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It is easier to classify them up to continuous deformation.

Two maps fy, fy : X — Y are homotopic, fy ~ f;, if there is a
continuous map

h:Xx[0,1] =Y

Bousfield localization

Bousfield equivalence
with h(x, t) = fi(x) fort = 0,1.

The chromatic tower

Some conjectures

Homotopy is an equivalence relation among such maps, and
we get a set [X, Y] of homotopy classes of maps from X to Y.
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Consider the m-dimensional sphere

sz{(xo,...,xm)eRm+1 :Zx,?=1}.

It turns out that the set

mmY = [S™, Y] for Y path connected

has a natural group structure, which is
abelian for m > 2, and is called the mth ho-

motopy group of Y. It was first defined by
Witold Hurewicz in 1935.

A FUNDAMENTAL PROBLEM OF HOMOTOPY THEORY:
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Consider the m-dimensional sphere

sz{(xo,...,xm)eRm+1 :Zx,?=1}.

It turns out that the set

mmY = [S™, Y] for Y path connected

has a natural group structure, which is
abelian for m > 2, and is called the mth ho-
motopy group of Y. It was first defined by
Witold Hurewicz in 1935.

A FUNDAMENTAL PROBLEM OF HOMOTOPY THEORY:

Determine the homotopy groups of spheres 7, S" for m,n > 0.
This also is very hard. | do not expect it to be solved in the

lifetime of my granddaughters.
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3 rules:
-no wishing for death

-no falling in love

-no bring back dead people

| wish to know the
complete table of
homotopy groups of
spheres

Joke by Yuri Sulyma
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machine for computing the homotopy groups of spheres.

Its construction relies
on the work of Rene Thom, John Milnor, Sergei Novikov and
Dan Quillen in the 50s and 60s.
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You can read about it in my first book, Complex cobordism and
stable homotopy groups of spheres.
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latter are 2-variable power series over a ring R with certain
properties. They are well understood and were used by Lubin
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For each prime p there is a graded ring BP, = Z,)[v1, V2, . . .]
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2. Morava K-theory

In the early 70’s Jack Morava discovered the eponynumous
spectra K(n).
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2. Morava K-theory

In the early 70’s Jack Morava discovered the eponynumous
spectra K(n). They are closely related to BP. | was lucky
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K(0) is rational cohomology For each n > 0 and each prime p,
there is a nonconnective complex oriented p-local spectrum
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K(n)=2Z/plvy]
It is related to height n formal group laws, and K(n).(K(n)) is
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group and the automorphism group of a height n formal group
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Three developments circa 1970 (continued)

3. Smith-Toda complexes

Let1 <n<3andp>2n+1. In 1973 Hirosi Toda constructed
a p-local finite spectrum V(n), a CW-complex having 2"+ cells
with

BP.V(n) = BP./(p, V1, ... Vn),

and a cofiber sequence
sl V(n—1)—" > V(n—1) — V(n)

We know that K(n).V(n—1) # 0 and w;, is a
K(n)-equivalence. These lead to the construction of the
vp-periodic families aka Greek letter elements
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Is there more?

These are nicely displayed in the E,-term of the e
Adams-Novikov spectral sequence. In it there are similar Bousfeld localization
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In that 1977 paper, Haynes Miller, Steve Wilson and |
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In that 1977 paper, Haynes Miller, Steve Wilson and |
constructed the chromatic spectral sequence converging to the
E>-term of the Adams-Novikov spectral sequence. It organizes
things into layers so that in the nth layer everything is
vp-periodic. The structure of this nth layer is controlled by the
cohomology of the nth Morava stabilizer group G,.

We used the term chromatic because each column (value of n)
displays periodic families of elements with varying frequencies,
like a spectrum in the astronomical sense.
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Chromatic homotopy theory in 1977
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MRW was also motivated by several examples of periodic

families of elements in the stable homotopy groups of spheres.
Each was constructed as follows.

We have a finite complex V equipped with maps

Sd+k =i sdy Y V4 i

with the following properties:

e d > 0 and all iterates of v are essential.
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with the following properties:

e d > 0 and all iterates of v are essential. We say such a
map v is periodic. We know that v has this property
because it induces an isomorphism in K(n)..(—) for some
n > 0 with K(n)..V # 0. Examples had been constructed
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MRW was also motivated by several examples of periodic

families of elements in the stable homotopy groups of spheres.

Each was constructed as follows.

We have a finite complex V equipped with maps

Sk X _sdy v v g

with the following properties:

e d > 0 and all iterates of v are essential. We say such a
map v is periodic. We know that v has this property
because it induces an isomorphism in K(n)..(—) for some
n > 0 with K(n)..V # 0. Examples had been constructed
for n =1 by Adams and for n = 2 and 3 independently by
Toda and Larry Smith.
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Periodic families

MRW was also motivated by several examples of periodic

families of elements in the stable homotopy groups of spheres.

Each was constructed as follows.

We have a finite complex V equipped with maps

Sk X _sdy v v g

with the following properties:

e d > 0 and all iterates of v are essential. We say such a
map v is periodic. We know that v has this property
because it induces an isomorphism in K(n)..(—) for some
n > 0 with K(n)..V # 0. Examples had been constructed
for n =1 by Adams and for n = 2 and 3 independently by
Toda and Larry Smith.

¢ In the known examples, i was the inclusion of the bottom
cell into V and j was projection onto the top cell.
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gta+k T sdty V! v i st

e |t was known that for each ¢ > 0, the composite

Statk T sdty v Vv i st

represented a nontrivial element in myg. k¢ S.

Only three examples were known at the time. Toda had
constructed finite complexes he called V/(n) with
BP.V(n) = BP./(p,v1,...Vn) for0<n<3

and with cofiber sequences
27" -2Y(n—1) —2= V(n—1) —= V(n)

That was in 1973.
In each case there is a lower bound on the prime p.
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Periodic families (continued)

gta+k T sdty V! v i st

e |t was known that for each ¢ > 0, the composite

Statk T sdty v Vv i st

represented a nontrivial element in myg. k¢ S.

Only three examples were known at the time. Toda had

constructed finite complexes he called V/(n) with
BP.V(n) = BP./(p,v1,...Vn) for0<n<3

and with cofiber sequences
27" -2Y(n—1) —2= V(n—1) —= V(n)
That was in 1973.

In each case there is a lower bound on the prime p. In 2010
Lee Nave showed that V((p + 1)/2) does nat exist.
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with cofiber sequences

ZZP"_zv(n_1)i>V(n_1)—>V(n) for1 < n<3.

where the map v, is periodic.
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Are there more maps like this? Are there more periodic families
in m,S?
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Some conjectures

Are there any periodic maps that are not detected by
BP-theory?

What would happen if we replace I, = (p, ... v,_1) by a smaller
invariant regular ideal with n generators, and look for a self
map inducing multiplication by some power of v,?
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The chromatic resolution

Recall that BP, = Z,)[v4, Ve, . . . ], where |v,| = 2(p" — 1), and
[:= BP,(BP) = BP.[t;, t,...],with [t]| = 2(p' — 1)
which has a Hopf algebroid structure.

The E>-term of the Adams-Novikov spectral sequence
converging to the p-local stable homotopy groups of spheres is

E3' = Bxtgp (sp) (BP., BP.),

so this object is of great interest. It can be studied with the long
exact sequence of BP,(BP)-comodules

0-+BP, - M - M — M - M® — ...
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For a fixed n, this group is related to the cohomology of the nth
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certain formal group law of height n. It is also related to
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BP./(p>,...

The chromatic resolution
0—+BP, =M - M — M - M — ...

is obtained by splicing together these short exact sequence for

all n> 0.

This construction is purely algebraic. It takes place in the
category of BP.(BP)-comodules.
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IS THERE A SIMILAR CONSTRUCTION, AND THE
BEAUTIFUL ALGEBRA THAT GOES ALONG WITH IT, IN

THE STABLE HOMOTOPY CATEGORY?

THEORY?

OR IS IT JUST AN ARTIFACT OF COMPLEX COBORDISM

This question occupied me for several years.
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The chromatic resolution (continued)

This paper appeared in 1984.

LOCALIZATION WITH RESPECT TO CERTAIN PERIODIC
HOMOLOGY THEORIES

By DougLas C. RAVENEL*

This paper represents an attempt, only partially successful, to get at
what appear to be some deep and hitherto unexamined properties of the
stable homotopy category. This work was motivated by the discovery of the
pervasive manifestation of various types of periodicity in the E,-term of the
Adams-Novikov spectral sequence converging to the stable homotopy
groups of spheres. In section 3 of [34] and section 8 of [41], we introduced
the chromatic spectral sequence, which converges to the above E,-term.
Unlike most spectral sequences, its input is in some sense more interesting
than its output, as the former displays many appealing patterns which are
somewhat hidden in the latter (see section 8 of [41] for a more detailed
discussion). It is not so much a computational aid (although it has been
used [34] for computing the Novikov 2-line) as a conceptual tool for under-
standing certain qualitative aspects of the Novikov E,-term.
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It would be nice if each short exact sequence above were the
BP,. homology of a cofiber sequence of spectra. Then we
would have spectra M, and N, with
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prime p homotopically. The resulting N' is the Moore spectrum
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It would be nice if each short exact sequence above were the
BP,. homology of a cofiber sequence of spectra. Then we
would have spectra M, and N, with

BP.M, = M" and BP.N, = N".

This was easy enough for n = 0. We knew then how to invert a
prime p homotopically. The resulting N' is the Moore spectrum
for the group Q/Z ). But how would we invert v4 to do the next
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any spectrum X, Le X is E-local and the map X — LegX is an
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The logical choice for E appeared to be the Johnson-Wilson
spectrum E(n). It is a BP-module spectrum with
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Definition

Two spectra E and E' are Bousfield equivalent if they have the
same class of acyclic spectra, that is E.C = 0 iff E.C = 0. The
Bousfield equivalence class of E is denoted by (E).

We say that (E) > (F) if E.C = 0 implies F.C = 0. This means
that the homology theory E, gives at least as much information
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Bousfield equivalence (continued)

Theorem (Some Bousfield equivalence classes)
Some Bousfield equivalences.

o
S =V \ (s/p),

p prime

where SQ is the rational Moore spectrum and S/p is the
mod p Moore spectrum.
®
(BP) > (H/p) v \/ (K(n)),

n>0

where H/p is the mod p Eilenberg-Mac Lane spectrum
and K(n) is the nth Morava K-theory.
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Bousfield equivalence (continued)

Theorem (Some Bousfield equivalence classes)
Some Bousfield equivalences.
o
s)=EQv \ (s/p),
p prime

where SQ is the rational Moore spectrum and S/p is the
mod p Moore spectrum.
o
(BP) > (H/p) v \/ (K(n)),
n>0
where H/p is the mod p Eilenberg-Mac Lane spectrum
and K(n) is the nth Morava K-theory.
. .
(E(n) = (Ea) = \/ (K()).

0<i<n
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Bousfield equivalence (continued)

Theorem (Some Bousfield equivalence classes)

Some Bousfield equivalences.
1

S =V \ (s/p),

p prime

where SQ is the rational Moore spectrum and S/p is the
mod p Moore spectrum.

(BP) = (H/p) v \/ (K(n)),

n>0

where H/p is the mod p Eilenberg-Mac Lane spectrum
and K(n) is the nth Morava K-theory.

(E(m) = (En) =/ (K(i)).

0<i<n

In each case, the smash product of any two of the wedge
summands on the right is contractible.
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The localization functor Lg is determined by the Bousfield class
(E). When (E) > (F), there is a natural transformation
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The localization functor Lg is determined by the Bousfield class
(E). When (E) > (F), there is a natural transformation
LE = LF.

For a fixed prime p, let L, = Lg(y).
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The localization functor Lg is determined by the Bousfield class

(E). When (E) > (F), there is a natural transformation
LE = LF.

For a fixed prime p, let L, = Lg(;). Then for any spectrum X we

get a diagram

X—=>L X =L X—> L X—- = LiX— X
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The localization functor Lg is determined by the Bousfield class

(E). When (E) > (F), there is a natural transformation
LE = LF.

For a fixed prime p, let L, = Lg(n). Then for any spectrum X we
get a diagram

X—=>L X =L X—> L X—- = LiX— X

This the chromatic tower of X.
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The localization functor Lg is determined by the Bousfield class

(E). When (E) > (F), there is a natural transformation
LE = LF.

For a fixed prime p, let L, = Lg(n). Then for any spectrum X we
get a diagram

X—=>L X =L X—> L X—- = LiX— X

This the chromatic tower of X. Here L., denotes localization
with respect to the Bousfield class

V (K(n)).

n>0
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This raises some questions:

Some topology

X—=>L X =L X =L X—- = LiX—= X

e When is the map X — L. X an equivalence? When it is,
we say X is harmonic. We call L., X the harmonic

localization of X. We say X is dissonant when L., X ~ x.
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The chromatic tower of a p-local spectrum X is the diagram

X—=>L X =L X =L X—- = LiX—= X
This raises some questions:

e When is the map X — L. X an equivalence? When it is,
we say X is harmonic. We call L., X the harmonic

localization of X. We say X is dissonant when L., X ~ x.
e When is the map X — holimL,X an equivalence?
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The chromatic tower of a p-local spectrum X is the diagram

X—=>L X =L X =L X—- = LiX—= X
This raises some questions:

e When is the map X — L. X an equivalence? When it is,
we say X is harmonic. We call L., X the harmonic

localization of X. We say X is dissonant when L., X ~ x.

o When is the map X — holimL,X an equivalence? This is
the chromatic convergence question.
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The chromatic tower of a p-local spectrum X is the diagram

X—=>L X =L X =L X—- = LiX—= X
This raises some questions:

e When is the map X — L. X an equivalence? When it is,
we say X is harmonic. We call L., X the harmonic

localization of X. We say X is dissonant when L., X ~ x.

o When is the map X — holimL,X an equivalence? This is
the chromatic convergence question.

e Can we describe BP,L,X in terms of BP, X?
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The chromatic tower of a p-local spectrum X is the diagram

X—=>L X =L X =L X—- = LiX—= X
This raises some questions:

e When is the map X — L. X an equivalence? When it is,
we say X is harmonic. We call L., X the harmonic

localization of X. We say X is dissonant when L., X ~ x.

o When is the map X — holimL,X an equivalence? This is
the chromatic convergence question.

e Can we describe BP,L,X in terms of BP,.X? This is the
localization question.
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Recall that L., denotes localization with respect to the
Bousfield class

V (K(n)).

n>0
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Recall that L., denotes localization with respect to the
Bousfield class

V (K(n)).
n>0
A p-local spectrum is harmonic if X ~ L, X.
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Recall that L., denotes localization with respect to the
Bousfield class

\/ (K(n)).

n>0

A p-local spectrum is harmonic if X ~ L, X. Itis dissonant if

Lo X ~ %, meaning that K(n).X = 0 for all n. It follows from the

definitions that there are no essential maps from a dissonant
spectrum to a harmonic one.
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Recall that L., denotes localization with respect to the

Bousfield class
\/ (K(n)).
n>0

A p-local spectrum is harmonic if X ~ L, X. Itis dissonant if

Lo X ~ %, meaning that K(n).X = 0 for all n. It follows from the

definitions that there are no essential maps from a dissonant
spectrum to a harmonic one.

In the 1984 paper | showed that
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Recall that L., denotes localization with respect to the ‘k )
Bousfield class
V (K(n)).

n>0

Doug Ravenel

Some topology

A p-local spectrum is harmonic if X ~ L, X. Itis dissonant if

Lo X ~ %, meaning that K(n).X = 0 for all n. It follows from the

definitions that there are no essential maps from a dissonant
spectrum to a harmonic one.
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Bousfield equivalence
In the 1984 paper | showed that
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Harmonic and dissonant spectra

Recall that L., denotes localization with respect to the
Bousfield class
V (K(n)).

n>0

A p-local spectrum is harmonic if X ~ L, X. Itis dissonant if
Lo X ~ %, meaning that K(n).X = 0 for all n. It follows from the
definitions that there are no essential maps from a dissonant
spectrum to a harmonic one.

In the 1984 paper | showed that
e Every p-local finite spectrum is harmonic.

e A p-local connective spectrum X is harmonic when BP, X
has finite projective dimension as a BP,.-module.
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Harmonic and dissonant spectra

Recall that L., denotes localization with respect to the
Bousfield class
V (K(n)).

n>0

A p-local spectrum is harmonic if X ~ L, X. Itis dissonant if
Lo X ~ %, meaning that K(n).X = 0 for all n. It follows from the
definitions that there are no essential maps from a dissonant
spectrum to a harmonic one.

In the 1984 paper | showed that
e Every p-local finite spectrum is harmonic.

e A p-local connective spectrum X is harmonic when BP, X
has finite projective dimension as a BP,.-module.

e The mod p Eilenberg-Mac Lane spectrum H/p is
dissonant.

The Chromatic
Conjectures

gl

Doug Ravenel

Some topology
Homotopy groups of spheres

The Adams-Novikov spectral
sequence

Morava K-theory
Smith-Toda complexes
Is there more?
Periodic families

The chromatic resolution
Bousfield localization
Bousfield equivalence

The chromatic tower
Harmonic and dissonant
spectra
Chromatic convergence
The chromatic resolution and
the chromatic tower

Some conjectures

The nilpotence and periodicity.
theorems

The telescope conjecture



Harmonic and dissonant spectra

Recall that L., denotes localization with respect to the

Bousfield class

V (K(n)).

n>0
A p-local spectrum is harmonic if X ~ L, X. Itis dissonant if
Lo X ~ %, meaning that K(n).X = 0 for all n. It follows from the
definitions that there are no essential maps from a dissonant
spectrum to a harmonic one.

In the 1984 paper | showed that
e Every p-local finite spectrum is harmonic.

e A p-local connective spectrum X is harmonic when BP, X
has finite projective dimension as a BP,.-module.

e The mod p Eilenberg-Mac Lane spectrum H/p is
dissonant. The same is true for any spectrum whose
homotopy groups are all torsion and bounded above.
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A p-local spectrum X is chromatically convergent if it is
equivalent to the homotopy limit of the diagram

e L X = Ly X — = L X = Lo X.
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A p-local spectrum X is chromatically convergent if it is
equivalent to the homotopy limit of the diagram

e L X = Ly X — = L X = Lo X.

Around 1990 Mike Hopkins and | showed that p-local finite
spectra are chromatically convergent.

«O» «F»r <«

it
v
it
v

The Chromatic

Conjectures

AN

Doug Ravenel

Some topology

Bousfield localization

Bousfield equivalence

The chromatic tower

Some conjectures



A p-local spectrum X is chromatically convergent if it is
equivalent to the homotopy limit of the diagram

e L X = Ly X — = L X = Lo X.

Around 1990 Mike Hopkins and | showed that p-local finite
spectra are chromatically convergent. The proof can be found

in the orange book, Nilpotence and periodicity in stable
homotopy theory of 1992.
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Chromatic convergence

A p-local spectrum X is chromatically convergent if it is
equivalent to the homotopy limit of the diagram

e L X = Ly g X = Ly X = LoX.

Around 1990 Mike Hopkins and | showed that p-local finite
spectra are chromatically convergent. The proof can be found
in the orange book, Nilpotence and periodicity in stable
homotopy theory of 1992.

In 2014 Tobias Barthel proved a p-local connective spectrum X
is chromatically convergent when BP, X has finite projective
dimension as a BP,.-module.
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Chromatic convergence

A p-local spectrum X is chromatically convergent if it is
equivalent to the homotopy limit of the diagram

e L X = Ly g X = Ly X = LoX.

Around 1990 Mike Hopkins and | showed that p-local finite
spectra are chromatically convergent. The proof can be found
in the orange book, Nilpotence and periodicity in stable
homotopy theory of 1992.

In 2014 Tobias Barthel proved a p-local connective spectrum X
is chromatically convergent when BP, X has finite projective
dimension as a BP,-module. Such spectra were previously
known to be harmonic.
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chromatic resolution (leading to the chromatic spectral
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More specifically, is the short exact sequence
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Recall one of the original questions of this lecture: Does the
chromatic resolution (leading to the chromatic spectral

sequence of Miller-R-Wilson) have a geometric underpinning? Pt
More specifically, is the short exact sequence

A

Some topology

=i
Vn

0 N"
Il
BP,/(p>,...v2,)

Il
BP. /(p>,...vs)

—1 fe's) 00
Vn BP */ (p PR vn—1) Bousfield localization

the BP-homology of a cofiber sequence? My hope was that R S
there are spectra M, and N, with

M N1 —0

The chromatic tower
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Recall one of the original questions of this lecture: Does the
chromatic resolution (leading to the chromatic spectral
sequence of Miller-R-Wilson) have a geometric underpinning?
More specifically, is the short exact sequence

=i
Vn

0 N"
Il
BP,/(p>,...v2,)

Il
BP. /(p>,...vs)

Vo 'BP./(p>,... V)

the BP-homology of a cofiber sequence? My hope was that
there are spectra M, and N, with

M N1 —0

BP.M, = M" and BP.N, = N,
and that Mn = LnNn.
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The chromatic resolution and the chromatic tower

Recall one of the original questions of this lecture: Does the
chromatic resolution (leading to the chromatic spectral
sequence of Miller-R-Wilson) have a geometric underpinning?
More specifically, is the short exact sequence

v—1

0 N" - M

Nn+1 —~0
I
BP./(p™,... Vi)

[
BP./(p>,...v°,)

Vo 'BP./(p>,... V)

the BP-homology of a cofiber sequence? My hope was that
there are spectra M, and N, with

BP.M, = M" and BP.N, = N",
and that M, = L,N,. We can use Bousfield localization to
construct some spectra this way,
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The chromatic resolution and the chromatic tower

Recall one of the original questions of this lecture: Does the
chromatic resolution (leading to the chromatic spectral
sequence of Miller-R-Wilson) have a geometric underpinning?
More specifically, is the short exact sequence

v—1

0 N" - M

Nn+1 —~0
I
BP./(p™,... Vi)

[
BP./(p>,...v°,)

Vo 'BP./(p>,... V)

the BP-homology of a cofiber sequence? My hope was that
there are spectra M, and N, with

BP.M, = M" and BP.N, = N",
and that M, = L,N,. We can use Bousfield localization to
construct some spectra this way, but how do we know they
have the desired BP-homology?
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The chromatic resolution and the chromatic tower

Recall one of the original questions of this lecture: Does the
chromatic resolution (leading to the chromatic spectral
sequence of Miller-R-Wilson) have a geometric underpinning?
More specifically, is the short exact sequence
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0 N" . M

Nn+1 —~0
I
BP./(p™,... Vi)

[
BP./(p>,...v°,)

Vo 'BP./(p>,... V)

the BP-homology of a cofiber sequence? My hope was that
there are spectra M, and N, with

BP.M, = M" and BP.N, = N",
and that M, = L,N,. We can use Bousfield localization to
construct some spectra this way, but how do we know they
have the desired BP-homology?

This is a special case of the localization question,
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The chromatic resolution and the chromatic tower

Recall one of the original questions of this lecture: Does the
chromatic resolution (leading to the chromatic spectral
sequence of Miller-R-Wilson) have a geometric underpinning?
More specifically, is the short exact sequence

v—1

0 N" - M

Nn+1 —~0
I
BP./(p™,... Vi)

[
BP./(p>,...v°,)

Vo 'BP./(p>,... V)

the BP-homology of a cofiber sequence? My hope was that
there are spectra M, and N, with

BP.M, = M" and BP.N, = N",
and that M, = L,N,. We can use Bousfield localization to
construct some spectra this way, but how do we know they
have the desired BP-homology?
This is a special case of the localization question, namely how
to describe BP,.L,X in terms of BP, X.
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It turns out that L,BP is easy to analyze,
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to understand the spectrum X A L,BP.
For any spectrum X,

BP A LpX ~ X A L,BP.

Bousfield localization
desired.

In particular, when E(n —1),X = 0, BP,L,X = v, 'BP.X.
It follows that the chromatic resolution can be realized as
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It turns out that L,BP is easy to analyze, and this makes it easy
to understand the spectrum X A L,BP.

For any spectrum X,

BP AL, X ~ XA L,BP.
In particular, when E(n —1),X = 0, BP,L,X = v, 'BP.X.

It follows that the chromatic resolution can be realized as
desired.

It turns out that the functor L, satisfies a stronger condition,

«O0>» «F»>» «E>» «E>»
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It turns out that L,BP is easy to analyze, and this makes it easy
to understand the spectrum X A L,BP.
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For any spectrum X,

BP A LpX ~ X A L,BP.

Bousfield localization
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In particular, when E(n —1),X = 0, BP,L,X = v, 'BP.X.

The chromatic tower

It follows that the chromatic resolution can be realized as
desired.

Some conjectures

It turns out that the functor L, satisfies a stronger condition,
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It turns out that L,BP is easy to analyze, and this makes it easy
to understand the spectrum X A L,BP.
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For any spectrum X,

BP A LpX ~ X A L,BP.

Bousfield localization
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In particular, when E(n —1),X = 0, BP,L,X = v, 'BP.X.

The chromatic tower

It follows that the chromatic resolution can be realized as
desired.
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It turns out that the functor L, satisfies a stronger condition,
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It turns out that L,BP is easy to analyze, and this makes it easy
to understand the spectrum X A L,BP.

Some topology

For any spectrum X,

BP A LpX ~ X A L,BP.

Bousfield localization

Bousfield equivalence

In particular, when E(n —1),X = 0, BP,L,X = v, 'BP.X.

The chromatic tower

It follows that the chromatic resolution can be realized as
desired.

Some conjectures

It turns out that the functor L, satisfies a stronger condition,
conjectured in 1984, proved with Hopkins a few years later, and
reported in the orange book.

«O0>» «F» « > «
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The chromatic resolution and the chromatic tower
(continued)

Theorem (The smash product conjecture)

For any spectrum X, L,X = X A LS.

when your localization functor

satisfies L X = X ®s LgS

@EInfinityRingSpectrum
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| ended the 1984 paper with a list of conjectures, all but one of
which (the telescope conjecture) were proved within a 15
years, most by Mike Hopkins and various collaborators. | have

already mentioned some of them. | will state some more of
them here as theorems.
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Some conjectures

| ended the 1984 paper with a list of conjectures, all but one of
which (the telescope conjecture) were proved within a 15
years, most by Mike Hopkins and various collaborators. | have
already mentioned some of them. | will state some more of
them here as theorems.

Nilpotence Theorem (Devinatz-Hopkins-Smith 1988)

@ For a finite spectrum X, a map v : ¥X — X is nilpotent iff
MU,.(v) is nilpotent.

The Chromatic
Conjectures

A\

Doug Ravenel

Some topology
Homotopy groups of spheres

The Adams-Novikov spectral
sequence

Morava K-theory
Smith-Toda complexes
Is there more?
Periodic families

The chromatic resolution
Bousfield localization
Bousfield equivalence

The chromatic tower

Harmonic and dissonant
spectra

Chromatic convergence
The chromatic resolution and
the chromatic tower

Some conjectures

The nilpotence and periodicity.
theorems

The telescope conjecture



Some conjectures

| ended the 1984 paper with a list of conjectures, all but one of
which (the telescope conjecture) were proved within a 15
years, most by Mike Hopkins and various collaborators. | have
already mentioned some of them. | will state some more of
them here as theorems.

Nilpotence Theorem (Devinatz-Hopkins-Smith 1988)
® For a finite spectrum X, amap v : ¥9X — X is nilpotent iff
MU,.(v) is nilpotent.

@ For a finite spectrum X, amap g : X — Y is smash
nilpotent if the map MU A g is null homotopic.
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Some conjectures

| ended the 1984 paper with a list of conjectures, all but one of
which (the telescope conjecture) were proved within a 15
years, most by Mike Hopkins and various collaborators. | have
already mentioned some of them. | will state some more of
them here as theorems.

Nilpotence Theorem (Devinatz-Hopkins-Smith 1988)
® For a finite spectrum X, amap v : ¥9X — X is nilpotent iff
MU,.(v) is nilpotent.

@ For a finite spectrum X, amap g : X — Y is smash
nilpotent if the map MU A g is null homotopic.

® Let R be a connective ring spectrum of finite type, and let
h: m.R — MU.R be the Hurewicz map.
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| ended the 1984 paper with a list of conjectures, all but one of
which (the telescope conjecture) were proved within a 15
years, most by Mike Hopkins and various collaborators. | have
already mentioned some of them. | will state some more of
them here as theorems.

Nilpotence Theorem (Devinatz-Hopkins-Smith 1988)
® For a finite spectrum X, amap v : ¥9X — X is nilpotent iff
MU,.(v) is nilpotent.

@ For a finite spectrum X, amap g : X — Y is smash
nilpotent if the map MU A g is null homotopic.

® Let R be a connective ring spectrum of finite type, and let
h: r.R — MU,R be the Hurewicz map. Then o € w.R is
nilpotent when h(«) = 0.
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Some conjectures

| ended the 1984 paper with a list of conjectures, all but one of
which (the telescope conjecture) were proved within a 15
years, most by Mike Hopkins and various collaborators. | have
already mentioned some of them. | will state some more of
them here as theorems.

Nilpotence Theorem (Devinatz-Hopkins-Smith 1988)

® For a finite spectrum X, amap v : ¥9X — X is nilpotent iff
MU,.(v) is nilpotent.

@ For a finite spectrum X, amap g : X — Y is smash
nilpotent if the map MU A g is null homotopic.

® Let R be a connective ring spectrum of finite type, and let
h: r.R — MU,R be the Hurewicz map. Then o € w.R is
nilpotent when h(«) = 0.

@ Let

w X y !

be a cofiber sequence of finite spectra with MU,.(f) = 0.
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Some conjectures

| ended the 1984 paper with a list of conjectures, all but one of
which (the telescope conjecture) were proved within a 15
years, most by Mike Hopkins and various collaborators. | have
already mentioned some of them. | will state some more of
them here as theorems.

Nilpotence Theorem (Devinatz-Hopkins-Smith 1988)

® For a finite spectrum X, amap v : ¥9X — X is nilpotent iff
MU,.(v) is nilpotent.

@ For a finite spectrum X, amap g : X — Y is smash
nilpotent if the map MU A g is null homotopic.

® Let R be a connective ring spectrum of finite type, and let
h: r.R — MU,R be the Hurewicz map. Then o € w.R is
nilpotent when h(«) = 0.

@ Let

w X y !

be a cofiber sequence of finite spectra with MU,.(f) = 0.
Then (X) = (W) Vv (Y).
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immediately.
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However (BP) < (S)),
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If it were the case that (MU) = (S), or if (BP) = (Sy)) for each

prime p, then the Nilpotence Theorem would follow
immediately.

However (BP) < (), meaning there are BP,-acyclic p-local
spectra that are not contractible.
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If it were the case that (MU) = (S), or if (BP) = (Sy)) for each

prime p, then the Nilpotence Theorem would follow
immediately.

However (BP) < (), meaning there are BP,-acyclic p-local

spectra that are not contractible. In other words MU does NOT
“see everything.”

«O0>» «F»>» «E>» «E>»
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If it were the case that (MU) = (S), or if (BP) = (Sy)) for each
prime p, then the Nilpotence Theorem would follow
immediately.

However (BP) < (), meaning there are BP,-acyclic p-local

spectra that are not contractible. In other words MU does NOT
“see everything.”

In fact there are connective p-local spectra T(m) for m > 0 with
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If it were the case that (MU) = (S), or if (BP) = (Sy)) for each

prime p, then the Nilpotence Theorem would follow
immediately.

However (BP) < (), meaning there are BP,-acyclic p-local

spectra that are not contractible. In other words MU does NOT
“see everything.”

In fact there are connective p-local spectra T(m) for m > 0 with

BP.T(m) = BP,[ti,t,...tn] (50 T(0) = S(p)

«O0>» «F» « > «
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prime p, then the Nilpotence Theorem would follow
immediately.

Some topology

However (BP) < (), meaning there are BP,-acyclic p-local

spectra that are not contractible. In other words MU does NOT
“see everything.”
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In fact there are connective p-local spectra T(m) for m > 0 with Pt eamaence

The chromatic tower
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and strict Bousfield inequalities
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® For a finite spectrum X, amap f : ¥9X — X is nilpotent iff
MU.(f) is nilpotent.

This means that such a map can be periodic (the opposite of prspeldlocaaton
being nilpotent) only if it detected as such by MU-homology. In
the p-local case, the internal properties of MU-theory imply

that f must induce a nontriivial isomorphism in some Morava
K-theory K(n)..
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Let X be a p-local finite spectrum of chromatic type n, meaning
that K(n—1).X =0, but K(n).X # 0. Then there is a map

v:Y9X = X (av, self-map) with K(n).(v) an isomorphism
and H.(v;Z/p) = 0.
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that K(n—1).X =0, but K(n).X # 0. Then there is a map
v:Y9X = X (av, self-map) with K(n).(v) an isomorphism
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a multiple of 2p" — 2.
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Let X be a p-local finite spectrum of chromatic type n, meaning st
that K(n—1).X =0, but K(n).X # 0. Then there is a map
v:Y9X = X (av, self-map) with K(n).(v) an isomorphism
and H.(v;Z/p) =0. Ifn=0 thend = 0, and whenn > 0, d is
a multiple of 2p" — 2.
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integers i and j
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that K(n—1).X =0, but K(n).X # 0. Then there is a map
v:Y9X = X (av, self-map) with K(n).(v) an isomorphism
and H.(v;Z/p) =0. Ifn=0 thend = 0, and whenn > 0, d is
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Given a second such map w : 2°X — X, there are positive
integers i and j such that id = je and v = w/.
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Let X be a p-local finite spectrum of chromatic type n, meaning st
that K(n—1).X =0, but K(n).X # 0. Then there is a map
v:Y9X = X (av, self-map) with K(n).(v) an isomorphism
and H.(v;Z/p) =0. Ifn=0 thend = 0, and whenn > 0, d is
a multiple of 2p" — 2.

Some topology

Given a second such map w : 2°X — X, there are positive
integers i and j such that id = je and v' = w!. In other words, v
is assymptotically unique.
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Some conjectures (continued)

Periodicity Theorem (Hopkins-Smith 1998)

Let X be a p-local finite spectrum of chromatic type n, meaning
that K(n—1).X =0, but K(n).X # 0. Then there is a map
v:Y9X = X (av, self-map) with K(n).(v) an isomorphism
and H.(v;Z/p) = 0. Ifn =0 thend = 0, and when n > 0, d is
a multiple of 2p" — 2.

Given a second such map w : £°X — X, there are positive
integers i and j such that id = je and v' = w!. In other words, v
is assymptotically unique.

It follows that the cofiber of v (or of any of its iterates) is a
p-local finite spectrum of chromatic type n -+ 1.
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Some conjectures (continued)

Periodicity Theorem (Hopkins-Smith 1998)

Let X be a p-local finite spectrum of chromatic type n, meaning
that K(n—1).X =0, but K(n).X # 0. Then there is a map
v:Y9X = X (av, self-map) with K(n).(v) an isomorphism
and H.(v;Z/p) = 0. Ifn =0 thend = 0, and when n > 0, d is
a multiple of 2p" — 2.

Given a second such map w : £°X — X, there are positive
integers i and j such that id = je and v' = w!. In other words, v
is assymptotically unique.

It follows that the cofiber of v (or of any of its iterates) is a
p-local finite spectrum of chromatic type n -+ 1. This means that
there are finite complexes of all chromatic types.
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Some conjectures (continued)

Periodicity Theorem (Hopkins-Smith 1998)

Let X be a p-local finite spectrum of chromatic type n, meaning
that K(n—1).X =0, but K(n).X # 0. Then there is a map
v:Y9X = X (av, self-map) with K(n).(v) an isomorphism
and H.(v;Z/p) = 0. Ifn =0 thend = 0, and when n > 0, d is
a multiple of 2p" — 2.

Given a second such map w : £°X — X, there are positive
integers i and j such that id = je and v' = w!. In other words, v
is assymptotically unique.

It follows that the cofiber of v (or of any of its iterates) is a
p-local finite spectrum of chromatic type n -+ 1. This means that
there are finite complexes of all chromatic types. Finite
complexes of arbitrary chromatic type were first constructed by
Steve Mitchell in 1985.
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Some conjectures (continued)

Periodicity Theorem (Hopkins-Smith 1998)

Let X be a p-local finite spectrum of chromatic type n, meaning
that K(n—1).X =0, but K(n).X # 0. Then there is a map
v:Y9X = X (av, self-map) with K(n).(v) an isomorphism
and H.(v;Z/p) = 0. Ifn =0 thend = 0, and when n > 0, d is
a multiple of 2p" — 2.

Given a second such map w : £°X — X, there are positive
integers i and j such that id = je and v' = w!. In other words, v
is assymptotically unique.

It follows that the cofiber of v (or of any of its iterates) is a
p-local finite spectrum of chromatic type n -+ 1. This means that
there are finite complexes of all chromatic types. Finite
complexes of arbitrary chromatic type were first constructed by
Steve Mitchell in 1985.

HENCE THERE ARE LOTS OF PERIODIC FAMILIES IN .S.

The Chromatic
Conjectures

Ad

Doug Ravenel

N4

Homotopy groups of spheres

The chromatic resolution
Bousfield localization
Bousfield equivalence

The chromatic tower

‘Harmonic and dissonant
spectra

Chromatic

The chromatic resolution and
the chromatic tower
Some conjectures

The nilpotence and periodicity.
theorems

The telescope conjecture



The Chromatic

Conjectures
Doug Ravenel
Some topology
A pleasant consequence of the Nilpotence Theorem is the
following.
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A pleasant consequence of the Nilpotence Theorem is the

Some topology

The Boustfield class of a p-local finite spectrum X is determined
by its chromatic type, i.e., the smallest n for which K(n). X # 0
In particular if H, X is not all torsion, then (X)
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The telescope conjecture

Suppose X is a p-local finite spectrum of chromatic type n.
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The telescope conjecture

Suppose X is a p-local finite spectrum of chromatic type n. The
Periodicity Theorem says that it has a v, self-map
v:Y9X - X.
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The telescope conjecture

/\g

Suppose X is a p-local finite spectrum of chromatic type n. The
Periodicity Theorerg says that it has a v, self-map
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The telescope conjecture

Suppose X is a p-local finite spectrum of chromatic type n. The

A

Periodicity Theorem says that it has a v, self-map

v:¥9X — X. Let X be the associated mapping telescope,
meaning the homotopy colimit of
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The telescope conjecture

A\

Suppose X is a p-local finite spectrum of chromatic type n. The
Periodicity Theorerg says that it has a v, self-map

v:¥9X — X. Let X be the associated mapping telescope,
meaning the homotopy colimit of

X—YLsy-dx VYoy-2dxy Y. ...

Note that it is independent of the choice of v. Since v is a
K(n)-equivalence and therefore an E(n)-equivalence, we have
maps

X— = X—2o1.X
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For any p-local spectrum X of chromatic type n, the map
A : X — L,X is an equivalence
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For any p-local spectrum X of chromatic type n, the map
A : X — L,X is an equivalence.

This is trivially true for n = 0, and for n = 1 it was proved
around 1980 by Mahowald for p = 2 and by Miller for p odd.

«O» «F»r <«

i
v
a
it
v
it

22)CN(E

The Chromatic
Conjectures

A

Doug Ravenel

Some topology

Bousfield localization

Bousfield equivalence

The chromatic tower

Some conjectures




The telescope conjecture (continued)

In the fall of 1989
there was a ho-
motopy theory pro-
gram at MSRI in
Berkeley.
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Mathematical Sciences
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The telescope conjecture (continued)

In the fall of 1989
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Something happened there that led me to think | could
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The telescope conjecture (continued)

In the fall of 1989
there was a ho-
motopy theory pro-
gram at MSRI in
Berkeley.

MSRI

Mathematical Sciences
Research Institute

Something happened there that led me to think | could

the conjecture for n > 2.

San Francisco earthquake of October 17, 1989
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For any p-local spectrum X of chromatic type n, the map
A X — L,X is an equivalence.

In 1989 | began to think it was @/se for n > 2.
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For any p-local spectrum X of chromatic type n, the map
A X — L,X is an equivalence.

In 1989 | began to think it was i=/se for n > 2. | spent many
years trying to prove it without success.
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For any p-local spectrum X of chromatic type n, the map
A X — L,X is an equivalence.

In 1989 | began to think it was ‘@/se for n > 2. | spent many
years trying to prove it without success. This is now a theorem

of Robert Burklund, Jeremy Hahn, Ishan Levy and Tomer
Schlank.
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The telescope conjecture (continued)

Telescope conjecture

For any p-local spectrum X of chromatic type n, the map
A: X — L,X is an equivalence.

In 1989 | began to think it was for n > 2. | spent many
years trying to prove it without success. This is now a theorem
of Robert Burklund, Jeremy Hahn, Ishan Levy and Tomer
Schlank.

Jeremy, Tomer, myself, Ishan and Robert at Oxford University,
June 9, 2023.
Photo by Matteo Barucco.
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