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1 Equivariant homotopy theory

1.1 Some spheres with group action

Equivariant homotopy theory
This talk is about equivariant homotopy theory. The group G in question will always by C2, the

group of order 2.

Every finite dimensional orthogonal representation V of G is isomorphic to m+nσ , where m,n ≥
0 are integers, and σ denotes the sign representation.

Given such a representation V ,

• S(V ) denotes its unit sphere, which is underlain by Sm+n−1, and
• SV denotes its one point compactification, which is underlain by Sm+n.

Here is a picture of Sσ , the twisted circle, whose fixed point set is S0:
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1.3

1.2 The Hopf map

The surprising property of the equivariant Hopf map

Recall the Hopf map

C2 ⊃ S3 η // CP1 = S2.

The composite map

S7 Σ4η // S6 Σ3η // S5 Σ2η // S4 Ση // S3

is known to be null homotopic.

Both source and target of η have a C2-action induced by complex conjugation. The Hopf map η

preserves it, so we get an equivariant map

S(2+2σ)≈ S1+2σ
η // S1+σ

and the induced map of fixed point sets is the degree 2 map

S(2)≈ S1 [2] // RP1 = S1.

1.4

The surprising property of the equivariant Hopf map (continued)
Iterating the equivariant Hopf map η : S1+2σ → S1+σ gives a diagram of equivariant maps and

fixed point sets

S1+5σ
Σ3σ η // S1+4σ

Σ2σ η // S1+3σ
Σσ η // S1+2σ

η // S1+σ

S1 [2] // S1 [2] // S1 [2] // S1 [2] // S1

where Σσ denotes the twisted suspension Sσ ∧−. The composite map of fixed point sets is essential
since it is the degree 16 map. In fact, any iterate of η induces a nontrivial map on fixed points. This
means that the stable equivariant Hopf map is not equivariantly nilpotent, unlike the classical stable
Hopf map. 1.5

2 The mod 2 homology of a point

The equivariant mod 2 homology of a point
In equivariant stable homotopy theory we can speak of homology and homotopy groups graded

over RO(G), the real orthogonal representation ring of G. We will now describe HC2
? (S−0;Z/2), the

equivariant mod 2 homology of the sphere spectrum S−0. The cohomology group H?
C2
(S−0;Z/2) is

isomorphic to it, but oppositely graded.

There are two elements of interest.
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• The inclusion map of the fixed point set (the north and south poles) a : S0 → Sσ defines an
element a ∈ π

C2
−σ S−0, and we use the same symbol for its mod 2 Hurewicz image. We call a

the polar generator. It is also called an Euler class.
• One can show that

HC2
1 (Sσ ;Z/2) = HC2

1−σ
(S−0;Z/2) = Z/2,

and we denote its generator by u.
1.6

The equivariant mod 2 homology of a point (continued)
Dually we have

a ∈ Hσ
C2

and u ∈ Hσ−1
C2

.

In real motivic homotopy theory one has analogous elements

ρ ∈ H(1,1)
R and τ ∈ H(0,1)

R ,

where the motivic bidegree (s,w) (for stem and weight) corresponds to the RO(C2) degree s−
w+wσ . The element ρ is trivial image in complex motivic homotopy theory.

It is known that, for appropriate versions of the sphere spectrum S−0,

M∗
C := H∗

C(S
−0;Z/2) = Z/2[τ],

M∗
R := H∗

R(S
−0;Z/2) = Z/2[ρ,τ]

and
M∗ := H∗

C2
(S−0;Z/2)⊃Z/2[a,u].

1.7

The equivariant mod 2 homology of a point (continued)
We have

M∗H∗
C2
(S−0;Z/2)⊃ Z/2[a,u] with a ∈ Hσ

C2
and u ∈ Hσ−1

C2
,

but there is an additional summand called the negative cone NC, namely

NC = ΣZ/2[a,u]/(a∞,u∞) =
⊕
i, j>0

Z/2
{ w

aiu j

}
Here w has cohomogical degree 1, so

:=
∣∣∣ w
aiu j

∣∣∣= 1− iσ − j(σ −1) = (1+ j)− (i+ j)σ .

We abbreviate this element by wi, j. The fractional notation is meant to indicate that

awi+1, j = wi, j = uwi, j+1 and aiwi, j = u jwi, j = 0.

Each wi, j is both a-divisible and u-divisible. 1.8
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2.1 The equivariant mod 2 cohomology of a point

The equivariant mod 2 cohomology of a point
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The point (x,y) above represents degree x− y+ yσ .
Red and blue lines indicate multiplication by u and a. 1.9

3 The Steenrod algebra

The Steenrod algebra

Vladimir Igor Kriz and Po Hu
Voevodsky

The analog of the mod 2 Steenrod algebra A was described by Voevodsky in the motivic case
and by Hu-Kriz in the equivariant case. The two answers are essentially the same. 1.10

The Steenrod algebra (continued)

One has squaring operations Sqk for k ≥ 0 whose degrees are

|Sqk|=
{

i(1+σ) for k = 2i
i(1+σ)+1 for k = 2i+1.

As in the classical case, Sq0 = 1. The algebra acts on the coefficient ring M, acting trivially on a
and w with

Sqku =

 u for k = 0
a for k = 1
0 otherwise

Its action on other elements is determined by the Cartan formula to be given below. 1.11
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The Steenrod algebra (continued)
Half of the Cartan formula is

Sq2i(xy) = ∑
0≤r≤i

Sq2r(x)Sq2i−2r(y)

+u ∑
0≤s<i

Sq2s+1(x)Sq2i−2s−1(y)

The factor of u in the second sum is needed for degree reasons.

The operation Sq1 is a derivation with Sq1Sq1 = 0 as usual with Sq1Sq2i = Sq2i+1 and Sq1u = a.
Applying it to both sides of the above gives the other half of the Cartan formula,

Sq2i+1(xy) = ∑
0≤ j≤2i+1

Sq j(x)Sq2i+1− j(y)

+a ∑
0≤s<i

Sq2s+1(x)Sq2i−2s−1(y).

Note that setting u = 1 and a = 0 reduces this to the classical Cartan formula. 1.12

The Steenrod algebra (continued)
For the Adem relations, let 0 < m < 2n. The formula for SqmSqn depends on the parity of m+n.

When it is even we nearly have the classical relation,

SqmSqn =
[m/2]

∑
j=0

(
n−1− j
m−2 j

)
u for j odd

and
m,n even

1 otherwise

Sqm+n− jSq j.

When m+n is odd we have a more complicated formula,

SqmSqn =
[m/2]

∑
j=0

(
n−1− j
m−2 j

)
Sqm+n− jSq j

+a ∑
j odd

{ (n−1− j
m−2 j

)
for m odd( n−1− j

m−2 j−1

)
for n odd

}
Sqm+n− j−1Sq j.

As before, setting u = 1 and a = 0 reduces this to the classical Adem relation. The above are due
to Jöel Riou, 2012. Voevodsky got it wrong. 1.13

The Steenrod algebra (continued)
For example we have the usual

Sq1Sqn =

{
Sqn+1 for n even
0 for n odd,

Sq2Sqn =


Sqn+2 +uSqn+1Sq1 for n ≡ 0 mod 4

Sqn+1Sq1 for n ≡ 1 mod 4
uSqn+1Sq1 for n ≡ 2 mod 4

Sqn+2 +Sqn+1Sq1 for n ≡ 3 mod 4

and

Sq3Sqn =


Sqn+3 +aSqn+1Sq1 for n ≡ 0 mod 4

Sqn+2Sq1 for n ≡ 1 mod 4
aSqn+1Sq1 for n ≡ 2 mod 4
Sqn+2Sq1 for n ≡ 3 mod 4.

1.14
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3.1 The subalgebra A C2(1)

sec-

The subalgebra A C2(1)
It follows that the subalgebra A C2(1) generated by Sq1 and Sq2 is a free M-module with the

expected basis as shown here.

0 1 2 3 4 5 6

0
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2

As before an element at (x,y) has degree x−y+yσ . Black lines of slopes 0 and 1/2 indicate left
multiplication by Sq1 and Sq2 respectively, with the Adem relation

Sq2Sq2 = uSq3Sq1 = uSq1Sq2Sq1

indicated by the red line. 1.15

The subalgebra A C2(1) (continued)

• •

• •

• •

• • // • •

• •

• •

• •
1.16

The subalgebra A C2(1) (continued)
This chart shows the action of A C2(1) on H?

C2
(S−0).
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1.17

The subalgebra A C2(1) (continued)
This chart shows the action of A C2(1) on the oppositely graded HC2

? (S−0).
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In this case Steenrod operations lower the stem degree. 1.18

4 The dual equivariant Steenrod algebra

The dual equivariant Steenrod algebra
Recall that the classical dual Steenrod algebra A∗ is a Hopf algebra over Z/2, namely

A∗ = Z/2[ξ1,ξ2, . . . ], where |ξi|= 2i −1,

with coproduct
∆(ξn) = ∑

0≤i≤n
ξ

2i

n−i ⊗ξi, where ξ0 = 1.

We will rewrite this as

A∗ = Z/2[τ0,τ1, . . . ;ξ1,ξ2, . . . ]/(ξi + τ
2
i−1 : i > 0)

where |ξi| = 2(2i − 1) and |τi| = 1+ |ξi|, with a similar coproduct. Thus we are renaming the
original ξi as τi−1, and using the symbol ξi to denote the square of the original ξi.

The dual Steenrod algebra at an odd prime has a similar description with τ2
i = 0. 1.19
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The dual equivariant Steenrod algebra (continued)

A∗ = Z/2[τ0,τ1, . . . ;ξ1,ξ2, . . . ]/(τ
2
i +ξi+1 : i ≥ 0).

The equivariant dual Steenrod algebra A C2
? has a similar description.

Instead of being a Hopf algebra over Z/2, it is a Hopf algebroid over M?, the oppositely graded
dual of the ring M? described earlier. There is a right unit map ηR with

ηR(a) = a and ηR(u) = u+aτ0 =: u.

The degrees of the generators are

|ξi|= (1+σ)(2i −1) and |τi|= 1+ |ξi|.

The multiplicative relations are

τ
2
i = aτi+1 +uξi+1 for i ≥ 0.

Setting a = 0 and u = 1 gives us the description of A∗ above. 1.20

5 A C2(1)?
The quotient A C2(1)?

A C2
? = M?[τ0,τ1, . . . ;ξ1,ξ2, . . . ]/(τ

2
i +uξi+1 +aτi+1 : i ≥ 0).

One could try to compute the group

Ext∗,?
A

C2
?

(M?,M?) ,

but this is very complicated. One can start by replacing A C2 by the subalgebra A C2(1) generated by
Sq1 and Sq2.

Classically we have

A (1)∗ = A∗/(τ
4
0 ,τ

2
1 ,τ2, . . . ;ξ

2
1 ,ξ2, . . .)

= Z/2[τ0,τ1,ξ1]/(τ
2
0 +ξ1,τ

2
1 ,ξ

2
1 ).

Equivariantly we have

A C2(1)? = M?[τ0,τ1,ξ1]/(τ
2
0 +uξ1 +aτ1,τ

2
1 ,ξ

2
1 ).

1.21

5.1 Inverting a

Inverting the element a

A C2(1)? = M?[τ0,τ1,ξ1]/(τ
2
0 +uξ1 +aτ1,τ

2
1 ,ξ

2
1 ).

Recall that M? = MR
? ⊕NC and MR

? = Z/2[a,u]. Thus MR
? is M? without the negative cone.
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Suppose we formally invert a, which is the algebraic counterpart to passing to geometric fixed
points. This will kill NC because each element in it is a-torsion. Thus we get a 4-term exact sequence

0 → NC → M → a−1M = a−1MR → MR/(a∞)→ 0.

The multiplicative relation τ2
0 +uξ1 +aτ1 = 0 can be rewritten as

τ1 = a−1(τ2
0 +uξ1).

It follows that

a−1A C2(1)? = a−1M?[τ0,τ1,ξ1]/(τ
2
0 +uξ1 +aτ1,τ

2
1 ,ξ

2
1 ).

= a−1MR
? [τ0,ξ1]/(τ

4
0 ,ξ

2
1 ).

1.22

Inverting the element a (continued)
We have

A C2(1)? = M?[τ0,τ1,ξ1]/(τ
2
0 +uξ1 +aτ1,τ

2
1 ,ξ

2
1 )

a−1A C2(1)? = a−1MR
? [τ0,ξ1]/(τ

4
0 ,ξ

2
1 )

= Z/2[a±1,u][τ0,ξ1]/(τ
4
0 ,ξ

2
1 ),

and the right unit is

u 7→ u+aτ0 and u2 7→ u2 +a2
τ

2
0 = u2 +a2(uξ1 +aτ1).

The resulting Ext group is easily seen to be

a−1Ext∗,?
A

C2
? (1)

(M?,M?) = Z/2[a±1,u4][h1],

where h1 = [ξ1] ∈ Ext1,1+σ . This element is related to the equivariant Hopf map η mentioned at
the start of the talk. The nonnilpotence of h1 in this Ext group is related to that of η in the equivariant
stable homotopy category. 1.23

5.2 Killing a

Killing the element a
Again we have

A C2(1)? = M?[τ0,τ1,ξ1]/(τ
2
0 +uξ1 +aτ1,τ

2
1 ,ξ

2
1 ).

Now we consider the effect of formally killing a ∈ M?. Like inverting a, this will kill the negative
cone since each element in it is divisible by a. Thus we have

M?/(a) = MR
? /(a) = MC

? = Z/2[u].

Recall that if we also set u 7→ 1, we get the classical quotient A (1)∗. Its Ext group is well known
and is shown below.
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1.24
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Killing the element a (continued)
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As a ring with generators and relations, we have

ExtA (1)∗ = Z/2[h0,h1,α,β ]/(h0h1,h3
1,h1α,α2 +h2

0β ),

where

h0 = [τ0] ∈ Ext1,1, h1 = [ξ1] ∈ Ext1,2,

α = 〈h2
1, h1, h0〉 ∈ Ext3,7,

and β = 〈h2
1, h1, h2

1, h1〉 ∈ Ext4,12.
1.25

Killing the element a (continued)
As a ring with generators and relations, we have

ExtA (1)∗ = Z/2[h0,h1,α,β ]/(h0h1,h3
1,h1α,α2 +h2

0β ),

where h0 = [τ0] ∈ Ext1,1, h1 = [ξ1] ∈ Ext1,2,

α = 〈h2
1, h1, h0〉 ∈ Ext3,7,

and β = 〈h2
1, h1, h2

1, h1〉 ∈ Ext4,12.

The complex motivic answer is only slightly different.

ExtA C(1)?
= MC[h0,h1,α,β ]/(h0h1,uh3

1,h1α,α2 +h2
0β ),

where h0 = [τ0] ∈ Ext1,1, h1 = [ξ1] ∈ Ext1,1+σ ,

α = 〈uh2
1, h1, h0〉 ∈ Ext3,5+2σ ,

and β = 〈uh2
1, h1, uh2

1, h1〉 ∈ Ext4,8+4σ .

Note that while uh3
1 = 0, all powers of h1 itself are nontrivial, as was the case when we inverted

a. 1.26

Killing the element a (continued)

ExtA C(1)?
= MC[h0,h1,α,β ]/(h0h1,uh3

1,h1α,α2 +h2
0β ),

Here is an illustrative chart.
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Each red arrow is shorthand for a diagonal tower of elements related by h1 and killed by u. The
elements in black are u-torsion free. As before, an element in Ext f ,x+yσ is shown at (x+ y− f , f ).
For example, the elements

h4
1 ∈ Ext4,4+4σ and h0α ∈ Ext4,6+2σ

would both appear at (4,4). 1.27

5.3 The polar spectral sequence

The polar spectral sequence

ExtA C(1)?
= MC[h0,h1,α,β ]/(h0h1,uh3

1,h1α,α2 +h2
0β ),

Filtering MR
? (which is M? without the negative cone) by powers of a, the polar filtration, yields

the polar spectral sequence
Z/2[a]⊗ExtA C(1)?

=⇒ ExtA R(1)?
.

It has three differentials:

d1(u) = ah0, d2(u2) = a2uh1 and d3(u3h2
1) = a3

α.

This leads to a ring with 9 generators and 22 relations.
The answer for the negative cone is even more complicated. 1.28

HAPPY BIRTHDAY,

PAUL!
1.29
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