Errata for Complex cobordism and stable homotopy groups of spheres by
Douglas C. Ravenel. Special thanks go to Peter Landweber, Nori Minami, Igor
Kriz, Hirofumi Nakai and Bill Richter. Special attention should be paid to the
changes in §4.3. Last updated July 31, 2003.

GENERAL COMMENTS:
A list of figures and tables at the beginning would be desirable.
The proof of Theorem 2.3.3 may be incorrect.

MISPRINTS:

Page vii, 1.2: m.(S™)

Page ix, 3.5: M Sp...v,-periodicity

Page ix, 4.2: BP(n)

Page xi, 6.3: H*(S(n))

Page xvi, lines —8 and —20: appendices

Page xvi, final paragraph, add: Peter Landweber was kind enough to provide
us with a copious list of misprints he found in the first edition. Nori Minami
and Igor Kriz helped in correcting some errors in §4.3.

Page xvii, line —2: the Troisieme Cycle

Chapter 1

Page 3, line —6: The groups m,+(S™) are called stable if

Page 3, last full sentence: Most of the time we will not be concerned with
unstable groups.

Page 4, line 1: See the tables in Appendix 3, along with Theorem 1.1.13.

Page 4, table: 7§ should be (Z/2)?, 77, should be Z/2 @ Z/504.

Page 4,line —1:(—1)%¥

Page 5, line —13: We define f ..

Page 5, line —11: boundary S™~!

Page 5, line —7: define f : §"ti — 7

Page 6, insert at start of third paragraph: The image of J is also known to
be a direct summand; a proof can be found for example at the end of Chapter
19 of Switzer [1].

Page 6, line —3: € W(fA

Page 6, line —1: a1/ € Wéerz)qu

Page 8, lines —1 and —2: replace d2 by d3

Page 9, omit period in line above 1.2.6.

Page 9, no new paragraph in line below 1.2.6.

Page 10, 3 lines above 1.2.11: 8 and P?’

Page 11, 3 lines below 1.2.14: Serre’s

Page 11, bottom paragraph, insert after fourth sentence: These extra ele-
ments appear in the chart to the right of where they should be, and the lines
meeting them should be vertical.



Page 12: Four da’s have been left out. Their targets are at (39,9), (42,9),
(42,10) and (45,10). The last of these is supported by an element at (46, 8)
which should be connected to the element at (43,7) by a line representing hg-
multiplication.

Page 12: spectral sequence

Page 13, line 8: 31 differentials

Page 13: line —2: bordant

Page 14, lines 10 and 14: complex bordism ring

Page 15: spectral sequence

Page 16, line —1: [[z ® 1,1 ® «]]

Page 17, 1.3.3: map u :

Page 18: 1.3.5: 2

Page 19, 1.3.9: H°(G; L/(p))

Page 21, 3 lines above 1.3.19: Hence G-invariant prime ideals

Page 24, line —18: metaphor

Page 25, lines 56 after 1.4.2: [1]p(z) =«

Page 25, 1.4.3 (a): closure of F,

Page 25, 1.4.3 (b): ...as in 1.3.16, where K is a finite field.

Page 25, line —9: gives a topological basis

Page 26, line 13: chromatic spectral sequence

Page 26, line —5 should not be in italics.

Page 27, line —17: 1.3.17 and 1.3.19.

Page 27, line —11: E3° — E™0

Page 28, line 17: dimensions not divisible

Page 28, line 20 should end with a period.

Page 30, 1.5.8 (d): EX*™ =0 for k < gm — 1

Page 31, line —12: an element «

Page 33, line &: the subgroup and cokernel

Page 33, line 14: m7(S%) = E>? = Z/(2)

Page 33, fifth line before the diagram 1.5.10: The fibration 1.5.1 can be
looped

Page 33, third line of 1.5.12 (a): E%" is the subquotient

Page 35, 1.5.14: The middle right square of this diagram only commmutes
after a single looping. This blemish does not affect calculations of homotopy
groups.

Page 36, 1.5.17: (Kambe, Matsunaga and Toda [1])

Page 37, line 1: EF-Lr—7 _RP" ! ..

Page 37, line 4: i = [r/2].

Page 38, line 7 above 1.5.20: Priddy [2]

Page 40, line 4 above 1.5.23: «; in 7. (J)

Page 40, add to 1.5.23 (a): (We will denote the generator of EF* ! by 1,
and the generator of Ef AELEM for m > 0 by the name of the corresponding
element in m,,(.J).)

Page 44, line 6 after 1.5.29:... for j > 0.

Page 46, line —3: M (@3) > @3 = 5.

Chapter 2
Page 50, 3 lines below 2.1.6: j1 = m—s(fs)
Page 50, 6 lines below 2.1.6: ker j; =
Page 51, line 4: This group will be identified (2.1.12)
Page 51, last labelled vertical arrow in Figure 2.1.9: my_1(gs+1)



Page 51, third line after the Figure 2.1.9: d}" = (7y_1(fs+1))(Ds.0)

Page 55, line 2: (X, gs)

Page 55, third line before end of proof of 2.1.16: Each X, also satisfies the
hypotheses of the lemma, so we conclude ...

Page 58, line 3: such that hs(E A f5) is an identity map of E'A X.

Page 58, line —2: for all r

Page 62, third line of the proof of 2.2.14: X = E(S
Page 67, line 1: Let W’ be
Page 67, line 3: Since X fh

YA X

Chapter 3

Page 70, third line of 3.1.1 (b): |7,| = 2p™ —1

Page 70, fourth line of 3.1.1 (b): A7, =7, @ 1+ Y gsen &, O 7

Page 70, add to 3.1.1 (c¢): ¢(&) =1 o

Page 70, 3.1.1 (c) line 1: For each p

Page 73, fifth line of the proof of 3.1.9: Extr, (K, K) = P(y;)

Page 73, 3.1.10, line 2: as in 3.1.7

Page 76, 3.1.18: Ext4(1,(Z/(2),Z/(2))

Page 77, line above 3.1.24: implies 3.1.23.

Page 80, line —4: aP = {(x)

Page 86, 3.2.12: the 2-component of

Page 91, 3.3.7(b): 0 for n > m

Page 93, second to last paragraph: It is also true that 300 is cohomologous
in A to 111, the difference being the coboundary of 40 + 22.

Page 94: [Remove lines under 4111 and 24111 at bottom of figure and else-
where. The elements 1 and 11 in the 11-stem for n = 10 should be interchanged.]

Page 98, line 3 of 3.3.17: For the reader’s amusement

Page 98, paragraph after 3.3.17: [Replace last three sentences with] Vertical
and diagonal lines as usual represent right multiplication by Ag and A1, i.e., by hq
and hg respectively. This point is somewhat delicate. For example the element
with in the 9-stem with filtration 4 has leading term (according to 3.3.10) 1233,
not 2331. However these elements are cohomologous, their difference being the
coboundary of 235.

Page 100, line 2 of Section 4: we comment on the status

Pages 100-101, Theorem 3.4.2(c): spanned by {h;h; : 0 <i < j—1}, a3, ...
ki = ... € Ext>@rtra

Page 104, line 3 of Proof of 3.4.9: (p™q — 1)-connected

Page 111, line 3 of fourth paragraph: Bahri and Mahowald [1]

Page 112, replace 3.5.2 with the following: For each n > 0, A, has a de-
creasing filtration (A1.3.5) {F*A.} where F*® is the smallest possible subgroup
satisfying £’ € F2" 'L for j <n+ 1.

Page 112, insert after 3.5.2: In particular, F°/F' = A(n)., so A(n). C EyA.
where :

An)e = AJE .8 b, ).
We also have £’ € FPTTNE) gor j > n+1. Hence there is a spectral sequence
(A1.3.9) converging to Bxta,(Z/(2), M) with EJ"" = Ext;ZA*(Z/(Q),EOM)
and d,: ESbY — ESTLBUTT where the third grading is that given by the fil-

tration, M is any A.-comodule, and EyM is the associated EyA.-comodule
(A1.3.7).



Page 113, Lemma 3.5.10: [Insert extra right parenthesis at end of displayed
formula.

Page 117, line 18: and Tangora [1], Tangora [5] and Bruner [2].

Page 117, line 22: See also Milgram [2], Kahn [2], Bruner et al [1] and
Makinen [1].

Page 117, line after displayed formulaA-module Z/(2)[x, 2]

Chapter 4

Page 120, line 18: The pullback of 7,,+1 under this map

Page 121, 4.1.1: associative commutative ring spectrum

Page 121, 4.1.3, line 5: gives a complex orientation

Page 122, line 5: multiple of zg

Page 123, 4.1.8: Let F be a complex oriented ring spectrum.

Page 125, proof of 4.1.11 lines 4 and 5: These give complex orientations

Page 126, line 4: (2.2.12) such that the map g : MU, — BP is multiplica-
tive,

Page 126, line 5: Q[g.(mpx_y) : k > 0] with g, (my) =0 for n # p* — 1;

Pgaes 128129, statement of 4.1.18 should be italicized.

Page 130, line —3: iff G has periodic cohomology.

Page 132, line 5: Mironov

Page 132, lines 12-13: construction) by killing (vy41, Upt2, - .)

Page 132, lines 14: H.(BP(n),Z/(p))

Page 133, line 2: onto iff Hom

Page 133, line 7: A/(Qy)«

Page 135, lines 17 19: The exact functor theorem can be formulated globally
in terms of MU-theory and 7. (K) [viewed as a 7.(MU)-module via the Todd
genus td : m.(MU) — Z] satisfies the hypotheses.

Page 135, third paragraph, last sentence: Using similar methods they were
able to show that real K-theory is determined by symplectic cobordism.

Page 136, line —18: any complex oriented (4.1.1)

Page 139, Proof of 4.3.4, line 2: z =y +pb+ > a;

Page 143, 4.3.14: In BP,(BP) ®gp, BP.(BP) let b; j; = w;+1(4;). [Delete
second sentence.]

Page 143, paragraph above 4.3.16: Now we will simplify the right unit for-
mula 4.3.1. First we need a lemma.

Pages 143-144, 4.3.16, second expression in the first formula:

DRGSO LAIAHLS

i\[1/>0

[Omit the second equation (the one involving ¢(#;)) from the statement, and the
last sentence (including the displayed formula) from the proof.]

Page 144, paragraph after 4.3.16:

Now we need to use the conjugate formal group law ¢(F) over BP.(BP),
defined by the homomorphism ng : BP. — BP.(BP). Its logarithm is

log,(my (1) = > nr(A)a? = Y Mt2 o
i>0 i,§>0

An analog of 4.3.9 holds for ¢(F') with vy replaced by ng(vy).
The last equation in the proof of A2.2.5 reads

7 i+J i i+
Do =Y Nt (ol =D nr(N)nn(v;)?

k3



while 4.3.16 gives
3= S0
Combining these and reindexing gives

Z(—l)‘J‘nR()\i)(tJ(vktp Pl H ZnR )R (vj) i,

which is equivalent to

4.3.17 ZC(F)UR(W) - Z (O [(—1)H N p )(tl(vjtp y HIH).

i20 I1],5,k>0
Page 144, line 2 above 4.3.18:

R,=N,U U {nr(vy)ws(Ry—i)}

[17]]=1
o<i<n
Page 144, 4.3.20 equation:
n+1 i
P _
E Untity_; — NR(Ungk—i)? i = E UntjCh—j,ntj-
0<i<k 0<j<k—n—1

Page 145, 4.3.21: Use italics in statement of Corollary.
Page 145, first line after 4.3.21: ¢; ;

Page 145, 4.3.22(b): d(¢n4,j+1)

Page 149, Proof of 4.3.8, line 3: wir = wh,

Page 149, Proof of 4.3.8, line 8:

||1|\ O(K") puni
Z H = Z H(I) U}J .

I1J=K I1J=K"

Page 150, first sentence: By definition,

B~ i) = 3T )
= p-"Ne-" -
= P mod (=141
Pl mod (plEI+1)  since

|J| — 14 pllli+a |J| — 1+ ||1|] +2

>
> K| +1.

Page 150, line 4: mod (p**I11II)

Page 152, 4.4.3 (a) first line: a; € Ext}? 1

Page 153, Proof of 4.4.4, line 3: A1.3.12

Page 153, Proof of 4.4.4, last line: Extg, (Z/(p),Z/(p))
Page 156, line 2 of Proof of 4.4.14: i <p—1

Page 156, line —4: ker §;

Page 157, line 6: 3,/; = vy 01 (v})

Page 168, Figure 4.4.46: Move the label h; to the left
Page 169, line —1: h; - h1g = Pdp



Chapter 5
Page 170, line 6: say v]*. 2’ may
Page 174, 5.1.10, line 2: A1.2.11
Page 175, 5.1.16: $dimvm ppn
Page 176, line 1: 5.1.16
Page 176, diagram in middle of page: longer arrow from M™ to N1,
Page 176, line 3: Ext®(M?) 2= Ext*(2=2P"+2M")
Page 176, 5.1.18: largest integer
, —tol 1P|ty
Page 178, line 6: = —=5—— — -«

3
U1

Page 180, line 12: 4.3.21
Page 180, line —6: (—1)"
PUL - Upo

Page 181, line —3: d(t3) = —3t1|t3 — 3t3|t1
Page 184, section 2 line 2: 5.2.14 and 5.2.17
Page 185, 5.2.3: np(v3?) = v + spit1pP ~¢y
w?
pitl

Page 190, bottom line: i = 1 mod (n — 1)

Page 191, line 2 after 5.2.14: subject of 5.2.2

Page 194, line —3: r # —1 when s = 1.

Page 195, 5.3.7(b) line 3: po 1 € 75,44

Page 196, 5.3.8: a4 should be ayy.

Page 199, 5.3.14: v; should be v;.

Page 199, line —2: 3.1.28

Page 215, line —14: 4’s and é§’s. Toda

Page 217, Theorem 5.6.5: For p > 3 the following relations hold in Ext* for
s,t > 0.

Page 185, second line after 5.2.3: §

(i) BsBipr/r =0 for k> 1,1 > 2 and 7 < az .

(ii) 65@51)2/1),2 = ﬁert(pr)ﬁtp/p'
(iii) For ¢,k > 2,

ﬂQﬁtpk/ag)k = 6S+(tp71)(pk_17p)ﬂtp2/a2,2
= (t/2)Bss(tp—1)p*—(2p—1)pP2p? Jas -

Chapter 6

Page 220, 6.1.1, line 2: M ®pp, K(n).

Page 223, line —1: T"Oy,,) K (n)«

Page 224, 6.1.12, line 2: ¥(n) @k (n), B(n)«

Page 224, line 2 after 6.1.13: It is clear from 6.1.13

Page 226, line 3 of Section 2: ¥(n)-comodule M. K(n)* should be K(n).
twice.

Page 227, paragraph 2, line 2: is not defined over F),.

Page 227, paragraph 3, line 1: moment

Page 228, 6.2.4, line 3: Ext(F,, M)

Page 228, 6.2.5, line 1: S(n) ® F,

Page 228, last line of proof of 6.2.5: w1 (t,5%)w = w~tywP" SF = wP"~ 11,5k



Page 229, 6.2.6, line 5: determinant

Page 229, first line above 6.2.7: z € Z,, and = € ZJ

Page 230, 3 lines above 6.2.11: has a power in Z|x]

Page 230, 6.2.11, line 2: is the maximal rank of an elementary abelian p-
subgroup

Page 231, last line of 6.3.1: 0 < j < n.

Page 232, 6.3.4 (b): b; ; € H*?4iEOS(n)

Page 232, line 3 of proof of 6.3.5:

H*(L(n)) = H*(L(n,m)) ® E(h;  :i > m)

Page 233, 6.3.7: If i >n — 1 and i > m/2
Page 235, mid page: (t; —t! ). The displayed formula should read

kP .

ms . = { Zkzop tknﬂ»sz fOI‘ 1 S ]
G k4P" . .
D1 Pty fori>j

Page 235, 6.3.12: and, for p =2, U, € S(n).

Page 239, line 9: £ € H2S(2)

Page 243, proof of 6.3.28: is isomorphic

Page 250, line 6: 8 and 10

Page 253, line —10: as is its proof

Page 253, 6.5.2, lines 2-3: E?(CP™) whose restriction to E2(CP')
Page 253, 6.5.3: X (m)

Page 253, bottom line: CP™~! — BU

Page 254, line 1: CP™ — X (m)

Page 254, 6.5.4, replace CP by CP throughout.

Page 254, 6.5.4 line 2: 25 € E2(CP™)

Page 254, line —8: X (m),

Page 255, 6.5.6: If i <n +2and i < 2(p—1)(n+1)/p then

Chapter 7

Page 258, 7.1.2: T'(n) > '(n+ k+1)...d, : ESt — Estnt=rl,

Page 259, line 3: the precise definitions; see 5.1.10 and A1.2.11.

Page 259, line 4: T'(n+ k + 1)

Page 260, line 1 of proof of 7.1.9: [The description of DY is incorrect; there
is a weak injective of the form A(n — 1)[Ap4; @ 4 > 0] with A,4; congruent to
p~ v,y modulo decomposables. Details will be in a forthcoming paper.]

Page 261, line 7: 1/p is divisible

m_1

—1 P
1)1 Un+1 1)1 Un

Page 261, line 2 above 7.1.11: adjoining I)Z—ﬁl A T

Page 261, 7.1.11: [This formula is incorrect, but the method of 7.2.4 can be
adapted to show that such elements exist.]

Page 261, 7.1.12, line 3: C? C N?

Page 262, 7.1.13, line 1: ¢ < [0} |

Page 263:, 7.2.3, last two lines: with equality holding only if M is a weak
injective (7.1.6).

Page 264, paragraph beginning on line 3: [Leave first sentence as is.] In
a finite range of dimensions, the group Ext(M) is finite. For each i where
Ext’(M) does not map onto Ext’(M]"), Ext’(M/,,) is larger than Ext®(M/).
This increase can occur only finitely many time since each Ext’(M/) is a sub-
group of the finite group Ext’(M). Thus for i sufficiently large, Ext" (M) must




map onto Ext®(M}). We can make this argument for any range of dimensions,
so in the limit we get Ext(M) mapping onto Ext”(M").

Page 264, line 11: annihilated by 1.

Page 264, last two paragraphs of proof of 7.2.3: [Leave first sentence as is and
replace the rest with the following] The A-module splitting N — N© induces a
comodule splitting N®T — N°®T. Let f : N — N9®T denote the composite
of this map with the comdule structure map on N. Let N and N denote the
kernel and image of f, so we have a SES

0—>N-—=N-=N-=0

with N ¢ N ¢ N°®T. It follows that N is more highly connected than N and
that Ext?(V) is a quotient of Ext®(N). Let g(M) denote the Poincaré series for
M. Then

g(N) < g(BExt’(N))g(I).

We can define a complete decreasing filtration on N by FitIN = FiN.
Then we have

g(N) = > g(FIN)
i>0
< > g(Ext’(F'N))g(T)  since F'N C Ext’(FIN) @ T
>0

= g(Ext’(N))g(T)
as claimed. Now suppose we have equality above, i.e., for each 4
g(F'N) = g(Ext’(F'N))g(T).

Since FIN C Ext’(FIN)®T, this means that FIN = Ext®(F'N)®T, which is a
weak injective. Then a standard filtration argument says that N is itself a weak
injective as claimed. Finally a similar argument says that the weak injectivity
of each subquotient of M above inplies that of M itself. |

Page 264, proof of 7.2.4, line 1: From 7.1.2
Page 265, line 2 after proof of 7.2.4: we can take 01271 to be a suitable quotient
of Cf ;.
1+

j .k
Page 265, line —4: {%” k> 0}
Page 267, first displayed formula in proof of 7.2.6:

v ;s ; ir . J
Uy U vy} 1—1 vl b o1, i
' <7:pipﬂ ip ) =2 < j—1 ) (jpjp+l I ) (t7—v1™ t1)"7  modulo

0<j<i

Page 269, line 2 of 7.3.6: ;5,2 ker 7;

Page 269, last line: © = 37, . 7 @ 1]

Page 270, line —2: by 7.3.6

Page 272, 7.3.7: [Slanted font throughout]

Page 272, 7.3.7, line 3: Extg1,1y(A(2),C7, @ VP 1)
Page 272, 7.3.8, line 1: Extg1,1)(A(2),C7; @ YP71)

1
1



oPd
Page 273, 7.3.9, line 3: —-

puy
Page 273, 7.3.9, last line: E3* = by ES 27,
Page 275, first displayed formula:

h11<h11, hi1, hi1, hi1, bi) = <h117 hi1, hi1, ha, h11>b?1-

Page 275, second line after 7.3.13: (—2i — 2, —qi(p® — 1))

Page 280, element in first column of third row of table: 35/5_;2h11
Page 283, line 7 of Theorem 7.4.3: C%t = @izgR“s“‘%’t“(”Ll)q
Page 286, 7.4.8: 23235 is in 101-stem

Page 287, line —4: m45(S?)

Page 288, line 3 after 7.4.12: +ayn3 = B4b11 + Ps/3b10

’Uth

Page 289, line —3 above §5.

Page 291: 476  hi17v2

Page 291: 484 hgo’)/Q

Page 292: 758 [

Page 292: 761 bzoﬂg“/g

Page 297, 7.5.5: 602 6§/5ﬂ5/4

Page 303: Second generator of 893-stem is 435 3,314. First generator of
952-stem is 5?1724.

Page 304: Generator of 955-stem is 231 319. First generator of 990-stem is
5II724-

V1V2

Appendix 1

Page 307, line —14. ... as remarked above.

Page 307, line —8: ...(which took us...

Page 309, line 16: our P*

Page 309, first two displayed lines of A1.1.1: left unit or source, ... right unit
or target,

Page 309, line —6: right A-module map via

Page 310, diagram near top: [Vertical arrow labelled A should point up, not
down.]

Page 310, line —7: is primitive if

Page 310, bottom line: [Replace first T M @ N by T M @ ' ® N.|

Page 313, In the first commutative diagram one of the maps from Hom 4 (M, N)
is v

Page 313, fourth line in A1.1.7: foc=cfa

Page 313, first line in A1.1.8: Let f : (A,T) — (B,X) be a map of Hopf
algebroids.

Page 319, third line in A1.2.1: 0(f) = (T ® f)um

Page 320, second line in A1.2.4: 0 - N — R — R! — ...

Page 320, in A1.2.5: Cotorp:(M, RO) % Cotorp (M, RY) LEQA

Page 321, mid page: p = (e ® M)«

Page 321, line —2: ¢ : M ®4 N — MOp(I'®4 N)

Page 322, A1.2.9(a), line 6: and the image of each map is a direct summand
over A.

Page 322, line —2: h;y1d; +d;—1h; = f; — fll

Page 323, A1.2.10, last line: and the image of each map is a direct summand
over A.



Page 323, line —2 in the proof of A1.2.9: By A1.2.8 (a) it extends from M®*?
to Pit!

Page 323, line 2 in A1.2.11: D3(M) =1 ®4 T ®4 M, where T = ker ¢

Page 324, line 2 in A1.2.13: Cotorp (M1 ® 4 My, N1 ® 4 N3)

Page 325, A1.2.16 (a): If I C A is invariant (A1.1.12)

Page 326, line —1: Then (92”+1’S’*(9f’s’* + 8?’”1’*8;’5’* =0

Page 327, line 3: BP* — BPtlx

Page 327, line 5: F¥B = (P P B"**

rzp g

Page 327, line 7: the functor Cr(L, -)

Page 327, line 8: so H**Fi;B = CE(L, M)

Page 327, line -2 above A1.3.4: The two SSs converge

Page 329, line 1 in A1.3.10: Let T be the unit coideal

Page 331, A1.3.14: Let M be a right ®-comodule and a N a left I'-comodule.

Page 332, line 5: Ey = Cotorg (M, Cotorp(® ®p A, N))

Page 332, line 2 in the proof of A1.3.16: Cj(M,C{(® ®p A,N))

Page 332, line 5 in the proof of A1.3.16: m ® i2(p1) ® - - ® i2(s)i16(d) ®
Vs4+1 XD o Vst AN

Page 333, line 2: The argument in the proof of Theorem A1.3.14 showing
that

Page 333, line 15: DS (N) = CL(2, N)

Page 335, line 3: Exty (K, N)

Page 336, 10: d(z)y — Td(y)

Page 339, last line: or the degrees

Page 341, line 2: FPHPT4/FpPtlHpta

Page 342, —12: Both displayed matric Massey products should be

<(dT+1(a1 al)),( de?aQ) o?g )’( dr+01é:(3013) >>

Page 351 (e), line 5: gP*/2pb/2 .

Appendix 2
Page 355, line —2: e.g., one can extract
Page 355, bottom line: defined over R; see Chapter 7 of Silverman [1].
Page 356, line 2: then F(x,y) will converge
Page 356, line —7: >,
Page 358, proof of A2.1.9, second line: such that ¢(f(x)) =
Page 358, A2.1.10(a): L = Z[z1,z2,.. .|
Page 358, A2.1.10(b), line 2: i =p* — 1
Page 359, A2.1.11, line 2: 0 <i<mn
Page 360, line 4: 7 _, mp 1(x +y)"
Page 360, line 9: 4+ y+ aCypi1(z,y)
Page 360, add to A2.1.14: We call such a triple a matched pair.
Page 360, omit square at end of A2.1.15.
Page 361, line 9: and ¢: LB — LB
Page 361, line (—4) of proof: mog(z) = logf*(z).
Page 362, line 1: Every formal group law
Page 362, first line of proof of A2.1.20: defined by (b) for all

q
Page 362, A2.1.21: » ¥
i=1
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Page 363, top line: unless (5 + 1) is
Page 363, line 6 after A2.1.22: L ® Z,,
Page 364, line —5: (A2.1.14)
Page 366, line 6: (A2.1.9) _
Page 366, line 2 after A2.1.27: > Ftic(t;)” =1
4,>0
Page 368, line 4 of proof of A2.1.29: a; = a,—;
Page 369, line 3 after proof of A2.1.29: A2.1.12, which is
Page 370, line 3 after A2.2.1:

(Y
)\3:_3+...
p

Page 371, first line of proof of A2.2.5: A2.1.27(d)
Page 372, last 2 lines:

f(Ple(2)) = pla(f(2));

since f(z) has leading term uz for v a unit in R and the result follows.
Page 373, line 4: [p]r(z) = up_12P
Page 374, lines 6-7: (See Corollary 7.5 of Silverman [1].)
Page 374, first line above A2.2.10: we will specify a formal
Page 374, line 3 of A2.2.10: (A2.1.25)
Page 375, line 14: g(f(x)) +Fr h(f(x))
Page 377, 2 lines above A2.2.17: except that S™ is p’ instead of p.
Page 379, line 2: By the definition of F;, (A2.2.10) and A2.2.14 we have

Appendix 3
Page 380, line 6: along with the differentials

Figure A3.1

[Redo t — s label in each figure.]

Page 382, bottom: hix = han = ¢}

Pages 381-383: [n-extensions in Im J should be indicated, i.e. broken lines
should connect h3hy with Pcg, h3i with P2cq, h{®hs with P3cq, h2i, h2 P?i with
Picg, and hiQ' with PPcy, hiP*i with PCcq.]

Page 383: [Double lines on differentials should be removed.]

Page 385, line —14: Z/(8) for k =3,

Table A3.3
tdatp=2 ¢
Tangora’s name for generator of 8-stem is cg.
ANSS name for generator of 9-stem is a 3.
Toda’s name for first generator of 21-stem is 3.
Tangora’s name for second generator of 21-stem is hqg.
ANSS name for second generator of 21-stem is a1 [4.
ANSS name for second generator of 23-stem is z23 = (a2, a3, Bas3)-
Tangora’s name for third generator of 34-stem is e3.
Tangora’s name for second generator of 35-stem is hye?.
Tangora’s name for second generator of 37-stem is x.
Tangora’s name for second generator of 38-stem is hyx.
Tangora’s name for fifth generator of 39-stem is .
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Tangora’s name for third generator of 41-stem is z.

Table A3.4
3-primary Stable Homotopy Excluding Im J
312 in 39-stem.
First generator of 85-stem is (ay, ay, 33) = Biu.
Generator of 90-stem is .

a

Table A3.5
BB in 334-stem, not 341-stem.
Generator of 341-stem should be alﬁ‘f@;.
Generator of 411-stem should be a1 2404 = 55/42ﬂf.
Q172 is in the 444-stem, not the 443-stem.
Generator of 514-stem is 37310/
(12 is in 566-stem, not 565-stem.
Ba27y2 is in 523-stem, not 574-stem.
4316 is in 639-stem, not 636-stem.
a1 Zg36 is second generator of 643-stem.
Generator of 689-stem is 33757s.
Second generator in 642-stem is 2377s.
There is a second generator in the 643-stem, a;xg3g.
2035314 in 763-stem.
Generator of 812-stem is (33015 /5-
840 is mislabeled as 810.
Second generator of 893-stem is 4/33 32 314.
Generator of 934-stem is (3393.
Second generator of 940-stem is 31 S19.
First generator of 952-stem is ,6’?:1;724.
361375 in 954-stem.
Generator of 955-stem is 231 F19.
Second generator of 978-stem is (37 31.
Generator of 989-stem is $$x76;.
First generator of 990-stem is 3] 2724.
Second generator of 990-stem is 31 xg52.

Figure A3.6
Line —2: For n > k + 2 the group is isomorphic to the one for n = k + 2.
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