# Why are there so many prime numbers?

Doug Ravenel

University of Rochester

October 15, 2008

## Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4m-1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Some theorems about primes that every mathematician should know

# Theorem 1 (Euclid, 300 BC) There are infinitely many prime numbers.

Euclid's proof is very elementary, and we will give it shortly.

In 1737 Euler found a completely different proof that requires calculus. His method is harder to use but more powerful. We will outline it later if time permits.

## Why are there so many prime numbers?

## Outline

Three big theorems about prime numbers

Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Some theorems about primes that every mathematician should know

## Theorem 1 (Euclid, 300 BC)

There are infinitely many prime numbers.

## Euclid's proof is very elementary, and we will give it shortly.

In 1737 Euler found a completely different proof that requires calculus. His method is harder to use but more powerful. We will outline it later if time permits.

## Why are there so many prime numbers?

### Outline

Three big theorems about prime numbers

Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Some theorems about primes that every mathematician should know

## Theorem 1 (Euclid, 300 BC)

There are infinitely many prime numbers.

Euclid's proof is very elementary, and we will give it shortly.

In 1737 Euler found a completely different proof that requires calculus. His method is harder to use but more powerful. We will outline it later if time permits.

## Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers

Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Theorem 2 (Dirichlet, 1837, Primes in arithmetic progressions)

Let a and b be relatively prime positive integers. Then there are infinitely primes of the form am + b.

Example. For a = 10, b could be 1, 3, 7 or 9. The theorem says there are infinitely many primes of the form 10m + 1, 10m + 3, 10m + 7 and 10m + 9. For other values of b not prime to 10, there is at most one such prime.

Dirichlet's proof uses functions of a complex variable.

We will see how some cases of it can be proved with more elementary methods.

## Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Theorem 2 (Dirichlet, 1837, Primes in arithmetic progressions)

Let a and b be relatively prime positive integers. Then there are infinitely primes of the form am + b.

Example. For a = 10, b could be 1, 3, 7 or 9. The theorem says there are infinitely many primes of the form 10m + 1, 10m + 3, 10m + 7 and 10m + 9. For other values of b not prime to 10, there is at most one such prime.

Dirichlet's proof uses functions of a complex variable.

We will see how some cases of it can be proved with more elementary methods.

## Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Theorem 2 (Dirichlet, 1837, Primes in arithmetic progressions)

Let a and b be relatively prime positive integers. Then there are infinitely primes of the form am + b.

Example. For a = 10, b could be 1, 3, 7 or 9. The theorem says there are infinitely many primes of the form 10m + 1, 10m + 3, 10m + 7 and 10m + 9. For other values of b not prime to 10, there is at most one such prime.

Dirichlet's proof uses functions of a complex variable.

We will see how some cases of it can be proved with more elementary methods.

## Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

The Riemann Typothesis

(日) (四) (日) (日) (日) (日) (日) (日) (日)

Theorem 2 (Dirichlet, 1837, Primes in arithmetic progressions)

Let a and b be relatively prime positive integers. Then there are infinitely primes of the form am + b.

Example. For a = 10, b could be 1, 3, 7 or 9. The theorem says there are infinitely many primes of the form 10m + 1, 10m + 3, 10m + 7 and 10m + 9. For other values of b not prime to 10, there is at most one such prime.

Dirichlet's proof uses functions of a complex variable.

We will see how some cases of it can be proved with more elementary methods.

## Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4*m* + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

## The prime number theorem

Theorem 3 (Hadamard and de la Valle Poussin, 1896, Assymptotic distribution of primes)

Let  $\pi(x)$  denote the number of primes less than x. Then

$$\lim_{x\to\infty}\frac{\pi(x)}{x/\ln x}=1.$$

In other words, the number of primes less than x is roughly  $x/\ln x$ .

A better approximation is to  $\pi(x)$  is the logarithmic integral

$$li(x) = \int_0^x \frac{dt}{\ln(t)}.$$

## Why are there so many prime numbers?

## Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

## The prime number theorem

Theorem 3 (Hadamard and de la Valle Poussin, 1896, Assymptotic distribution of primes)

Let  $\pi(x)$  denote the number of primes less than x. Then

$$\lim_{x\to\infty}\frac{\pi(x)}{x/\ln x}=1.$$

In other words, the number of primes less than x is roughly  $x/\ln x$ .

A better approximation is to  $\pi(x)$  is the logarithmic integral

$$li(x) = \int_0^x \frac{dt}{\ln(t)}.$$

## Why are there so many prime numbers?

## Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4*m* + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

## The prime number theorem

Theorem 3 (Hadamard and de la Valle Poussin, 1896, Assymptotic distribution of primes)

Let  $\pi(x)$  denote the number of primes less than x. Then

$$\lim_{x\to\infty}\frac{\pi(x)}{x/\ln x}=1.$$

In other words, the number of primes less than x is roughly  $x/\ln x$ .

A better approximation is to  $\pi(x)$  is the logarithmic integral

$$li(x) = \int_0^x \frac{dt}{\ln(t)}.$$

## Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Here is God's proof that there are infinitely many primes:

Look at the positive integers

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...

• See which of them are primes

 $1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, \ldots$ 

• Notice that there are infinitely many of them.

## QED

## Why are there so many prime numbers?

## Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1

God's proof Euclid's proof

Primes of the form 4m-1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Here is God's proof that there are infinitely many primes:

Look at the positive integers

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...

• See which of them are primes

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...

• Notice that there are infinitely many of them.

## QED

## Why are there so many prime numbers?

## Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1

God's proof Euclid's proof

Primes of the form 4*m* — 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Here is God's proof that there are infinitely many primes:

Look at the positive integers

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...

• See which of them are primes

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...

• Notice that there are infinitely many of them.



Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1

God's proof Euclid's proof

Primes of the form 4m-1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Here is God's proof that there are infinitely many primes:

Look at the positive integers

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...

• See which of them are primes

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...

• Notice that there are infinitely many of them.

## QED

## Why are there so many prime numbers?

## Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1

God's proof Euclid's proof

Primes of the form 4m-1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Here is God's proof that there are infinitely many primes:

Look at the positive integers

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...

• See which of them are primes

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...

• Notice that there are infinitely many of them.

## QED

## Why are there so many prime numbers?

## Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1

God's proof Euclid's proof

Primes of the form 4m-1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

# Euclid's proof

## Without God's omniscience, we have to work harder.

Euclid's proof relies on the *Fundamental Theorem of Arithmetic* (FTA for short), which says that every positive integer can be written as a product of primes in a unique way.

For example,

2008 = 2<sup>3</sup> · 251 (251 is a prime)

## Why are there so many prime numbers?

## Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4m-1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

# Euclid's proof

Without God's omniscience, we have to work harder.

Euclid's proof relies on the *Fundamental Theorem of Arithmetic* (FTA for short), which says that every positive integer can be written as a product of primes in a unique way.

For example,

 $2008 = 2^3 \cdot 251$  (251 is a prime)

## Why are there so many prime numbers?

## Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4m-1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

# Euclid's proof

Without God's omniscience, we have to work harder.

Euclid's proof relies on the *Fundamental Theorem of Arithmetic* (FTA for short), which says that every positive integer can be written as a product of primes in a unique way.

For example,

 $2008 = 2^3 \cdot 251$  (251 is a prime)

## Why are there so many prime numbers?

## Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4m-1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

## Here is Euclid's wonderfully elegant argument:

- Let  $S = \{p_1, p_2, \ldots, p_n\}$  be a finite set of primes.
- Let  $N = p_1 p_2 \dots p_n$ , the product of all the primes in S.
- The number *N* is divisible by every prime in *S*.
- The number N + 1 is *not* divisible by any prime in S.
- By the FTA, *N* + 1 is a product of one or more primes not in the set *S*.
- Therefore S is not the set of all the prime numbers

This means there are infinitely many primes.

## Why are there so many prime numbers?

## Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Here is Euclid's wonderfully elegant argument:

• Let  $S = \{p_1, p_2, \ldots, p_n\}$  be a finite set of primes.

• Let  $N = p_1 p_2 \dots p_n$ , the product of all the primes in S.

- The number *N* is divisible by every prime in *S*.
- The number N + 1 is *not* divisible by any prime in S.
- By the FTA, *N* + 1 is a product of one or more primes not in the set *S*.
- Therefore S is not the set of all the prime numbers.

This means there are infinitely many primes.

## Why are there so many prime numbers?

### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Here is Euclid's wonderfully elegant argument:

- Let  $S = \{p_1, p_2, \ldots, p_n\}$  be a finite set of primes.
- Let  $N = p_1 p_2 \dots p_n$ , the product of all the primes in S.
- The number *N* is divisible by every prime in *S*.
- The number N + 1 is *not* divisible by any prime in S.
- By the FTA, *N* + 1 is a product of one or more primes not in the set *S*.
- Therefore S is not the set of all the prime numbers.

This means there are infinitely many primes.

## Why are there so many prime numbers?

## Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Here is Euclid's wonderfully elegant argument:

- Let  $S = \{p_1, p_2, \ldots, p_n\}$  be a finite set of primes.
- Let  $N = p_1 p_2 \dots p_n$ , the product of all the primes in S.
- The number *N* is divisible by every prime in *S*.
- The number N + 1 is *not* divisible by any prime in S.
- By the FTA, *N* + 1 is a product of one or more primes not in the set *S*.
- Therefore S is not the set of all the prime numbers.

This means there are infinitely many primes.

## Why are there so many prime numbers?

## Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Here is Euclid's wonderfully elegant argument:

- Let  $S = \{p_1, p_2, \ldots, p_n\}$  be a finite set of primes.
- Let  $N = p_1 p_2 \dots p_n$ , the product of all the primes in S.
- The number *N* is divisible by every prime in *S*.
- The number N + 1 is *not* divisible by any prime in S.
- By the FTA, *N* + 1 is a product of one or more primes not in the set *S*.
- Therefore S is not the set of all the prime numbers

This means there are infinitely many primes.

Why are there so many prime numbers?

## Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Here is Euclid's wonderfully elegant argument:

- Let  $S = \{p_1, p_2, \ldots, p_n\}$  be a finite set of primes.
- Let  $N = p_1 p_2 \dots p_n$ , the product of all the primes in S.
- The number *N* is divisible by every prime in *S*.
- The number N + 1 is *not* divisible by any prime in S.
- By the FTA, N + 1 is a product of one or more primes not in the set S.
- Therefore S is not the set of all the prime numbers

This means there are infinitely many primes.

## Why are there so many prime numbers?

## Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Here is Euclid's wonderfully elegant argument:

- Let  $S = \{p_1, p_2, \ldots, p_n\}$  be a finite set of primes.
- Let  $N = p_1 p_2 \dots p_n$ , the product of all the primes in S.
- The number *N* is divisible by every prime in *S*.
- The number N + 1 is *not* divisible by any prime in S.
- By the FTA, N + 1 is a product of one or more primes not in the set S.
- Therefore S is not the set of all the prime numbers.

This means there are infinitely many primes.

Why are there so many prime numbers?

### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Here is Euclid's wonderfully elegant argument:

- Let  $S = \{p_1, p_2, \ldots, p_n\}$  be a finite set of primes.
- Let  $N = p_1 p_2 \dots p_n$ , the product of all the primes in S.
- The number *N* is divisible by every prime in *S*.
- The number N + 1 is *not* divisible by any prime in S.
- By the FTA, N + 1 is a product of one or more primes not in the set S.
- Therefore S is not the set of all the prime numbers.

This means there are infinitely many primes.

## Why are there so many prime numbers?

## Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

# We can use Euclid's method to show there are infinitely many prime of the form 4m - 1.

- Let S = {p<sub>1</sub>, ..., p<sub>n</sub>} be a set of such primes, and let N be the product of all of them.
- The number 4N 1 is not divisible by any of the primes in *S*.
- Therefore 4N 1 is the product of some primes not in S, all of which are odd and not all of which have the form 4m + 1.
- Therefore S is not the set of all primes of the form 4m-1.

## Why are there so many prime numbers?

## Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4m - 1

Primes of the form 4*m* + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

We can use Euclid's method to show there are infinitely many prime of the form 4m - 1.

- Let S = {p<sub>1</sub>, ..., p<sub>n</sub>} be a set of such primes, and let N be the product of all of them.
- The number 4N 1 is not divisible by any of the primes in *S*.
- Therefore 4N 1 is the product of some primes not in S, all of which are odd and not all of which have the form 4m + 1.
- Therefore S is not the set of all primes of the form 4m-1.

## Why are there so many prime numbers?

### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4m - 1

Primes of the form 4*m* + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

We can use Euclid's method to show there are infinitely many prime of the form 4m - 1.

- Let S = {p<sub>1</sub>, ..., p<sub>n</sub>} be a set of such primes, and let N be the product of all of them.
- The number 4N 1 is not divisible by any of the primes in S.
- Therefore 4N 1 is the product of some primes not in S, all of which are odd and not all of which have the form 4m + 1.
- Therefore S is not the set of all primes of the form 4m-1.

## Why are there so many prime numbers?

## Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4m - 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

We can use Euclid's method to show there are infinitely many prime of the form 4m - 1.

- Let S = {p<sub>1</sub>, ..., p<sub>n</sub>} be a set of such primes, and let N be the product of all of them.
- The number 4N 1 is not divisible by any of the primes in S.
- Therefore 4N 1 is the product of some primes not in S, all of which are odd and not all of which have the form 4m + 1.
- Therefore S is not the set of all primes of the form 4m-1.

## Why are there so many prime numbers?

## Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Primes of the form 4m - 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Two proofs of Theorem 1 God's proof Euclid's proof

We can use Euclid's method to show there are infinitely many prime of the form 4m - 1.

- Let S = {p<sub>1</sub>, ..., p<sub>n</sub>} be a set of such primes, and let N be the product of all of them.
- The number 4N 1 is not divisible by any of the primes in S.
- Therefore 4N 1 is the product of some primes not in S, all of which are odd and not all of which have the form 4m + 1.
- Therefore S is not the set of all primes of the form 4m-1.

## Why are there so many prime numbers?

## Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Primes of the form 4m - 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Two proofs of Theorem 1 God's proof Euclid's proof

## We can try a similar approach to primes of the form 4m + 1.

- Let S = {p<sub>1</sub>, ..., p<sub>n</sub>} be a set of such primes, and let N be the product of all of them.
- The number 4N + 1 is not divisible by any of the primes in *S*.
- Therefore 4N + 1 is the product of some primes not in *S*, all of which are odd.
- However it could be the product of an even number of primes of the form 4m 1, eg  $21 = 3 \cdot 7$ . OOPS.

## Why are there so many prime numbers?

## Outline

- Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem
- Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

## We can try a similar approach to primes of the form 4m + 1.

- Let S = {p<sub>1</sub>, ..., p<sub>n</sub>} be a set of such primes, and let N be the product of all of them.
- The number 4N + 1 is not divisible by any of the primes in *S*.
- Therefore 4N + 1 is the product of some primes not in *S*, all of which are odd.
- However it could be the product of an even number of primes of the form 4m 1, eg  $21 = 3 \cdot 7$ . OOPS.

## Why are there so many prime numbers?

## Outline

- Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem
- Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

We can try a similar approach to primes of the form 4m + 1.

- Let S = {p<sub>1</sub>,..., p<sub>n</sub>} be a set of such primes, and let N be the product of all of them.
- The number 4N + 1 is not divisible by any of the primes in *S*.
- Therefore 4N + 1 is the product of some primes not in *S*, all of which are odd.
- However it could be the product of an even number of primes of the form 4m 1, eg  $21 = 3 \cdot 7$ . OOPS.

## Why are there so many prime numbers?

## Outline

- Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem
- Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

We can try a similar approach to primes of the form 4m + 1.

- Let S = {p<sub>1</sub>,..., p<sub>n</sub>} be a set of such primes, and let N be the product of all of them.
- The number 4N + 1 is not divisible by any of the primes in *S*.
- Therefore 4N + 1 is the product of some primes not in *S*, all of which are odd.
- However it could be the product of an even number of primes of the form 4m 1, eg  $21 = 3 \cdot 7$ . OOPS.

## Why are there so many prime numbers?

## Outline

- Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem
- Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1
## Primes of the form 4m + 1

We can try a similar approach to primes of the form 4m + 1.

- Let S = {p<sub>1</sub>, ..., p<sub>n</sub>} be a set of such primes, and let N be the product of all of them.
- The number 4N + 1 is not divisible by any of the primes in *S*.
- Therefore 4N + 1 is the product of some primes not in *S*, all of which are odd.
- However it could be the product of an even number of primes of the form 4m − 1, eg 21 = 3 · 7. OOPS

#### Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

## Primes of the form 4m + 1

We can try a similar approach to primes of the form 4m + 1.

- Let S = {p<sub>1</sub>, ..., p<sub>n</sub>} be a set of such primes, and let N be the product of all of them.
- The number 4N + 1 is not divisible by any of the primes in *S*.
- Therefore 4N + 1 is the product of some primes not in *S*, all of which are odd.
- However it could be the product of an even number of primes of the form 4m 1, eg  $21 = 3 \cdot 7$ . OOPS.

#### Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

### How to fix this problem

It turns out that the number  $4N^2 + 1$  (instead of 4N + 1) has to be the product of primes of the form 4m + 1.

Here are some examples.

| Ν | $4N^2 + 1$         | N  | $4N^2 + 1$            |
|---|--------------------|----|-----------------------|
|   | 5                  | 9  | $325 = 5^2 \cdot 13$  |
|   |                    | 10 | 401                   |
|   | 37                 |    | $485 = 5 \cdot 97$    |
|   | $65 = 5 \cdot 13$  |    | 577                   |
| 5 | 101                | 13 | 677                   |
| 6 | $145 = 5 \cdot 29$ | 14 | $785 = 5 \cdot 157$   |
|   | 197                | 15 | $901 = 17 \cdot 53$   |
| 8 | 257                | 16 | $1025 = 5^2 \cdot 41$ |

#### Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

### How to fix this problem

It turns out that the number  $4N^2 + 1$  (instead of 4N + 1) has to be the product of primes of the form 4m + 1.

Here are some examples.

| Ν | $4N^2 + 1$         | N  | $4N^2 + 1$            |
|---|--------------------|----|-----------------------|
| 1 | 5                  | 9  | $325 = 5^2 \cdot 13$  |
| 2 | 17                 | 10 | 401                   |
| 3 | 37                 | 11 | $485 = 5 \cdot 97$    |
| 4 | $65 = 5 \cdot 13$  | 12 | 577                   |
| 5 | 101                | 13 | 677                   |
| 6 | $145 = 5 \cdot 29$ | 14 | $785 = 5 \cdot 157$   |
| 7 | 197                | 15 | $901 = 17 \cdot 53$   |
| 8 | 257                | 16 | $1025 = 5^2 \cdot 41$ |

#### Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

It turns out that the number  $4N^2 + 1$  (instead of 4N + 1) has to be the product of primes of the form 4m + 1.

To prove this we need some help from Pierre de Fermat, who is best known for his "Last Theorem."

### Theorem (Fermat's Little Theorem, 1640)

If p is a prime, then  $x^p - x$  is divisible by p for any integer x.

Since  $x^p - x = x(x^{p-1} - 1)$ , if x is not divisible by p, then  $x^{p-1} - 1$  is divisible by p. In other words,  $x^{p-1} \equiv 1$  modulo p.

#### Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4m-1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

It turns out that the number  $4N^2 + 1$  (instead of 4N + 1) has to be the product of primes of the form 4m + 1.

To prove this we need some help from Pierre de Fermat, who is best known for his "Last Theorem."

### Theorem (Fermat's Little Theorem, 1640)

If p is a prime, then  $x^p - x$  is divisible by p for any integer x.

Since  $x^p - x = x(x^{p-1} - 1)$ , if x is not divisible by p, then  $x^{p-1} - 1$  is divisible by p. In other words,  $x^{p-1} \equiv 1$  modulo p.

#### Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

It turns out that the number  $4N^2 + 1$  (instead of 4N + 1) has to be the product of primes of the form 4m + 1.

To prove this we need some help from Pierre de Fermat, who is best known for his "Last Theorem."

Theorem (Fermat's Little Theorem, 1640)

If p is a prime, then  $x^p - x$  is divisible by p for any integer x.

Since  $x^p - x = x(x^{p-1} - 1)$ , if x is not divisible by p, then  $x^{p-1} - 1$  is divisible by p. In other words,  $x^{p-1} \equiv 1$  modulo p.

#### Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Two proofs of Theorem 1 God's proof Euclid's proof

It turns out that the number  $4N^2 + 1$  (instead of 4N + 1) has to be the product of primes of the form 4m + 1.

To prove this we need some help from Pierre de Fermat, who is best known for his "Last Theorem."

Theorem (Fermat's Little Theorem, 1640)

If p is a prime, then  $x^p - x$  is divisible by p for any integer x.

Since  $x^{p} - x = x(x^{p-1} - 1)$ , if x is not divisible by p, then  $x^{p-1} - 1$  is divisible by p. In other words,  $x^{p-1} \equiv 1$  modulo p.

#### Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

It turns out that the number  $4N^2 + 1$  (instead of 4N + 1) has to be the product of primes of the form 4m + 1.

To prove this we need some help from Pierre de Fermat, who is best known for his "Last Theorem."

Theorem (Fermat's Little Theorem, 1640)

If p is a prime, then  $x^p - x$  is divisible by p for any integer x.

Since  $x^{p} - x = x(x^{p-1} - 1)$ , if x is not divisible by p, then  $x^{p-1} - 1$  is divisible by p. In other words,  $x^{p-1} \equiv 1$  modulo p.

#### Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Any number of the form  $4N^2 + 1$  is a product of primes of the form 4m + 1.

*Proof:* Let x = 2N, so our number is  $x^2 + 1$ . Suppose it is divisible by a prime of the form p = 4m + 3. This means  $x^2 \equiv -1$  modulo p.

Then 
$$x^{4m} = (x^2)^{2m} \equiv (-1)^{2m} = 1.$$

Fermat's Little Theorem tell us that  $x^{p-1} = x^{4m+2} \equiv 1$ , but  $x^{4m+2} = x^{4m} \cdot x^2 \equiv 1 \cdot -1 = -1$ , so we have a contradiction.

Hence  $4N^2 + 1$  is not divisible by any prime of the form 4m + 3.

#### Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Any number of the form  $4N^2 + 1$  is a product of primes of the form 4m + 1.

*Proof:* Let x = 2N, so our number is  $x^2 + 1$ . Suppose it is divisible by a prime of the form p = 4m + 3. This means  $x^2 \equiv -1$  modulo p.

Then 
$$x^{4m} = (x^2)^{2m} \equiv (-1)^{2m} = 1.$$

Fermat's Little Theorem tell us that  $x^{p-1} = x^{4m+2} \equiv 1$ , but  $x^{4m+2} = x^{4m} \cdot x^2 \equiv 1 \cdot -1 = -1$ , so we have a contradiction.

Hence  $4N^2 + 1$  is not divisible by any prime of the form 4m + 3.

#### Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Any number of the form  $4N^2 + 1$  is a product of primes of the form 4m + 1.

*Proof:* Let x = 2N, so our number is  $x^2 + 1$ . Suppose it is divisible by a prime of the form p = 4m + 3. This means  $x^2 \equiv -1$  modulo p.

Then 
$$x^{4m} = (x^2)^{2m} \equiv (-1)^{2m} = 1.$$

Fermat's Little Theorem tell us that  $x^{p-1} = x^{4m+2} \equiv 1$ , but  $x^{4m+2} = x^{4m} \cdot x^2 \equiv 1 \cdot -1 = -1$ , so we have a contradiction.

Hence  $4N^2 + 1$  is not divisible by any prime of the form 4m + 3.

#### Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Any number of the form  $4N^2 + 1$  is a product of primes of the form 4m + 1.

*Proof:* Let x = 2N, so our number is  $x^2 + 1$ . Suppose it is divisible by a prime of the form p = 4m + 3. This means  $x^2 \equiv -1$  modulo p.

Then 
$$x^{4m} = (x^2)^{2m} \equiv (-1)^{2m} = 1.$$

Fermat's Little Theorem tell us that  $x^{p-1} = x^{4m+2} \equiv 1$ , but  $x^{4m+2} = x^{4m} \cdot x^2 \equiv 1 \cdot -1 = -1$ , so we have a contradiction.

Hence  $4N^2 + 1$  is not divisible by any prime of the form 4m + 3.

#### Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Any number of the form  $4N^2 + 1$  is a product of primes of the form 4m + 1.

*Proof:* Let x = 2N, so our number is  $x^2 + 1$ . Suppose it is divisible by a prime of the form p = 4m + 3. This means  $x^2 \equiv -1$  modulo p.

Then 
$$x^{4m} = (x^2)^{2m} \equiv (-1)^{2m} = 1$$
.

Fermat's Little Theorem tell us that  $x^{p-1} = x^{4m+2} \equiv 1$ , but  $x^{4m+2} = x^{4m} \cdot x^2 \equiv 1 \cdot -1 = -1$ , so we have a contradiction.

Hence  $4N^2 + 1$  is not divisible by any prime of the form 4m + 3.

#### Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Any number of the form  $4N^2 + 1$  is a product of primes of the form 4m + 1.

*Proof:* Let x = 2N, so our number is  $x^2 + 1$ . Suppose it is divisible by a prime of the form p = 4m + 3. This means  $x^2 \equiv -1$  modulo p.

Then 
$$x^{4m} = (x^2)^{2m} \equiv (-1)^{2m} = 1.$$

Fermat's Little Theorem tell us that  $x^{p-1} = x^{4m+2} \equiv 1$ , but  $x^{4m+2} = x^{4m} \cdot x^2 \equiv 1 \cdot -1 = -1$ , so we have a contradiction.

Hence  $4N^2 + 1$  is not divisible by any prime of the form 4m + 3.

#### Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Any number of the form  $4N^2 + 1$  is a product of primes of the form 4m + 1.

*Proof:* Let x = 2N, so our number is  $x^2 + 1$ . Suppose it is divisible by a prime of the form p = 4m + 3. This means  $x^2 \equiv -1$  modulo p.

Then 
$$x^{4m} = (x^2)^{2m} \equiv (-1)^{2m} = 1.$$

Fermat's Little Theorem tell us that  $x^{p-1} = x^{4m+2} \equiv 1$ , but  $x^{4m+2} = x^{4m} \cdot x^2 \equiv 1 \cdot -1 = -1$ , so we have a contradiction.

Hence  $4N^2 + 1$  is not divisible by any prime of the form 4m + 3.

#### Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Any number of the form  $4N^2 + 1$  is a product of primes of the form 4m + 1.

*Proof:* Let x = 2N, so our number is  $x^2 + 1$ . Suppose it is divisible by a prime of the form p = 4m + 3. This means  $x^2 \equiv -1$  modulo p.

Then 
$$x^{4m} = (x^2)^{2m} \equiv (-1)^{2m} = 1.$$

Fermat's Little Theorem tell us that  $x^{p-1} = x^{4m+2} \equiv 1$ , but  $x^{4m+2} = x^{4m} \cdot x^2 \equiv 1 \cdot -1 = -1$ , so we have a contradiction.

Hence  $4N^2 + 1$  is not divisible by any prime of the form 4m + 3. QED

#### Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Here is our second attempt to use Euclid's method, this time with some help from Fermat.

- Let S = {p<sub>1</sub>, ..., p<sub>n</sub>} be a set of such primes, and let N be the product of all of them.
- The number  $4N^2 + 1$  is not divisible by any of the primes in S.
- Therefore  $4N^2 + 1$  is the product of some primes not in *S*, all of which must have the form 4m + 1.
- Therefore S is not the set of all primes of the form 4m + 1.

#### Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Here is our second attempt to use Euclid's method, this time with some help from Fermat.

- Let S = {p<sub>1</sub>, ..., p<sub>n</sub>} be a set of such primes, and let N be the product of all of them.
- The number  $4N^2 + 1$  is not divisible by any of the primes in *S*.
- Therefore  $4N^2 + 1$  is the product of some primes not in S, all of which must have the form 4m + 1.
- Therefore S is not the set of all primes of the form 4m + 1.

#### Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Here is our second attempt to use Euclid's method, this time with some help from Fermat.

- Let S = {p<sub>1</sub>, ..., p<sub>n</sub>} be a set of such primes, and let N be the product of all of them.
- The number  $4N^2 + 1$  is not divisible by any of the primes in *S*.
- Therefore  $4N^2 + 1$  is the product of some primes not in *S*, all of which must have the form 4m + 1.
- Therefore S is not the set of all primes of the form 4m + 1.

#### Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Here is our second attempt to use Euclid's method, this time with some help from Fermat.

- Let S = {p<sub>1</sub>, ..., p<sub>n</sub>} be a set of such primes, and let N be the product of all of them.
- The number  $4N^2 + 1$  is not divisible by any of the primes in S.
- Therefore  $4N^2 + 1$  is the product of some primes not in *S*, all of which must have the form 4m + 1.
- Therefore S is not the set of all primes of the form 4m + 1.

#### Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Here is our second attempt to use Euclid's method, this time with some help from Fermat.

- Let S = {p<sub>1</sub>, ..., p<sub>n</sub>} be a set of such primes, and let N be the product of all of them.
- The number  $4N^2 + 1$  is not divisible by any of the primes in S.
- Therefore  $4N^2 + 1$  is the product of some primes not in *S*, all of which must have the form 4m + 1.
- Therefore S is not the set of all primes of the form 4m + 1.

#### Why are there so many prime numbers?

#### Outline

- Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem
- Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4m + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Similar methods (involving algebra but no analysis) can be used to prove some but not all cases of Dirichlet's theorem. For example,

- We can show there are infinitely many primes of the forms 3m + 1 and 3m - 1.
- We can show there are infinitely many primes of the forms 5m + 1 and 5m - 1.
- We can show there are infinitely many primes of the forms 5m + 2 or 5m + 3, but not that there are infinitely many of either type alone.

#### Why are there so many prime numbers?

#### Outline

- Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem
- Two proofs of Theorem 1 God's proof Euclid's proof
- Primes of the form 4*m —* 1

Primes of the form 4m + 1

#### Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Similar methods (involving algebra but no analysis) can be used to prove some but not all cases of Dirichlet's theorem. For example,

- We can show there are infinitely many primes of the forms 3m + 1 and 3m 1.
- We can show there are infinitely many primes of the forms 5m + 1 and 5m - 1.
- We can show there are infinitely many primes of the forms 5m + 2 or 5m + 3, but not that there are infinitely many of either type alone.

#### Why are there so many prime numbers?

#### Outline

- Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem
- Two proofs of Theorem 1 God's proof Euclid's proof
- Primes of the form 4*m —* 1

Primes of the form 4m + 1

#### Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Similar methods (involving algebra but no analysis) can be used to prove some but not all cases of Dirichlet's theorem. For example,

- We can show there are infinitely many primes of the forms 3m + 1 and 3m 1.
- We can show there are infinitely many primes of the forms 5m + 1 and 5m 1.
- We can show there are infinitely many primes of the forms 5m + 2 or 5m + 3, but not that there are infinitely many of either type alone.

#### Why are there so many prime numbers?

#### Outline

- Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem
- Two proofs of Theorem 1 God's proof Euclid's proof
- Primes of the form 4*m —* 1

Primes of the form 4m + 1

#### Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Similar methods (involving algebra but no analysis) can be used to prove some but not all cases of Dirichlet's theorem. For example,

- We can show there are infinitely many primes of the forms 3m + 1 and 3m 1.
- We can show there are infinitely many primes of the forms 5m + 1 and 5m 1.
- We can show there are infinitely many primes of the forms 5m + 2 or 5m + 3, but not that there are infinitely many of either type alone.

#### Why are there so many prime numbers?

#### Outline

- Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem
- Two proofs of Theorem 1 God's proof Euclid's proof
- Primes of the form 4*m —* 1

Primes of the form 4m + 1

#### Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Similar methods (involving algebra but no analysis) can be used to prove some but not all cases of Dirichlet's theorem. For example,

- We can show there are infinitely many primes of the forms 3m + 1 and 3m 1.
- We can show there are infinitely many primes of the forms 5m + 1 and 5m 1.
- We can show there are infinitely many primes of the forms 5m + 2 or 5m + 3, but not that there are infinitely many of either type alone.

#### Why are there so many prime numbers?

#### Outline

- Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem
- Two proofs of Theorem 1 God's proof Euclid's proof
- Primes of the form 4*m —* 1

Primes of the form 4m + 1

#### Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Euler considered the infinite series

$$\sum_{n\geq 1} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \dots$$

From calculus we know that it converges for s > 1 (by the integral test) and diverges for s = 1 (by the comparison test), when it is the harmonic series. Using FTA, Euler rewrote the series as a product

$$\sum_{n\geq 1} \frac{1}{n^s} = \prod_{p \text{ prime}} \left( \sum_{k\geq 0} \frac{1}{p^{ks}} \right)$$
$$= \left( 1 + \frac{1}{2^s} + \frac{1}{4^s} + \dots \right) \left( 1 + \frac{1}{3^s} + \frac{1}{9^s} + \dots \right) \dots$$

Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4*m* + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Euler considered the infinite series

$$\sum_{n\geq 1} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \dots$$

From calculus we know that it converges for s > 1 (by the integral test) and diverges for s = 1 (by the comparison test), when it is the harmonic series. Using FTA, Euler rewrote the series as a product

$$\sum_{n\geq 1} \frac{1}{n^s} = \prod_{p \text{ prime}} \left( \sum_{k\geq 0} \frac{1}{p^{ks}} \right)$$
$$= \left( 1 + \frac{1}{2^s} + \frac{1}{4^s} + \dots \right) \left( 1 + \frac{1}{3^s} + \frac{1}{9^s} + \dots \right) \dots$$

Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4*m* + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Euler considered the infinite series

$$\sum_{n\geq 1} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \dots$$

From calculus we know that it converges for s > 1 (by the integral test) and diverges for s = 1 (by the comparison test), when it is the harmonic series. Using FTA, Euler rewrote the series as a product

$$\sum_{n\geq 1} \frac{1}{n^s} = \prod_{p \text{ prime}} \left( \sum_{k\geq 0} \frac{1}{p^{ks}} \right)$$
$$= \left( 1 + \frac{1}{2^s} + \frac{1}{4^s} + \dots \right) \left( 1 + \frac{1}{3^s} + \frac{1}{9^s} + \dots \right) \dots$$

Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4*m* + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Euler considered the infinite series

$$\sum_{n\geq 1} \frac{1}{n^s} = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \dots$$

From calculus we know that it converges for s > 1 (by the integral test) and diverges for s = 1 (by the comparison test), when it is the harmonic series. Using FTA, Euler rewrote the series as a product

$$\sum_{n\geq 1} \frac{1}{n^s} = \prod_{p \text{ prime}} \left( \sum_{k\geq 0} \frac{1}{p^{ks}} \right)$$
$$= \left( 1 + \frac{1}{2^s} + \frac{1}{4^s} + \dots \right) \left( 1 + \frac{1}{3^s} + \frac{1}{9^s} + \dots \right) \dots$$

Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4m-1

Primes of the form 4*m* + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Each factor in this product is a geometric series. The *p*th factor converges to  $1/(1 - p^{-s})$ , whenever s > 0. Hence

$$\sum_{n\geq 1}\frac{1}{n^s} = \prod_{p \text{ prime}}\frac{1}{1-p^{-s}}$$

If there were only finitely many primes, this would give a finite answer for s = 1, contradicting the divergence of the harmonic series.

Dirichlet used some clever variations of this method to prove his theorem 100 years later.

#### Why are there so many prime numbers?

#### Outline

Three big :heorems about orime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4*m* + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Each factor in this product is a geometric series. The *p*th factor converges to  $1/(1 - p^{-s})$ , whenever s > 0. Hence

$$\sum_{n\geq 1}\frac{1}{n^s} = \prod_{p \text{ prime}}\frac{1}{1-p^{-s}}$$

If there were only finitely many primes, this would give a finite answer for s = 1, contradicting the divergence of the harmonic series.

Dirichlet used some clever variations of this method to prove his theorem 100 years later.

#### Why are there so many prime numbers?

#### Outline

Three big :heorems about orime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4*m* + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Each factor in this product is a geometric series. The *p*th factor converges to  $1/(1 - p^{-s})$ , whenever s > 0. Hence

$$\sum_{n\geq 1}\frac{1}{n^s} = \prod_{p \text{ prime}}\frac{1}{1-p^{-s}}$$

If there were only finitely many primes, this would give a finite answer for s = 1, contradicting the divergence of the harmonic series.

Dirichlet used some clever variations of this method to prove his theorem 100 years later.

#### Why are there so many prime numbers?

#### Outline

Three big :heorems about orime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4*m* + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Each factor in this product is a geometric series. The *p*th factor converges to  $1/(1 - p^{-s})$ , whenever s > 0. Hence

$$\sum_{n\geq 1}\frac{1}{n^s} = \prod_{p \text{ prime}}\frac{1}{1-p^{-s}}$$

If there were only finitely many primes, this would give a finite answer for s = 1, contradicting the divergence of the harmonic series.

Dirichlet used some clever variations of this method to prove his theorem 100 years later.

#### Why are there so many prime numbers?

#### Outline

Three big :heorems about orime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4*m* + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

## Epilogue: The Riemann zeta function.

In his famous 1859 paper *On the Number of Primes Less Than a Given Magnitude*, Riemmann studied Euler's series



### as a function of a complex variable s, which he called $\zeta(s)$ .

He showed that the series converges whenever s has real part greater than 1, and that it can be extended as a complex analytic function to all values of s other than 1, where the function has a pole.

He showed that the behavior of this function is intimately connected with the distribution of prime numbers. To learn more about this connection, ask Steve Gonek to give a talk. Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4*m* + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1
# Epilogue: The Riemann zeta function.

In his famous 1859 paper *On the Number of Primes Less Than a Given Magnitude*, Riemmann studied Euler's series



as a function of a complex variable s, which he called  $\zeta(s)$ .

He showed that the series converges whenever s has real part greater than 1, and that it can be extended as a complex analytic function to all values of s other than 1, where the function has a pole.

He showed that the behavior of this function is intimately connected with the distribution of prime numbers. To learn more about this connection, ask Steve Gonek to give a talk. Why are there so many prime numbers?

### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4*m* + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

# Epilogue: The Riemann zeta function.

In his famous 1859 paper *On the Number of Primes Less Than a Given Magnitude*, Riemmann studied Euler's series



as a function of a complex variable s, which he called  $\zeta(s)$ .

He showed that the series converges whenever s has real part greater than 1, and that it can be extended as a complex analytic function to all values of s other than 1, where the function has a pole.

He showed that the behavior of this function is intimately connected with the distribution of prime numbers.

To learn more about this connection, ask Steve Gonek to give a talk. Why are there so many prime numbers?

### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4*m* + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

# Epilogue: The Riemann zeta function.

In his famous 1859 paper *On the Number of Primes Less Than a Given Magnitude*, Riemmann studied Euler's series



as a function of a complex variable s, which he called  $\zeta(s)$ .

He showed that the series converges whenever s has real part greater than 1, and that it can be extended as a complex analytic function to all values of s other than 1, where the function has a pole.

He showed that the behavior of this function is intimately connected with the distribution of prime numbers. To learn more about this connection, ask Steve Gonek to give a talk. Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4*m* + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Riemann showed that  $\zeta(s) = 0$  for s = -2, s = -4, s = -6 and so on. These are called the *trivial zeros*.

The *Riemann hypothesis* is concerned with the non-trivial zeros, and states that:

The real part of any non-trivial zero of the Riemann zeta function is 1/2.

This is the most famous unsolved problem in mathematics.

A million dollar prize has been offered for its solution.

Go home and watch the debate!

## Why are there so many prime numbers?

### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4*m* + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

The Riemann hypothesis

ロ ト 4 母 ト 4 目 ト 4 目 - の へ ()

Riemann showed that  $\zeta(s) = 0$  for s = -2, s = -4, s = -6 and so on. These are called the *trivial zeros*.

The *Riemann hypothesis* is concerned with the non-trivial zeros, and states that:

The real part of any non-trivial zero of the Riemann zeta function is 1/2.

This is the most famous unsolved problem in mathematics.

A million dollar prize has been offered for its solution.

Go home and watch the debate!

## Why are there so many prime numbers?

### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4*m* + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

The Riemann hypothesis

ロ ト 4 母 ト 4 目 ト 4 目 - の へ ()

Riemann showed that  $\zeta(s) = 0$  for s = -2, s = -4, s = -6 and so on. These are called the *trivial zeros*.

The *Riemann hypothesis* is concerned with the non-trivial zeros, and states that:

The real part of any non-trivial zero of the Riemann zeta function is 1/2.

This is the most famous unsolved problem in mathematics.

A million dollar prize has been offered for its solution.

Go home and watch the debate!

## Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4*m* + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

The Riemann hypothesis

コントロント ロット 日本 ちょうしょう

Riemann showed that  $\zeta(s) = 0$  for s = -2, s = -4, s = -6 and so on. These are called the *trivial zeros*.

The *Riemann hypothesis* is concerned with the non-trivial zeros, and states that:

The real part of any non-trivial zero of the Riemann zeta function is 1/2.

This is the most famous unsolved problem in mathematics.

A million dollar prize has been offered for its solution.

Go home and watch the debate!

## Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m —* 1

Primes of the form 4*m* + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Riemann showed that  $\zeta(s) = 0$  for s = -2, s = -4, s = -6 and so on. These are called the *trivial zeros*.

The *Riemann hypothesis* is concerned with the non-trivial zeros, and states that:

The real part of any non-trivial zero of the Riemann zeta function is 1/2.

This is the most famous unsolved problem in mathematics.

A million dollar prize has been offered for its solution.

Go home and watch the debate!

### Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m* — 1

Primes of the form 4*m* + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1

Riemann showed that  $\zeta(s) = 0$  for s = -2, s = -4, s = -6 and so on. These are called the *trivial zeros*.

The *Riemann hypothesis* is concerned with the non-trivial zeros, and states that:

The real part of any non-trivial zero of the Riemann zeta function is 1/2.

This is the most famous unsolved problem in mathematics.

A million dollar prize has been offered for its solution.

Go home and watch the debate!

## Why are there so many prime numbers?

#### Outline

Three big theorems about prime numbers Euclid's theorem Dirichlet's theorem The prime number theorem

Two proofs of Theorem 1 God's proof Euclid's proof

Primes of the form 4*m* — 1

Primes of the form 4*m* + 1

Other cases of Dirichlet's theorem

Euler's proof of Theorem 1