pvt−p
j−1

1

.

The proof for m = 0 is more complicated. Observe that

ψ(β′i/t) =
∑

0≤k≤`≤i

∑
r≥0

(−1)k+r

(
i− 1
`

)(
`

k

)(
t+ r − 1

r

)
pr

vi−`2 t
p(`−k)+k+r
1

(i− `)pvt+r−`+k−pk1

,

which shows that r̂pj (β′i/t) is equal to

∑
0≤n≤pj−1

∑
0≤r≤np

(−1)np
(

i− 1
`(n, r)− 1

)(
`(n, r)− 1
np− r − 1

)(
t+ r − 1

r

)
prv

i−`(n,r)
2

(np− r)pvg(n,r)1

,

where `(n, r) = pj−1 + nq − r and g(n, r) = t − pj−1 − n(p2 − 1) + r(p + 1). If
pr | (np − r) for a positive r, then we may put r = sp and n ≥ psp−1 + s for a
positive s and the exponent of v1 is not positive since

g(n, r) ≤ t− pj−1 − (psp−1 + s)(p2 − 1) + sp(p+ 1)

= t− pj−1 − (p+ 1)(psp − psp−1 − s)
≤ t− pj−1 − (p+ 1)(pp − pp−1 − 1)

≤ t− pj−1 − (p2 − 1).

Thus, the nontrivial term arises only when r = 0. We can see that it is also required
that n = 0 by the same reason as the m > 0 case, and the result follows. �

To know the condition of triviality of r̂pj in Proposition B.2, we need the re-
sults on the p-adic valuation of binomial coefficients obtained in Appendix A. In
particular, we have

Proposition B.3. Some trivial actions of Quillen operations. Assume that
pj−1 < i ≤ pj+1 and t < pj−1 + pm+2. Then we have the following trivial Quillen
operations:

(1) r̂p`(β̂′i/t) (` ≥ j) for 0 < t ≤ min(i, pj−1);

(2) r̂p`(β̂apj+b/t) (` ≥ j) for pj−1 < t ≤ pj and 0 ≤ b < pj−1.

Proof. We will show the following Quillen operations on pkβ̂′i/t are trivial:

(a) r̂p` (` ≥ j) for 0 < t ≤ min(i, pj−1) and k ≥ 0;
(b) r̂p` (` ≥ j) for pj−1 < t ≤ pj , i = apj+bpk with p|/ a, p|/ b and 0 ≤ k < j−1;
(c) r̂p` (` ≥ 0) for pj−1 < t ≤ pj , i = apj with 0 < a ≤ p and j = k.

For the case (1), note that

r̂pj (pkβ̂′i/t) =
(

i− 1
pj−1 − 1

)
v̂i−p

j−1

2

pj−kvt−p
j−1

1

.

by Proposition B.2, which is clearly trivial when 0 < t ≤ pj−1(≤ p`−1). Even if
pj−1 < t ≤ i, it is trivial when the binomial coefficient

(
i−1

pj−1−1

)
is divisible by pj−k,

or equivalently when the inequality (A.7) holds.
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When 0 < k < j, by the assumption we have

pj−1 < i1p
j−1 + i0 ≤ pj+1

(where νp(i0) < j−1 by definition) and νp(i1) ≤ 2. Note that if k > 0 and pk|/ i then
pkβ̂′i/t itself is trivial and that we may assume that νp(i) ≥ k. These observations
suggest that the only case satisfying the inequality (A.7) is (νp(i1), νp(i0)) = (1, k),
which gives the case (b).

When j = k, the Quillen operation r̂pj (pj β̂′i/t) is clearly trivial and pj β̂′i/t is
nontrivial only if pj | i, which gives the case (c).

For the case (b) and (c), observe that the Quillen operation r̂pj+1(pkβ̂′i/t) is a

unit scalar multiple of β̂i−pj/t−pj and pkβ̂′i/t is not in Lj(Bm+1), which means that
the condition t ≤ pj is required. Conbining (b) and (c) gives the case (2).

Note that no linear combination of β-elements can be killed by r̂pj since the
r̂pj -image has different exponents of v̂2 or v1 if β̂′i1/t1 6= β̂′i2/t2 . �

References

[MRW] H.R.Miller, D.C.Ravenel and W.S.Wilson, Periodic phenomena in the Adams-Novikov
spectral sequence. Ann. Math. (2), 106:469–516, 1977.

[Nak] H. Nakai. An algebraic generalization of Image J , To appear in Homology, Homotopy

and Applications.
[NR] H.Nakai and D. C. Ravenel. The method of infinite descent in stable homotopy theory II

in preparation

[Rav86] D. C. Ravenel. Complex Cobordism and Stable Homotopy Groups of Spheres. Academic
Press, New York, 1986.

[Rav02] D. C. Ravenel. The method of infinite descent in stable homotopy theory I. In D. M. Davis,
editor, Recent Progress in Homotopy Theory, volume 293 of Contemporary Mathematics,

pages 251–284, Providence, Rhode Island, 2002. American Mathematical Society.

[Rav04] D. C. Ravenel. Complex Cobordism and Stable Homotopy Groups of Spheres, Sec-
ond Edition. American Mathematical Society, Providence, 2004. Available online at

http://www.math.rochester.edu/people/faculty/doug/mu.html#repub.

Department of Mathematics,Musashi Institute of Technology,Tokyo 158-8557, Japan

E-mail address: nakai@ma.ns.musashi-tech.ac.jp

Department of Mathematics,University of Rochester, Rochester, New York 14627

E-mail address: douglas.ravenel@rochester.edu


