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The slice spectral sequence and the slice filtration

The slice spectral sequence is the main computational device
used to prove the Kervaire invariant theorem.

It is based on a filtration of the category of G-spectra Sp€,
where G is a finite group.

The slice filtration is an equivariant analog of the filtration of the
category Sp of ordinary spectra by connectivity.
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The slice filtration

The slice spectral sequence and the slice filtration revisited

The slice spectral sequence is the main computational device e
used to prove the Kervaire invariant theorem. g (e
Localizing

subcategories

It is based on a filtration of the category of G-spectra Sp€, e orgnalsics
where G is a finite group. fitration
Geometric fixed points
The slice filtration is an equivariant analog of the filtration of the e germtonef
category Sp of ordinary spectra by connectivity. The subcategores 7
and 72,
The purpose of this talk is to give a new definition of it that is
easier to work with than the original one.

It makes use of equivariant constructions such as isotropy
separation and geometric fixed points, which we will describe
in due course.
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Localizing subcategories
First we need some general machinery.

Let M be a pointed topological model category meaning one
that is enriched over the category T of pointed topological
spaces.

A localizing subcategory = of M is a full subcategory with three
properties:
(i) Any object weakly equivalent to one in 7 is also in 7.

(i) f W— X — Y is acofiber sequence with W in 7, then X
is in 7 iff Y is in 7. We are not requiring W to be in 7 if X
and Y are.

(iiiy Any wedge sum (finite or infinite) of objects in 7 is in .

Example

Let M be either T (pointed spaces) or Sp (spectra) and let
Tn C M be the subcategory of (n — 1)-connected spaces or
spectra.
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The slice filtration
revisited

Mike Hill
Mike Hopkins
Doug Ravenel

The original slice
filtration

Geometric fixed points
The new definition of
the slice filtration

The subcategories ‘r,?

and G,



Localizing subcategories (continued)

A localizing subcategory 7 of pointed topological model
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A localizing subcategory 7 of pointed topological model
category M is a full subcategory with three properties:
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isin 7 iff Y'is in 7. We are not requiring W to be in 7 if X
and Y are.

(iii) Any wedge sum (finite or infinite) of objects in 7 is in .

The complement 7 of 7 is the subcategory of objects Y such
that the space M(X, Y) is contractible for all X in 7.
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Localizing subcategories (continued)

A localizing subcategory 7 of pointed topological model
category M is a full subcategory with three properties:

(i) Any object weakly equivalent to one in 7 is also in 7.

(i) f W— X — Y is a cofiber sequence with W in 7, then X
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(iii) Any wedge sum (finite or infinite) of objects in 7 is in .

The complement 7 of 7 is the subcategory of objects Y such
that the space M(X, Y) is contractible for all X in 7.
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Form, C T or7, C Sp as above, 75 is the subcategory
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Localizing subcategories (continued)

A localizing subcategory 7 of pointed topological model
category M is a full subcategory with three properties:
(i) Any object weakly equivalent to one in 7 is also in 7.

(i) f W— X — Y is a cofiber sequence with W in 7, then X
isin 7 iff Y'is in 7. We are not requiring W to be in 7 if X
and Y are.

(iii) Any wedge sum (finite or infinite) of objects in 7 is in .

The complement 7 of 7 is the subcategory of objects Y such
that the space M(X, Y) is contractible for all X in 7.

Example

Form, C T or7, C Sp as above, 75 is the subcategory
n-coconnected spaces or spectra, meaning ones with no
homotopy in dimensions n and above.
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A localizing subcategory 7 of pointed topological model
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Localizing subcategories (continued)
A localizing subcategory 7 of pointed topological model
category M is a full subcategory with three properties:
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Localizing subcategories (continued)

A localizing subcategory 7 of pointed topological model
category M is a full subcategory with three properties:
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and Y are.

(iiiy Any wedge sum (finite or infinite) of objects in 7 is in .
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The slice filtration
revisited

Mike Hill
Mike Hopkins
Doug Ravenel

The original slice
filtration

Geometric fixed points
The new definition of
the slice filtration

The subcategories 7',?

G
and 72,



Localizing subcategories (continued)
A localizing subcategory 7 of pointed topological model
category M is a full subcategory with three properties:
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Localizing subcategories (continued)
A localizing subcategory 7 of pointed topological model
category M is a full subcategory with three properties:
(i) Any object weakly equivalent to one in 7 is also in 7.
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Localizing subcategories (continued)

A localizing subcategory 7 of pointed topological model
category M is a full subcategory with three properties:
(i) Any object weakly equivalent to one in 7 is also in 7.

(i) f W — X — Y is a cofiber sequence with W in 7, then X
is in 7 iff Yis in 7. We are not requiring W to be in 7 if X
and Y are.

(iiiy Any wedge sum (finite or infinite) of objects in 7 is in .

Let T = {T,} be a set of objects in M. The localizing
subcategory generated by T is smallest subcategory of M
containing the objects of T and closed under weak
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Example

The localizing subcategory t, above of (n — 1)-connected

spaces or spectra is the one generated by the object S". In the

stable case we can define a spectrum S" for n < 0.
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Localizing subcategories (continued)

A localizing subcategory 7 of pointed topological model
category M is a full subcategory with three properties:
(i) Any object weakly equivalent to one in 7 is also in 7.

(i) f W — X — Y is a cofiber sequence with W in 7, then X
is in 7 iff Yis in 7. We are not requiring W to be in 7 if X
and Y are.

(iiiy Any wedge sum (finite or infinite) of objects in 7 is in .

Let T = {T,} be a set of objects in M. The localizing
subcategory generated by T is smallest subcategory of M
containing the objects of T and closed under weak
equivalence, cofibers, extensions and arbitrary wedges.

Example

The localizing subcategory t, above of (n — 1)-connected

spaces or spectra is the one generated by the object S". In the
stable case we can define a spectrum S" forn < 0. Forn > 0,
the spectrum S" is understood to be the suspension spectrum

for the space S".
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Theorem

(Bousfield and Dror Farjoun) The functors P™ and P,. Let
be a localizing subcategory of a pointed topological model
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Theorem

(Bousfield and Dror Farjoun) The functors P™ and P,. Let
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category M. Then the inclusion functor 7 — M has a left
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Example
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Localizing subcategories (continued)

Theorem

(Bousfield and Dror Farjoun) The functors P™ and P,. Let
be a localizing subcategory of a pointed topological model
category M. Then the inclusion functor 7 — M has a left
adjoint P™ : M — 7+ with fiber P;.
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Example

For .1 as above (n-connected objects), we denote these two
functors by P" and P, 1. P"X is the nth Postnikov section of X,
the space or spectrum obtained by Killing all homotopy groups

above dimension n.
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Localizing subcategories (continued)

Theorem

(Bousfield and Dror Farjoun) The functors P™ and P,. Let
be a localizing subcategory of a pointed topological model
category M. Then the inclusion functor 7 — M has a left
adjoint P™ : M — 7+ with fiber P;.

P S
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Example

For .1 as above (n-connected objects), we denote these two
functors by P" and P, 1. P"X is the nth Postnikov section of X,
the space or spectrum obtained by Killing all homotopy groups

above dimension n. P,.1X is the n-connected cover of X.
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Example Mike Hill
. Mike Hopkins
For .1 as above (n-connected objects), we denote these two Doug Ravenel
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For .1 as above (n-connected objects), we denote these two
functors by P" and P 1.

P"X is the nth Postnikov section of X, the space or spectrum
obtained by killing all homotopy groups above dimension n.
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For .1 as above (n-connected objects), we denote these two
functors by P" and P 1.

P"X is the nth Postnikov section of X, the space or spectrum
obtained by killing all homotopy groups above dimension n.
Pn.1X is the n-connected cover of X.

The Postnikov tower of X is the diagram
cee s PP s POX s PITX

Its limit is X and its colimit is contractible.

We denote the fiber of the map P"X — P"~'X by P7X, the nth
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Localizing subcategories (continued)

Example

For .1 as above (n-connected objects), we denote these two
functors by P" and P 1.

P"X is the nth Postnikov section of X, the space or spectrum
obtained by killing all homotopy groups above dimension n.
Pn.1X is the n-connected cover of X.

The Postnikov tower of X is the diagram
cee s PP s POX s PITX

Its limit is X and its colimit is contractible.

We denote the fiber of the map P"X — P"~'X by P7X, the nth
layer of the tower. It is the Eilenberg-Mac Lane space or
spectrum capturing 7, X. It lies in the intersection 7, N
nth layer category, which we will abbreviate by 7—p.
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For each subgroup H C G we have

e The regular representation py and its one point
compactification S*+.

e For each integer m an H-spectrum S™PH,
e The induced G-spectrum
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S(m, H) = Gy /\ S™".

It is underlain by a wedge of spheres of dimension m|H|,
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The original slice filtration

We now work in the category of G-spectra Sp© with a suitable
model category structure.

For each subgroup H C G we have

e The regular representation py and its one point
compactification S*+.

e For each integer m an H-spectrum S™PH,
e The induced G-spectrum

o~

S(m, H) = Gy /\ S™".

It is underlain by a wedge of spheres of dimension m|H|,
which are permuted by G and left invariant by H.
e We call §(m, H) a slice sphere. We also use that term for

its single desuspension ¥~ §(m, H), but not for other
suspensions or desuspensions.

The slice filtration
revisited

Mike Hill
Mike Hopkins
Doug Ravenel

Localizing
subcategories

Geometric fixed points
The new definition of
the slice filtration

The subcategories 7',?

G
and 72,



The original slice filtration (continued)

§(m, H) =G, A S™H formeZand HC G.

The slice filtration
revisited

Mike Hill
Mike Hopkins
Doug Ravenel

Localizing
subcategories

Geometric fixed points
The new definition of
the slice filtration

The subcategories 7-,?

and G,



The original slice filtration (continued)

§(m, H) =G, A S™H formeZand HC G.
For each integer n, let

72 = {8(m, Hy: miH| > n} U {=~'8(m, H): miH| ~ 1> n}.

The slice filtration
revisited

Mike Hill
Mike Hopkins
Doug Ravenel

Localizing
subcategories

Geometric fixed points
The new definition of
the slice filtration

The subcategories 7-,?

and G,



The original slice filtration (continued)

S(m,H) := G, AS™* formeZand HC G.
For each integer n, let
TG = {é(m, H): m|H| > n} U {z*1§(m, H): mH| -1 > n}.

We originally defined the localizing subcategory Spgn

The slice filtration
revisited

Mike Hill
Mike Hopkins
Doug Ravenel

Localizing
subcategories

Geometric fixed points
The new definition of
the slice filtration

The subcategories ‘r,?

and G,



The original slice filtration (continued)

S(m,H) := G, AS™ formeZand HC G.
For each integer n, let
TG = {é(m, H): m|H| > n} U {z*@(m, H): mH| -1 > n}.

We originally defined the localizing subcategory Spgn to be the
one generated by T¢ as above.

The slice filtration
revisited

Mike Hill
Mike Hopkins
Doug Ravenel

Localizing
subcategories

Geometric fixed points
The new definition of
the slice filtration

The subcategories ‘r,?

G
and 72,



The original slice filtration (continued)

S(m,H) := G, AS™ formeZand HC G.
For each integer n, let
TG = {é(m, H): m|H| > n} U {f@(m, H): mH| -1 > n}.

We originally defined the localizing subcategory Spgn to be the
one generated by T,¢ as above. Now | will denote it by ?pgn

The slice filtration
revisited

Mike Hill
Mike Hopkins
Doug Ravenel

Localizing
subcategories

Geometric fixed points
The new definition of
the slice filtration

The subcategories ‘r,?

G
and 72,



The original slice filtration (continued)

S(m,H) := G, AS™ formeZand HC G.
For each integer n, let
TG = {é(m, H): m|H| > n} U {z*@(m, H): mH| -1 > n}.

We originally defined the localizing subcategory Spgn to be the

one generated by T,¢ as above. Now | will denote it by ?pgn to
avoid confusion later.

The slice filtration
revisited

Mike Hill
Mike Hopkins
Doug Ravenel

Localizing
subcategories

Geometric fixed points
The new definition of
the slice filtration

The subcategories ‘r,?

and 72,



The original slice filtration (continued)

S(m,H) := G, AS™ formeZand HC G.
For each integer n, let
TG = {é(m, H): m|H| > n} U {f@(m, H): mH| -1 > n}.

We originally defined the localizing subcategory Spgn to be the

one generated by T,¢ as above. Now | will denote it by ?pgn to
avoid confusion later. A spectrum in it is slice

(n — 1)-connected.

The slice filtration
revisited

Mike Hill
Mike Hopkins
Doug Ravenel

Localizing
subcategories

Geometric fixed points
The new definition of
the slice filtration

The subcategories ‘r,?

and 72,



The original slice filtration (continued)

S(m,H) := G, AS™ formeZand HC G.
For each integer n, let
TG = {é(m, H): m|H| > n} U {f@(m, H): mH| -1 > n}.

We originally defined the localizing subcategory Spgn to be the

one generated by T,¢ as above. Now | will denote it by ?pgn to
avoid confusion later. A spectrum in it is slice

(n — 1)-connected. We denoted its complement by ?pgn.

The slice filtration
revisited

Mike Hill
Mike Hopkins
Doug Ravenel

Localizing
subcategories

Geometric fixed points
The new definition of
the slice filtration

The subcategories ‘r,?

and 72,



The original slice filtration (continued)

S(m,H) := G, AS™ formeZand HC G.
For each integer n, let
TG = {é(m, H): m|H| > n} U {f@(m, H): mH| -1 > n}.

We originally defined the localizing subcategory Spgn to be the

one generated by T,¢ as above. Now | will denote it by ?pgn to
avoid confusion later. A spectrum in it is slice

(n — 1)-connected. We denoted its complement by ?pgn.

As before it leads to functors P” and Py,

The slice filtration
revisited

Mike Hill
Mike Hopkins
Doug Ravenel

Localizing
subcategories

Geometric fixed points
The new definition of
the slice filtration

The subcategories ‘r,?

G
and 72,



The original slice filtration (continued)

S(m,H) := G, AS™ formeZand HC G.
For each integer n, let
TG = {é(m, H): m|H| > n} U {f@(m, H): mH| -1 > n}.

We originally defined the localizing subcategory Spgn to be the

one generated by T,¢ as above. Now | will denote it by ?pgn to
avoid confusion later. A spectrum in it is slice

(n — 1)-connected. We denoted its complement by ?pgn.

As before it leads to functors P" and P,.+, and to a diagram

ce > PMIX S PIX 5 PPYX

The slice filtration
revisited

Mike Hill
Mike Hopkins
Doug Ravenel

Localizing
subcategories

Geometric fixed points
The new definition of
the slice filtration

The subcategories 7',?

and G,



The original slice filtration (continued)

S(m,H) := G, AS™ formeZand HC G.
For each integer n, let
TG = {é(m, H): m|H| > n} U {f@(m, H): mH| -1 > n}.

We originally defined the localizing subcategory Spgn to be the

one generated by T,¢ as above. Now | will denote it by ?pgn to
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The original slice filtration (continued)
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S(m,H) = G, A S™H formeZand HC G.
For each integer n, let
TG = {é(m, H): m|H| > n} U {Z*1§(m, H): mH| -1 > n}.

We originally defined the localizing subcategory Spgn to be the

one generated by T,¢ as above. Now | will denote it by ?pgn to
avoid confusion later. A spectrum in it is slice

(n — 1)-connected. We denoted its complement by ?pgn.
As before it leads to functors P" and P,.+, and to a diagram
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This is the slice tower of the G-spectrum X. Its nth layer P} X is
the n-slice of X.

The slice filtration
revisited

Mike Hill
Mike Hopkins
Doug Ravenel

Localizing
subcategories

Geometric fixed points
The new definition of
the slice filtration

The subcategories 7',?

G
and 72,



The original slice filtration (continued)

o~

S(m,H) = G, A S™H formeZand HC G.
For each integer n, let
TG = {é(m, H): m|H| > n} U {Z*1§(m, H): mH| -1 > n}.

We originally defined the localizing subcategory Spgn to be the
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The slice filtration

The original slice filtration (continued) revisited

o~

S(m,H) = G, A S™H formeZand HC G.

Mike Hill
Mike Hopkins

For each integer n, let Doug Ravenel
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avoid confusion later. A spectrum in it is slice and -G,
(n — 1)-connected. We denoted its complement by ?pgn.

As before it leads to functors P" and P,.+, and to a diagram
ce > PMIX S PIX 5 PPYX

This is the slice tower of the G-spectrum X. Its nth layer P X is
the n-slice of X. Unlike the classical case, its equivariant
homotopy groups need not be concentrated in dimension n.
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The original slice filtration (continued)

S(m, H) := G, A SmrH formeZand HC G.
The localizing subcategory ?pgn is the one generated by
n

78 = {S(m.H): miH| = n} U {=~"S(m, H): m|H| - 1 > n}.

We later learned that it is more convenient to define Spgn to be
the one generated by

W:{&mHymmzn}

and redefine the slice tower accordingly.
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We later learned that it is more convenient to define Spgn to be
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n

We later learned that it is more convenient to define Spgn to be
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The original slice filtration (continued)
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S(m,H) = Gy A Smr formeZand HC G.
The localizing subcategory ?pgn is the one generated by

TG:{§UmHyrmHyzn}u{z4§UmHy,mHy-1Zn}

n

We later learned that it is more convenient to define Spgn to be
the one generated by

W:{&mHymmzn}
and redefine the slice tower accordingly.

This leads to better multiplicative properties. For X € Spgm
and Y € Spg,, we have X A Y € Sp¢,,, ., as one would hope.
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The original slice filtration (continued)

S(m, H) := G, A SmrH formeZand HC G.
The localizing subcategory ?pgn is the one generated by

78 = {S(m.H): miH| = n} U {=~"S(m, H): m|H| - 1 > n}.

n

We later learned that it is more convenient to define Sp¢, to be
the one generated by B

W:{&mHymmzn}
and redefine the slice tower accordingly.

This leads to better multiplicative properties. For X € Spgm

and Y € Spg,, we have X A Y € Spg . as one would hope.
This was not always true under the original definition.
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The original slice filtration (continued)

§(m, H) =G, A S™H formeZand HC G.

We now define the localizing subcategory Sp€,, to be the one
generated by -

TS = {§(m, H): m|H| > n}.

We will give an equivalent definition in terms of ordinary
connectivity that is easier to work with.

It requires the use of geometric fixed points.
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There is a functor ®H such that

e for G-spectra X and Y, (X A Y)®H ~ X®H A Y*H and
e for a G-space K with suspension spectrum XK,
(Z®K)PH ~ yoo(KH).
It also enjoys the following properties.
e For the trivial group e, X*®¢ ~ (#X, where [§ denotes the
forgetful functor Sp¢ — Sp.

e For G-spectra X and Y,amap f: X — Y is an equivariant
equivalence iff (f)®" is an ordinary equivalence for each
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e In particular, X is equivariantly contractible iff X is
contractible for each H C G.

e For an orthogonal representation V of G,
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For any nonempty family F of subgroups of G closed under
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These properties characterize it up to equivariant homotopy
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W, [ * forHeF
(EF)" = { 0 otherwise.

We are interested in the case F = P, the family of all proper
subgroups of G. Let EP be the mapping cone of EP — %, or
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X by The original slice
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We define the geometric fixed point spectrum of a G-spectrum
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X®C = ((EP A X)))C,

where (—); indicates fibrant replacement, meaning conversion
of the spectrum into its corresponding Q-spectrum.

For H C G, we define X*# = (i5X)®*H, where i : Sp& — Sp"!
is the restriction or forgetful functor.
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Isotropy separation and geometric fixed points (continued)

How do we construct ®G?

We define the geometric fixed point spectrum of a G-spectrum
X by
X®C = ((EP A X)))C,

where (—); indicates fibrant replacement, meaning conversion
of the spectrum into its corresponding Q-spectrum.

For H C G, we define X*# = (i5X)®*H, where i : Sp& — Sp"!
is the restriction or forgetful functor.

We will call the connectivities of the ordinary spectra X® for
various H the geometric connectivity of X.
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We are now ready for the some new localizing subcategories of
SpC defined in terms of geometric connectivity.
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SpC defined in terms of geometric connectivity.

Mike Hill
Mike Hopkins
Main Definition Doug Ravenel
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We are now ready for the some new localizing subcategories of
SpC defined in terms of geometric connectivity.

Mike Hill
Mike Hopkins
Doug Ravenel

Main Definition

Localizing

For each integer n, let ¢ be the full subcategory of Sp® whose  sicaiegories
objects are G-spectra X satisfying mX®" = 0 for k < n/|H|, The orina e
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The new definition of the slice filtration

We are now ready for the some new localizing subcategories of
SpC defined in terms of geometric connectivity.
Main Definition

For each integer n, let ¢ be the full subcategory of Sp® whose
objects are G-spectra X satisfying mx X®" = 0 for k < n/|H|,
forall H C G.

Proposition

Properties of 7C.
© The subcategory ¢ is a localizing subcategory of Sp®.
® The spectrum S™6 s in TmGl o for each integer m.
® IfXisintSand Y isint8, then X N Y isinT&, .

@ For each integer n there is an equivalence of categories
8 > TﬁHG‘ given by X — X A Sr¢ with inverse given by
X— XNA\Sre.

The slice filtration
revisited

Mike Hill
Mike Hopkins
Doug Ravenel

Localizing
subcategories

The original slice
filtration

Geometric fixed points

The subcategories r,?

and 72,



The new definition of the slice filtration (continued) e evitea
Main Definition -
Mike Hill
For each integer n, let ¢ be the full subcategory of Sp® whose e
objects are G-spectra X satisfying mx X®" = 0 for k < n/|H|, o
fOI’ a” H g G ssggr;g;%ries
The original slice
filtration

Geometric fixed points

The subcategories ‘r,?

and G,



The slice filtration

The new definition of the slice filtration (continued) revisited

Main Definition

Mike Hill

For each integer n, let ¢ be the full subcategory of Sp® whose e
objects are G-spectra X satisfying mx X®" = 0 for k < n/|H|, o
fOI’ a”H g G subcateg?)ries
The original slice
filtration
Main Theorem Geometric fixed points
The localizing subcategories SpS,, (defined in terms of slice e
spheres) and 7€ are equal, The subcategories &

G
and 72,



The new definition of the slice filtration (continued) e evitea

Main Definition

Mike Hill

For each integer n, let ¢ be the full subcategory of Sp® whose e
objects are G-spectra X satisfying mx X®" = 0 for k < n/|H|, o
fOI’ a”H g G s(u)gsalfgé%ries

The original slice
filtration

Main Theorem Geometric fixed points

The localizing subcategories Sp¢,, (defined in terms of slice e

spheres) and 7€ are equal, so they lead to the same slice The subcategories 77
towers. and G,



The new definition of the slice filtration (continued) e evitea

Main Definition

Mike Hill
For each integer n, let ¢ be the full subcategory of Sp® whose e
objects are G-spectra X satisfying mx X®" = 0 for k < n/|H|, o
fOI’ a”H g G s(u)gsalfgé%ries

The original slice
filtration

Main Theorem

Geometric fixed points

The localizing subcategories Sp¢,, (defined in terms of slice e
spheres) and 7€ are equal, so they lead to the same slice The subcategories 77
towers. and G,

It is easy to show that the slice sphere §(m, H)isin TanIHI’



The new definition of the slice filtration (continued)

Main Definition

For each integer n, let ¢ be the full subcategory of Sp® whose
objects are G-spectra X satisfying mx X®" = 0 for k < n/|H|,
for all H C G.

Main Theorem

The localizing subcategories Spgn (defined in terms of slice
spheres) and 7€ are equal, so they lead to the same slice
towers.

It is easy to show that the slice sphere S(m, H) is in TanIHI’
which implies that Spg, C 7.7.
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The new definition of the slice filtration (continued)

Main Definition

For each integer n, let ¢ be the full subcategory of Sp® whose
objects are G-spectra X satisfying mx X®" = 0 for k < n/|H|,
for all H C G.

Main Theorem
The localizing subcategories Spgn (defined in terms of slice
spheres) and 7€ are equal, so they lead to the same slice

towers.
It is easy to show that the slice sphere S(m, H) is in TanIHI’

which implies that Sp¢, C 7&. The converse is more delicate,
and requires an argument by induction on the order of G
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The slice filtration

The new definition of the slice filtration (continued) revisited

Main Definition

Mike Hill

For each integer n, let 77 be the full subcategory of Sp® whose Mike Hopking
objects are G-spectra X satisfying mx X®" = 0 for k < n/|H|, o
fOI’ a”H g G subcateg?)ries
The original slice
filtration
Main Theorem Geometric fixed points
The localizing subcategories SpS,, (defined in terms of slice e
spheres) and 7€ are equal, so they lead to the same slice The subcategories 75
towers. and 78,

It is easy to show that the slice sphere S(m, H) is in TanIHI’

which implies that Sp¢, C 7&. The converse is more delicate,
and requires an argument by induction on the order of G that
uses the isotropy separation sequence

EP.AX = X — EPAX.
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What do the subcategories ¢ and 7., look like? Eee

Main Definition -
For each integer n, let ¢ be the full subcategory of Sp® whose

objects are G-spectra X satisfying mxX®" = 0 for k < n/|H|, Mike Hopkins
for a” H C G Doug Ravenel
Localizing
Classically the subcategories 7, C Sp are all equivalent to sticategores
each other up to suspension. The same goes for the nth layer — fiaion
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What do the subcategories 7¢ and 7&, look like?

Main Definition

For each integer n, let ¢ be the full subcategory of Sp® whose
objects are G-spectra X satisfying mx X®H = 0 for k < n/|H|,
forallH C G.

Classically the subcategories 7, C Sp are all equivalent to

each other up to suspension. The same goes for the nth layer
categories 7—, = 7, N 77,;. Neither of these statements holds
in the equivariant case. Our new definition makes it easier to

study these subcategories.

Recall the floor function | x|, the greatest integer < x.
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What do the subcategories 7¢ and 7&, look like?

Main Definition

For each integer n, let ¢ be the full subcategory of Sp® whose
objects are G-spectra X satisfying mx X®H = 0 for k < n/|H|,
forallH C G.

Classically the subcategories 7, C Sp are all equivalent to
each other up to suspension. The same goes for the nth layer
categories 7—, = 7, N 77,;. Neither of these statements holds
in the equivariant case. Our new definition makes it easier to
study these subcategories.

Recall the floor function | x|, the greatest integer < x.

Proposition

The slice filtration of representation spheres and their
duals. Let V be a representation of G of degree d.
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What do the subcategories 7¢ and 7&, look like?

Main Definition

For each integer n, let ¢ be the full subcategory of Sp® whose
objects are G-spectra X satisfying mx X®H = 0 for k < n/|H|,
forallH C G.

Classically the subcategories 7, C Sp are all equivalent to
each other up to suspension. The same goes for the nth layer
categories 7—, = 7, N 77,;. Neither of these statements holds
in the equivariant case. Our new definition makes it easier to
study these subcategories.

Recall the floor function | x|, the greatest integer < x.

Proposition

The slice filtration of representation spheres and their
duals. Let V be a representation of G of degree d.

@ dim V¥ > |d/|H|| for all subgroups H C G iff SV isin7§.
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What do the subcategories 7¢ and 7&, look like?

Main Definition

For each integer n, let ¢ be the full subcategory of Sp® whose
objects are G-spectra X satisfying mx X®H = 0 for k < n/|H|,
forallH C G.

Classically the subcategories 7, C Sp are all equivalent to
each other up to suspension. The same goes for the nth layer
categories 7—, = 7, N 77,;. Neither of these statements holds
in the equivariant case. Our new definition makes it easier to
study these subcategories.

Recall the floor function | x|, the greatest integer < x.

Proposition

The slice filtration of representation spheres and their
duals. Let V be a representation of G of degree d.

@ dim V¥ > |d/|H|| for all subgroups H C G iff SV isin7§.
® dim V" < |d/|H|| for all subgroups H C G iff S~V is in
G
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Proposition

Let V be a representation of G of degree d.
@ dim V¥ > |d/|H|| for all subgroups H C G iff SV isin 7§.
(2] diGm VH < |d/|H|] for all subgroups H C G iff S~V is in

T 4~

Note that SV is never in 2 ; and S~V is never in 7 ;. If the
first condition above is not met by V,

The slice filtration
revisited

Mike Hill
Mike Hopkins
Doug Ravenel

Localizing
subcategories

The original slice
filtration

Geometric fixed points

The new definition of
the slice filtration



What do the subcategories ¢ and &, look like? (continued) ™ e
Proposition -
Let V be a representation of G of degree d. A
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@ dim V¥ > |d/|H|| for all subgroups H C G iff SV isin 7§.
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first condition above is not met by V, then SV is not in 7§ but
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Proposition

Let V be a representation of G of degree d.
@ dim V¥ > |d/|H|| for all subgroups H C G iff SV isin 7§.
(5] diGm VH < |d/|H|] for all subgroups H C G iff S~V is in

T 4~

Note that SV is never in 2 ; and S~V is never in 7 ;. If the
first condition above is not met by V, then SV is not in 7§ but
lies instead in a larger subcategory 75 for some d’ < d. The
same goes for the second condition and the smallest
subcategory containing S—Y.

Under the old definition, it was harder to determine the slice
connectivity of S¥ and S—V.
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What do the subcategories ¢ and 7, look like? (continued)

Proposition

Let V be a representation of G of degree d.
@ dim V¥ > |d/|H|| for all subgroups H C G iff SV isin 7§.
(5] diGm VH < |d/|H|] for all subgroups H C G iff S~V is in

T 4~

Note that SV is never in 2 ; and S~V is never in 7 ;. If the

first condition above is not met by V, then SV is not in 7§ but
lies instead in a larger subcategory 75 for some d’ < d. The
same goes for the second condition and the smallest
subcategory containing S—V.

Under the old definition, it was harder to determine the slice
connectivity of S¥ and S—V.

Similar statements hold for G, A SY and G, A S~V fora
representation V of a subgroup K C G.
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@ dim V" > |d/|H|] for all subgroups H C G iff SV is in 7§.
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Proposition

Let V be a representation of G of degree d.
@ dim V¥ > |d/|H|| for all subgroups H C G iff S is in 7.
(2] dicr;n VH < |d/|H]|] for all subgroups H C G iff S~V is in

T g-

Recall the ceiling function[x], the smallest integer > x.
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Smashing with representation spheres. Suppose there is a
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Proposition

Let V be a representation of G of degree d.
@ dim V" > |d/|H|] for all subgroups H C G iff SV is in 7§.
(2] dicr;n VH < |d/|H]|] for all subgroups H C G iff S~V is in
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Recall the ceiling function[x], the smallest integer > x.
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What do the subcategories ¢ and 7, look like? (continued)

Proposition

Let V be a representation of G of degree d.
@ dim V" > |d/|H|] for all subgroups H C G iff SV is in 7§.
(2] dicr;n VH < |d/|H]|] for all subgroups H C G iff S~V is in

T g-

Recall the ceiling function[x], the smallest integer > x.

Corollary 1

Smashing with representation spheres. Suppose there is a
degree d representation V of G and an integer n such that

[“‘J +dimVH = [nJerﬂ for all H C G.

Then SV A (=) : ¥ — 78, Is an equivalence of categories
whose inverse is S=V A (—),
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What do the subcategories ¢ and 7, look like? (continued)

Proposition

Let V be a representation of G of degree d.
@ dim V" > |d/|H|] for all subgroups H C G iff SV is in 7§.
(2] dicr;n VH < |d/|H]|] for all subgroups H C G iff S~V is in

T g-

Recall the ceiling function[x], the smallest integer > x.

Corollary 1

Smashing with representation spheres. Suppose there is a
degree d representation V of G and an integer n such that

[“‘J +dimVH = [nJerﬂ for all H C G.

Then SV A (=) : ¥ — 78, Is an equivalence of categories
whose inverse is S~V A (—), and conversely.
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Corollary 1 -

Mike Hill

Suppose there is a degree d representation V of G and an PR
integer n such that _—
s(u)gg;;g%ries
n + d The original slice
+dim V¥ = [ W forall H C G.
{IH W |H|

Geometric fixed points

The new definition of

Then SV A (=) : 78 — 78 4 is an equivalence of categories the sice filraton

whose inverse is S—V A (—), and conversely. _



What do the subcategories 7¢ and 76

Corollary 1

Suppose there is a degree d representation V of G and an
integer n such that

| +am v =

Then SV A (=) :T

G

G
n+d

n+d

|H|

|

' look like? (continued)

forall H C G.

is an equivalence of categories

whose inverse is S Y'A (=), and conversely.
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Let G be any finite group,
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Corollary 1

Mike Hill
Suppose there is a degree d representation V of G and an PR
integer n such that Lol
subcateg?)ries
n + d rigin I
[ = W +dim V¥ = [HW forall H C G. v
| ‘ ‘ | Geometric fixed points
% G The new definition of
Then SV A (=) : 78 = 1 ~q IS an equivalence of categories the sfice ftration
whose inverse is S Y'A (=), and conversely. _

Example

Let G be any finite group, and let V be the trivial representation
of degree 1.
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Corollary 1
i i .Mike Hil!
Suppose there is a degree d representation V of G and an PR
integer n such that Lol
subcateg?)ries
n + d rigin I
[ = W +dim V¥ = [HW forall H C G. v
| ‘ ‘ | Geometric fixed points
% G The new definition of
Then SV A (=) : 78 = 1 ~q IS an equivalence of categories the sfice ftration
whose inverse is S YA (-), and conversely. _

Example

Let G be any finite group, and let V be the trivial representation
of degree 1. Then the conditions above are met only when n is
divisible by |G|.
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Corollary 1
‘Mike HiII_
Suppose there is a degree d representation V of G and an PR
integer n such that Lol
subcateg?)ries
n + d rigin I
[ W +dim V¥ = [HW forall H C G. v
| H‘ ‘ | Geometric fixed points
% G The new definition of
Then SV A (=) : 78 = 1 nq IS @n equivalence of categories the slice fitration
whose inverse is S Y'A (=), and conversely. _
Example

Let G be any finite group, and let V be the trivial representation
of degree 1. Then the conditions above are met only when n is
divisible by |G|. It follows that ordinary suspension

T Tm‘G‘ i T,,G7| al+i+1 18 an equivalence of categories for
i=0,
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Corollary 1
Mike Hill
Suppose there is a degree d representation V of G and an PR
integer n such that
Is_(u)g?!fg;%ries
n + d rigin I
[ = W + dim VY = [HW forall H C G. fivgion
| ‘ ‘ | Geometric fixed points
The new definition of
Then SV A (=) : 78 — TG+ 4 Is an equivalence of categories the slice fitration
whose inverse is S YA (-), and conversely. _

Example

Let G be any finite group, and let V be the trivial representation
of degree 1. Then the conditions above are met only when n is
divisible by |G|. It follows that ordinary suspension

X Tm‘G‘ i T,,G7| al+i+1 18 an equivalence of categories for

i = 0, but not necessarily for0 < i < |G].
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Corollary 1

Suppose there is a degree d representation V of G and an Mike Hill
integer n such that LRt
n + d Localizing .
m VH f r // H C . subcategories
’V |H‘ -‘ + dl ’V ‘H| -‘ ora - G The original slice

filtration

Geometric fixed points

Then SY A (=) : 78 — 78 is an equivalence of categories -
. . n n+d The new definition of
whose inverse is S~V A (—), and conversely. the slce ffration

Corollary 2

Smashing layers with representation spheres. Suppose
that for a given V,
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Corollary 1
Suppose there is a degree d representation V of G and an Mike Hill
integer n such that LRt
n + d Localizing .
m VH for a// H C G subcategories
’V |H‘ -‘ + d ’V ‘H| —‘ - The original slice

filtration

Geometric fixed points

Then SY A (=) : 78 — 78 is an equivalence of categories -
. . n n+d The new definition of
whose inverse is S~V A (—), and conversely. the slce ffration

Corollary 2

Smashing layers with representation spheres. Suppose
that for a given V, the conditions of Corollary 1 are met for both
n=mandn=m+1.



The slice filtration

What do the subcategories ¢ and 7.8, look like? (continued)

Corollary 1
Suppose there is a degree d representation V of G and an Mike Hil
integer n such that LRt
n + d Localizing .
m VH for a// H C G subcategories
’V |H‘ -‘ + d ’V ‘H| —‘ - The original slice

filtration

Geometric fixed points

Then SY A (=) : 78 — 78 is an equivalence of categories -
. . n n+d The new definition of
whose inverse is S~V A (—), and conversely. the slce ffration

Corollary 2

Smashing layers with representation spheres. Suppose
that for a given V, the conditions of Corollary 1 are met for both
n=mandn=m+1. Then

SY A (-): Tfm — Tfm+d

is an equivalence of layer categories whose inverse is
SV A(-).
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Suppose there is a representation V' of degree d and an ML,
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integer n such that
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Then SV A (=) : ¥ — 78, Is an equivalence of categories the sce fitcation

whose inverse is S~V A (), and conversely. _
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Corollary 1

Suppose there is a representation V' of degree d and an
integer n such that

[lH}rdm VH = [”;ﬂ forallHC G.

Then SV A (=) : ¥ — 78, Is an equivalence of categories
whose inverse is S~V A (—), and conversely.

Example

An equivalence among the subcategories 77 and 7%,.
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Corollary 1
Mike Hill
Suppose there is a representation V' of degree d and an ML,
. oug Ravenel
integer n such that 5
d Is_(u)gglalfg;%ries
n + rigin: I
[“’J +dim VF = [ A W forall H C G. HOCHI
Geometric fixed points
. . . The new definition of
Then SV A (=) : ¥ — 78, Is an equivalence of categories the sce fitation
whose inverse is S~V A (—), and conversely. _

Example

An equivalence among the subcategories 7¢ and 7C,. Let
G be any finite group
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for all H C G.

T,fi 4 Is an equivalence of categories

whose inverse is S~V A (—), and conversely.

Example

An equivalence among the subcategories 7¢ and 7C,. Let

G be any finite group and V = pg.
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Corollary 1

Suppose there is a representation V' of degree d and an
integer n such that

| +am v =

Then SY A (=) : 78 —

n+d
|H

|

' look like? (continued)

for all H C G.

T,fi 4 Is an equivalence of categories

whose inverse is S~V A (—), and conversely.

Example

An equivalence among the subcategories 7¢ and 7C,. Let
G be any finite group and V = pg. Then the conditions of both
corollaries hold for any n.
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What do the subcategories 7¢ and 76

Corollary 1

Suppose there is a representation V' of degree d and an
integer n such that

| +am v =

Then SY A (=) : 78 —

n+d
|H

|

' look like? (continued)

for all H C G.

T,fi 4 Is an equivalence of categories

whose inverse is S~V A (—), and conversely.

Example

An equivalence among the subcategories 7¢ and 7C,. Let
G be any finite group and V = pg. Then the conditions of both
corollaries hold for any n. Hence Sre A (=) induces an

equivalence between ¢ and 76 |Gl
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What do the subcategories 7¢ and 76

Corollary 1

Suppose there is a representation V' of degree d and an
integer n such that

n+d
+dim VH = [
|

Then SY A (=) : 78 —

H

|

', look like? (continued)

for all H C G.

T,fi 4 Is an equivalence of categories

whose inverse is S~V A (—), and conversely.

Example

An equivalence among the subcategories 7¢ and 7C,. Let
G be any finite group and V = pg. Then the conditions of both
corollaries hold for any n. Hence Sre A (=) induces an
equivalence between T,, and r ntIGl” and between the layer

categories 8, and 7€

=n+|G|’

for all n.
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Suppose there is a representation V of degree d and an Mike Hopkins
integer n such that Doug Ravenel
Localizing .
n . H n—+d SUbCaI.eg.ones.
[IWW Fdm V= [ Hi w forall H ¢ G.

Geometric fixed points

Then SV A (=) : 7§ — 78 4 is an equivalence of categories The new definiion of

the slice filtration

whose inverse is S~V A (—), and conversely. _
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Corollary 1
Suppose there is a representation V of degree d and an Mike Hopkins
integer n such that Doug Ravenel
Localizing
subcategories
n+d
dlm VH + for a//H g G ‘I_'hec_JriginaI slice
|H‘ ‘ H| filtration
Geometric fixed points
Then SV A (=) : ¥ — 78, Is an equivalence of categories e ew defiiton of
whose inverse is S YA (-), and conversely. _

Example

Another equivalence among the subcategories 7.
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Corollary 1

Mike Hill

Suppose there is a representation V of degree d and an Mike Hopkins

Doug Ravenel

integer n such that
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subcategories
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Geometric fixed points
Then SV A (=) : ¥ — 78, Is an equivalence of categories o e
whose inverse is S~V A (—), and conversely. _

Example

Another equivalence among the subcategories 7¢. Let G
be any finite group and
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Corollary 1

Mike Hill

Suppose there is a representation V of degree d and an Mike Hopkins

Doug Ravenel

integer n such that

Localizing

n ] n + d subcategories
— | +dim V" = forall H C G. The orginal sice
|H‘ ‘ H| filtration
Geometric fixed points
Then SV A (=) : ¥ — 78, Is an equivalence of categories BTG
whose inverse is S~V A (—), and conversely. _

Example

Another equivalence among the subcategories 7¢. Let G
be any finite group and V = 5, the reduced regular
representation.



What do the subcategories ¢ and 7.8, look like? (continued)

Corollary 1
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Then SV A (=) : ¥ — 78, Is an equivalence of categories

whose inverse is S~V A (—), and conversely.
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Corollary 1
Suppose there is a representation V of degree d and an RS
integer n such that Poug Ravenel
Localizing .
n ] n + d subcategories
— | +dim V" = forall H C G. The orginal sice
|H‘ ‘ H| filtration
Geometric fixed points
Then SV A (=) : ¥ — 78, Is an equivalence of categories BTG
whose inverse is S~V A (—), and conversely. _

Example

Another equivalence among the subcategories 7¢. Let G
be any finite group and V = 5, the reduced regular
representation. Then the conditions above hold for any n
congruent to 1 mod |G|. Hence SPc A (—) induces an
equivalence between & and T‘%I ,
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Corollary 1 :
Suppose there is a representation V of degree d and an RS
integer n such that Poug Ravenel
Localizing .
n ] n + d subcategories
— | +dim V" = forall H C G. The orginal sice
|H‘ ‘ H| filtration
Geometric fixed points
Then SV A (=) : ¥ — 78, Is an equivalence of categories BTG
whose inverse is S~V A (—), and conversely. _
Example

Another equivalence among the subcategories 7¢. Let G
be any finite group and V = 5, the reduced regular
representation. Then the conditions above hold for any n
congruent to 1 mod |G|. Hence SPc A (—) induces an
equivalence between & and T‘%I , but the corresponding layer
categories may differ.
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Mike Hill
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More equivalences among the subcategories 7¢. Doug Ravenel
e Let G = C,. Then the two previous examples show that Localizing
) 0 subcategories
each ¢ is equivalent to 7§, but the layers &, and 76, are coones
= - The original slice
dIStInCt filtration
o Let G= Cy. Then V = o, the sign representation leads to """
an equivalence between ¢ and 78, the sl fitration
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Example -
Mike Hill
- . Mike Hopki
More equivalences among the subcategories 7¢. Doug Ravenel
e Let G = C,. Then the two previous examples show that Localizing
. " subcategories
each ¢ is equivalent to 7§, but the layers &, and 76, are coones
= - The original slice
dlStlnCt filtration
o Let G= Cy. Then V = o, the sign representation leads to """ ™"
an equivalence between ¢ and 72, while V = pg (the the siceftation

reduced regular representation) leads to one between _
and .
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Example -
Mike Hill
- . Mike Hopki
More equivalences among the subcategories 7¢. Doug Ravenel
e Let G = C,. Then the two previous examples show that Localizing
. " subcategories
each 7€ is equivalent to 7, but the layers 7S, and 78, are coones
= - The original slice
dlStlnCt filtration
o Let G= Cy. Then V = o, the sign representation leads to """ ™"
an equivalence between ¢ and 72, while V = pg (the the siceftation

reduced regular representation) leads to one between _
and t2. Hence each 7€ is equivalent to either 7€ or 7£.
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Example -
Mike Hill
- . Mike Hopki
More equivalences among the subcategories 7¢. Doug Ravenel
e Let G = C,. Then the two previous examples show that Localizing
. " subcategories
each 7€ is equivalent to 7, but the layers 7S, and 78, are coones
= - The original slice
dlStlnCt filtration
o Let G= Cy. Then V = o, the sign representation leads to """ ™"
an equivalence between ¢ and 72, while V = pg (the the siceftation

reduced regular representation) leads to one between _
and t2. Hence each 7€ is equivalent to either 7€ or 7£.

o LletG = Cg.
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Example -
Mike Hill
- . Mike Hopki
More equivalences among the subcategories 7¢. Doug Ravenel
e Let G = C,. Then the two previous examples show that Localizing
. " subcategories
each 7€ is equivalent to 7, but the layers 7S, and 78, are coones
= - The original slice
dlStlnCt filtration
o Let G= Cy. Then V = o, the sign representation leads to """ ™"
an equivalence between ¢ and 72, while V = pg (the the siceftation

reduced regular representation) leads to one between _
and t2. Hence each 7€ is equivalent to either 7€ or 7£.

e Let G= Cg. Let o be the sign representation
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Example -
Mike Hill
. . Mike Hopkii
More equivalences among the subcategories 7¢. Doug Ravenel
e Let G = C,. Then the two previous examples show that Localizing
. " subcategories
each 7€ is equivalent to 7, but the layers 7S, and 78, are sones
= - The original slice
dIStlnCt filtration
o Let G= Cy. Then V = o, the sign representation leads to """ ™"
an equivalence between ¢ and 72, while V = pg (the the siceftation

reduced regular representation) leads to one between _
and t2. Hence each 7€ is equivalent to either 7€ or 7£.

e Let G = Cg. Let o be the sign representation and let A and
X' be rotations of order 8 and 4 respectively.
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Example
Mike Hill
. . Mike Hopkii
More equivalences among the subcategories 7¢. Doug Ravenel
e Let G = C,. Then the two previous examples show that Localizing
. " subcategories
each 7€ is equivalent to 7, but the layers 7S, and 78, are sones
= - The original slice
dIStlnCt filtration
o Let G= Cy. Then V = o, the sign representation leads to """ ™"
an equivalence between ¢ and 72, while V = pg (the the siceftation

reduced regular representation) leads to one between _
and t2. Hence each 7€ is equivalent to either 7€ or 7£.

e Let G = Cg. Let o be the sign representation and let A and
M\ be rotations of order 8 and 4 respectively. Then the
representations o, o + X\, 0 + A+ XN andp=oc + 2\ + X
lead respectively to equivalences
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Example
_Mlke H|II_
More equivalences among the subcategories 7¢. Doug Ravens!
e Let G = C,. Then the two previous examples show that Localizing
. " subcategories
each 7€ is equivalent to 7, but the layers 7S, and 78, are sones
s g - - The original slice
dIStlnCt filtration
o Let G= Cy. Then V = o, the sign representation leads to """ ™"
an equivalence between ¢ and 72, while V = pg (the the siceftation

reduced regular representation) leads to one between _
and t2. Hence each 7€ is equivalent to either 7€ or 7£.

e Let G = Cg. Let o be the sign representation and let A and
M\ be rotations of order 8 and 4 respectively. Then the
representations o, 0 + \,c + A+ XN andp =0 + 2\ + X\

lead respectively to equivalences t& — 1,
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Example
_Mlke H|II_
More equivalences among the subcategories 7¢. Doug Ravens!
e Let G = C,. Then the two previous examples show that Localizing
. " subcategories
each 7€ is equivalent to 7, but the layers 7S, and 78, are sones
s g - - The original slice
dIStlnCt filtration
o Let G= Cy. Then V = o, the sign representation leads to """ ™"
an equivalence between ¢ and 72, while V = pg (the the siceftation

reduced regular representation) leads to one between _
and t2. Hence each 7€ is equivalent to either 7€ or 7£.

e Let G = Cg. Let o be the sign representation and let A and
M\ be rotations of order 8 and 4 respectively. Then the
representations o, + \,c + A+ XN andp =0 + 2\ + X\

lead respectively to equivalences 78 — 72, 78 — 72,
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Example -
_Mlke H|II_
More equivalences among the subcategories 7¢. Doug Ravens!
e Let G = C,. Then the two previous examples show that Localizing
. " subcategories
each 7€ is equivalent to 7, but the layers 7S, and 78, are sones
s g - - The original slice
dIStlnCt filtration
o Let G= Cy. Then V = o, the sign representation leads to """ ™"
an equivalence between ¢ and 72, while V = pg (the the siceftation

reduced regular representation) leads to one between _
and t2. Hence each 7€ is equivalent to either 7€ or 7£.

e Let G = Cg. Let o be the sign representation and let A and
M\ be rotations of order 8 and 4 respectively. Then the

representations o, + \,c + A+ XN andp =0 + 2\ + X\

lead respectively to equivalences 78 — 1, 1¢ — 78,

G G
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Example -
_Mlke H|II_
More equivalences among the subcategories 7¢. Doug Ravens!
e Let G = C,. Then the two previous examples show that Localizing
. " subcategories
each 7€ is equivalent to 7, but the layers 7S, and 78, are sones
s g - - The original slice
dIStlnCt filtration
o Let G= Cy. Then V = o, the sign representation leads to """ ™"
an equivalence between ¢ and 72, while V = pg (the the siceftation

reduced regular representation) leads to one between _
and t2. Hence each 7€ is equivalent to either 7€ or 7£.

e Let G = Cg. Let o be the sign representation and let A and
M\ be rotations of order 8 and 4 respectively. Then the

representations o, + \,c + A+ XN andp =0 + 2\ + X\

lead respectively to equivalences 78 — 1, 1¢ — 78,

TZG — T7G and T1G — 78,
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Example -
Mike Hill
. . Mike Hopkii
More equivalences among the subcategories 7¢. Doug Ravenel
e Let G = C,. Then the two previous examples show that Localizing
. " subcategories
each 7€ is equivalent to 7, but the layers 7S, and 78, are sones
= - The original slice
dIStlnCt filtration
o Let G= Cy. Then V = o, the sign representation leads to """ ™"
an equivalence between ¢ and 72, while V = pg (the the siceftation

reduced regular representation) leads to one between _
and t2. Hence each 7€ is equivalent to either 7€ or 7£.

e Let G = Cg. Let o be the sign representation and let A and
M\ be rotations of order 8 and 4 respectively. Then the
representations o, o + X\, 0 + A+ XN andp=oc + 2\ + X
lead respectively to equivalences 78 — 72, 78 — 72,

2 — 8 and r¢ — 7&. Thus there are four equivalence

classes corresponding the the four even values of n mod 8.
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Example

Let G = C, for p an odd prime, and let V = X, a 2-dimensional

rotation of order p. Then

e The conditions of the Corollary 1 hold provided n is not

congruent to 0 or -1 mod p. Hence we get equivalences

G

T1G—>7'36—>"'—>7'p and

G G

Hence each ¢ is equivalent to 78 or 7.

e for n not congruent to 0, —1 or —2 mod p, X is an n-slice

iff S* A X is an (n + 2)-slice.
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What do the subcategories ¢ and 7.8, look like? (continued) revisited

Example Mike Hill
Mike Hopkins
Let G = C,, for p an odd prime, and let V = ), a 2-dimensional Pota Revene!
rotation of order p. Then i
e The conditions of the Corollary 1 hold provided n is not HERIEEEES
congruent to 0 or -1 mod p. Hence we get equivalences T

The new definition of
G G the slice filtration

T1G—>7'36—>"'—>7'p and 7'26—>Tf—>'~—>7p_1.
Hence each ¢ is equivalent to 78 or 7.
e for n not congruent to 0, —1 or —2 mod p, X is an n-slice

iff S* A X is an (n + 2)-slice. Each n-slice for0 < n < p
can be obtained from a from a 1-slice or a 2-slice



The slice filtration

What do the subcategories ¢ and 7.8, look like? (continued) revisited

Example Mike Hill
Mike Hopkins
Let G = C,, for p an odd prime, and let V = ), a 2-dimensional Pota Revene!
rotation of order p. Then i
e The conditions of the Corollary 1 hold provided n is not HERIEEEES
congruent to 0 or -1 mod p. Hence we get equivalences T

The new definition of
G G the slice filtration

T1G—>7'36—>"'—>7'p and 7'26—>Tf—>'~—>7p_1.

Hence each ¢ is equivalent to 78 or 7.

e for n not congruent to 0, —1 or —2 mod p, X is an n-slice
iff S* A X is an (n + 2)-slice. Each n-slice for0 < n < p
can be obtained from a from a 1-slice or a 2-slice by
smashing with a power of S*.



The slice filtration

What do the subcategories ¢ and 7.8, look like? (continued) revisited

Example Mike Hill
Mike Hopkins
Let G = C,, for p an odd prime, and let V = ), a 2-dimensional Pota Revene!
rotation of order p. Then i
e The conditions of the Corollary 1 hold provided n is not HERIEEEES
congruent to 0 or -1 mod p. Hence we get equivalences T

The new definition of
G G the slice filtration

T1G—>7'36—>"'—>7'p and 7'26—>Tf—>'~—>7p_1.

Hence each ¢ is equivalent to 78 or 7.

e For n not congruent to 0, —1 or —2 mod p, X is an n-slice
iff S* A X is an (n + 2)-slice. Each n-slice for0 < n < p
can be obtained from a from a 1-slice or a 2-slice by
smashing with a power of S*. Hence there are three
distinct categories of slices,
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What do the subcategories ¢ and 7.8, look like? (continued) revisited

Example Mike Hill
Mike Hopkins
Let G = C,, for p an odd prime, and let V = ), a 2-dimensional Pota Revene!
rotation of order p. Then i
e The conditions of the Corollary 1 hold provided n is not HERIEEEES
congruent to 0 or -1 mod p. Hence we get equivalences T

The new definition of
G G the slice filtration

T1G—>7'36—>"'—>7'p and 7'26—>Tf—>'~—>7p_1.

Hence each ¢ is equivalent to 78 or 7.

e For n not congruent to 0, —1 or —2 mod p, X is an n-slice
iff S* A X is an (n + 2)-slice. Each n-slice for0 < n < p
can be obtained from a from a 1-slice or a 2-slice by
smashing with a power of S*. Hence there are three
distinct categories of slices, those of 0-, 1- and 2-slices.
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