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In equivariant stable homotopy theory we can speak of
homology and homotopy groups graded over RO(G), the real
orthogonal representation ring of G. We will now describe
HS(879;7/2), the equivariant mod 2 homology of the sphere
spectrum S—°. The cohomology group HZ«Z(S*O; 7/2)is
isomorphic to it, but oppositely graded.

There are two elements of interest.

e The inclusion map of the fixed point set (the north and
south poles) a: S° — S° defines an element a € 7% S0,
and we use the same symbol for its mod 2 Hurewicz

image. We call a the polar generator. It is also called an
Euler class.

e One can show that
H(S7:2/2) = H{? (5% 2/2) = Z/2,

and we denote its generator by u.
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The equivariant mod 2 homology of a point (continued)
Dually we have

acHg and  ueHZ
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The equivariant mod 2 homology of a point (continued)
Dually we have

aeHg  and ueHg
In real motivic homotopy theory one has analogous elements B e i
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The equivariant mod 2 homology of a point (continued)
Dually we have

acHg and  ueHZ

In real motivic homotopy theory one has analogous elements

pE HD(;’U and TE HD%O’”,

where the motivic bidegree (s, w) (for stem and weight)
corresponds to the RO(C,) degree s — w + wo.
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The equivariant mod 2 homology of a point (continued)
Dually we have

acHg and  ueHZ
In real motivic homotopy theory one has analogous elements
pE HD(;’U and TE HD%O’”,

where the motivic bidegree (s, w) (for stem and weight)
corresponds to the RO(C,) degree s — w + wo. The element p
is trivial image in complex motivic homotopy theory.
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The equivariant mod 2 homology of a point (continued)
Dually we have

ae Hg, and

o—1
ue HCZ .
In real motivic homotopy theory one has analogous elements

pE Hﬂg’” and

TE HD(QO’”,

where the motivic bidegree (s, w) (for stem and weight)
corresponds to the RO(C,) degree s — w + wo. The element p
is trivial image in complex motivic homotopy theory.

It is known that, for appropriate versions of the sphere
spectrum S0,
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The equivariant mod 2 homology of a point (continued)
Dually we have

acHg and  ueHZ
In real motivic homotopy theory one has analogous elements
pE HD(;’U and TE HD%O’”,

where the motivic bidegree (s, w) (for stem and weight)
corresponds to the RO(C,) degree s — w + wo. The element p
is trivial image in complex motivic homotopy theory.

It is known that, for appropriate versions of the sphere
spectrum S0,

M: = H(S™%2/2) = Z/2[7],
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The equivariant mod 2 homology of a point (continued)
Dually we have

acHg and  ueHZ
In real motivic homotopy theory one has analogous elements
pE HD(;’U and TE HD%O’”,

where the motivic bidegree (s, w) (for stem and weight)
corresponds to the RO(C,) degree s — w + wo. The element p
is trivial image in complex motivic homotopy theory.

It is known that, for appropriate versions of the sphere
spectrum S0,

M: = H(S™%2/2) = Z/2[7],

M; = H]I’g(S_O;Z/Z) =7/2[p, 7]
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The equivariant mod 2 homology of a point (continued)
Dually we have

acHg and  ueHZ
In real motivic homotopy theory one has analogous elements
pE HD(;’U and TE HD(QO’”,

where the motivic bidegree (s, w) (for stem and weight)
corresponds to the RO(C,) degree s — w + wo. The element p
is trivial image in complex motivic homotopy theory.

It is known that, for appropriate versions of the sphere
spectrum S0,

M: = H(S™%2/2) = Z/2[7],

M;, = Hi (S0 2/2) = Z/2]p, 7]
and

M* := HE (87°,2/2)>2Z/2]a, u).
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The equivariant mod 2 homology of a point (continued)
We have

M*Hg, (S0 Z/2) > Z/2[a, u] with a € Hg, and u € Hg ",

AC2(1)
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The equivariant mod 2 homology of a point (continued)
We have

M*Hg, (S0 Z/2) > Z/2[a, u] with a € Hg, and u € Hg ",

Bert Guillou
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The equivariant mod 2 homology of a point (continued)
We have

M*Hg, (S0 Z/2) > Z/2[a, u] with a € Hg, and u € Hg ",

but there is an additional summand called the negative cone
NC, namely

NC = £2/2[a,u)/(a*,u™) = D 2/2{ a'f';j}
i,j>0

Here w has cohomogical degree 1, so

=g =1 —ie = jle = 1) = (1 +)) = (i + )
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The equivariant mod 2 homology of a point (continued)
We have

M*Hg, (S0 Z/2) > Z/2[a, u] with a € Hg, and u € Hg ",

but there is an additional summand called the negative cone
NC, namely

NC = £2/2[a,u)/(a*,u™) = D 2/2{ a'f';j}
i,j>0

Here w has cohomogical degree 1, so

=g =1 —ie = jle = 1) = (1 +)) = (i + )

We abbreviate this element by w; ;. The fractional notation is
meant to indicate that

awiy1j = Wij = UW;j4 and a"w,;,- = UjW,'J =0.
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The equivariant mod 2 homology of a point (continued)

We have

M*Hg, (S0 Z/2) > Z/2[a, u] with a € Hg, and u € Hg ",

Bert Guillou

but there is an additional summand called the negative cone an eais
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NC, namely Doug Ravenel
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NC = xz/2(a,ul/(a*,u*) = D 2/2{ 7}

ij>0 The Hopf map

Here w has cohomogical degree 1, so _

The equivariant mod 2
cohomology of a point

w The Steenrod algebra
— ‘ _ ’ — 1 — o _j(o. _ 1) — (1 +_/) _ (I +])U' The subalgebra A% (1)
al U] The dual equivariant
Steenrod algebra

We abbreviate this element by w; ;. The fractional notation is AC2(1),
meant to indicate that Ko s

The polar spectral
sequence

awiy1j = Wij = UW;j4 and a"w,;,- = UjW,'J =0.

Each w;; is both a-divisible and u-divisible.



The equivariant mod 2 cohomology of a point
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The equivariant mod 2 cohomology of a point
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The point (x, y) above represents degree x — y + yo.
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The equivariant mod 2 cohomology of a point
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The point (x, y) above represents degree x — y + yo.
Red and blue lines indicate multiplication by v and a.
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The Steenrod algebra

AC2(1)
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The Steenrod algebra

Vladimir Igor Kriz and Po Hu
Voevodsky

The analog of the mod 2 Steenrod algebra .A was described by
Voevodsky in the motivic case

AC2(1)
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The Steenrod algebra

Vladimir Igor Kriz and Po Hu
Voevodsky

The analog of the mod 2 Steenrod algebra .A was described by
Voevodsky in the motivic case and by Hu-Kriz in the
equivariant case.
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The Steenrod algebra

Viadimir Igor Kriz and Po Hu
Voevodsky

The analog of the mod 2 Steenrod algebra .A was described by
Voevodsky in the motivic case and by Hu-Kriz in the
equivariant case. The two answers are essentially the same.
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The Steenrod algebra (continued)
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The Steenrod algebra (continued)

One has squaring operations Sg for k > 0 whose degrees are
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The Steenrod algebra (continued)

One has squaring operations Sg* for k > 0 whose degrees are  “lieti-
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The Steenrod algebra (continued)

One has squaring operations Sg¥ for k > 0 whose degrees are B i
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The Steenrod algebra (continued)

One has squaring operations Sg for k > 0 whose degrees are

gt = { i(1+0) for k = 2i
TI=V i +0)+1 fork=2i+1.

As in the classical case, Sq° = 1. The algebra acts on the
coefficient ring M,
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The Steenrod algebra (continued)

One has squaring operations Sg for k > 0 whose degrees are

gt = { i(1+0) for k = 2i
TI=V i +0)+1 fork=2i+1.

As in the classical case, Sq° = 1. The algebra acts on the
coefficient ring M, acting trivially on a and w with
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The Steenrod algebra (continued)

One has squaring operations Sg for k > 0 whose degrees are

[ i(1+0)
S| = { i(1+0)+1

for k = 2i
for k =2i+1.

As in the classical case, Sq° = 1. The algebra acts on the
coefficient ring M, acting trivially on a and w with

u fork=0
S¢ku={ a fork=1
0 otherwise
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The Steenrod algebra (continued)

One has squaring operations Sg for k > 0 whose degrees are

[ i(1+0)
S| = { i(1+0)+1

for k = 2i
for k =2i+1.

As in the classical case, Sq° = 1. The algebra acts on the
coefficient ring M, acting trivially on a and w with

u fork=0
a fork=1
0 otherwise

Sqku =

Its action on other elements is determined by the Cartan
formula to be given below.
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The Steenrod algebra (continued)
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The Steenrod algebra (continued)
Half of the Cartan formula is

Sq¥(xy) = Y Sq¥'(x)Sq”*(y)
0<r<i

+u Z Sq2$+1 (X) Sq2if2sf1 (y)

0<s<i

Bert Guillou
Mike Hill
Dan Isaksen
Doug Ravenel

Equivariant homotopy
theory

Some spheres with group
action

The Hopf map

The mod 2 homology
of a point

The equivariant mod 2
cohomology of a point

The subalgebra A% (1)

The dual equivariant
Steenrod algebra

AC2(1),
Inverting a

Kiling a

The polar spectral
sequence



The Steenrod algebra (continued)
Half of the Cartan formula is

S (xy) = Y Sq¥(x)Sg*?'(y)

0<r<i

+u Z Sq23+1 (X) Sq2if2sf1 (y)

0<s<i

The factor of u in the second sum is needed for degree
reasons.
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The Steenrod algebra (continued)
Half of the Cartan formula is

S (xy) = Y Sq¥(x)Sg*?'(y)

0<r<i

+u Z Sq23+1 (X) Sq2if2sf1 (y)

0<s<i

The factor of u in the second sum is needed for degree
reasons.

The operation Sq' is a derivation with Sq' Sq" = 0 as usual
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The Steenrod algebra (continued)
Half of the Cartan formula is

Sq¥(xy) = Y Sq¥'(x)Sq”*(y)
0<r<i

+u Z Sq23+1 (X) Sq2if2sf1 (y)

0<s<i

The factor of u in the second sum is needed for degree
reasons.

The operation Sq' is a derivation with Sq'Sq" = 0 as usual
with Sq'Sg? = Sg®*' and Sq'u = a.

Bert Guillou
Mike Hill
Dan Isaksen
Doug Ravenel

Equivariant homotopy
theory

Some spheres with group
action

The Hopf map

The mod 2 homology
of a point

The equivariant mod 2
cohomology of a point

The subalgebra A% (1)

The dual equivariant
Steenrod algebra

AC2(1),
Inverting a

Kiling a

The polar spectral
sequence



The Steenrod algebra (continued)
Half of the Cartan formula is

S (xy) = Y Sq¥(x)Sg*?'(y)

0<r<i

+u Z Sq23+1 (X) Sq2172371 (y)

0<s<i

The factor of u in the second sum is needed for degree
reasons.

The operation Sq' is a derivation with Sq'Sq" = 0 as usual
with Sq'Sg? = Sg?+' and Sq'u = a. Applying it to both sides
of the above gives the other half of the Cartan formula,
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The Steenrod algebra (continued)
Half of the Cartan formula is

S (xy) = Y Sq¥(x)Sg*?'(y)

0<r<i

+u Z Sq23+1 (X) Sq2172371 (y)

0<s<i

The factor of u in the second sum is needed for degree
reasons.

The operation Sq' is a derivation with Sq'Sq" = 0 as usual
with Sq'Sg? = Sg?+' and Sq'u = a. Applying it to both sides
of the above gives the other half of the Cartan formula,

S (xy) = D Sg(x)SgFT(y)
0<j<2i+1

+a Z Sq25+1(x)8q2’_25‘1(y).

0<s<i
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The Steenrod algebra (continued)
Half of the Cartan formula is

Sq2’(xy Z sq2r 2/ 2r( )
0<r<i
+u Z Sq23+1 (X)Sq2172371(y)
0<s<i

The factor of u in the second sum is needed for degree
reasons.

The operation Sq' is a derivation with Sq'Sq" = 0 as usual
with Sq'Sg? = Sg?+' and Sq'u = a. Applying it to both sides
of the above gives the other half of the Cartan formula,

S 21+1 Z Sq/ 2I+1 ]( )
0<j<2i+1
+a Z Sq2s+1(x)8q2"25_1(y).
0<s<i

Note that setting u = 1 and a = 0 reduces this to the classical
Cartan formula.

Bert Guillou
Mike Hill
Dan Isaksen
Doug Ravenel

Equivariant homotopy
theory

Some spheres with group
action

The Hopf map

The mod 2 homology
of a point
The equivariant mod 2
cohomology of a point

The subalgebra A% (1)

The dual equivariant
Steenrod algebra

AC2(1),
Inverting a

Kiling a

The polar spectral
sequence



The Steenrod algebra (continued)
For the Adem relations, let 0 < m < 2n.
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The Steenrod algebra (continued)

For the Adem relations, let 0 < m < 2n. The formula for
Sq™Sq" depends on the parity of m+ n.
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The Steenrod algebra (continued)

For the Adem relations, let 0 < m < 2n. The formula for
Sq™Sq" depends on the parity of m+ n. When it is even we
nearly have the classical relation,
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The Steenrod algebra (continued)

For the Adem relations, let 0 < m < 2n. The formula for
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The Steenrod algebra (continued)

For the Adem relations, let 0 < m < 2n. The formula for
Sq™Sq" depends on the parity of m+ n. When it is even we
nearly have the classical relation,

u for j odd
[m/2] i
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=0 1 otherwise

When m + nis odd we have a more complicated formula,
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The Steenrod algebra (continued)

For the Adem relations, let 0 < m < 2n. The formula for
Sq™Sq" depends on the parity of m+ n. When it is even we
nearly have the classical relation,

m/2] u for j odd
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Sq"Sq" =} < m—2j > m, n even Sq 5q.

J=0 1 otherwise

When m + nis odd we have a more complicated formula,
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As before, setting u = 1 and a = 0 reduces this to the classical
Adem relation.
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The Steenrod algebra (continued)

For the Adem relations, let 0 < m < 2n. The formula for
Sq™Sq" depends on the parity of m+ n. When it is even we
nearly have the classical relation,

u for j odd
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1 otherwise
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As before, setting u = 1 and a = 0 reduces this to the classical
Adem relation. The above are due to J6el Riou, 2012.
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The Steenrod algebra (continued)

For the Adem relations, let 0 < m < 2n. The formula for
Sq™Sq" depends on the parity of m+ n. When it is even we
nearly have the classical relation,

m/2] ' u for j odd
Sqmsqn _ Z n—1 -/ and Sqm+n7/‘5q/'
m—2j m, neven ’

J=0 1 otherwise

When m + nis odd we have a more complicated formula,

S \m-2
(T'/)  for modd L
/%1 { (nr77_21,'_j1) for n odd

As before, setting u = 1 and a = 0 reduces this to the classical
Adem relation. The above are due to J6el Riou, 2012.
Voevodsky got it wrong.
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The Steenrod algebra (continued)

For example we have the usual
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The Steenrod algebra (continued)

For example we have the usual
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The Steenrod algebra (continued)

For example we have the usual

and
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The subalgebra A% (1)

It follows that the subalgebra A% (1) generated by Sq' and Sg?
is a free M-module with the expected basis as shown here.
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The subalgebra A% (1)

It follows that the subalgebra A% (1) generated by Sq' and Sg?
is a free M-module with the expected basis as shown here.
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The subalgebra A% (1)

It follows that the subalgebra A% (1) generated by Sq' and Sg?
is a free M-module with the expected basis as shown here.
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The subalgebra A% (1)

It follows that the subalgebra A% (1) generated by Sq' and Sg?
is a free M-module with the expected basis as shown here.
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As before an element at (x, y) has degree x — y + yo. Black
lines of slopes 0 and 1/2 indicate left multiplication by Sq' and
Sq? respectively, with the Adem relation
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The subalgebra A% (1) (continued)
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The subalgebra A% (1) (continued)

This chart shows the action of A% (1) on Hg, (S79).
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The subalgebra A% (1) (continued)

This chart shows the action of .A%(1) on the oppositely graded
HS(S79).
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The subalgebra A% (1) (continued)

This chart shows the action of .A%(1) on the oppositely graded
HS(S79).
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In this case Steenrod operations lower the stem degree.
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The dual equivariant Steenrod algebra

Recall that the classical dual Steenrod algebra A. is a Hopf
algebra over Z/2,
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The dual equivariant Steenrod algebra

Recall that the classical dual Steenrod algebra A. is a Hopf
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The dual equivariant Steenrod algebra

Recall that the classical dual Steenrod algebra A. is a Hopf
algebra over Z/2, namely

A, =7/2[¢,6,...], where || =2 —1,

with coproduct

A&n)= > 2 .®¢, whereé =1

0<i<n
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The dual equivariant Steenrod algebra

Recall that the classical dual Steenrod algebra A. is a Hopf
algebra over Z/2, namely

A, =7/2[¢,6,...], where || =2 —1,

with coproduct

A&n)= > 2 .®¢, whereé =1

0<i<n

We will rewrite this as

A, =7Z/2[r9, 74, . .. ;51,52,...]/(&4-7',-2,11i>0)
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The dual equivariant Steenrod algebra

Recall that the classical dual Steenrod algebra A. is a Hopf
algebra over Z/2, namely

Av = 72/2[&1, 82, - -],

with coproduct

where || =2 -1,

A&n)= > 2 .®¢, whereé =1

0<i<n
We will rewrite this as
A =7Z/2[r0,71,... &1, 62, ...
where |&;| =2(2' —1) and |7;| = 1 + |&/],
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The dual equivariant Steenrod algebra

Recall that the classical dual Steenrod algebra A. is a Hopf

algebra over Z/2, namely
A, =7/2[¢,6,...], where || =2 —1,

with coproduct

A&n)= > 2 .®¢, whereé =1

0<i<n
We will rewrite this as
A, =7Z/2[r9, 74, . .. ;51,52,...]/(&4-7',-2,1 1> 0)

where |&| =2(2' — 1) and |7;| = 1 + ||, with a similar
coproduct.
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The dual equivariant Steenrod algebra

Recall that the classical dual Steenrod algebra A. is a Hopf

algebra over Z/2, namely
A, =7/2[¢,6,...], where || =2 —1,

with coproduct

A&n)= > 2 .®¢, whereé =1

0<i<n
We will rewrite this as
A, =7Z/2[r9, 74, . .. ;51,52,...]/(&4-7',-2,1 1> 0)

where |&| =2(2' — 1) and |7;| = 1 + ||, with a similar
coproduct. Thus we are renaming the original ¢; as 7;_1,
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The dual equivariant Steenrod algebra

Recall that the classical dual Steenrod algebra A. is a Hopf
algebra over Z/2, namely

Av = 72/2[&1, 82, - -],

with coproduct

where || =2 -1,

A&n)= > 2 .®¢, whereé =1

0<i<n
We will rewrite this as
A, =7Z/2[10,71,...:&1,&2,. ..
where |&| =2(2' — 1) and |7;| = 1 + ||, with a similar

coproduct. Thus we are renaming the original &; as 7;_1, and
using the symbol ¢; to denote the square of the original &;.
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The dual equivariant Steenrod algebra

Recall that the classical dual Steenrod algebra A. is a Hopf
algebra over Z/2, namely

A, =7/2[¢,6,...], where || =2 —1,

with coproduct

A&n)= > 2 .®¢, whereé =1

0<i<n

We will rewrite this as
A, =7Z/2[r9, 74, . .. ;51,52,...]/(&4-7',-2,1 1> 0)

where |&| =2(2' — 1) and |7;| = 1 + ||, with a similar
coproduct. Thus we are renaming the original &; as 7;_1, and
using the symbol ¢; to denote the square of the original &;.
The dual Steenrod algebra at an odd prime has a similar
description with 72 = 0.
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The dual equivariant Steenrod algebra (continued)

A, =7Z/2[r,T1,..
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The dual equivariant Steenrod algebra (continued)

A, =7Z/2[r,T1,..

The equivariant dual Steenrod algebra A% has a similar

description.
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The dual equivariant Steenrod algebra (continued)

A, =7Z/2[r,T1,..

description.

Instead of being a Hopf algebra over Z/2, it is a Hopf algebroid

over M,

€&y /(TP G 12 0).
The equivariant dual Steenrod algebra A has a similar
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The dual equivariant Steenrod algebra (continued)
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The dual equivariant Steenrod algebra (continued)
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The dual equivariant Steenrod algebra (continued)

A, = Z/2[707T17... ;51,52,...]/(7',-2 + &0 > O)
The equivariant dual Steenrod algebra A% has a similar
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The dual equivariant Steenrod algebra (continued)

A, =7/2[r, 71, ... ;51,52,...]/(7',-2—|—fi+1: i>0).

The equivariant dual Steenrod algebra A% has a similar
description.

Instead of being a Hopf algebra over Z/2, it is a Hopf algebroid
over M,, the oppositely graded dual of the ring M* described
earlier. There is a right unit map ng with
nr(a)=a and ng(u)=u+ ar =: U.
The degrees of the generators are
Gl =(1+0)@ 1) and |n]=1+]¢l.
The multiplicative relations are
Ti2 = arj41 + U§i+1 for i Z 0.

Setting a = 0 and u = 1 gives us the description of A, above.
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The quotient A% (1),

Afz = M*[T07T1,... ;51,62,...]/(7',-2—1—U§,‘+1 + ariyq: i> O)
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The quotient A% (1),

.ASZ = M*[T07T1,. .. ;f1,§2, .. ]/(7,2 +U§/+1 + ariyq: i> 0)
One could try to compute the group

Ext’;(*;2 (M,,M,),

but this is very complicated.
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The quotient A% (1),

Afz = M*[T07T1,... ;51,52,...]/(7,-2+U§,‘+1 + ariyq: i> 0)
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The quotient A%(1),

A% =M, [ro,71,... ;&1 &, ... 1/ (7R + Uit + aripq: i > 0).
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The quotient A% (1),

Afz = M*[T07T1,. .. ;51,52, .. ]/(7,2 +U§j+1 + ariyq: i> 0)
One could try to compute the group

Ext’;{(*;2 (M,,M,),

but this is very complicated. One can start by replacing A% by
the subalgebra A% (1) generated by Sq' and Sg?.

Classically we have

A1) = A*/(Tg,ﬁz,Tg, ... ;512,52, )
= Z/2[7-07T17§1]/(T02 +§177—127§12)'

Equivariantly we have

A% (1), = M, [ro,71,&1]/ (78 + Ut + am, 72, €2).

Bert Guillou
Mike Hill
Dan Isaksen
Doug Ravenel

Equivariant homotopy
theory

Some spheres with group
action

The Hopf map

The mod 2 homology
of a point
The equivariant mod 2
cohomology of a point
The Steenrod algebra
The subalgebra A% (1)

The dual equivariant
Steenrod algebra

Inverting a
Killing a

The polar spectral
sequence



Inverting the element a

A% (1), = M, [r0,71,&1]/(7& + Ut + am, 72, €2).
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Inverting the element a
A%(1), = My[ro, 71, &1/(75 + Ty + am, 75, €7).

Recall that M, = M @& NC and M% = Z/2[a, u].
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Inverting the element a
A%(1), = My[ro, 71, &1/(75 + Ty + am, 75, €7).

Recall that M, = M @& NC and M® = Z/2[a, u]. Thus ME is M,
without the negative cone.

Bert Guillou
Mike Hill
Dan Isaksen
Doug Ravenel

Equivariant homotopy
theory

Some spheres with group
action

The Hopf map

The mod 2 homology
of a point
The equivariant mod 2
cohomology of a point
The Steenrod algebra
The subalgebra A% (1)

The dual equivariant
Steenrod algebra

AC2(1),
Kiling a

The polar spectral
sequence



Inverting the element a
A%(1), = My[ro, 71, &1/(75 + Ty + am, 75, €7).

Recall that M, = M @& NC and M® = Z/2[a, u]. Thus ME is M,
without the negative cone.

Suppose we formally invert a,
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Inverting the element a
A%(1), = M, [r0,71,&1]/(76 + Ués + ary, 77, €3).

Recall that M, = M @& NC and M® = Z/2[a, u]. Thus ME is M,
without the negative cone.

Suppose we formally invert a, which is the algebraic
counterpart to passing to geometric fixed points.
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Inverting the element a
A%(1), = M, [r0,71,&1]/(76 + Ués + ary, 77, €3).

Recall that M, = M @& NC and M® = Z/2[a, u]. Thus ME is M,
without the negative cone.

Suppose we formally invert a, which is the algebraic
counterpart to passing to geometric fixed points. This will kill
NC because each element in it is a-torsion.
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Inverting the element a
A%(1), = M, [r0,71,&1]/(76 + Ués + ary, 77, €3).

Recall that M, = M @& NC and M® = Z/2[a, u]. Thus ME is M,
without the negative cone.

Suppose we formally invert a, which is the algebraic
counterpart to passing to geometric fixed points. This will kill
NC because each element in it is a-torsion. Thus we get a
4-term exact sequence

0+ NC—-M-—a'™M=a'MF— M/(a°) - 0.
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Inverting the element a
A%(1), = M, [r0,71,&1]/(76 + Ués + ary, 77, €3).

Recall that M, = M @& NC and M® = Z/2[a, u]. Thus ME is M,
without the negative cone.

Suppose we formally invert a, which is the algebraic
counterpart to passing to geometric fixed points. This will kill
NC because each element in it is a-torsion. Thus we get a
4-term exact sequence

0+ NC—-M-—a'™M=a'MF— M/(a°) - 0.

The multiplicative relation r§ + u&1 + ary = 0 can be rewritten
as

T = 3_1(7'02 +U§1).
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Inverting the element a
A%(1), = M, [r0,71,&1]/(76 + Ués + ary, 77, €3).

Recall that M, = M @& NC and M® = Z/2[a, u]. Thus ME is M,
without the negative cone.

Suppose we formally invert a, which is the algebraic
counterpart to passing to geometric fixed points. This will kill
NC because each element in it is a-torsion. Thus we get a
4-term exact sequence

0+ NC—-M-—a'™M=a'MF— M/(a°) - 0.

The multiplicative relation r§ + u&1 + ary = 0 can be rewritten
as

T = 3_1(7'02 +U§1).
It follows that
ai1ACZ(1 )* - 371M*[7—0a 7_1351]/(7—5 + E€1 + ary, 7_127512)
=a "M}, &]/(75, €2).
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Inverting the element a (continued)
We have

A% (1), = M, [ro, 71, &1]/ (78 + T&s + amy, 72, £5)
a 'A%(1), = a 'M[r, &1/(75. €5)
= 7/2[a*", u][ro, &1]/ (15, €5),
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Inverting the element a (continued)

We have
A% (1), = M, [ro, 71, &1]/ (78 + T&s + amy, 72, £5)
a 'A%(1), = a 'M[r, &1/(75. €5)
=Z/2[a", u][r0, &11/(75, €5),
and the right unit is

u—u+ary and P 0P 4 @18 = 1P + a2(Uét + any).
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Inverting the element a (continued)

We have
A% (1), = M, [ro, 71, &1]/ (78 + T&s + amy, 72, £5)
a 'A%(1), = a 'M[r, &1/(75. €5)
=Z/2[a", u][r0, &11/(75, €5),
and the right unit is

U utar and U 0P+ @78 = UP + & (U& + am).

The resulting Ext group is easily seen to be

71EXt*7;2( (M, M,) = Z/Z[a:H ) U4][h1]7
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Inverting the element a (continued)

We have
A% (1), = M, [ro, 71, &1]/ (78 + T&s + amy, 72, £5)
a 'A%(1), = a 'M[r, &1/(75. €5)
=Z/2[a", u][r0, &11/(75, €5),
and the right unit is

U utar and U 0P+ @78 = UP + & (U& + am).

The resulting Ext group is easily seen to be
71EXt*7;2( (M, M,) = Z/Z[a:H ) U4][h1]7

where hy = [&] € Ext"'+,
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Inverting the element a (continued)
We have

A1), = M [ro, 71, &]/(78 + Ut + ar, 72, €2)
a 'A%(1), = a 'M[r,&11/(15,€5)
= 7./2[a"", U][r0, &11/ (75, €F),
and the right unit is

U u+arg and U?— P+ &° TO—U +a(u§1+ar1).

The resulting Ext group is easily seen to be

a 'Ext*:

A%(1) (M. M,) =zZ/2[a", u*][H],

where hy = [¢4] € Ext""'*7, This element is related to the
equivariant Hopf map n mentioned at the start of the talk.
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Inverting the element a (continued)
We have

A1), = M [ro, 71, &]/(78 + Ut + ar, 72, €2)
a 'A%(1), = a 'M[r,&11/(15,€5)
= 7./2[a"", U][r0, &11/ (75, €F),
and the right unit is

U u+arg and U?— P+ &° TO =% +a (u§1 + ar).
The resulting Ext group is easily seen to be

a 'Ext*:

M*aM*
oy (MWL)

=z/2[a"", u*][h],

where hy = [¢4] € Ext""'*7, This element is related to the
equivariant Hopf map n mentioned at the start of the talk. The
nonnilpotence of hy in this Ext group is related to that of n in
the equivariant stable homotopy category.
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Killing the element a
Again we have

ACZ(1)* = *[70771751]/(7()2+U§1 +a7—177—127€12)'
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Killing the element a
Again we have

.ACZ(1)* = M*[To,7'1,§1]/(7'02 + uét + 87'1,7'12,512).

Now we consider the effect of formally killing a € M,.
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Killing the element a
Again we have

Acz(<| )* = M*[TO7T17£1]/(702 + U§1 + aT17T127§12)'

Now we consider the effect of formally killing a € M. Like

inverting a, this will kill the negative cone since each element in
it is divisible by a.
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Killing the element a
Again we have

Acz(<| )* = M*[TO7T17§1]/(702 + U§1 + aT17T127§12)'

Now we consider the effect of formally killing a € M. Like

inverting a, this will kill the negative cone since each element in
it is divisible by a. Thus we have

M./(a) = M{/(a) = M = Z/2[u].
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Killing the element a
Again we have

Acz(<| )* = M*[TO7T17§1]/(T(? + U§1 + aT17T127§12)'

Now we consider the effect of formally killing a € M. Like

inverting a, this will kill the negative cone since each element in
it is divisible by a. Thus we have

M./(a) = M{/(a) = M = Z/2[u].

Recall that if we also set u — 1, we get the classical quotient
A(1)..
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Killing the element a
Again we have

ACZ(1 )* = M*[TO7T17§1]/(T(? + U§1 + aT17T127§12)'

Now we consider the effect of formally killing a € M. Like

inverting a, this will kill the negative cone since each element in
it is divisible by a. Thus we have

M./(a) = M{/(a) = M = Z/2[u].

Recall that if we also set u — 1, we get the classical quotient
A(1).. Its Ext group is well known and is shown below.
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Killing the element a
Again we have

"402(1 )* = M*[TO7T17£1]/(T(? + U§1 + aT17T‘|27§12)'

Now we consider the effect of formally killing a € M. Like
inverting a, this will kill the negative cone since each element in
it is divisible by a. Thus we have

M./(a) = M{/(a) = M = Z/2[u].

Recall that if we also set u — 1, we get the classical quotient
A(1).. Its Ext group is well known and is shown below.
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Killing the element a (continued)
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Killing the element a (continued)
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Killing the element a (continued)

R R R R I AR R IR
M M
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As a ring with generators and relations, we have
EXt.A(1)* = Z/Q[I"l()7 h1 , O, ﬁ]/(ho/’ﬁ , h?, h10z, a2 + hgﬁ),
where

ho = [r0] € Ext"", hy = [&] € Ext"2,
o = <h$, h1, h0> S Extsj7
and 3 = (R, hy, 2, hy) € Ext®'2,
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Killing the element a (continued)

As a ring with generators and relations, we have

Ext 1y, = Z/2[ho, h1, v, B1/(hohy, B3, hiat, o + HG ),

where hy = [ro] € Ext"",
o = <h$7 h1, h0> S EX'[:'%J7
and 3= (H, h, B2, hy) € Ext*'2,

hy = [¢1] € Bxt 2,
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Killing the element a (continued)

As a ring with generators and relations, we have

Ext 1y, = Z/2[ho, h1, v, B1/(hohy, B3, hiat, o + HG ),

where hy = [ro] € Ext"",
o = <h$7 h1, h0> S EX'[?’J7
and 3= (H, h, B2, hy) € Ext*'2,

hy = [¢1] € Bxt 2,

The complex motivic answer is only slightly different.

Ext 4e(qy, = M®[ho, hy, o, 8]/(hohy, uhi, o, o + 3 3),
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Killing the element a (continued)

As a ring with generators and relations, we have

Ext gy, = Z/2[ho, 1, a, B]/(hoh, 3, hiar, o® + H33),
where ho = [r0] € Ext"",
a = (M, hy, ho) € Ext®”,

and 3= (H, h, B2, hy) € Ext*'2,

hy = [¢1] € Bxt 2,

The complex motivic answer is only slightly different.

Ext 4e(qy, = M®[ho, hy, o, 8]/(hohy, uhi, o, o + 3 3),

where ho = [r0] € Ext" = [¢1] € Ext" 1o,
o= (uhs, hy, ho) € Ext3’5+2"
and (= (uhs, hy, uh?, hy) € Ext*8+47,

Bert Guillou
Mike Hill
Dan Isaksen
Doug Ravenel

Equivariant homotopy
theory

Some spheres with group
action

The Hopf map
The mod 2 homology
of a point

The equivariant mod 2

cohomology of a point

The Steenrod algebra
The subalgebra A% (1)

The dual equivariant
Steenrod algebra

AC2(1),

Inverting a

The polar spectral
sequence



Killing the element a (continued)

As a ring with generators and relations, we have

Ext gy, = Z/2[ho, 1, a, B]/(hoh, 3, hiar, o® + H33),
where ho = [r0] € Ext"",
a = (M, hy, ho) € Ext®”,

and 3= (H, h, B2, hy) € Ext*'2,

hy = [¢1] € Bxt 2,

The complex motivic answer is only slightly different.

Ext 4e(qy, = M®[ho, hy, o, 8]/(hohy, uhi, o, o + 3 3),

where ho = [r0] € Ext" = [¢1] € Ext" 1o,
o= (uhs, hy, ho) € Ext3’5+2"
and (= (uhs, hy, uh?, hy) € Ext*8+47,

Note that while uh? = 0, all powers of h; itself are nontrivial,
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Killing the element a (continued)

As a ring with generators and relations, we have

Ext gy, = Z/2[ho, 1, a, B]/(hoh, 3, hiar, o® + H33),
where ho = [r0] € Ext"",
a = (M, hy, ho) € Ext®”,

and 3= (H, h, B2, hy) € Ext*'2,

hy = [¢1] € Bxt 2,

The complex motivic answer is only slightly different.

Ext 4e(qy, = M®[ho, hy, o, 8]/(hohy, uhi, o, o + 3 3),

where ho = [r0] € Ext" = [¢1] € Ext" 1o,
o= (uhs, hy, ho) € Ext3’5+2"
and (= (uhs, hy, uh?, hy) € Ext*8+47,

Note that while uh? = 0, all powers of hy itself are nontrivial, as

was the case when we inverted a.
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Killing the element a (continued)

Ext 4e(qy, = M®[ho, hy, a, 8]/(hohy, uhi, o, o + B3 3),
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Killing the element a (continued)

Ext 4e(qy, = M®[ho, hy, a, 8]/(hohy, uhi, o, o + B3 3),
Here is an illustrative chart.
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Killing the element a (continued)

Ext 4e(qy, = M®[ho, hy, a, 8]/(hohy, uhi, o, o + B3 3),
Here is an illustrative chart.
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Each red arrow is shorthand for a diagonal tower of elements
related by hy and killed by u.
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Killing the element a (continued)

Ext 4e(qy, = M®[ho, hy, a, 8]/(hohy, uhi, o, o + B3 3),
Here is an illustrative chart.
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Each red arrow is shorthand for a diagonal tower of elements
related by hy and killed by u. The elements in black are
u-torsion free.
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Killing the element a (continued)

Ext 4e(qy, = M®[ho, hy, a, 8]/(hohy, uhi, o, o + B3 3),
Here is an illustrative chart.
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Each red arrow is shorthand for a diagonal tower of elements
related by hy and killed by u. The elements in black are
u-torsion free. As before, an element in Ext"**¥? is shown at

(x+y—f£1).
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Killing the element a (continued)

Ext 4e(qy, = M®[ho, hy, a, 8]/(hohy, uhi, o, o + B3 3),
Here is an illustrative chart.
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0 4 8 12 16 20 24

Each red arrow is shorthand for a diagonal tower of elements
related by hy and killed by u. The elements in black are
u-torsion free. As before, an element in Ext"**¥? is shown at

(x 4+ y — £, f). For example, the elements
hf € Ext***  and  hya € Ext*8t27

would both appear at (4, 4).
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The polar spectral sequence

Ext4e(qy, = M®[ho, hy, o, 8]/(hohy, uhi, o, o + 3 3),
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The polar spectral sequence
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The polar spectral sequence

Ext4e(qy, = M®[ho, hy, o, 8]/(hohy, uhi, o, o + 3 3),

Filtering M® (which is M, without the negative cone)

Bert Guillou
Mike Hill
Dan Isaksen
Doug Ravenel

Equivariant homotopy
theory

Some spheres with group
action

The Hopf map

The mod 2 homology
of a point
The equivariant mod 2
cohomology of a point
The Steenrod algebra
The subalgebra A% (1)

The dual equivariant
Steenrod algebra

AC2(1),
Inverting a
Kiling a




The polar spectral sequence

Ext4e(qy, = M®[ho, hy, o, 8]/(hohy, uhi, o, o + 3 3),

Filtering M® (which is M, without the negative cone) by powers
of g,
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The polar spectral sequence

Ext4e(qy, = M®[ho, hy, o, 8]/(hohy, uhi, o, o + 3 3),

Filtering M® (which is M, without the negative cone) by powers
of a, the polar filtration,
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The polar spectral sequence

Ext4e(qy, = M®[ho, hy, o, 8]/(hohy, uhi, o, o + 3 3),

Filtering M® (which is M, without the negative cone) by powers
of g, the polar filtration, yields the polar spectral sequence
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The polar spectral sequence

Ext4e(qy, = M®[ho, hy, o, 8]/(hohy, uhi, o, o + 3 3),

Filtering M® (which is M, without the negative cone) by powers
of g, the polar filtration, yields the polar spectral sequence

Z/2[a] ® Ext 4e(y), = EXt gy, -
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The polar spectral sequence

Ext4e(qy, = M®[ho, hy, o, 8]/(hohy, uhi, o, o + 3 3),

Filtering M® (which is M, without the negative cone) by powers
of g, the polar filtration, yields the polar spectral sequence

Z/2[a] ® Ext 4e(y), = EXt gy, -

It has three differentials:
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The polar spectral sequence

Ext4e(qy, = M®[ho, hy, o, 8]/(hohy, uhi, o, o + 3 3),

Filtering M® (which is M, without the negative cone) by powers
of g, the polar filtration, yields the polar spectral sequence

Z/2[a] ® Ext 4e(y), = EXt gy, -
It has three differentials:

di(u) = ahy, dg(U2) = aZUh1 and d3(U3h$) =aa.
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The polar spectral sequence

Ext4e(qy, = M®[ho, hy, o, 8]/(hohy, uhi, o, o + 3 3),

Filtering M® (which is M, without the negative cone) by powers
of g, the polar filtration, yields the polar spectral sequence

Z/Z[a] (024] EXt.ACU)* = EXt.A]RU)*'
It has three differentials:
di(u) = ahy, d2(U2) = a2uh1 and d3(U3h$) =aa.

This leads to a ring with 9 generators and 22 relations.
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The polar spectral sequence

Ext4e(qy, = M®[ho, hy, o, 8]/(hohy, uhi, o, o + 3 3),

Filtering M® (which is M, without the negative cone) by powers
of g, the polar filtration, yields the polar spectral sequence

Z/Z[a] ® EXt_AC“)* = EXtA]R“)*.
It has three differentials:
di(u) = ahy, dg(U2) = aZUh1 and d3(U3h$) =aa.

This leads to a ring with 9 generators and 22 relations.
The answer for the negative cone is even more complicated.
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HAPPY BIRTHDAY, PAUL!
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