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(i) Define a functor A : Sp — Sp where (AX), is the colimit of
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There are two different notions of weak equivalence in the
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There are two different notions of weak equivalence in the
category of spectra Sp:

e f: X — Yis a strict equivalence if each map f, is a weak
equivalence.
e f: X — Yis a stable equivalence if ...

There are at least two different ways to finish the definition of
stable equivalence:

(i) Define stable homotopy groups of spectra and require «,.f
to be an isomorphism.

(i) Define a functor A : Sp — Sp where (AX), is the colimit of
Xn = QXpst = BPXpio — ...

and then require Af to be a strict equivalence.

Classically these two definitions are equivalent, but in certain
variants of the definition of spectra themselves, they are
different. They differ in the category Sp* of symmetric spectra
of Hovey-Shipley-Smith.
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In order to understand this better we need to discuss

e Quillen model categories

e Fibrant and cofibrant replacement
e Cofibrant generation

e Bousfield localization

e Enriched category theory

We will see that the passage from strict equivalence to stable
equivalence is a form of Bousfield localization.
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In order to understand this better we need to discuss

e Quillen model categories

Fibrant and cofibrant replacement
Cofibrant generation

Bousfield localization

e Enriched category theory

We will see that the passage from strict equivalence to stable
equivalence is a form of Bousfield localization. We will give an
explicit description of the cofibrant generating sets for the
stable category.

Model categories
and spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Quillen model
categories

Cofibrant generation
Bousfield localization

Enriched category
theory

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets



Quillen model categories T
po—
Definition
e
A Quillen model category M is a category equipped with e
three classes of morphisms: weak equivalences, fibrations and Doug Ravenel
cofibrations, ntroduction
Cofibrant generation

Bousfield localization

Enriched category
theory

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets



Quillen model categories T
po—
Definition
e
A Quillen model category M is a category equipped with e
three classes of morphisms: weak equivalences, fibrations and Doug Ravenel
cofibrations, each of which includes all isomorphisms, -
Cofibrant generation

Bousfield localization

Enriched category
theory

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets



Quillen model categories T
p—
Definition _
= ]
A Quillen model category M is a category equipped with e
three classes of morphisms: weak equivalences, fibrations and Doug Ravenel
cofibrations, each of which includes all isomorphisms, S
satisfying the following five axioms: _
Cofibrant generation

Bousfield localization

Enriched category
theory

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets



Quillen model categories T
po—
Definition
- ]
A Quillen model category M is a category equipped with kel
three classes of morphisms: weak equivalences, fibrations and Doug Ravenel
cofibrations, each of which includes all isomorphisms, Introduction
satisfying the following five axioms: _
MC1 Bicompleteness axiom. M has all small limits and Cofibrant generation
colimits. Bousfield localization
Enriched category
theory

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets



Quillen model categories T
po—
Definition
- ]
A Quillen model category M is a category equipped with kel
three classes of morphisms: weak equivalences, fibrations and Doug Ravenel
cofibrations, each of which includes all isomorphisms, Introduction
satisfying the following five axioms: _
MC1 Bicompleteness axiom. M has all small limits and Cofibrant generation
colimits. These include products, Bousfield localization
Enriched category
theory

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets



Quillen model categories T
po—
Definition
- ]
A Quillen model category M is a category equipped with kel
three classes of morphisms: weak equivalences, fibrations and Doug Ravenel
cofibrations, each of which includes all isomorphisms, Introduction
satisfying the following five axioms: _
MC1 Bicompleteness axiom. M has all small limits and Cofibrant generation
colimits. These include products, coproducts, Bousfield localization
Enriched category
theory

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets



Quillen model categories T
po—
Definition
- ]
A Quillen model category M is a category equipped with kel
three classes of morphisms: weak equivalences, fibrations and Doug Ravenel
cofibrations, each of which includes all isomorphisms, Introduction
satisfying the following five axioms: _
MC1 Bicompleteness axiom. M has all small limits and Cofibrant generation
colimits. These include products, coproducts, pullbacks Bousfield localization
Enriched category
theory

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets



Quillen model categories T
o
Definition
- ]
A Quillen model category M is a category equipped with il
three classes of morphisms: weak equivalences, fibrations and Doug Ravenel
cofibrations, each of which includes all isomorphisms, -
satisfying the following five axioms: _
MC1 Bicompleteness axiom. M has all small limits and T ——
colimits. These include products, coproducts, pullbacks Bousfield localization
and pushouts. Enriched category

theory

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets



Quillen model categories T
Definition
A Quillen model category M is a category equipped with il
three classes of morphisms: weak equivalences, fibrations and Doug Ravenel
cofibrations, each of which includes all isomorphisms, -
satisfying the following five axioms: _
MC1 Bicompleteness axiom. M has all small limits and Cofibrant generation
colimits. These include products, coproducts, pullbacks Bousfield localization
and pushouts. This implies that M has initial and terminal Enichod caogory
objects. ’

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets



Quillen model categories T
p—
Definition —
- ]
A Quillen model category M is a category equipped with e il
. 5 c - ike Hopkins
three classes of morphisms: weak equivalences, fibrations and Doug Ravenel
cofibrations, each of which includes all isomorphisms, S
satisfying the following five axioms: _
MC1 Bicompleteness axiom. M has all small limits and O —
colimits. These include products, coproducts, pullbacks Bousfield localization
and pushouts. This implies that M has initial and terminal Eniched ctegory
. theor:
objects. i

Spectra as enriched
functors

MC2 2-out-of-3 axiom. Let X = Y <5 Z be morphisms in M.

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets



Quillen model categories T
po—
Definition —
A Quillen model category M is a category equipped with e il
. 5 c - ike Hopkins
three classes of morphisms: weak equivalences, fibrations and Doug Ravenel
cofibrations, each of which includes all isomorphisms, S
satisfying the following five axioms: _
MC1 Bicompleteness axiom. M has all small limits and O —
colimits. These include products, coproducts, pullbacks Bousfield localization
and pushouts. This implies that M has initial and terminal Eniched ctegory
. theor:
objects. i

Spectra as enriched
functors

a f o .
MC2 2-OUt-0f-3 axiom. Let X — Y i> Z be morphlsms n M The projective model
Then if any two of f, g and gf are weak equivalences, so is  stuetre
the third. l’:s:{;&:gle model

Stable cofibrant
generating sets



Quillen model categories T
——
Definition
A Quillen model category M is a category equipped with il
three classes of morphisms: weak equivalences, fibrations and Doug Ravenel
cofibrations, each of which includes all isomorphisms, -
satisfying the following five axioms: _
MC1 Bicompleteness axiom. M has all small limits and Cofibrant generation
colimits. These include products, coproducts, pullbacks Bousfield localization
and pushouts. This implies that M has initial and terminal Enriched category

theory

objects.

Spectra as enriched
functors

MC2 2-out-of-3 axiom. Let X = Y <5 Z be morphisms in M. The projecive model
Then if any two of f, g and gf are weak equivalences, so is  stuetre

the third. l’:s:{;&:gle model
MC3 Retract axiom. A retract of a weak equivalence, fibration Stable cofforant

generating sets

or cofibration



Quillen model categories

Definition

A Quillen model category M is a category equipped with
three classes of morphisms: weak equivalences, fibrations and
cofibrations, each of which includes all isomorphisms,
satisfying the following five axioms:

MC1 Bicompleteness axiom. M has all small limits and
colimits. These include products, coproducts, pullbacks
and pushouts. This implies that M has initial and terminal
objects.

MC2 2-out-of-3 axiom. Let X = Y <5 Z be morphisms in M.
Then if any two of f, g and gf are weak equivalences, so is
the third.

MC3 Retract axiom. A retract of a weak equivalence, fibration
or cofibration is again a weak equivalence, fibration or
cofibration.
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Then if any two of f, g and gf are weak equivalences, so is
the third.
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Definition

A Quillen model category M is a category equipped with
three classes of morphisms: weak equivalences, fibrations and
cofibrations, each of which includes all isomorphisms,
satisfying the following five axioms:

MC1 Bicompleteness axiom. M has all small limits and
colimits. These include products, coproducts, pullbacks
and pushouts. This implies that M has initial and terminal
objects.

MC2 2-out-of-3 axiom. Let X = Y <5 Z be morphisms in M.
Then if any two of f, g and gf are weak equivalences, so is
the third.

MC3 Retract axiom. A retract of a weak equivalence, fibration
or cofibration is again a weak equivalence, fibration or
cofibration.

We say that a fibration or cofibration is trivial (or acyclic) if it is
also a weak equivalence.
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Definition

MC4 Lifting axiom. Given a commutative diagram
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Quillen model categories (continued)

Definition

MC4 Lifting axiom. Given a commutative diagram

A—L X
cofibration ,-i h ~ i p trivial fibration
B=—Y,

g

a morphism h exists for i and p as indicated.
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Quillen model categories (continued)

Definition

MC4 Lifting axiom. Given a commutative diagram

A—T . x

~
- -

; h 7
o T e
trivial cofibration 5 - Y fibration
g b)

a morphism h exists for i and p as indicated.
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Quillen model categories (continued)

Definition

MC4 Lifting axiom. Given a commutative diagram

A—L -x
cofibration i h -7 i p trivial fibration
trivial cofibration B~ & fibration

- -
)

a morphism h exists for i and p as indicated.
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Quillen model categories (continued)

Definition

MC4 Lifting axiom. Given a commutative diagram

o x
cofibration i h -7 i p trivial fibration
trivial cofibration Y _ -~ fibration
B—>g ;

a morphism h exists for i and p as indicated.

MC5 Factorization axiom. Any morphism f : X — Y can be
functorially factored in two ways as
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Quillen model categories (continued)

Definition

MC4 Lifting axiom. Given a commutative diagram

A—L - x
cofibration ;| - i |p trivial fibration
trivial cofibration Y _ -~ fibration
g 9

a morphism h exists for i and p as indicated.

MC5 Factorization axiom. Any morphism f : X — Y can be
functorially factored in two ways as

5
cofibration y/’ \K:m’w’a/ fibration
f

X Y
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Quillen model categories (continued)

Definition

MC4 Lifting axiom. Given a commutative diagram

A
cofbration | - - 7 | trivial fibration
trivial cofibration - fibration

~

-
9

a morphism h exists for i and p as indicated.

MC5 Factorization axiom. Any morphism f : X — Y can be
functorially factored in two ways as

X f 1%

trivial cofibratior% o(f) = fibration
?
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Quillen model categories (continued)

Definition
MC4 Lifting axiom. Given a commutative diagram
A

i, 2= 7 |p trivial fibration
- fibration

cofibration
trivial cofibration

~

B
)

a morphism h exists for i and p as indicated.

MC5 Factorization axiom. Any morphism f : X — Y can be
functorially factored in two ways as

,
cofibration y/ (f) = trivial fibration
f

X Y

trivial cofibration = ~/( o(f) = fibration
?
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Quillen model categories (continued)
Definition

MC4 Lifting axiom. Given a commutative diagram

A—1—x

cofibration h - J{ p trivial fibration

trivial cofibration Y _ -~ fibration
B———Y,

a morphism h exists for i and p as indicated.

MC5 Factorization axiom. Any morphism f : X — Y can be
functorially factored in two ways as

5
cofibration 7w/ \%:jiwal fibration
f
X

Y

trivial coﬁbraﬁorh}\ o(f) = fibration
?

This is the hardest axiom to verify in practice.
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Some examples

A toy example. The category Set of sets with bijections as
weak equivalences and all morphisms as fibrations and
cofibrations satisfies Quillen’s axioms.

A classical example. Let T op denote the category of

(compactly generated weak Hausdorff) topological spaces.
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Some examples T
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A toy exar_’nple. The category Set _of sets w_ith b_ijections as ==
weak equivalences and all morphisms as fibrations and | Mike Hil
. . . . ’ . ike Hopkins
cofibrations satisfies Quillen’s axioms. e
. Introduction
A classical example. Let T op denote the category of _
(compactly generated weak Hausdorff) topological spaces. oot
ofibrant generation

Weak equivalences are maps inducing isomorphisms of
homotopy groups. Fibrations are Serre fibrations, that is is Enviched category
maps p : X — Y with the right lifting property G
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Cofibrations are maps (such as i, : S"~' — D" for n > 0)
having the left lifting property with respect to all trivial Serre
fibrations.
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Some definitions

We will denote the initial and terminal objects of M by () and .
When they are the same, we say that M is pointed.

Definition

An object X is cofibrant if the unique map ) — X is a
cofibration. It X is fibrant if the unique map X — x is a fibration.

All objects in 7 and T op are fibrant.
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We will denote the initial and terminal objects of M by () and . m

When they are the same, we say that M is pointed. Mike Hopkins
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Definition Introduction

An object X is cofibrant if the unique map ) — X is a _
cofibration. It X is fibrant if the unique map X — x is a fibration.  cofibrant generation

Bousfield localization
All objects in T and 7T op are fibrant. The cofibrant objects are Enched catogory
the CW-complexes. -
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Some definitions

We will denote the initial and terminal objects of M by () and .
When they are the same, we say that M is pointed.

Definition
An object X is cofibrant if the unique map ) — X is a

cofibration. It X is fibrant if the unique map X — x is a fibration.

All objects in T and 7T op are fibrant. The cofibrant objects are
the CW-complexes.

By MCS5, for any object X, the unique maps ) — X and X — x
have factorizations
0—-QX—X and X — BRX — %

where QX is a cofibrant object weakly equivalent to X,
and RX is a fibrant object weakly equivalent to X.

Model categories
and spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Cofibrant generation
Bousfield localization

Enriched category
theory

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets



Some definitions (continued)

By MCS5, for any object X, the unique maps ) — X and X — x
have factorizations

D—-QX =X and X — RX — «

where QX is a cofibrant object weakly equivalent to X,
and RX is a fibrant object weakly equivalent to X.
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Some definitions (continued)

By MCS5, for any object X, the unique maps ) — X and X — x
have factorizations

D—-QX =X and X — RX — «

where QX is a cofibrant object weakly equivalent to X,
and RX is a fibrant object weakly equivalent to X.

These maps to and from X are called cofibrant and fibrant
approximations.
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By MCS5, for any object X, the unique maps ) — X and X — x roduction

have factorizations _

@ — QX — X and X — RX — x Cofibrant generation
Bousfield localization
where QX is a cofibrant object weakly equivalent to X, Enriched category

theory
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Cofibrant generation

Example

In T op, let
I={in:S""' D" 'n>0} andJ = {j: I"— I"",n>0}.

It is known that every (trivial) cofibration in T op can be derived
from the ones in () L by iterating certain elementary
constructions. A map is a (trivial) fibration iff it has the right
lifting property with respect to each map in (Z) J .
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Cofibrant generation

Example

In T op, let
I={in:S""' D" 'n>0} andJ = {j: I"— I"",n>0}.

It is known that every (trivial) cofibration in T op can be derived
from the ones in () L by iterating certain elementary
constructions. A map is a (trivial) fibration iff it has the right
lifting property with respect to each map in (Z) J .
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A cofibrantly generated model category M
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Cofibrant generation

Example

In T op, let
I={in:S""' D" 'n>0} andJ = {j: I"— I"",n>0}.

It is known that every (trivial) cofibration in T op can be derived
from the ones in () L by iterating certain elementary
constructions. A map is a (trivial) fibration iff it has the right
lifting property with respect to each map in (Z) J .

Definition
A cofibrantly generated model category M is one with
morphism sets T and J having properties as above.
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Cofibrant generation

Example

In T op, let
I={in:S""' D" 'n>0} andJ = {j: I"— I"",n>0}.

It is known that every (trivial) cofibration in T op can be derived
from the ones in () L by iterating certain elementary
constructions. A map is a (trivial) fibration iff it has the right
lifting property with respect to each map in (Z) J .

Definition
A cofibrantly generated model category M is one with

morphism sets T and J having properties as above. T (J) is a
generating set of (trivial) cofibrations.
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Cofibrant generation

Example

In T op, let
I={in:S""' D" 'n>0} andJ = {j: I"— I"",n>0}.

It is known that every (trivial) cofibration in T op can be derived
from the ones in () L by iterating certain elementary
constructions. A map is a (trivial) fibration iff it has the right
lifting property with respect to each map in (Z) J .

Definition
A cofibrantly generated model category M is one with

morphism sets T and J having properties as above. T (J) is a
generating set of (trivial) cofibrations.

In practice, defining weak equivalences and specifying
generating sets Z and7 is the most convenient way to describe
a model category.
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Cofibrant generation (continued)

Definition
A cofibrantly generated model category M is one with

morphism sets Z and J having similar properties to the ones in
Top.Z (J)is agenerating set of (trivial) cofibrations.

In practice, specifying the generating sets 7 and.7, and
defining weak equivalences is the most convenient way to
describe a model category.

The Kan Recognition Theorem gives four necessary and
sufficient conditions for morphism sets Z and 7 to be
generating sets as above,
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Definition Doug Ravenel
A cofibrantly generated model category M is one with inrodcton
morphism sets T and J having similar properties to the ones in  guecerive "
Top.Z (J)is agenerating set of (trivial) cofibrations. | Cofibrant generation
Bousfield localization
In practice, specifying the generating sets Z and.7, and Enriched category
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defining weak equivalences is the most convenient way to S::Ctyraas .
describe a model category. functors
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The Kan Recognition Theorem gives four necessary and S
sufficient conditions for morphism sets Z and 7 to be sruetire
generating sets as above, assuming that weak equivalences P

have already been defined.
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Definition Doug Ravenel
A cofibrantly generated model category M is one with inrodcton
morphism sets T and J having similar properties to the ones in  guecerive "
Top.Z (J)is agenerating set of (trivial) cofibrations. | Cofibrant generation
Bousfield localization
In practice, specifying the generating sets Z and.7, and Enriched category
. e . . . heor
defining weak equivalences is the most convenient way to ‘S::Ctyraas .
describe a model category. functors
- l l’:;sc[i;(r)(];eclive model
The Kan Recognition Theorem gives four necessary and S
sufficient conditions for morphism sets Z and 7 to be sruetire
generating sets as above, assuming that weak equivalences P

have already been defined. They are too technical for this talk.
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Around 1975 Pete Bousfield had a brilliant idea.
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Around 1975 Pete Bousfield had a brilliant idea.
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change the model structure (without altering the underlying
category) as follows.

e Enlarge the class of weak equivalences in some way.
e Keep the same class of cofibrations as before.

e Define fibrations in terms of right lifting properties with
respect to the newly defined trivial cofibrations. The class
of trivial fibrations remains unaltered.

Since there are more weak equivalences, there are more ftrivial
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category) as follows.

e Enlarge the class of weak equivalences in some way.
e Keep the same class of cofibrations as before.

e Define fibrations in terms of right lifting properties with
respect to the newly defined trivial cofibrations. The class
of trivial fibrations remains unaltered.

Since there are more weak equivalences, there are more ftrivial
cofibrations. Hence there are fewer fibrations and fewer fibrant
objects. This could make the fibrant replacement functor much
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Suppose we have a model category M, and we wish to
change the model structure (without altering the underlying
category) as follows.

e Enlarge the class of weak equivalences in some way.
e Keep the same class of cofibrations as before.

e Define fibrations in terms of right lifting properties with
respect to the newly defined trivial cofibrations. The class
of trivial fibrations remains unaltered.

Since there are more weak equivalences, there are more ftrivial
cofibrations. Hence there are fewer fibrations and fewer fibrant
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more interesting.
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Bousfield localization
Around 1975 Pete Bousfield had a brilliant idea.

Suppose we have a model category M, and we wish to
change the model structure (without altering the underlying
category) as follows.

e Enlarge the class of weak equivalences in some way.
e Keep the same class of cofibrations as before.

e Define fibrations in terms of right lifting properties with
respect to the newly defined trivial cofibrations. The class
of trivial fibrations remains unaltered.

Since there are more weak equivalences, there are more ftrivial
cofibrations. Hence there are fewer fibrations and fewer fibrant
objects. This could make the fibrant replacement functor much
more interesting.

The hardest part of this is showing that the new classes of
weak equivalences and fibrations, along with the original class
of cofibrations, satisfy the Factorization Axiom MC5. The proof
involves some delicate set theory.
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Postnikov section. It was originally constructed by
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equivalence if 74 f is an isomorphism for kK < n. Then the
fibrant objects are the spaces with no homotopy above
dimension n. The fibrant replacement functor is the nth
Postnikov section. It was originally constructed by
attaching cells to kill all homotopy above dimension n.

® Choose a prime p. Define a map to be a weak
equivalence if it induces an isomorphism in mod p
homology. On simply connected spaces, the fibrant
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Let T op be the category of topological spaces with its usual
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@ Choose an integer n > 0. Define a map f to be a weak
equivalence if 74 f is an isomorphism for kK < n. Then the
fibrant objects are the spaces with no homotopy above
dimension n. The fibrant replacement functor is the nth
Postnikov section. It was originally constructed by
attaching cells to kill all homotopy above dimension n.

® Choose a prime p. Define a map to be a weak
equivalence if it induces an isomorphism in mod p
homology. On simply connected spaces, the fibrant
replacement functor is p-adic completion.

® Choose a generalized homology theory h.,.
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fibrant objects are the spaces with no homotopy above
dimension n. The fibrant replacement functor is the nth
Postnikov section. It was originally constructed by
attaching cells to kill all homotopy above dimension n.

® Choose a prime p. Define a map to be a weak
equivalence if it induces an isomorphism in mod p
homology. On simply connected spaces, the fibrant
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homology. On simply connected spaces, the fibrant
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® Choose a generalized homology theory h,. Define a map f
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homology. On simply connected spaces, the fibrant
replacement functor is p-adic completion.

® Choose a generalized homology theory h,. Define a map f
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localization with respect to h,. One can do the same with
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Suppose M is a cofibrantly generated model category with
generating sets 7 and 7. Let M’ denote its Bousfield
localization of M with respect to some expanded class of weak
equivalences. What are its generating sets Z'? and J'?

Since M’ has the same class of cofibrations as M, we can set

7' =1.

Since M’ has the more trivial cofibrations than M, we need to
make 7' bigger tthan 7. There is a theorem saying when such

a J' exists,
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Bousfield localization in a cofibrantly generated model
category

Suppose M is a cofibrantly generated model category with
generating sets 7 and 7. Let M’ denote its Bousfield
localization of M with respect to some expanded class of weak
equivalences. What are its generating sets Z'? and J'?

Since M’ has the same class of cofibrations as M, we can set
7' =1.

Since M’ has the more trivial cofibrations than M, we need to
make 7' bigger tthan 7. There is a theorem saying when such
a J’ exists, but there is no known general description of it.
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Bousfield localization in a cofibrantly generated model
category

Suppose M is a cofibrantly generated model category with
generating sets 7 and 7. Let M’ denote its Bousfield
localization of M with respect to some expanded class of weak
equivalences. What are its generating sets Z'? and J'?

Since M’ has the same class of cofibrations as M, we can set
7' =1.

Since M’ has the more trivial cofibrations than M, we need to
make 7' bigger tthan 7. There is a theorem saying when such
a J’ exists, but there is no known general description of it.

We will give such a description in a certain case related to
stable homotopy theory.
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Enriched category theory

A symmetric monoidal structure on a category V; is a functor
Vo x Vo 2 Vo

sending a pair of objects (X, Y) to a third object X ® Y. Itis
required to have suitable properties including
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The projective model structure on the category of spectra

We can define the category of spectra to be [_#N, 7], the
category of 7-valued 7-functors on the 7-category #N. We
define the projective model structure on it as follows.

e Amap f: X — Y is a weak equivalence or fibration if
fn: Xy, — Y, is one for each n > 0. In other words, weak
equivalences and fibrations are strict weak equivalences
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e Cofibrations are defined in terms of left lifting properties.
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TP = (ST A (jps 17— 7Y mn> 0} = {ST™Y AT,

where f, : X; — Y, denotes f: X — Y with disjoint base
points added to X and Y.
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We can define the category of spectra to be [_#N, 7], the
category of 7-valued 7-functors on the 7-category #N. We
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We can define the category of spectra to be [_#N, 7], the
category of 7-valued 7-functors on the 7-category #N. We
define the projective model structure on it as follows.

e Amap f: X — Y is a weak equivalence or fibration if
fn: Xy, — Y, is one for each n > 0. In other words, weak
equivalences and fibrations are strict weak equivalences
and fibrations.

e Cofibrations are defined in terms of left lifting properties.

This model structure is known to be cofibrantly generated with
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The projective model structure on the category of spectra

We can define the category of spectra to be [_#N, 7], the
category of 7-valued 7-functors on the 7-category #N. We
define the projective model structure on it as follows.

e Amap f: X — Y is a weak equivalence or fibration if
fn: Xy, — Y, is one for each n > 0. In other words, weak
equivalences and fibrations are strict weak equivalences
and fibrations.

e Cofibrations are defined in terms of left lifting properties.

This model structure is known to be cofibrantly generated with
the following generating sets.

779 = LS A (jp, + ST DI): mn >0} = {ST") AT,
TP = (ST A (jps 17— 7Y mn> 0} = {ST™Y AT,

where f, : X; — Y, denotes f: X — Y with disjoint base

points added to X and Y. Z, and 7, are generating sets for 7.

They are the pointed analogs of Z and 7, the generating sets
for Top.
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categories

model structure.
¢ Replace the suspension functor ¥ = S' A — by the functor

Cofibrant generation

Bousfield localization

K A — for a fixed cofibrant object K, such as Sre, the Enriched category
sphere associated with the regular representation of the heory
finite group G. R
e Replace #N by the M-category #» with morphism _
ObjeCtS Tthe sl1able model
A(n—m) )
Amry = { T b

¢ Replace the Yoneda spectrum S~ by the functor
K=m: #N — M given by



A generalization
The above can be generalized as follows.

e Replace T by a pointed cofibrantly generated model
category M with a closed symmetic monoidal structure
(sometimes called a cofibrantly generated Quillen ring)
and generating sets Z an J. For example, M could be
T, the category of pointed G-spaces with the Bredon
model structure.

¢ Replace the suspension functor ¥ = S' A — by the functor
K A — for a fixed cofibrant object K, such as Sre, the
sphere associated with the regular representation of the
finite group G.

e Replace #N by the M-category #» with morphism
objects

KMNn=m) forn>m
N _ =
S (m,n) = { * otherwise.

¢ Replace the Yoneda spectrum S~ by the functor
K=m: #N — M given by

(K~M)a = 7k (m, n).
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Then we can define the projective model structure on the
enriched functor category [_#}, M| as follows.
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More about Bousfield localization (continued)

It is easy to verify that every weak equivalence is an
S-equivalence, that a retract of an S-equivalence is an
S-equivalence, and that S-equivalences have the 2-o0f-3
property.
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Barwick Hirschhorn Lurie Smith

The four shown above have shown that under various mild
hypotheses on W, the class of S-equivalences leads to a new
model structure on N for any morphism set S. We denote this
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More about Bousfield localization (continued)

It is easy to verify that every weak equivalence is an
S-equivalence, that a retract of an S-equivalence is an
S-equivalence, and that S-equivalences have the 2-o0f-3

property.

Clark Phil Jacob Jeff
Barwick Hirschhorn Lurie Smith

The four shown above have shown that under various mild
hypotheses on W, the class of S-equivalences leads to a new
model structure on N for any morphism set S. We denote this
new model category by LsA . We also denote its fibrant
replacement functor by Lg. The fibrant objects of LsA are the
S-local objects of V.
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Stabilizing maps and the stable model structure

We will define a set S of morphisms in Sp =[_#N, 7] (and
more generally in [/,?, M])such that S-equivalences are
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We will define a set S of morphisms in Sp =[_#N, 7] (and
more generally in [/,?, M])such that S-equivalences are
stable equivalences.

For each m > 0, let the mth stabilizing map

Sm:STTTMAS 5 ST
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We will define a set S of morphisms in Sp =[_#N, 7] (and
more generally in [/,?, M])such that S-equivalences are
stable equivalences.

For each m > 0, let the mth stabilizing map
Sp:S1TMAS 5 8m
be the one whose nth component is

* — % forn<m
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Sn—m=1 A 8! 5 §"=M  otherwise
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Stabilizing maps and the stable model structure

We will define a set S of morphisms in Sp =[_#N, 7] (and
more generally in [/,?, M])such that S-equivalences are
stable equivalences.

For each m > 0, let the mth stabilizing map
Sp:S1TMAS 5 8m
be the one whose nth component is

* — % forn<m
x — SO forn=m
Sn—m=1 A 8! 5 §"=M  otherwise

Since this is a homeomorphism, and hence a weak
equivalence, for large n, s, is a stable equivalence.
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Stabilizing maps and the stable model structure

We will define a set S of morphisms in Sp =[_#N, 7] (and
more generally in [/,?, M])such that S-equivalences are
stable equivalences.

For each m > 0, let the mth stabilizing map
Sp:S1TMAS 5 8m
be the one whose nth component is

* — % forn<m
x — SO forn=m
Sn—m=1 A 8! 5 §"=M  otherwise

Since this is a homeomorphism, and hence a weak
equivalence, for large n, s, is a stable equivalence.

The morphism set we want is
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Stabilizing maps and the stable model structure

We will define a set S of morphisms in Sp =[_#N, 7] (and
more generally in [/,?, M])such that S-equivalences are
stable equivalences.

For each m > 0, let the mth stabilizing map
Sp:S1TMAS 5 8m
be the one whose nth component is

* — % forn<m
x — SO forn=m
Sn—m=1 A 8! 5 §"=M  otherwise

Since this is a homeomorphism, and hence a weak
equivalence, for large n, s, is a stable equivalence.

The morphism set we want is

S={sp: m>0}.
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Stabilizing maps and the stable model structure (continued)

The morphism set we want is

S:{sm:8’1’m/\81—>8’"’:m20}.
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The morphism set we want is :
Mike Hill
S={sn: 51" "AS" =8 ":m=>0}. B ks
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Stabilizing maps and the stable model structure (continued)

The morphism set we want is
S:{S,T,:Squ/\s1 —>Sfm:m20}.

What are the S-local objects? Now for the fun part! The
Yoneda lemma implies that for any space K and spectrum Z,
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Stabilizing maps and the stable model structure (continued)

The morphism set we want is
S:{S,T,:Squ/\s1 —>Sfm:m20}.

What are the S-local objects? Now for the fun part! The
Yoneda lemma implies that for any space K and spectrum Z,

Sp(S™" A K, Z) = (Zy)K.

Model categories
and spectra

=
= ]
Mike Hill
Mike Hopkins
Doug Ravenel
Introduction

Quillen model
categories

Cofibrant generation
Bousfield localization

Enriched category
theory

Spectra as enriched
functors

The projective model
structure

Stable cofibrant
generating sets

1.30



Stabilizing maps and the stable model structure (continued)

The morphism set we want is
S:{S,T,:Squ/\s1 —>87m:m20}.

What are the S-local objects? Now for the fun part! The
Yoneda lemma implies that for any space K and spectrum Z,

Sp(S™" A K, Z) = (Zy)K.
This means that s}, is the map
nZ : Zm — QZmi1,

the adjoint of the structure map eﬁ 1Y Zm — Zmy.
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The proof consists of showing that these two sets satisfy the
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Theorem.
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theory
Hence we are looking at a strict fibration that has the right lifting ~ fhema ™ ="
property with respect to each pushout corner map s, O . The projective model
structure
The latter condition is equivalent to the diagram it
Xm P Yo

nfﬁi inn‘;
QPm+1
Wiy — " QY

being homotopy Cartesian. 137
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Cofibrant generating sets for the stable category (continued)

Recall the functor A : Sp — Sp for which (AX), is the colimit of

X X 2, X
Mm Qs Q2

Xm QXm+1

Q2Xm+2

We know that the corner map condition on our strict fibration
p: X — Y implies that the diagram
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Cofibrant generating sets for the stable category (continued) M eseries
==
Recall the functor A : Sp — Sp for which (AX), is the colimit of Mike Hill
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Doug Ravenel
X Q X QZ X
Xm "Im QXm+1 T4 Q2 Xm+2 Mm-+2 Introduction
Quillen model
. . . . categories
We know that the corner map condition on our strict fibration T ——
p: X—=Y ImplleS that the diagram Bousfield localization
Enriched category
Pm theory
Xm Ym Spectra as enriched
functors
i \L The projective model
structure
(AX ) —2% = (AY ) T

is homotopy Cartesian. It is known that A converts stable
equivalences to strict ones, so p, is a weak equivalence, which
makes p a trivial fibration as desired.
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