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These are the vogages of the starship Cofibrant . . .

with

• its transfinite warp drive
• its small object photon torpedoes
• its adjunction replicator
• its fibrant replacement transporter beam
• and ???
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1.3

Introduction

The purpose of this talk is to describe a theorem about a
cofibrantly generated Quillen model structure on certain
categories of spectra.

It came up in the process of writing a
book about equivariant stable homotopy theory.

A spectrum X was originally defined to be a sequence of
pointed spaces or simplicial sets {X0,X1,X2, . . . } with structure
maps εX

n : ΣXn → Xn+1. A map of spectra f : X → Y is a
collection of pointed maps fn : Xn → Yn compatible with the
structure maps.

There are two different notions of weak equivalence in the
category of spectra Sp:

• f : X → Y is a strict equivalence if each map fn is a weak
equivalence.

• f : X → Y is a stable equivalence if . . .
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1.4

Introduction (continued)

There are two different notions of weak equivalence in the
category of spectra Sp:

• f : X → Y is a strict equivalence if each map fn is a weak
equivalence.

• f : X → Y is a stable equivalence if . . .

There are at least two different ways to finish the definition of
stable equivalence:

(i) Define stable homotopy groups of spectra and require π∗f
to be an isomorphism.

(ii) Define a functor Λ : Sp → Sp where (ΛX )n is the colimit of

Xn → ΩXn+1 → Ω2Xn+2 → . . .

and then require Λf to be a strict equivalence.

Classically these two definitions are equivalent, but in certain
variants of the definition of spectra themselves, they are
different. They differ in the category SpΣ of symmetric spectra
of Hovey-Shipley-Smith.
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1.5

Iintroduction (continued)

Dan Quillen Dan Kan Pete Max Kelly
1940-2011 1928-2013 Bousfield 1930-2007

In order to understand this better we need to discuss

• Quillen model categories
• Fibrant and cofibrant replacement
• Cofibrant generation
• Bousfield localization
• Enriched category theory

We will see that the passage from strict equivalence to stable
equivalence is a form of Bousfield localization. We will give an
explicit description of the cofibrant generating sets for the
stable category.
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1.6

Quillen model categories

Definition

A Quillen model category M is a category equipped with
three classes of morphisms: weak equivalences, fibrations and
cofibrations,

each of which includes all isomorphisms,
satisfying the following five axioms:

MC1 Bicompleteness axiom. M has all small limits and
colimits. These include products, coproducts, pullbacks
and pushouts. This implies that M has initial and terminal
objects.

MC2 2-out-of-3 axiom. Let X f−→ Y
g−→ Z be morphisms in M.

Then if any two of f , g and gf are weak equivalences, so is
the third.

MC3 Retract axiom. A retract of a weak equivalence, fibration
or cofibration is again a weak equivalence, fibration or
cofibration.

We say that a fibration or cofibration is trivial (or acyclic) if it is
also a weak equivalence.
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cofibrations, each of which includes all isomorphisms,

satisfying the following five axioms:
MC1 Bicompleteness axiom. M has all small limits and

colimits. These include products, coproducts, pullbacks
and pushouts. This implies that M has initial and terminal
objects.

MC2 2-out-of-3 axiom. Let X f−→ Y
g−→ Z be morphisms in M.

Then if any two of f , g and gf are weak equivalences, so is
the third.

MC3 Retract axiom. A retract of a weak equivalence, fibration
or cofibration is again a weak equivalence, fibration or
cofibration.

We say that a fibration or cofibration is trivial (or acyclic) if it is
also a weak equivalence.
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1.7

Quillen model categories (continued)

Definition

MC4 Lifting axiom. Given a commutative diagram

MC5 Factorization axiom. Any morphism f : X → Y can be
functorially factored in two ways as
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Quillen model categories (continued)

Definition

MC4 Lifting axiom. Given a commutative diagram

A f //

i ��

X
p
��

B g
// Y ,

MC5 Factorization axiom. Any morphism f : X → Y can be
functorially factored in two ways as
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Quillen model categories (continued)

Definition

MC4 Lifting axiom. Given a commutative diagram

A f //
cofibration i

��

X
p trivial fibration
��

B g
//

h
77

Y ,

a morphism h exists for i and p as indicated.

MC5 Factorization axiom. Any morphism f : X → Y can be
functorially factored in two ways as
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X
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//
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a morphism h exists for i and p as indicated.
MC5 Factorization axiom. Any morphism f : X → Y can be

functorially factored in two ways as

?
β(f ) = trivial fibration

((X

cofibration = α(f )
66

f // Y
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Quillen model categories (continued)

Definition

MC4 Lifting axiom. Given a commutative diagram
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X
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//
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Y ,

a morphism h exists for i and p as indicated.
MC5 Factorization axiom. Any morphism f : X → Y can be
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This is the hardest axiom to verify in practice.
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1.8

Some examples

A toy example. The category Set of sets

with bijections as
weak equivalences and all morphisms as fibrations and
cofibrations satisfies Quillen’s axioms.

A classical example. Let T op denote the category of
(compactly generated weak Hausdorff) topological spaces.
Weak equivalences are maps inducing isomorphisms of
homotopy groups. Fibrations are Serre fibrations, that is is
maps p : X → Y with the right lifting property

In f //

jn ��

X
p
��

In+1
g

//

h
66

Y ,

for each n ≥ 0.

Cofibrations are maps (such as in : Sn−1 → Dn for n ≥ 0)
having the left lifting property with respect to all trivial Serre
fibrations.
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1.9

Some definitions

We will denote the initial and terminal objects of M by ∅ and ∗.
When they are the same, we say that M is pointed.

Definition

An object X is cofibrant if the unique map ∅ → X is a
cofibration. It X is fibrant if the unique map X → ∗ is a fibration.

All objects in T and T op are fibrant. The cofibrant objects are
the CW-complexes.

By MC5, for any object X , the unique maps ∅ → X and X → ∗
have factorizations

∅ → QX → X and X → RX → ∗

where QX is a cofibrant object weakly equivalent to X ,
and RX is a fibrant object weakly equivalent to X .



Model categories
and spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Quillen model
categories

Cofibrant generation

Bousfield localization

Enriched category
theory

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets

1.9

Some definitions

We will denote the initial and terminal objects of M by ∅ and ∗.
When they are the same, we say that M is pointed.

Definition

An object X is cofibrant if the unique map ∅ → X is a
cofibration. It X is fibrant if the unique map X → ∗ is a fibration.

All objects in T and T op are fibrant. The cofibrant objects are
the CW-complexes.

By MC5, for any object X , the unique maps ∅ → X and X → ∗
have factorizations

∅ → QX → X and X → RX → ∗

where QX is a cofibrant object weakly equivalent to X ,
and RX is a fibrant object weakly equivalent to X .



Model categories
and spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Quillen model
categories

Cofibrant generation

Bousfield localization

Enriched category
theory

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets

1.9

Some definitions

We will denote the initial and terminal objects of M by ∅ and ∗.
When they are the same, we say that M is pointed.

Definition

An object X is cofibrant if the unique map ∅ → X is a
cofibration. It X is fibrant if the unique map X → ∗ is a fibration.

All objects in T and T op are fibrant.

The cofibrant objects are
the CW-complexes.

By MC5, for any object X , the unique maps ∅ → X and X → ∗
have factorizations

∅ → QX → X and X → RX → ∗

where QX is a cofibrant object weakly equivalent to X ,
and RX is a fibrant object weakly equivalent to X .



Model categories
and spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Quillen model
categories

Cofibrant generation

Bousfield localization

Enriched category
theory

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets

1.9

Some definitions

We will denote the initial and terminal objects of M by ∅ and ∗.
When they are the same, we say that M is pointed.

Definition

An object X is cofibrant if the unique map ∅ → X is a
cofibration. It X is fibrant if the unique map X → ∗ is a fibration.

All objects in T and T op are fibrant. The cofibrant objects are
the CW-complexes.

By MC5, for any object X , the unique maps ∅ → X and X → ∗
have factorizations

∅ → QX → X and X → RX → ∗

where QX is a cofibrant object weakly equivalent to X ,
and RX is a fibrant object weakly equivalent to X .



Model categories
and spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Quillen model
categories

Cofibrant generation

Bousfield localization

Enriched category
theory

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets

1.9

Some definitions

We will denote the initial and terminal objects of M by ∅ and ∗.
When they are the same, we say that M is pointed.

Definition

An object X is cofibrant if the unique map ∅ → X is a
cofibration. It X is fibrant if the unique map X → ∗ is a fibration.

All objects in T and T op are fibrant. The cofibrant objects are
the CW-complexes.

By MC5, for any object X , the unique maps ∅ → X and X → ∗
have factorizations

∅ → QX → X and X → RX → ∗

where QX is a cofibrant object weakly equivalent to X ,
and RX is a fibrant object weakly equivalent to X .



Model categories
and spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Quillen model
categories

Cofibrant generation

Bousfield localization

Enriched category
theory

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets

1.9

Some definitions

We will denote the initial and terminal objects of M by ∅ and ∗.
When they are the same, we say that M is pointed.

Definition

An object X is cofibrant if the unique map ∅ → X is a
cofibration. It X is fibrant if the unique map X → ∗ is a fibration.

All objects in T and T op are fibrant. The cofibrant objects are
the CW-complexes.

By MC5, for any object X , the unique maps ∅ → X and X → ∗
have factorizations

∅ → QX → X and X → RX → ∗

where QX is a cofibrant object weakly equivalent to X ,

and RX is a fibrant object weakly equivalent to X .



Model categories
and spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Quillen model
categories

Cofibrant generation

Bousfield localization

Enriched category
theory

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets

1.9

Some definitions

We will denote the initial and terminal objects of M by ∅ and ∗.
When they are the same, we say that M is pointed.

Definition

An object X is cofibrant if the unique map ∅ → X is a
cofibration. It X is fibrant if the unique map X → ∗ is a fibration.

All objects in T and T op are fibrant. The cofibrant objects are
the CW-complexes.

By MC5, for any object X , the unique maps ∅ → X and X → ∗
have factorizations

∅ → QX → X and X → RX → ∗

where QX is a cofibrant object weakly equivalent to X ,
and RX is a fibrant object weakly equivalent to X .



Model categories
and spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Quillen model
categories

Cofibrant generation

Bousfield localization

Enriched category
theory

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets

1.10

Some definitions (continued)

By MC5, for any object X , the unique maps ∅ → X and X → ∗
have factorizations

∅ → QX → X and X → RX → ∗

where QX is a cofibrant object weakly equivalent to X ,
and RX is a fibrant object weakly equivalent to X .

These maps to and from X are called cofibrant and fibrant
approximations. The objects QX and RX are called cofibrant
and fibrant replacements of X .
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1.11

Cofibrant generation

Example

In T op, let

I =
{

in : Sn−1 → Dn,n ≥ 0
}

and J =
{

jn : In → In+1,n ≥ 0
}
.

It is known that every (trivial) cofibration in T op can be derived
from the ones in (J ) I by iterating certain elementary
constructions. A map is a (trivial) fibration iff it has the right
lifting property with respect to each map in (I) J .

Definition

A cofibrantly generated model category M is one with
morphism sets I and J having properties as above. I (J ) is a
generating set of (trivial) cofibrations.

In practice, defining weak equivalences and specifying
generating sets I andJ is the most convenient way to describe
a model category.
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1.12

Cofibrant generation (continued)

Definition

A cofibrantly generated model category M is one with
morphism sets I and J having similar properties to the ones in
T op. I (J ) is a generating set of (trivial) cofibrations.

In practice, specifying the generating sets I andJ , and
defining weak equivalences is the most convenient way to
describe a model category.

The Kan Recognition Theorem gives four necessary and
sufficient conditions for morphism sets I and J to be
generating sets as above, assuming that weak equivalences
have already been defined. They are too technical for this talk.
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generating sets as above,

assuming that weak equivalences
have already been defined. They are too technical for this talk.
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1.13

Bousfield localization

Around 1975 Pete Bousfield had a brilliant idea.

Suppose we have a model category M, and we wish to
change the model structure (without altering the underlying
category) as follows.

• Enlarge the class of weak equivalences in some way.
• Keep the same class of cofibrations as before.
• Define fibrations in terms of right lifting properties with

respect to the newly defined trivial cofibrations. The class
of trivial fibrations remains unaltered.

Since there are more weak equivalences, there are more trivial
cofibrations. Hence there are fewer fibrations and fewer fibrant
objects. This could make the fibrant replacement functor much
more interesting.

The hardest part of this is showing that the new classes of
weak equivalences and fibrations, along with the original class
of cofibrations, satisfy the Factorization Axiom MC5. The proof
involves some delicate set theory.
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1.14

Three examples of Bousfield localization

Let T op be the category of topological spaces with its usual
model structure.

1 Choose an integer n > 0. Define a map f to be a weak
equivalence if πk f is an isomorphism for k ≤ n. Then the
fibrant objects are the spaces with no homotopy above
dimension n. The fibrant replacement functor is the nth
Postnikov section. It was originally constructed by
attaching cells to kill all homotopy above dimension n.

2 Choose a prime p. Define a map to be a weak
equivalence if it induces an isomorphism in mod p
homology. On simply connected spaces, the fibrant
replacement functor is p-adic completion.

3 Choose a generalized homology theory h∗. Define a map f
to be a weak equivalence if h∗f is an isomorphism. The
resulting fibrant replacement functor is Bousfield
localization with respect to h∗. One can do the same with
the category of spectra, once we have the right model
structure on it.



Model categories
and spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Quillen model
categories

Cofibrant generation

Bousfield localization

Enriched category
theory

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets

1.14

Three examples of Bousfield localization

Let T op be the category of topological spaces with its usual
model structure.

1 Choose an integer n > 0. Define a map f to be a weak
equivalence if πk f is an isomorphism for k ≤ n. Then the
fibrant objects are the spaces with no homotopy above
dimension n. The fibrant replacement functor is the nth
Postnikov section. It was originally constructed by
attaching cells to kill all homotopy above dimension n.

2 Choose a prime p. Define a map to be a weak
equivalence if it induces an isomorphism in mod p
homology. On simply connected spaces, the fibrant
replacement functor is p-adic completion.

3 Choose a generalized homology theory h∗. Define a map f
to be a weak equivalence if h∗f is an isomorphism. The
resulting fibrant replacement functor is Bousfield
localization with respect to h∗. One can do the same with
the category of spectra, once we have the right model
structure on it.



Model categories
and spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Quillen model
categories

Cofibrant generation

Bousfield localization

Enriched category
theory

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets

1.14

Three examples of Bousfield localization

Let T op be the category of topological spaces with its usual
model structure.

1 Choose an integer n > 0.

Define a map f to be a weak
equivalence if πk f is an isomorphism for k ≤ n. Then the
fibrant objects are the spaces with no homotopy above
dimension n. The fibrant replacement functor is the nth
Postnikov section. It was originally constructed by
attaching cells to kill all homotopy above dimension n.

2 Choose a prime p. Define a map to be a weak
equivalence if it induces an isomorphism in mod p
homology. On simply connected spaces, the fibrant
replacement functor is p-adic completion.

3 Choose a generalized homology theory h∗. Define a map f
to be a weak equivalence if h∗f is an isomorphism. The
resulting fibrant replacement functor is Bousfield
localization with respect to h∗. One can do the same with
the category of spectra, once we have the right model
structure on it.



Model categories
and spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Quillen model
categories

Cofibrant generation

Bousfield localization

Enriched category
theory

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets

1.14

Three examples of Bousfield localization

Let T op be the category of topological spaces with its usual
model structure.

1 Choose an integer n > 0. Define a map f to be a weak
equivalence if πk f is an isomorphism for k ≤ n.

Then the
fibrant objects are the spaces with no homotopy above
dimension n. The fibrant replacement functor is the nth
Postnikov section. It was originally constructed by
attaching cells to kill all homotopy above dimension n.

2 Choose a prime p. Define a map to be a weak
equivalence if it induces an isomorphism in mod p
homology. On simply connected spaces, the fibrant
replacement functor is p-adic completion.

3 Choose a generalized homology theory h∗. Define a map f
to be a weak equivalence if h∗f is an isomorphism. The
resulting fibrant replacement functor is Bousfield
localization with respect to h∗. One can do the same with
the category of spectra, once we have the right model
structure on it.



Model categories
and spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Quillen model
categories

Cofibrant generation

Bousfield localization

Enriched category
theory

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets

1.14

Three examples of Bousfield localization

Let T op be the category of topological spaces with its usual
model structure.

1 Choose an integer n > 0. Define a map f to be a weak
equivalence if πk f is an isomorphism for k ≤ n. Then the
fibrant objects are the spaces with no homotopy above
dimension n.

The fibrant replacement functor is the nth
Postnikov section. It was originally constructed by
attaching cells to kill all homotopy above dimension n.

2 Choose a prime p. Define a map to be a weak
equivalence if it induces an isomorphism in mod p
homology. On simply connected spaces, the fibrant
replacement functor is p-adic completion.

3 Choose a generalized homology theory h∗. Define a map f
to be a weak equivalence if h∗f is an isomorphism. The
resulting fibrant replacement functor is Bousfield
localization with respect to h∗. One can do the same with
the category of spectra, once we have the right model
structure on it.



Model categories
and spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Quillen model
categories

Cofibrant generation

Bousfield localization

Enriched category
theory

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets

1.14

Three examples of Bousfield localization

Let T op be the category of topological spaces with its usual
model structure.

1 Choose an integer n > 0. Define a map f to be a weak
equivalence if πk f is an isomorphism for k ≤ n. Then the
fibrant objects are the spaces with no homotopy above
dimension n. The fibrant replacement functor is the nth
Postnikov section.

It was originally constructed by
attaching cells to kill all homotopy above dimension n.

2 Choose a prime p. Define a map to be a weak
equivalence if it induces an isomorphism in mod p
homology. On simply connected spaces, the fibrant
replacement functor is p-adic completion.

3 Choose a generalized homology theory h∗. Define a map f
to be a weak equivalence if h∗f is an isomorphism. The
resulting fibrant replacement functor is Bousfield
localization with respect to h∗. One can do the same with
the category of spectra, once we have the right model
structure on it.



Model categories
and spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Quillen model
categories

Cofibrant generation

Bousfield localization

Enriched category
theory

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets

1.14

Three examples of Bousfield localization

Let T op be the category of topological spaces with its usual
model structure.

1 Choose an integer n > 0. Define a map f to be a weak
equivalence if πk f is an isomorphism for k ≤ n. Then the
fibrant objects are the spaces with no homotopy above
dimension n. The fibrant replacement functor is the nth
Postnikov section. It was originally constructed by
attaching cells to kill all homotopy above dimension n.

2 Choose a prime p. Define a map to be a weak
equivalence if it induces an isomorphism in mod p
homology. On simply connected spaces, the fibrant
replacement functor is p-adic completion.

3 Choose a generalized homology theory h∗. Define a map f
to be a weak equivalence if h∗f is an isomorphism. The
resulting fibrant replacement functor is Bousfield
localization with respect to h∗. One can do the same with
the category of spectra, once we have the right model
structure on it.



Model categories
and spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Quillen model
categories

Cofibrant generation

Bousfield localization

Enriched category
theory

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets

1.14

Three examples of Bousfield localization

Let T op be the category of topological spaces with its usual
model structure.

1 Choose an integer n > 0. Define a map f to be a weak
equivalence if πk f is an isomorphism for k ≤ n. Then the
fibrant objects are the spaces with no homotopy above
dimension n. The fibrant replacement functor is the nth
Postnikov section. It was originally constructed by
attaching cells to kill all homotopy above dimension n.

2 Choose a prime p.

Define a map to be a weak
equivalence if it induces an isomorphism in mod p
homology. On simply connected spaces, the fibrant
replacement functor is p-adic completion.

3 Choose a generalized homology theory h∗. Define a map f
to be a weak equivalence if h∗f is an isomorphism. The
resulting fibrant replacement functor is Bousfield
localization with respect to h∗. One can do the same with
the category of spectra, once we have the right model
structure on it.



Model categories
and spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Quillen model
categories

Cofibrant generation

Bousfield localization

Enriched category
theory

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets

1.14

Three examples of Bousfield localization

Let T op be the category of topological spaces with its usual
model structure.

1 Choose an integer n > 0. Define a map f to be a weak
equivalence if πk f is an isomorphism for k ≤ n. Then the
fibrant objects are the spaces with no homotopy above
dimension n. The fibrant replacement functor is the nth
Postnikov section. It was originally constructed by
attaching cells to kill all homotopy above dimension n.

2 Choose a prime p. Define a map to be a weak
equivalence if it induces an isomorphism in mod p
homology.

On simply connected spaces, the fibrant
replacement functor is p-adic completion.

3 Choose a generalized homology theory h∗. Define a map f
to be a weak equivalence if h∗f is an isomorphism. The
resulting fibrant replacement functor is Bousfield
localization with respect to h∗. One can do the same with
the category of spectra, once we have the right model
structure on it.



Model categories
and spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Quillen model
categories

Cofibrant generation

Bousfield localization

Enriched category
theory

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets

1.14

Three examples of Bousfield localization

Let T op be the category of topological spaces with its usual
model structure.

1 Choose an integer n > 0. Define a map f to be a weak
equivalence if πk f is an isomorphism for k ≤ n. Then the
fibrant objects are the spaces with no homotopy above
dimension n. The fibrant replacement functor is the nth
Postnikov section. It was originally constructed by
attaching cells to kill all homotopy above dimension n.

2 Choose a prime p. Define a map to be a weak
equivalence if it induces an isomorphism in mod p
homology. On simply connected spaces, the fibrant
replacement functor is p-adic completion.

3 Choose a generalized homology theory h∗. Define a map f
to be a weak equivalence if h∗f is an isomorphism. The
resulting fibrant replacement functor is Bousfield
localization with respect to h∗. One can do the same with
the category of spectra, once we have the right model
structure on it.



Model categories
and spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Quillen model
categories

Cofibrant generation

Bousfield localization

Enriched category
theory

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets

1.14

Three examples of Bousfield localization

Let T op be the category of topological spaces with its usual
model structure.

1 Choose an integer n > 0. Define a map f to be a weak
equivalence if πk f is an isomorphism for k ≤ n. Then the
fibrant objects are the spaces with no homotopy above
dimension n. The fibrant replacement functor is the nth
Postnikov section. It was originally constructed by
attaching cells to kill all homotopy above dimension n.

2 Choose a prime p. Define a map to be a weak
equivalence if it induces an isomorphism in mod p
homology. On simply connected spaces, the fibrant
replacement functor is p-adic completion.

3 Choose a generalized homology theory h∗.

Define a map f
to be a weak equivalence if h∗f is an isomorphism. The
resulting fibrant replacement functor is Bousfield
localization with respect to h∗. One can do the same with
the category of spectra, once we have the right model
structure on it.



Model categories
and spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Quillen model
categories

Cofibrant generation

Bousfield localization

Enriched category
theory

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets

1.14

Three examples of Bousfield localization

Let T op be the category of topological spaces with its usual
model structure.

1 Choose an integer n > 0. Define a map f to be a weak
equivalence if πk f is an isomorphism for k ≤ n. Then the
fibrant objects are the spaces with no homotopy above
dimension n. The fibrant replacement functor is the nth
Postnikov section. It was originally constructed by
attaching cells to kill all homotopy above dimension n.

2 Choose a prime p. Define a map to be a weak
equivalence if it induces an isomorphism in mod p
homology. On simply connected spaces, the fibrant
replacement functor is p-adic completion.

3 Choose a generalized homology theory h∗. Define a map f
to be a weak equivalence if h∗f is an isomorphism.

The
resulting fibrant replacement functor is Bousfield
localization with respect to h∗. One can do the same with
the category of spectra, once we have the right model
structure on it.



Model categories
and spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Quillen model
categories

Cofibrant generation

Bousfield localization

Enriched category
theory

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets

1.14

Three examples of Bousfield localization

Let T op be the category of topological spaces with its usual
model structure.

1 Choose an integer n > 0. Define a map f to be a weak
equivalence if πk f is an isomorphism for k ≤ n. Then the
fibrant objects are the spaces with no homotopy above
dimension n. The fibrant replacement functor is the nth
Postnikov section. It was originally constructed by
attaching cells to kill all homotopy above dimension n.

2 Choose a prime p. Define a map to be a weak
equivalence if it induces an isomorphism in mod p
homology. On simply connected spaces, the fibrant
replacement functor is p-adic completion.

3 Choose a generalized homology theory h∗. Define a map f
to be a weak equivalence if h∗f is an isomorphism. The
resulting fibrant replacement functor is Bousfield
localization with respect to h∗.

One can do the same with
the category of spectra, once we have the right model
structure on it.
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1.15

Bousfield localization in a cofibrantly generated model
category

Suppose M is a cofibrantly generated model category with
generating sets I and J . Let M′ denote its Bousfield
localization of M with respect to some expanded class of weak
equivalences. What are its generating sets I ′? and J ′?

Since M′ has the same class of cofibrations as M, we can set
I ′ = I.

Since M′ has the more trivial cofibrations than M, we need to
make J ′ bigger tthan J . There is a theorem saying when such
a J ′ exists, but there is no known general description of it.

We will give such a description in a certain case related to
stable homotopy theory.
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1.16

Enriched category theory

A symmetric monoidal structure on a category V0 is a functor

V0 × V0
⊗−→ V0

sending a pair of objects (X ,Y ) to a third object X ⊗ Y . It is
required to have suitable properties including

• a natural isomorphism t : X ⊗ Y → Y ⊗ X and
• a unit object 1 such that 1⊗X is naturally isomorphic to X .

We denote this by V = (V0,⊗,1).

Familiar examples include (Set ,×, ∗), (T op,×, ∗), (T ,∧,S0),
where T is the category of pointed topological spaces, and
(Set∆,×, ∗), where Set∆ is the category of simplicial sets.
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1.17

Enriched category theory (continued)

Let V = (V0,⊗,1) be a symmetric monoidal category as above.

Definition

A V-category (or a category enriched over V) consists of

• a collection of objects,
• for each pair of objects (X ,Y ) a morphism object C(X ,Y )

in V0 (instead of a set of morphisms X → Y),
• for each triple of objects (X ,Y ,Z ) a composition

morphism in V0

cX ,Y ,Z : C(Y ,Z )⊗ C(X ,Y ) → C(X ,Z )

(replacing the usual composition) and
• for each object X , an identity morphism in V0 1 → C(X ,X ),

replacing the usual identity morphism X → X.

There is an underlying ordinary category C0 with the same
objects as C and morphism sets

C0(X ,Y ) = V0(1, C(X ,Y )).
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• for each pair of objects (X ,Y ) a morphism object C(X ,Y )

in V0 (instead of a set of morphisms X → Y),
• for each triple of objects (X ,Y ,Z ) a composition

morphism in V0

cX ,Y ,Z : C(Y ,Z )⊗ C(X ,Y ) → C(X ,Z )

(replacing the usual composition) and
• for each object X , an identity morphism in V0 1 → C(X ,X ),

replacing the usual identity morphism X → X.

There is an underlying ordinary category C0 with the same
objects as C and morphism sets

C0(X ,Y ) = V0(1, C(X ,Y )).
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Enriched category theory (continued)
Let V = (V0,⊗,1) be a symmetric monoidal category as above.

Definition

A V-category (or a category enriched over V) consists of

• a collection of objects,
• for each pair of objects (X ,Y ) a morphism object C(X ,Y )

in V0 (instead of a set of morphisms X → Y),
• for each triple of objects (X ,Y ,Z ) a composition

morphism in V0

cX ,Y ,Z : C(Y ,Z )⊗ C(X ,Y ) → C(X ,Z )

(replacing the usual composition) and
• for each object X , an identity morphism in V0 1 → C(X ,X ),

replacing the usual identity morphism X → X.

There is an underlying ordinary category C0 with the same
objects as C and morphism sets

C0(X ,Y ) = V0(1, C(X ,Y )).
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Enriched category theory (continued)
Let V = (V0,⊗,1) be a symmetric monoidal category as above.

Definition

A V-category (or a category enriched over V) consists of

• a collection of objects,

• for each pair of objects (X ,Y ) a morphism object C(X ,Y )
in V0 (instead of a set of morphisms X → Y),

• for each triple of objects (X ,Y ,Z ) a composition
morphism in V0

cX ,Y ,Z : C(Y ,Z )⊗ C(X ,Y ) → C(X ,Z )

(replacing the usual composition) and
• for each object X , an identity morphism in V0 1 → C(X ,X ),

replacing the usual identity morphism X → X.

There is an underlying ordinary category C0 with the same
objects as C and morphism sets

C0(X ,Y ) = V0(1, C(X ,Y )).



Model categories
and spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Quillen model
categories

Cofibrant generation

Bousfield localization

Enriched category
theory

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets

1.17

Enriched category theory (continued)
Let V = (V0,⊗,1) be a symmetric monoidal category as above.

Definition

A V-category (or a category enriched over V) consists of

• a collection of objects,
• for each pair of objects (X ,Y ) a morphism object C(X ,Y )

in V0

(instead of a set of morphisms X → Y),
• for each triple of objects (X ,Y ,Z ) a composition

morphism in V0

cX ,Y ,Z : C(Y ,Z )⊗ C(X ,Y ) → C(X ,Z )

(replacing the usual composition) and
• for each object X , an identity morphism in V0 1 → C(X ,X ),

replacing the usual identity morphism X → X.

There is an underlying ordinary category C0 with the same
objects as C and morphism sets

C0(X ,Y ) = V0(1, C(X ,Y )).
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Enriched category theory (continued)
Let V = (V0,⊗,1) be a symmetric monoidal category as above.

Definition

A V-category (or a category enriched over V) consists of

• a collection of objects,
• for each pair of objects (X ,Y ) a morphism object C(X ,Y )

in V0 (instead of a set of morphisms X → Y),

• for each triple of objects (X ,Y ,Z ) a composition
morphism in V0

cX ,Y ,Z : C(Y ,Z )⊗ C(X ,Y ) → C(X ,Z )

(replacing the usual composition) and
• for each object X , an identity morphism in V0 1 → C(X ,X ),

replacing the usual identity morphism X → X.

There is an underlying ordinary category C0 with the same
objects as C and morphism sets

C0(X ,Y ) = V0(1, C(X ,Y )).
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Enriched category theory (continued)
Let V = (V0,⊗,1) be a symmetric monoidal category as above.

Definition

A V-category (or a category enriched over V) consists of
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• for each pair of objects (X ,Y ) a morphism object C(X ,Y )

in V0 (instead of a set of morphisms X → Y),
• for each triple of objects (X ,Y ,Z ) a composition

morphism in V0

cX ,Y ,Z : C(Y ,Z )⊗ C(X ,Y ) → C(X ,Z )

(replacing the usual composition) and
• for each object X , an identity morphism in V0 1 → C(X ,X ),

replacing the usual identity morphism X → X.

There is an underlying ordinary category C0 with the same
objects as C and morphism sets

C0(X ,Y ) = V0(1, C(X ,Y )).
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Enriched category theory (continued)
Let V = (V0,⊗,1) be a symmetric monoidal category as above.

Definition

A V-category (or a category enriched over V) consists of
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• for each pair of objects (X ,Y ) a morphism object C(X ,Y )

in V0 (instead of a set of morphisms X → Y),
• for each triple of objects (X ,Y ,Z ) a composition

morphism in V0

cX ,Y ,Z : C(Y ,Z )⊗ C(X ,Y ) → C(X ,Z )

(replacing the usual composition)

and
• for each object X , an identity morphism in V0 1 → C(X ,X ),

replacing the usual identity morphism X → X.

There is an underlying ordinary category C0 with the same
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C0(X ,Y ) = V0(1, C(X ,Y )).
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Enriched category theory (continued)
Let V = (V0,⊗,1) be a symmetric monoidal category as above.

Definition

A V-category (or a category enriched over V) consists of

• a collection of objects,
• for each pair of objects (X ,Y ) a morphism object C(X ,Y )

in V0 (instead of a set of morphisms X → Y),
• for each triple of objects (X ,Y ,Z ) a composition

morphism in V0

cX ,Y ,Z : C(Y ,Z )⊗ C(X ,Y ) → C(X ,Z )

(replacing the usual composition) and
• for each object X , an identity morphism in V0 1 → C(X ,X ),

replacing the usual identity morphism X → X.

There is an underlying ordinary category C0 with the same
objects as C and morphism sets

C0(X ,Y ) = V0(1, C(X ,Y )).
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Enriched category theory (continued)
Let V = (V0,⊗,1) be a symmetric monoidal category as above.
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A V-category (or a category enriched over V) consists of
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• for each pair of objects (X ,Y ) a morphism object C(X ,Y )

in V0 (instead of a set of morphisms X → Y),
• for each triple of objects (X ,Y ,Z ) a composition

morphism in V0

cX ,Y ,Z : C(Y ,Z )⊗ C(X ,Y ) → C(X ,Z )

(replacing the usual composition) and
• for each object X , an identity morphism in V0 1 → C(X ,X ),

replacing the usual identity morphism X → X.

There is an underlying ordinary category C0 with the same
objects as C and morphism sets

C0(X ,Y ) = V0(1, C(X ,Y )).
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Enriched category theory (continued)
Let V = (V0,⊗,1) be a symmetric monoidal category as above.

Definition

A V-category (or a category enriched over V) consists of
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• for each pair of objects (X ,Y ) a morphism object C(X ,Y )

in V0 (instead of a set of morphisms X → Y),
• for each triple of objects (X ,Y ,Z ) a composition

morphism in V0

cX ,Y ,Z : C(Y ,Z )⊗ C(X ,Y ) → C(X ,Z )

(replacing the usual composition) and
• for each object X , an identity morphism in V0 1 → C(X ,X ),

replacing the usual identity morphism X → X.

There is an underlying ordinary category C0 with the same
objects as C

and morphism sets

C0(X ,Y ) = V0(1, C(X ,Y )).



Model categories
and spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Quillen model
categories

Cofibrant generation

Bousfield localization

Enriched category
theory

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets
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Enriched category theory (continued)
Let V = (V0,⊗,1) be a symmetric monoidal category as above.

Definition

A V-category (or a category enriched over V) consists of

• a collection of objects,
• for each pair of objects (X ,Y ) a morphism object C(X ,Y )

in V0 (instead of a set of morphisms X → Y),
• for each triple of objects (X ,Y ,Z ) a composition

morphism in V0

cX ,Y ,Z : C(Y ,Z )⊗ C(X ,Y ) → C(X ,Z )

(replacing the usual composition) and
• for each object X , an identity morphism in V0 1 → C(X ,X ),

replacing the usual identity morphism X → X.

There is an underlying ordinary category C0 with the same
objects as C and morphism sets

C0(X ,Y ) = V0(1, C(X ,Y )).
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1.18

Enriched category theory (continued)

One can define enriched functors (V-functors) between
V-categories and enriched natural transformations (V-natural
transformations) between them.

In this language, an ordinary category is enriched over Set .

A topological category is one that is enriched over T op.

A simplicial category is one that is enriched over Set∆, the
category of simplicial sets.

A symmetric monoidal category V0 is closed if it enriched over
itself. This means that for each pair of objects (X ,Y ) there is
an internal Hom object V(X ,Y ) with natural isomorphisms

V0(X ⊗ Y ,Z ) ∼= V0(X ,V(Y ,Z )).

The symmetric monoidal categories Set , T op, T and Set∆ are
each closed.
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Enriched category theory (continued)

One can define enriched functors (V-functors) between
V-categories

and enriched natural transformations (V-natural
transformations) between them.

In this language, an ordinary category is enriched over Set .

A topological category is one that is enriched over T op.

A simplicial category is one that is enriched over Set∆, the
category of simplicial sets.

A symmetric monoidal category V0 is closed if it enriched over
itself. This means that for each pair of objects (X ,Y ) there is
an internal Hom object V(X ,Y ) with natural isomorphisms

V0(X ⊗ Y ,Z ) ∼= V0(X ,V(Y ,Z )).

The symmetric monoidal categories Set , T op, T and Set∆ are
each closed.
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Enriched category theory (continued)

One can define enriched functors (V-functors) between
V-categories and enriched natural transformations (V-natural
transformations) between them.

In this language, an ordinary category is enriched over Set .

A topological category is one that is enriched over T op.

A simplicial category is one that is enriched over Set∆, the
category of simplicial sets.

A symmetric monoidal category V0 is closed if it enriched over
itself. This means that for each pair of objects (X ,Y ) there is
an internal Hom object V(X ,Y ) with natural isomorphisms

V0(X ⊗ Y ,Z ) ∼= V0(X ,V(Y ,Z )).

The symmetric monoidal categories Set , T op, T and Set∆ are
each closed.
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Enriched category theory (continued)

One can define enriched functors (V-functors) between
V-categories and enriched natural transformations (V-natural
transformations) between them.

In this language, an ordinary category is enriched over Set .

A topological category is one that is enriched over T op.

A simplicial category is one that is enriched over Set∆, the
category of simplicial sets.

A symmetric monoidal category V0 is closed if it enriched over
itself. This means that for each pair of objects (X ,Y ) there is
an internal Hom object V(X ,Y ) with natural isomorphisms

V0(X ⊗ Y ,Z ) ∼= V0(X ,V(Y ,Z )).

The symmetric monoidal categories Set , T op, T and Set∆ are
each closed.
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Enriched category theory (continued)

One can define enriched functors (V-functors) between
V-categories and enriched natural transformations (V-natural
transformations) between them.

In this language, an ordinary category is enriched over Set .

A topological category is one that is enriched over T op.

A simplicial category is one that is enriched over Set∆, the
category of simplicial sets.

A symmetric monoidal category V0 is closed if it enriched over
itself. This means that for each pair of objects (X ,Y ) there is
an internal Hom object V(X ,Y ) with natural isomorphisms

V0(X ⊗ Y ,Z ) ∼= V0(X ,V(Y ,Z )).

The symmetric monoidal categories Set , T op, T and Set∆ are
each closed.
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Enriched category theory (continued)

One can define enriched functors (V-functors) between
V-categories and enriched natural transformations (V-natural
transformations) between them.

In this language, an ordinary category is enriched over Set .

A topological category is one that is enriched over T op.

A simplicial category is one that is enriched over Set∆, the
category of simplicial sets.

A symmetric monoidal category V0 is closed if it enriched over
itself. This means that for each pair of objects (X ,Y ) there is
an internal Hom object V(X ,Y ) with natural isomorphisms

V0(X ⊗ Y ,Z ) ∼= V0(X ,V(Y ,Z )).

The symmetric monoidal categories Set , T op, T and Set∆ are
each closed.
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Enriched category theory (continued)

One can define enriched functors (V-functors) between
V-categories and enriched natural transformations (V-natural
transformations) between them.

In this language, an ordinary category is enriched over Set .

A topological category is one that is enriched over T op.

A simplicial category is one that is enriched over Set∆, the
category of simplicial sets.

A symmetric monoidal category V0 is closed if it enriched over
itself.

This means that for each pair of objects (X ,Y ) there is
an internal Hom object V(X ,Y ) with natural isomorphisms

V0(X ⊗ Y ,Z ) ∼= V0(X ,V(Y ,Z )).

The symmetric monoidal categories Set , T op, T and Set∆ are
each closed.
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Enriched category theory (continued)

One can define enriched functors (V-functors) between
V-categories and enriched natural transformations (V-natural
transformations) between them.

In this language, an ordinary category is enriched over Set .

A topological category is one that is enriched over T op.

A simplicial category is one that is enriched over Set∆, the
category of simplicial sets.

A symmetric monoidal category V0 is closed if it enriched over
itself. This means that for each pair of objects (X ,Y )

there is
an internal Hom object V(X ,Y ) with natural isomorphisms

V0(X ⊗ Y ,Z ) ∼= V0(X ,V(Y ,Z )).

The symmetric monoidal categories Set , T op, T and Set∆ are
each closed.
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Enriched category theory (continued)

One can define enriched functors (V-functors) between
V-categories and enriched natural transformations (V-natural
transformations) between them.

In this language, an ordinary category is enriched over Set .

A topological category is one that is enriched over T op.

A simplicial category is one that is enriched over Set∆, the
category of simplicial sets.

A symmetric monoidal category V0 is closed if it enriched over
itself. This means that for each pair of objects (X ,Y ) there is
an internal Hom object V(X ,Y )

with natural isomorphisms

V0(X ⊗ Y ,Z ) ∼= V0(X ,V(Y ,Z )).

The symmetric monoidal categories Set , T op, T and Set∆ are
each closed.
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Enriched category theory (continued)

One can define enriched functors (V-functors) between
V-categories and enriched natural transformations (V-natural
transformations) between them.

In this language, an ordinary category is enriched over Set .

A topological category is one that is enriched over T op.

A simplicial category is one that is enriched over Set∆, the
category of simplicial sets.

A symmetric monoidal category V0 is closed if it enriched over
itself. This means that for each pair of objects (X ,Y ) there is
an internal Hom object V(X ,Y ) with natural isomorphisms

V0(X ⊗ Y ,Z ) ∼= V0(X ,V(Y ,Z )).

The symmetric monoidal categories Set , T op, T and Set∆ are
each closed.
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Enriched category theory (continued)

One can define enriched functors (V-functors) between
V-categories and enriched natural transformations (V-natural
transformations) between them.

In this language, an ordinary category is enriched over Set .

A topological category is one that is enriched over T op.

A simplicial category is one that is enriched over Set∆, the
category of simplicial sets.

A symmetric monoidal category V0 is closed if it enriched over
itself. This means that for each pair of objects (X ,Y ) there is
an internal Hom object V(X ,Y ) with natural isomorphisms

V0(X ⊗ Y ,Z ) ∼= V0(X ,V(Y ,Z )).

The symmetric monoidal categories Set , T op, T and Set∆ are
each closed.



Model categories
and spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Quillen model
categories

Cofibrant generation

Bousfield localization

Enriched category
theory

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets

1.19

Spectra as enriched functors

Recall that a spectrum X was originally defined to be a
sequence of pointed spaces {Xn}

with structure maps
ΣXn → Xn+1. We will redefine it to be an enriched T -valued
functor on a small T -category J N. This will make the structure
maps built in to the functor. Maps between spectra will be
enriched natural transformations.

Definition

The indexing category J N has natural numbers n ≥ 0 as
objects with

J N(m,n) =
{

Sn−m for n ≥ m
∗ otherwise.

For m ≤ m ≤ p, the composition morphism

jm,n,p : Sp−n ∧ Sn−m → Sp−m

is the standard homeomorphism.
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sequence of pointed spaces {Xn} with structure maps
ΣXn → Xn+1. We will redefine it to be an enriched T -valued
functor on a small T -category J N. This will make the structure
maps built in to the functor. Maps between spectra will be
enriched natural transformations.

Definition

The indexing category J N has natural numbers n ≥ 0 as
objects with

J N(m,n) =
{

Sn−m for n ≥ m
∗ otherwise.

For m ≤ m ≤ p, the composition morphism

jm,n,p : Sp−n ∧ Sn−m → Sp−m

is the standard homeomorphism.
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sequence of pointed spaces {Xn} with structure maps
ΣXn → Xn+1. We will redefine it to be an enriched T -valued
functor on a small T -category J N. This will make the structure
maps built in to the functor. Maps between spectra will be
enriched natural transformations.
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The indexing category J N has natural numbers n ≥ 0 as
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Spectra as enriched functors (continued)

We can define a spectrum X to be an enriched functor
X : J N → T .

We denote its value at n by Xn. Functoriality
means that for each m,n ≥ 0 there is a continuous structure
map

εX
m,n : J N(m,n) ∧ Xm → Xn.

Since

J N(m,n) =
{

Sn−m for n ≥ m
∗ otherwise,

for m ≤ n we get the expected map Σn−mXm → Xn.

Definition

For m ≥ 0, the Yoneda spectrumH
m
= S−m is given by

(S−m)n = J N(m,n) =
{

Sn−m for n ≥ m
∗ otherwise.

In particular, S−0 is the sphere spectrum, and S−m is its formal
mth desuspension.
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Spectra as enriched functors (continued)

We can define a spectrum X to be an enriched functor
X : J N → T . We denote its value at n by Xn.
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Spectra as enriched functors (continued)

We can define a spectrum X to be an enriched functor
X : J N → T . We denote its value at n by Xn. Functoriality
means that for each m,n ≥ 0

there is a continuous structure
map
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Spectra as enriched functors (continued)

We can define a spectrum X to be an enriched functor
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map
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Spectra as enriched functors (continued)

We can define a spectrum X to be an enriched functor
X : J N → T . We denote its value at n by Xn. Functoriality
means that for each m,n ≥ 0 there is a continuous structure
map
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Spectra as enriched functors (continued)

We can define a spectrum X to be an enriched functor
X : J N → T . We denote its value at n by Xn. Functoriality
means that for each m,n ≥ 0 there is a continuous structure
map
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Since
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∗ otherwise,
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Spectra as enriched functors (continued)

We can define a spectrum X to be an enriched functor
X : J N → T . We denote its value at n by Xn. Functoriality
means that for each m,n ≥ 0 there is a continuous structure
map

εX
m,n : J N(m,n) ∧ Xm → Xn.

Since

J N(m,n) =
{

Sn−m for n ≥ m
∗ otherwise,

for m ≤ n we get the expected map Σn−mXm → Xn.

Definition

For m ≥ 0,

the Yoneda spectrumH
m
= S−m is given by

(S−m)n = J N(m,n) =
{

Sn−m for n ≥ m
∗ otherwise.

In particular, S−0 is the sphere spectrum, and S−m is its formal
mth desuspension.
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Spectra as enriched functors (continued)

We can define a spectrum X to be an enriched functor
X : J N → T . We denote its value at n by Xn. Functoriality
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map
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Since
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Spectra as enriched functors (continued)

We can define a spectrum X to be an enriched functor
X : J N → T . We denote its value at n by Xn. Functoriality
means that for each m,n ≥ 0 there is a continuous structure
map

εX
m,n : J N(m,n) ∧ Xm → Xn.

Since

J N(m,n) =
{

Sn−m for n ≥ m
∗ otherwise,

for m ≤ n we get the expected map Σn−mXm → Xn.
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For m ≥ 0, the Yoneda spectrumH
m
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(S−m)n = J N(m,n) =
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∗ otherwise.

In particular, S−0 is the sphere spectrum,

and S−m is its formal
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Spectra as enriched functors (continued)

We can define a spectrum X to be an enriched functor
X : J N → T . We denote its value at n by Xn. Functoriality
means that for each m,n ≥ 0 there is a continuous structure
map
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Since

J N(m,n) =
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Sn−m for n ≥ m
∗ otherwise,
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Spectra as enriched functors (continued)

Warning The catgeory J N is monoidal (under addition) but
not symmetric monoidal. It admits an embedding functor into

T , namely the Yoneda functorH
0

given by

n 7→ J N(0,n) = Sn

T is symmetric monoidal, and there is a twist isomorphism

t : Sm ∧ Sn → Sn ∧ Sm.

However this morphism is not in the image of the functorH
0
.

There is no twist isomorphism in J N, so its monoidal structure
is not symmetric.

This is the reason that the category of spectra Sp defined in
this way does not have a convenient smash product. This was
a headache in the subject for decades!
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Spectra as enriched functors (continued)

Warning The catgeory J N is monoidal (under addition) but
not symmetric monoidal.

It admits an embedding functor into

T , namely the Yoneda functorH
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Spectra as enriched functors (continued)

Warning The catgeory J N is monoidal (under addition) but
not symmetric monoidal. It admits an embedding functor into

T ,

namely the Yoneda functorH
0

given by

n 7→ J N(0,n) = Sn

T is symmetric monoidal, and there is a twist isomorphism

t : Sm ∧ Sn → Sn ∧ Sm.
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Spectra as enriched functors (continued)

Warning The catgeory J N is monoidal (under addition) but
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Spectra as enriched functors (continued)

Warning The catgeory J N is monoidal (under addition) but
not symmetric monoidal. It admits an embedding functor into

T , namely the Yoneda functorH
0

given by

n 7→ J N(0,n) = Sn

T is symmetric monoidal,

and there is a twist isomorphism

t : Sm ∧ Sn → Sn ∧ Sm.

However this morphism is not in the image of the functorH
0
.

There is no twist isomorphism in J N, so its monoidal structure
is not symmetric.

This is the reason that the category of spectra Sp defined in
this way does not have a convenient smash product. This was
a headache in the subject for decades!
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Spectra as enriched functors (continued)

Warning The catgeory J N is monoidal (under addition) but
not symmetric monoidal. It admits an embedding functor into

T , namely the Yoneda functorH
0

given by

n 7→ J N(0,n) = Sn

T is symmetric monoidal, and there is a twist isomorphism

t : Sm ∧ Sn → Sn ∧ Sm.

However this morphism is not in the image of the functorH
0
.

There is no twist isomorphism in J N, so its monoidal structure
is not symmetric.

This is the reason that the category of spectra Sp defined in
this way does not have a convenient smash product. This was
a headache in the subject for decades!
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Spectra as enriched functors (continued)

Warning The catgeory J N is monoidal (under addition) but
not symmetric monoidal. It admits an embedding functor into

T , namely the Yoneda functorH
0

given by

n 7→ J N(0,n) = Sn

T is symmetric monoidal, and there is a twist isomorphism

t : Sm ∧ Sn → Sn ∧ Sm.

However this morphism is not in the image of the functorH
0
.

There is no twist isomorphism in J N, so its monoidal structure
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Spectra as enriched functors (continued)

Warning The catgeory J N is monoidal (under addition) but
not symmetric monoidal. It admits an embedding functor into

T , namely the Yoneda functorH
0

given by

n 7→ J N(0,n) = Sn

T is symmetric monoidal, and there is a twist isomorphism

t : Sm ∧ Sn → Sn ∧ Sm.

However this morphism is not in the image of the functorH
0
.

There is no twist isomorphism in J N,

so its monoidal structure
is not symmetric.

This is the reason that the category of spectra Sp defined in
this way does not have a convenient smash product. This was
a headache in the subject for decades!
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Spectra as enriched functors (continued)

Warning The catgeory J N is monoidal (under addition) but
not symmetric monoidal. It admits an embedding functor into

T , namely the Yoneda functorH
0

given by

n 7→ J N(0,n) = Sn

T is symmetric monoidal, and there is a twist isomorphism

t : Sm ∧ Sn → Sn ∧ Sm.

However this morphism is not in the image of the functorH
0
.

There is no twist isomorphism in J N, so its monoidal structure
is not symmetric.

This is the reason that the category of spectra Sp defined in
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Spectra as enriched functors (continued)

Warning The catgeory J N is monoidal (under addition) but
not symmetric monoidal. It admits an embedding functor into

T , namely the Yoneda functorH
0

given by

n 7→ J N(0,n) = Sn

T is symmetric monoidal, and there is a twist isomorphism

t : Sm ∧ Sn → Sn ∧ Sm.

However this morphism is not in the image of the functorH
0
.

There is no twist isomorphism in J N, so its monoidal structure
is not symmetric.

This is the reason that the category of spectra Sp defined in
this way

does not have a convenient smash product. This was
a headache in the subject for decades!
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Spectra as enriched functors (continued)

Warning The catgeory J N is monoidal (under addition) but
not symmetric monoidal. It admits an embedding functor into

T , namely the Yoneda functorH
0

given by

n 7→ J N(0,n) = Sn

T is symmetric monoidal, and there is a twist isomorphism

t : Sm ∧ Sn → Sn ∧ Sm.

However this morphism is not in the image of the functorH
0
.

There is no twist isomorphism in J N, so its monoidal structure
is not symmetric.

This is the reason that the category of spectra Sp defined in
this way does not have a convenient smash product.

This was
a headache in the subject for decades!



Model categories
and spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Quillen model
categories

Cofibrant generation

Bousfield localization

Enriched category
theory

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets

1.21

Spectra as enriched functors (continued)

Warning The catgeory J N is monoidal (under addition) but
not symmetric monoidal. It admits an embedding functor into

T , namely the Yoneda functorH
0

given by

n 7→ J N(0,n) = Sn

T is symmetric monoidal, and there is a twist isomorphism

t : Sm ∧ Sn → Sn ∧ Sm.

However this morphism is not in the image of the functorH
0
.

There is no twist isomorphism in J N, so its monoidal structure
is not symmetric.

This is the reason that the category of spectra Sp defined in
this way does not have a convenient smash product. This was
a headache in the subject for decades!
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Spectra as enriched functors (continued)

However we can define the smash product of a spectrum X
and a pointed space K by

(X ∧ K )n = Xn ∧ K .

The categorical term for this is that Sp is tensored over T .

The category of spectra is also cotensored over T , meaning
we can define a spectrum X K by

(X K )n = X K
n .

More generally when a V-category is both tensored and
cotensored over V, we say it is bitensored over V.
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Spectra as enriched functors (continued)

However we can define the smash product of a spectrum X
and a pointed space K by

(X ∧ K )n = Xn ∧ K .

The categorical term for this is that Sp is tensored over T .

The category of spectra is also cotensored over T , meaning
we can define a spectrum X K by

(X K )n = X K
n .

More generally when a V-category is both tensored and
cotensored over V, we say it is bitensored over V.
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Spectra as enriched functors (continued)

However we can define the smash product of a spectrum X
and a pointed space K by

(X ∧ K )n = Xn ∧ K .

The categorical term for this is that Sp is tensored over T .

The category of spectra is also cotensored over T , meaning
we can define a spectrum X K by

(X K )n = X K
n .

More generally when a V-category is both tensored and
cotensored over V, we say it is bitensored over V.
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Spectra as enriched functors (continued)

However we can define the smash product of a spectrum X
and a pointed space K by

(X ∧ K )n = Xn ∧ K .

The categorical term for this is that Sp is tensored over T .

The category of spectra is also cotensored over T , meaning
we can define a spectrum X K by

(X K )n = X K
n .

More generally when a V-category is both tensored and
cotensored over V, we say it is bitensored over V.
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Spectra as enriched functors (continued)

However we can define the smash product of a spectrum X
and a pointed space K by

(X ∧ K )n = Xn ∧ K .

The categorical term for this is that Sp is tensored over T .

The category of spectra is also cotensored over T ,

meaning
we can define a spectrum X K by

(X K )n = X K
n .

More generally when a V-category is both tensored and
cotensored over V, we say it is bitensored over V.
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1.23

The projective model structure on the category of spectra

We can define the category of spectra to be [J N, T ], the
category of T -valued T -functors on the T -category J N. We
define the projective model structure on it as follows.

• A map f : X → Y is a weak equivalence or fibration if
fn : Xn → Yn is one for each n ≥ 0. In other words, weak
equivalences and fibrations are strict weak equivalences
and fibrations.

• Cofibrations are defined in terms of left lifting properties.

This model structure is known to be cofibrantly generated with
the following generating sets.

Iproj =
{

S−m ∧ (in+ : Sn−1
+ → Dn

+) : m,n ≥ 0
}
=

{
S−m} ∧ I+

J proj =
{

S−m ∧ (jn+ : In
+ → In+1

+ ) : m,n ≥ 0
}
=

{
S−m} ∧ J+

where f+ : X+ → Y+ denotes f : X → Y with disjoint base
points added to X and Y . I+ and J+ are generating sets for T .
They are the pointed analogs of I and J , the generating sets
for T op.
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1.24

A generalization
The above can be generalized as follows.

• Replace T by a pointed cofibrantly generated model
category M with a closed symmetic monoidal structure
(sometimes called a cofibrantly generated Quillen ring)
and generating sets I an J . For example, M could be
T G, the category of pointed G-spaces with the Bredon
model structure.

• Replace the suspension functor Σ = S1 ∧ − by the functor
K ∧ − for a fixed cofibrant object K , such as SρG , the
sphere associated with the regular representation of the
finite group G.

• Replace J N by the M-category J N
K with morphism

objects

J N
K (m,n) =

{
K∧(n−m) for n ≥ m
∗ otherwise.

• Replace the Yoneda spectrum S−m by the functor
K−m : J N

K → M given by

(K−m)n = J N
K (m,n).
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• Replace the Yoneda spectrum S−m by the functor
K−m : J N

K → M given by

(K−m)n = J N
K (m,n).
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A generalization
The above can be generalized as follows.
• Replace T by a pointed cofibrantly generated model

category M with a closed symmetic monoidal structure
(sometimes called a cofibrantly generated Quillen ring)
and generating sets I an J . For example, M could be
T G, the category of pointed G-spaces with the Bredon
model structure.

• Replace the suspension functor Σ = S1 ∧ − by the functor
K ∧ − for a fixed cofibrant object K , such as SρG , the
sphere associated with the regular representation of the
finite group G.

• Replace J N by the M-category J N
K with morphism

objects

J N
K (m,n) =

{
K∧(n−m) for n ≥ m
∗ otherwise.

• Replace the Yoneda spectrum S−m by the functor
K−m : J N

K → M given by

(K−m)n = J N
K (m,n).
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A generalization
The above can be generalized as follows.
• Replace T by a pointed cofibrantly generated model

category M with a closed symmetic monoidal structure
(sometimes called a cofibrantly generated Quillen ring)
and generating sets I an J . For example, M could be
T G, the category of pointed G-spaces with the Bredon
model structure.

• Replace the suspension functor Σ = S1 ∧ − by the functor
K ∧ − for a fixed cofibrant object K , such as SρG , the
sphere associated with the regular representation of the
finite group G.

• Replace J N by the M-category J N
K with morphism

objects

J N
K (m,n) =

{
K∧(n−m) for n ≥ m
∗ otherwise.

• Replace the Yoneda spectrum S−m by the functor
K−m : J N

K → M given by

(K−m)n = J N
K (m,n).
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A generalization
The above can be generalized as follows.
• Replace T by a pointed cofibrantly generated model

category M with a closed symmetic monoidal structure
(sometimes called a cofibrantly generated Quillen ring)
and generating sets I an J . For example, M could be
T G, the category of pointed G-spaces with the Bredon
model structure.

• Replace the suspension functor Σ = S1 ∧ − by the functor
K ∧ − for a fixed cofibrant object K , such as SρG , the
sphere associated with the regular representation of the
finite group G.

• Replace J N by the M-category J N
K with morphism

objects

J N
K (m,n) =

{
K∧(n−m) for n ≥ m
∗ otherwise.

• Replace the Yoneda spectrum S−m by the functor
K−m : J N

K → M given by

(K−m)n = J N
K (m,n).
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A generalization
The above can be generalized as follows.
• Replace T by a pointed cofibrantly generated model

category M with a closed symmetic monoidal structure
(sometimes called a cofibrantly generated Quillen ring)
and generating sets I an J . For example, M could be
T G, the category of pointed G-spaces with the Bredon
model structure.

• Replace the suspension functor Σ = S1 ∧ − by the functor
K ∧ − for a fixed cofibrant object K , such as SρG , the
sphere associated with the regular representation of the
finite group G.

• Replace J N by the M-category J N
K with morphism

objects

J N
K (m,n) =

{
K∧(n−m) for n ≥ m
∗ otherwise.

• Replace the Yoneda spectrum S−m by the functor
K−m : J N

K → M given by

(K−m)n = J N
K (m,n).
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A generalization
The above can be generalized as follows.
• Replace T by a pointed cofibrantly generated model

category M with a closed symmetic monoidal structure
(sometimes called a cofibrantly generated Quillen ring)
and generating sets I an J . For example, M could be
T G, the category of pointed G-spaces with the Bredon
model structure.

• Replace the suspension functor Σ = S1 ∧ − by the functor
K ∧ − for a fixed cofibrant object K , such as SρG , the
sphere associated with the regular representation of the
finite group G.

• Replace J N by the M-category J N
K with morphism

objects

J N
K (m,n) =

{
K∧(n−m) for n ≥ m
∗ otherwise.

• Replace the Yoneda spectrum S−m by the functor
K−m : J N

K → M given by

(K−m)n = J N
K (m,n).
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1.25

A generalization (continued)

Then we can define the projective model structure on the
enriched functor category [J N

K ,M] as follows.

• A map f : X → Y is a weak equivalence or fibration if
fn : Xn → Yn is one for each n ≥ 0.

• Cofibrations are defined in terms of left lifting properties.

This model structure is known to be cofibrantly generated with
generating sets

Iproj =
{

K−m : m ≥ 0
}
∧ I

and J proj =
{

K−m : m ≥ 0
}
∧ J .
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A generalization (continued)

Then we can define the projective model structure on the
enriched functor category [J N

K ,M] as follows.

• A map f : X → Y is a weak equivalence or fibration if
fn : Xn → Yn is one for each n ≥ 0.

• Cofibrations are defined in terms of left lifting properties.

This model structure is known to be cofibrantly generated with
generating sets

Iproj =
{

K−m : m ≥ 0
}
∧ I

and J proj =
{

K−m : m ≥ 0
}
∧ J .
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A generalization (continued)

Then we can define the projective model structure on the
enriched functor category [J N

K ,M] as follows.

• A map f : X → Y is a weak equivalence or fibration if
fn : Xn → Yn is one for each n ≥ 0.

• Cofibrations are defined in terms of left lifting properties.

This model structure is known to be cofibrantly generated with
generating sets

Iproj =
{

K−m : m ≥ 0
}
∧ I

and J proj =
{

K−m : m ≥ 0
}
∧ J .
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A generalization (continued)

Then we can define the projective model structure on the
enriched functor category [J N

K ,M] as follows.

• A map f : X → Y is a weak equivalence or fibration if
fn : Xn → Yn is one for each n ≥ 0.

• Cofibrations are defined in terms of left lifting properties.

This model structure is known to be cofibrantly generated with
generating sets

Iproj =
{

K−m : m ≥ 0
}
∧ I

and J proj =
{

K−m : m ≥ 0
}
∧ J .
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A generalization (continued)

Then we can define the projective model structure on the
enriched functor category [J N

K ,M] as follows.

• A map f : X → Y is a weak equivalence or fibration if
fn : Xn → Yn is one for each n ≥ 0.

• Cofibrations are defined in terms of left lifting properties.

This model structure is known to be cofibrantly generated with
generating sets

Iproj =
{

K−m : m ≥ 0
}
∧ I

and J proj =
{

K−m : m ≥ 0
}
∧ J .
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1.26

MOre about Bousfield localization

In order to discuss Bousfield localization more precisely, it
helps to start with a model category that is enriched over a
Quillen ring M (possibly but not necessarily the catgeory we
want to localize), so we can speak of weak equivalences of
morphisms objects. Recall that a Quillen ring M is model
category with a closed symmetic monoidal structure. A Quillen
M-module is a model category N that is enriched and
bitensored over M.
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morphisms objects. Recall that a Quillen ring M is model
category with a closed symmetic monoidal structure. A Quillen
M-module is a model category N that is enriched and
bitensored over M.
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Quillen ring M (possibly but not necessarily the catgeory we
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category with a closed symmetic monoidal structure. A Quillen
M-module is a model category N that is enriched and
bitensored over M.
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helps to start with a model category that is enriched over a
Quillen ring M (possibly but not necessarily the catgeory we
want to localize), so we can speak of weak equivalences of
morphisms objects.

Recall that a Quillen ring M is model
category with a closed symmetic monoidal structure. A Quillen
M-module is a model category N that is enriched and
bitensored over M.
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In order to discuss Bousfield localization more precisely, it
helps to start with a model category that is enriched over a
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morphisms objects. Recall that a Quillen ring M is model
category with a closed symmetic monoidal structure.

A Quillen
M-module is a model category N that is enriched and
bitensored over M.
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helps to start with a model category that is enriched over a
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want to localize), so we can speak of weak equivalences of
morphisms objects. Recall that a Quillen ring M is model
category with a closed symmetic monoidal structure. A Quillen
M-module
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MOre about Bousfield localization

In order to discuss Bousfield localization more precisely, it
helps to start with a model category that is enriched over a
Quillen ring M (possibly but not necessarily the catgeory we
want to localize), so we can speak of weak equivalences of
morphisms objects. Recall that a Quillen ring M is model
category with a closed symmetic monoidal structure. A Quillen
M-module is a model category N that is enriched and
bitensored over M.
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1.27

More about Bousfield localization (continued)

Definition

Let N be a module over Quillen ring M as above, and let S be
a set of morphisms in N .

An object Z is S-local if for each f : A → B in S, the map

f ∗ : N (B,Z ) → N (A,Z )

is a weak equivalence in M.

A morphism g : X → Y in N is an S-equivalence if for each
S-local object Z the map

g∗ : N (Y ,Z ) → N (X ,Z )

is a weak equivalence in M.
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More about Bousfield localization (continued)

Definition

Let N be a module over Quillen ring M as above,

and let S be
a set of morphisms in N .

An object Z is S-local if for each f : A → B in S, the map

f ∗ : N (B,Z ) → N (A,Z )

is a weak equivalence in M.

A morphism g : X → Y in N is an S-equivalence if for each
S-local object Z the map

g∗ : N (Y ,Z ) → N (X ,Z )

is a weak equivalence in M.
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More about Bousfield localization (continued)

Definition

Let N be a module over Quillen ring M as above, and let S be
a set of morphisms in N .

An object Z is S-local if for each f : A → B in S, the map

f ∗ : N (B,Z ) → N (A,Z )

is a weak equivalence in M.

A morphism g : X → Y in N is an S-equivalence if for each
S-local object Z the map

g∗ : N (Y ,Z ) → N (X ,Z )

is a weak equivalence in M.
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More about Bousfield localization (continued)

Definition

Let N be a module over Quillen ring M as above, and let S be
a set of morphisms in N .

An object Z is S-local if for each f : A → B in S, the map

f ∗ : N (B,Z ) → N (A,Z )

is a weak equivalence in M.

A morphism g : X → Y in N is an S-equivalence if for each
S-local object Z the map

g∗ : N (Y ,Z ) → N (X ,Z )

is a weak equivalence in M.
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More about Bousfield localization (continued)

Definition

Let N be a module over Quillen ring M as above, and let S be
a set of morphisms in N .

An object Z is S-local if for each f : A → B in S, the map

f ∗ : N (B,Z ) → N (A,Z )

is a weak equivalence in M.

A morphism g : X → Y in N is an S-equivalence if for each
S-local object Z the map

g∗ : N (Y ,Z ) → N (X ,Z )

is a weak equivalence in M.
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More about Bousfield localization (continued)

Definition

Let N be a module over Quillen ring M as above, and let S be
a set of morphisms in N .

An object Z is S-local if for each f : A → B in S, the map

f ∗ : N (B,Z ) → N (A,Z )

is a weak equivalence in M.

A morphism g : X → Y in N is an S-equivalence if for each
S-local object Z the map

g∗ : N (Y ,Z ) → N (X ,Z )

is a weak equivalence in M.
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1.28

More about Bousfield localization (continued)

It is easy to verify that every weak equivalence is an
S-equivalence, that a retract of an S-equivalence is an
S-equivalence, and that S-equivalences have the 2-of-3
property.

Clark Phil Jacob Jeff
Barwick Hirschhorn Lurie Smith

The four shown above have shown that under various mild
hypotheses on N , the class of S-equivalences leads to a new
model structure on N for any morphism set S. We denote this
new model category by LSN . We also denote its fibrant
replacement functor by LS. The fibrant objects of LSN are the
S-local objects of N .
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1.28

More about Bousfield localization (continued)

It is easy to verify that every weak equivalence is an
S-equivalence,

that a retract of an S-equivalence is an
S-equivalence, and that S-equivalences have the 2-of-3
property.

Clark Phil Jacob Jeff
Barwick Hirschhorn Lurie Smith

The four shown above have shown that under various mild
hypotheses on N , the class of S-equivalences leads to a new
model structure on N for any morphism set S. We denote this
new model category by LSN . We also denote its fibrant
replacement functor by LS. The fibrant objects of LSN are the
S-local objects of N .
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More about Bousfield localization (continued)

It is easy to verify that every weak equivalence is an
S-equivalence, that a retract of an S-equivalence is an
S-equivalence,

and that S-equivalences have the 2-of-3
property.

Clark Phil Jacob Jeff
Barwick Hirschhorn Lurie Smith

The four shown above have shown that under various mild
hypotheses on N , the class of S-equivalences leads to a new
model structure on N for any morphism set S. We denote this
new model category by LSN . We also denote its fibrant
replacement functor by LS. The fibrant objects of LSN are the
S-local objects of N .
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More about Bousfield localization (continued)

It is easy to verify that every weak equivalence is an
S-equivalence, that a retract of an S-equivalence is an
S-equivalence, and that S-equivalences have the 2-of-3
property.

Clark Phil Jacob Jeff
Barwick Hirschhorn Lurie Smith

The four shown above have shown that under various mild
hypotheses on N , the class of S-equivalences leads to a new
model structure on N for any morphism set S. We denote this
new model category by LSN . We also denote its fibrant
replacement functor by LS. The fibrant objects of LSN are the
S-local objects of N .
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More about Bousfield localization (continued)

It is easy to verify that every weak equivalence is an
S-equivalence, that a retract of an S-equivalence is an
S-equivalence, and that S-equivalences have the 2-of-3
property.

Clark Phil Jacob Jeff
Barwick Hirschhorn Lurie Smith

The four shown above have shown that under various mild
hypotheses on N ,

the class of S-equivalences leads to a new
model structure on N for any morphism set S. We denote this
new model category by LSN . We also denote its fibrant
replacement functor by LS. The fibrant objects of LSN are the
S-local objects of N .
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More about Bousfield localization (continued)

It is easy to verify that every weak equivalence is an
S-equivalence, that a retract of an S-equivalence is an
S-equivalence, and that S-equivalences have the 2-of-3
property.

Clark Phil Jacob Jeff
Barwick Hirschhorn Lurie Smith

The four shown above have shown that under various mild
hypotheses on N , the class of S-equivalences leads to a new
model structure on N

for any morphism set S. We denote this
new model category by LSN . We also denote its fibrant
replacement functor by LS. The fibrant objects of LSN are the
S-local objects of N .
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More about Bousfield localization (continued)

It is easy to verify that every weak equivalence is an
S-equivalence, that a retract of an S-equivalence is an
S-equivalence, and that S-equivalences have the 2-of-3
property.

Clark Phil Jacob Jeff
Barwick Hirschhorn Lurie Smith

The four shown above have shown that under various mild
hypotheses on N , the class of S-equivalences leads to a new
model structure on N for any morphism set S.

We denote this
new model category by LSN . We also denote its fibrant
replacement functor by LS. The fibrant objects of LSN are the
S-local objects of N .



Model categories
and spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Quillen model
categories

Cofibrant generation

Bousfield localization

Enriched category
theory

Spectra as enriched
functors

The projective model
structure

The stable model
structure

Stable cofibrant
generating sets

1.28

More about Bousfield localization (continued)

It is easy to verify that every weak equivalence is an
S-equivalence, that a retract of an S-equivalence is an
S-equivalence, and that S-equivalences have the 2-of-3
property.

Clark Phil Jacob Jeff
Barwick Hirschhorn Lurie Smith

The four shown above have shown that under various mild
hypotheses on N , the class of S-equivalences leads to a new
model structure on N for any morphism set S. We denote this
new model category by LSN .

We also denote its fibrant
replacement functor by LS. The fibrant objects of LSN are the
S-local objects of N .
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More about Bousfield localization (continued)

It is easy to verify that every weak equivalence is an
S-equivalence, that a retract of an S-equivalence is an
S-equivalence, and that S-equivalences have the 2-of-3
property.

Clark Phil Jacob Jeff
Barwick Hirschhorn Lurie Smith

The four shown above have shown that under various mild
hypotheses on N , the class of S-equivalences leads to a new
model structure on N for any morphism set S. We denote this
new model category by LSN . We also denote its fibrant
replacement functor by LS.

The fibrant objects of LSN are the
S-local objects of N .
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1.29

Stabilizing maps and the stable model structure

We will define a set S of morphisms in Sp = [J N, T ] (and
more generally in [J N

K ,M])

such that S-equivalences are
stable equivalences.

For each m ≥ 0, let the mth stabilizing map

sm : S−1−m ∧ S1 → S−m

be the one whose nth component is
∗ → ∗ for n < m
∗ → S0 for n = m
Sn−m−1 ∧ S1 → Sn−m otherwise

Since this is a homeomorphism, and hence a weak
equivalence, for large n, sm is a stable equivalence.

The morphism set we want is

S = {sm : m ≥ 0} .
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1.30

Stabilizing maps and the stable model structure (continued)

The morphism set we want is

S =
{

sm : S−1−m ∧ S1 → S−m : m ≥ 0
}
.

What are the S-local objects? Now for the fun part! The
Yoneda lemma implies that for any space K and spectrum Z ,

Sp(S−n ∧ K ,Z ) ∼= (Zn)
K .

This means that s∗
m is the map

ηZ
m : Zm → ΩZm+1,

the adjoint of the structure map εZ
m : ΣZm → Zm+1.

The spectrum Z is S-local iff the map ηZ
m is a weak equivalence

for each m ≥ 0, i.e., Z is an Ω-spectrum as classically defined.
The observation that the fibrant objects are the Ω-spectra is
originally due to Bousfield-Friedlander, 1978.
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Stabilizing maps and the stable model structure (continued)

For
S =

{
sm : S−1−m ∧ S1 → S−m : m ≥ 0

}
,

a spectrum Z is S-local iff it is an Ω-spectrum.

What are the S-equivalences? A map g : X → Y is an
S-equivalence if

g∗ : Sp(Y ,Z ) → Sp(X ,Z )

is a weak equivalence for every Ω-psectrum Z , if g induces an
isomorphism in every generalized cohomology theory. This
coincides with a classical definition of stable equivalence.

This means that the Bousfield localization LSSp is the category
of classically define spectra in which weak equivalences are
stable equivalences. Its homotopy cetegory is the one
described long ago by Boardman and Vogt.
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What are the S-equivalences? A map g : X → Y is an
S-equivalence if

g∗ : Sp(Y ,Z ) → Sp(X ,Z )

is a weak equivalence for every Ω-psectrum Z , if g induces an
isomorphism in every generalized cohomology theory.

This
coincides with a classical definition of stable equivalence.

This means that the Bousfield localization LSSp is the category
of classically define spectra in which weak equivalences are
stable equivalences. Its homotopy cetegory is the one
described long ago by Boardman and Vogt.
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Stabilizing maps and the stable model structure (continued)
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}
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What are the S-equivalences? A map g : X → Y is an
S-equivalence if

g∗ : Sp(Y ,Z ) → Sp(X ,Z )

is a weak equivalence for every Ω-psectrum Z , if g induces an
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Stabilizing maps and the stable model structure (continued)
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}
,

a spectrum Z is S-local iff it is an Ω-spectrum.

What are the S-equivalences? A map g : X → Y is an
S-equivalence if

g∗ : Sp(Y ,Z ) → Sp(X ,Z )

is a weak equivalence for every Ω-psectrum Z , if g induces an
isomorphism in every generalized cohomology theory. This
coincides with a classical definition of stable equivalence.

This means that the Bousfield localization LSSp is the category
of classically define spectra in which weak equivalences are
stable equivalences.

Its homotopy cetegory is the one
described long ago by Boardman and Vogt.
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Stabilizing maps and the stable model structure (continued)

For
S =

{
sm : S−1−m ∧ S1 → S−m : m ≥ 0

}
,

a spectrum Z is S-local iff it is an Ω-spectrum.

What are the S-equivalences? A map g : X → Y is an
S-equivalence if

g∗ : Sp(Y ,Z ) → Sp(X ,Z )

is a weak equivalence for every Ω-psectrum Z , if g induces an
isomorphism in every generalized cohomology theory. This
coincides with a classical definition of stable equivalence.

This means that the Bousfield localization LSSp is the category
of classically define spectra in which weak equivalences are
stable equivalences. Its homotopy cetegory is the one
described long ago by Boardman and Vogt.
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1.32

Cofibrant generating sets for the stable category

Recall that the projective (or strict) model structure on Sp has
cofibrant generating sets

Iproj =
{

S−m ∧ (in+ : Sn−1
+ → Dn

+) : m,n ≥ 0
}
=

{
S−m} ∧ I+

J proj =
{

S−m ∧ (jn+ : In
+ → In+1

+ ) : m,n ≥ 0
}
=

{
S−m} ∧ J+

We can define Istable to be Iproj , but we must enlarge J proj in
some way to get J stable. To describe this we need the following.
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1.33

Cofibrant generating sets for the stable category (continued)

Definition

Let M be a Quillen ring with a morphism g : X → Y, and N a
Quillen M-module with a morphism f : A → B. Consider the
diagram

A ∧ X
A∧g //

f∧X
����

A ∧ Y

f∧Y

��

��
B ∧ X

B∧g
++

// P f � g

''
B ∧ Y

where P is the pushout of the two maps from A ∧ X. Then the
pushout corner map (or pushout smash product) f �g is the
unique map P → B ∧ Y that makes the diagram commute.
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1.33

Cofibrant generating sets for the stable category (continued)

Definition

Let M be a Quillen ring with a morphism g : X → Y,

and N a
Quillen M-module with a morphism f : A → B. Consider the
diagram

A ∧ X
A∧g //

f∧X
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A ∧ Y
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��

��
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++
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''
B ∧ Y

where P is the pushout of the two maps from A ∧ X. Then the
pushout corner map (or pushout smash product) f �g is the
unique map P → B ∧ Y that makes the diagram commute.
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Cofibrant generating sets for the stable category (continued)

Definition

Let M be a Quillen ring with a morphism g : X → Y, and N a
Quillen M-module with a morphism f : A → B. Consider the
diagram
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��
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''
B ∧ Y
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pushout corner map (or pushout smash product) f �g is the
unique map P → B ∧ Y that makes the diagram commute.
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Cofibrant generating sets for the stable category (continued)

Definition

Let M be a Quillen ring with a morphism g : X → Y, and N a
Quillen M-module with a morphism f : A → B. Consider the
diagram
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A∧g //
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A ∧ Y

f∧Y

��

��
B ∧ X
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++
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''
B ∧ Y

where P is the pushout of the two maps from A ∧ X.

Then the
pushout corner map (or pushout smash product) f �g is the
unique map P → B ∧ Y that makes the diagram commute.
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Cofibrant generating sets for the stable category (continued)

Definition

Let M be a Quillen ring with a morphism g : X → Y, and N a
Quillen M-module with a morphism f : A → B. Consider the
diagram

A ∧ X
A∧g //

f∧X
����

A ∧ Y

f∧Y

��

��
B ∧ X

B∧g
++

// P f � g

''
B ∧ Y

where P is the pushout of the two maps from A ∧ X. Then the
pushout corner map (or pushout smash product) f �g is the
unique map P → B ∧ Y that makes the diagram commute.
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1.34

Cofibrant generating sets for the stable category (continued)

An easy example of a pushout corner map. Let
M = N = T op, let M and N be manifolds with boundary, and
consider the morphisms f : ∂M → M and g : ∂N → N, the
inclusions of the boundaries. Then the diagram is

∂M × ∂N
∂M×g //

f×∂N
����

∂M × N

f×N

��

��
M × ∂N

M×g
,,

// P f � g

((
M × N

In this case the pushout is

P = (∂M × N) ∪∂M×∂N (M × ∂N) = ∂(M × N),

and f �g is the inclusion ∂(M × N) → M × N.
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Cofibrant generating sets for the stable category (continued)

An easy example of a pushout corner map.

Let
M = N = T op, let M and N be manifolds with boundary, and
consider the morphisms f : ∂M → M and g : ∂N → N, the
inclusions of the boundaries. Then the diagram is

∂M × ∂N
∂M×g //
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Cofibrant generating sets for the stable category (continued)

An easy example of a pushout corner map. Let
M = N = T op,

let M and N be manifolds with boundary, and
consider the morphisms f : ∂M → M and g : ∂N → N, the
inclusions of the boundaries. Then the diagram is

∂M × ∂N
∂M×g //
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In this case the pushout is
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and f �g is the inclusion ∂(M × N) → M × N.
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1.34

Cofibrant generating sets for the stable category (continued)

An easy example of a pushout corner map. Let
M = N = T op, let M and N be manifolds with boundary,

and
consider the morphisms f : ∂M → M and g : ∂N → N, the
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Cofibrant generating sets for the stable category (continued)

An easy example of a pushout corner map. Let
M = N = T op, let M and N be manifolds with boundary, and
consider the morphisms f : ∂M → M and g : ∂N → N, the
inclusions of the boundaries.

Then the diagram is

∂M × ∂N
∂M×g //
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Cofibrant generating sets for the stable category (continued)

An easy example of a pushout corner map. Let
M = N = T op, let M and N be manifolds with boundary, and
consider the morphisms f : ∂M → M and g : ∂N → N, the
inclusions of the boundaries. Then the diagram is
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∂M×g //
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Cofibrant generating sets for the stable category (continued)

An easy example of a pushout corner map. Let
M = N = T op, let M and N be manifolds with boundary, and
consider the morphisms f : ∂M → M and g : ∂N → N, the
inclusions of the boundaries. Then the diagram is
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∂M×g //

f×∂N
����
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and f �g is the inclusion ∂(M × N) → M × N.
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Cofibrant generating sets for the stable category (continued)

An easy example of a pushout corner map. Let
M = N = T op, let M and N be manifolds with boundary, and
consider the morphisms f : ∂M → M and g : ∂N → N, the
inclusions of the boundaries. Then the diagram is
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Cofibrant generating sets for the stable category (continued)

An easy example of a pushout corner map. Let
M = N = T op, let M and N be manifolds with boundary, and
consider the morphisms f : ∂M → M and g : ∂N → N, the
inclusions of the boundaries. Then the diagram is

∂M × ∂N
∂M×g //
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∂M × N
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and f �g is the inclusion ∂(M × N) → M × N.
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1.35

Cofibrant generating sets for the stable category (continued)

Now we can describe the cofibrant generating sets for LsSp.

Recall again that

Iproj =
{

S−m ∧ (in+ : Sn−1
+ → Dn

+) : m,n ≥ 0
}
=

{
S−m} ∧ I+

J proj =
{

S−m ∧ (jn+ : In
+ → In+1

+ ) : m,n ≥ 0
}
=

{
S−m} ∧ J+

Theorem

The following are cofibrant generating sets for LSSp.

Istable = Iproj

J stable = J proj ∪ {sm � in+ : m,n ≥ 0}
= J proj ∪ (S � I+).

The proof consists of showing that these two sets satisfy the
four (unnamed) technical conditions of the Kan Recognition
Theorem. Most of it is routine.
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Cofibrant generating sets for the stable category (continued)

Now we can describe the cofibrant generating sets for LsSp.
Recall again that

Iproj =
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Theorem. Most of it is routine.
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Cofibrant generating sets for the stable category (continued)

Now we can describe the cofibrant generating sets for LsSp.
Recall again that
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{
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}
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S−m} ∧ I+

J proj =
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Theorem

The following are cofibrant generating sets for LSSp.
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= J proj ∪ (S � I+).
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Theorem. Most of it is routine.
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Cofibrant generating sets for the stable category (continued)

Now we can describe the cofibrant generating sets for LsSp.
Recall again that

Iproj =
{

S−m ∧ (in+ : Sn−1
+ → Dn

+) : m,n ≥ 0
}
=

{
S−m} ∧ I+

J proj =
{

S−m ∧ (jn+ : In
+ → In+1

+ ) : m,n ≥ 0
}
=

{
S−m} ∧ J+

Theorem

The following are cofibrant generating sets for LSSp.

Istable = Iproj

J stable = J proj ∪ {sm � in+ : m,n ≥ 0}
= J proj ∪ (S � I+).

The proof consists of showing that these two sets satisfy the
four (unnamed) technical conditions of the Kan Recognition
Theorem.

Most of it is routine.
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1.35

Cofibrant generating sets for the stable category (continued)

Now we can describe the cofibrant generating sets for LsSp.
Recall again that

Iproj =
{

S−m ∧ (in+ : Sn−1
+ → Dn

+) : m,n ≥ 0
}
=

{
S−m} ∧ I+

J proj =
{

S−m ∧ (jn+ : In
+ → In+1

+ ) : m,n ≥ 0
}
=

{
S−m} ∧ J+

Theorem

The following are cofibrant generating sets for LSSp.

Istable = Iproj

J stable = J proj ∪ {sm � in+ : m,n ≥ 0}
= J proj ∪ (S � I+).

The proof consists of showing that these two sets satisfy the
four (unnamed) technical conditions of the Kan Recognition
Theorem. Most of it is routine.
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1.36

Cofibrant generating sets for the stable category (continued)

Theorem

The following are cofibrant generating sets for LSSp.

Istable = Iproj

J stable = J proj ∪ {sm � in+ : m,n ≥ 0}
= J proj ∪ (S � I+).

The proof consists of showing that these two sets satisfy the
four (unnamed) technical conditions of the Kan Recognition
Theorem.

Most of it is routine.

The most difficult point is to show that a stable equivalence
with the right lifting property with respect to J stable also has it
with respect to Istable, which means it is a trivial fibration.
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1.36

Cofibrant generating sets for the stable category (continued)

Theorem

The following are cofibrant generating sets for LSSp.

Istable = Iproj

J stable = J proj ∪ {sm � in+ : m,n ≥ 0}
= J proj ∪ (S � I+).

The proof consists of showing that these two sets satisfy the
four (unnamed) technical conditions of the Kan Recognition
Theorem. Most of it is routine.

The most difficult point is to show that a stable equivalence
with the right lifting property with respect to J stable also has it
with respect to Istable, which means it is a trivial fibration.
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1.36

Cofibrant generating sets for the stable category (continued)

Theorem

The following are cofibrant generating sets for LSSp.

Istable = Iproj

J stable = J proj ∪ {sm � in+ : m,n ≥ 0}
= J proj ∪ (S � I+).

The proof consists of showing that these two sets satisfy the
four (unnamed) technical conditions of the Kan Recognition
Theorem. Most of it is routine.

The most difficult point is to show that a stable equivalence
with the right lifting property with respect to J stable also has it
with respect to Istable,

which means it is a trivial fibration.
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1.36

Cofibrant generating sets for the stable category (continued)

Theorem

The following are cofibrant generating sets for LSSp.

Istable = Iproj

J stable = J proj ∪ {sm � in+ : m,n ≥ 0}
= J proj ∪ (S � I+).

The proof consists of showing that these two sets satisfy the
four (unnamed) technical conditions of the Kan Recognition
Theorem. Most of it is routine.

The most difficult point is to show that a stable equivalence
with the right lifting property with respect to J stable also has it
with respect to Istable, which means it is a trivial fibration.
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1.37

Cofibrant generating sets for the stable category (continued)
Again, the key point is to show that a stable equivalence
p : X → Y with the right lifting property with respect to

J stable =
{

S−m ∧ (in+ : Sn−1
+ → Dn

+) : m,n ≥ 0
}

∪ {sm � in+ : m,n ≥ 0}

also has it with respect to

Iproj =
{

S−m ∧ (in+ : Sn−1
+ → Dn

+) : m,n ≥ 0
}
.

Hence we are looking at a strict fibration that has the right lifting
property with respect to each pushout corner map sm � in+.

The latter condition is equivalent to the diagram

Xm
pm //

ηX
m ��

Ym

ηY
m��

ΩXm+1
Ωpm+1 // ΩYm+1

being homotopy Cartesian.
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1.37

Cofibrant generating sets for the stable category (continued)
Again, the key point is to show that a stable equivalence
p : X → Y with the right lifting property with respect to

J stable =
{

S−m ∧ (in+ : Sn−1
+ → Dn

+) : m,n ≥ 0
}

∪ {sm � in+ : m,n ≥ 0}

also has it with respect to

Iproj =
{

S−m ∧ (in+ : Sn−1
+ → Dn

+) : m,n ≥ 0
}
.

Hence we are looking at a strict fibration that has the right lifting
property with respect to each pushout corner map sm � in+.

The latter condition is equivalent to the diagram

Xm
pm //

ηX
m ��

Ym

ηY
m��

ΩXm+1
Ωpm+1 // ΩYm+1

being homotopy Cartesian.
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1.37

Cofibrant generating sets for the stable category (continued)
Again, the key point is to show that a stable equivalence
p : X → Y with the right lifting property with respect to

J stable =
{

S−m ∧ (in+ : Sn−1
+ → Dn

+) : m,n ≥ 0
}

∪ {sm � in+ : m,n ≥ 0}

also has it with respect to

Iproj =
{

S−m ∧ (in+ : Sn−1
+ → Dn

+) : m,n ≥ 0
}
.

Hence we are looking at a strict fibration that has the right lifting
property with respect to each pushout corner map sm � in+.

The latter condition is equivalent to the diagram

Xm
pm //

ηX
m ��

Ym

ηY
m��

ΩXm+1
Ωpm+1 // ΩYm+1

being homotopy Cartesian.
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1.37

Cofibrant generating sets for the stable category (continued)
Again, the key point is to show that a stable equivalence
p : X → Y with the right lifting property with respect to

J stable =
{

S−m ∧ (in+ : Sn−1
+ → Dn

+) : m,n ≥ 0
}

∪ {sm � in+ : m,n ≥ 0}

also has it with respect to

Iproj =
{

S−m ∧ (in+ : Sn−1
+ → Dn

+) : m,n ≥ 0
}
.

Hence we are looking at a strict fibration that has the right lifting
property with respect to each pushout corner map sm � in+.

The latter condition is equivalent to the diagram

Xm
pm //

ηX
m ��

Ym

ηY
m��

ΩXm+1
Ωpm+1 // ΩYm+1

being homotopy Cartesian.
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1.38

Cofibrant generating sets for the stable category (continued)

Recall the functor Λ : Sp → Sp for which (ΛX )m is the colimit of

Xm
ηX

m // ΩXm+1
ΩηX

m+1 // Ω2Xm+2
Ω2ηX

m+2 // . . .

We know that the corner map condition on our strict fibration
p : X → Y implies that the diagram

Xm
pm //

��

Ym

��
(ΛX )m

Λpm // (ΛY )m

is homotopy Cartesian. It is known that Λ converts stable
equivalences to strict ones, so pm is a weak equivalence, which
makes p a trivial fibration as desired.
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1.38

Cofibrant generating sets for the stable category (continued)

Recall the functor Λ : Sp → Sp for which (ΛX )m is the colimit of

Xm
ηX

m // ΩXm+1
ΩηX

m+1 // Ω2Xm+2
Ω2ηX

m+2 // . . .

We know that the corner map condition on our strict fibration
p : X → Y implies that the diagram

Xm
pm //

��

Ym

��
(ΛX )m

Λpm // (ΛY )m

is homotopy Cartesian. It is known that Λ converts stable
equivalences to strict ones, so pm is a weak equivalence, which
makes p a trivial fibration as desired.
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1.38

Cofibrant generating sets for the stable category (continued)

Recall the functor Λ : Sp → Sp for which (ΛX )m is the colimit of

Xm
ηX

m // ΩXm+1
ΩηX

m+1 // Ω2Xm+2
Ω2ηX

m+2 // . . .

We know that the corner map condition on our strict fibration
p : X → Y implies that the diagram

Xm
pm //

��

Ym

��
(ΛX )m

Λpm // (ΛY )m

is homotopy Cartesian. It is known that Λ converts stable
equivalences to strict ones, so pm is a weak equivalence, which
makes p a trivial fibration as desired.
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1.38

Cofibrant generating sets for the stable category (continued)

Recall the functor Λ : Sp → Sp for which (ΛX )m is the colimit of

Xm
ηX

m // ΩXm+1
ΩηX

m+1 // Ω2Xm+2
Ω2ηX

m+2 // . . .

We know that the corner map condition on our strict fibration
p : X → Y implies that the diagram

Xm
pm //

��

Ym

��
(ΛX )m

Λpm // (ΛY )m

is homotopy Cartesian.

It is known that Λ converts stable
equivalences to strict ones, so pm is a weak equivalence, which
makes p a trivial fibration as desired.
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1.38

Cofibrant generating sets for the stable category (continued)

Recall the functor Λ : Sp → Sp for which (ΛX )m is the colimit of

Xm
ηX

m // ΩXm+1
ΩηX

m+1 // Ω2Xm+2
Ω2ηX

m+2 // . . .

We know that the corner map condition on our strict fibration
p : X → Y implies that the diagram

Xm
pm //

��

Ym

��
(ΛX )m

Λpm // (ΛY )m

is homotopy Cartesian. It is known that Λ converts stable
equivalences to strict ones,

so pm is a weak equivalence, which
makes p a trivial fibration as desired.
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1.38

Cofibrant generating sets for the stable category (continued)

Recall the functor Λ : Sp → Sp for which (ΛX )m is the colimit of

Xm
ηX

m // ΩXm+1
ΩηX

m+1 // Ω2Xm+2
Ω2ηX

m+2 // . . .

We know that the corner map condition on our strict fibration
p : X → Y implies that the diagram

Xm
pm //

��

Ym

��
(ΛX )m

Λpm // (ΛY )m

is homotopy Cartesian. It is known that Λ converts stable
equivalences to strict ones, so pm is a weak equivalence,

which
makes p a trivial fibration as desired.
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1.38

Cofibrant generating sets for the stable category (continued)

Recall the functor Λ : Sp → Sp for which (ΛX )m is the colimit of

Xm
ηX

m // ΩXm+1
ΩηX

m+1 // Ω2Xm+2
Ω2ηX

m+2 // . . .

We know that the corner map condition on our strict fibration
p : X → Y implies that the diagram

Xm
pm //

��

Ym

��
(ΛX )m

Λpm // (ΛY )m

is homotopy Cartesian. It is known that Λ converts stable
equivalences to strict ones, so pm is a weak equivalence, which
makes p a trivial fibration as desired.
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1.39

Thank you!
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