
The eightfold way:
how to build the right
model structure on

orthogonal G-spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Functor categories

Orthogonal G-spectra
as functors

Modifying the model
structure

The Crans-Kan
transfer theorem

Equifibrant
enlargement

Positivization

Stabilization

1.1

The HMS Equivariant sailed proudly out of the harbor,
newly fitted with Mackey functor rigging, Mandell-May
sails, geometric fixed point guns, a Burnside ring navi-
gational system, homotopy fixed point masts, and free
action lifeboats.

The journal of Captain Greenlees, 1729
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1.3

A naive model structure

Let M be a pointed topological model category

and let J be a
small category, the indexing category. We define the projective
model structure on [J,M], the category of functors J → M
(J-shaped diagrams in M) as follows:

• For such a functor X , we denote its value on j ∈ J by Xj ,
and the j th component of a map (natural transformation)
f : X → Y by fj .

• A map f : X → Y is a fibration or a weak equivalence if fj is
one for each j .

• Cofibrations are defined in terms of lifting properties. Each
fj must be a cofibration, but this is not sufficient.
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1.4

More about [J,M]

[J,M] is tensored over M. This means for for a functor X and
object K in M, we can define a new functor X ∧ K by

(X ∧ K )j = Xj ∧ K .

For each j ∈ J we have the Yoneda functorH
j
in [J,M]

defined by (
H

j)
k
= J(j , k).

If J is an ordinary category, this is a set and therefore a
coproduct of points (terminal objects) in the model category M.

If J is enriched over M, each morphism object J(j , k) is a more
general object in M.
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1.5

More about [J,M] (continued)

Suppose M is cofibrantly generated with generating sets I
and J . Then [J,M] is also cofibrantly generated. Its
generating sets are

F JI :=
{
H

j
∧ f : f ∈ I, j ∈ J

}
and F JJ :=

{
H

j
∧ f : f ∈ J , j ∈ J

}
.

Are you bored yet?

WHY DO WE CARE ABOUT MODEL STRUCTURES ON
FUNCTOR CATEGORIES?



The eightfold way:
how to build the right
model structure on

orthogonal G-spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Functor categories

Orthogonal G-spectra
as functors

Modifying the model
structure

The Crans-Kan
transfer theorem

Equifibrant
enlargement

Positivization

Stabilization

1.5

More about [J,M] (continued)

Suppose M is cofibrantly generated with generating sets I
and J .

Then [J,M] is also cofibrantly generated. Its
generating sets are

F JI :=
{
H

j
∧ f : f ∈ I, j ∈ J

}
and F JJ :=

{
H

j
∧ f : f ∈ J , j ∈ J

}
.

Are you bored yet?

WHY DO WE CARE ABOUT MODEL STRUCTURES ON
FUNCTOR CATEGORIES?



The eightfold way:
how to build the right
model structure on

orthogonal G-spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Functor categories

Orthogonal G-spectra
as functors

Modifying the model
structure

The Crans-Kan
transfer theorem

Equifibrant
enlargement

Positivization

Stabilization

1.5

More about [J,M] (continued)

Suppose M is cofibrantly generated with generating sets I
and J . Then [J,M] is also cofibrantly generated.

Its
generating sets are

F JI :=
{
H

j
∧ f : f ∈ I, j ∈ J

}
and F JJ :=

{
H

j
∧ f : f ∈ J , j ∈ J

}
.

Are you bored yet?

WHY DO WE CARE ABOUT MODEL STRUCTURES ON
FUNCTOR CATEGORIES?



The eightfold way:
how to build the right
model structure on

orthogonal G-spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Functor categories

Orthogonal G-spectra
as functors

Modifying the model
structure

The Crans-Kan
transfer theorem

Equifibrant
enlargement

Positivization

Stabilization

1.5

More about [J,M] (continued)

Suppose M is cofibrantly generated with generating sets I
and J . Then [J,M] is also cofibrantly generated. Its
generating sets are

F JI :=
{
H

j
∧ f : f ∈ I, j ∈ J

}
and F JJ :=

{
H

j
∧ f : f ∈ J , j ∈ J

}
.

Are you bored yet?

WHY DO WE CARE ABOUT MODEL STRUCTURES ON
FUNCTOR CATEGORIES?



The eightfold way:
how to build the right
model structure on

orthogonal G-spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Functor categories

Orthogonal G-spectra
as functors

Modifying the model
structure

The Crans-Kan
transfer theorem

Equifibrant
enlargement

Positivization

Stabilization

1.5

More about [J,M] (continued)

Suppose M is cofibrantly generated with generating sets I
and J . Then [J,M] is also cofibrantly generated. Its
generating sets are

F JI :=
{
H

j
∧ f : f ∈ I, j ∈ J

}
and F JJ :=

{
H

j
∧ f : f ∈ J , j ∈ J

}
.

Are you bored yet?

WHY DO WE CARE ABOUT MODEL STRUCTURES ON
FUNCTOR CATEGORIES?



The eightfold way:
how to build the right
model structure on

orthogonal G-spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Functor categories

Orthogonal G-spectra
as functors

Modifying the model
structure

The Crans-Kan
transfer theorem

Equifibrant
enlargement

Positivization

Stabilization

1.5

More about [J,M] (continued)

Suppose M is cofibrantly generated with generating sets I
and J . Then [J,M] is also cofibrantly generated. Its
generating sets are

F JI :=
{
H

j
∧ f : f ∈ I, j ∈ J

}
and F JJ :=

{
H

j
∧ f : f ∈ J , j ∈ J

}
.

Are you bored yet?

WHY DO WE CARE ABOUT MODEL STRUCTURES ON
FUNCTOR CATEGORIES?



The eightfold way:
how to build the right
model structure on

orthogonal G-spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Functor categories

Orthogonal G-spectra
as functors

Modifying the model
structure

The Crans-Kan
transfer theorem

Equifibrant
enlargement

Positivization

Stabilization

1.6

Orthogonal G-spectra as functors

For a finite group G, the category SpG of orthogonal G-spectra
is such an enriched functor category [J,M].

The relevant model category is T G, the category of pointed
G-spaces and equivariant maps. In it a map f : K → L is a
weak equivalence or a fibration if the same is true of the fixed
point map f H : K H → LH for each subgroup H ⊆ G.

Cofibrations are defined in terms of left lifting properties.

It is cofibrantly generated. Its generating sets are

IG =

{
G+ ∧

H
(Sn−1

+ ↪→ Dn
+) : H ⊆ G,n ≥ 0

}
and

J G =

{
G+ ∧

H
(In
+ ↪→ In+1

+ ) : H ⊆ G,n ≥ 0
}
.
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For a finite group G, the category SpG of orthogonal G-spectra
is such an enriched functor category [J,M].

The relevant model category is T G,

the category of pointed
G-spaces and equivariant maps. In it a map f : K → L is a
weak equivalence or a fibration if the same is true of the fixed
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1.7

Orthogonal G-spectra as functors (continued)

The relevant indexing category is the Mandell-May category
JG, which is enriched over T G. Its objects are finite
dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) JG(V ,W ),
let O(V ,W ) denote the space of (nonequivariant) orthogonal
embeddings of V into W . It is a Stiefel manifold which could be
empty. The group G acts on it by conjugation.

Each such embedding t : V → W defines an orthogonal
complement t(V )⊥ ⊆ W . Thus we get a vector bundle over
O(V ,W ). The morphism object JG(V ,W ) is defined to be its
Thom space. It is a pointed G-space.

For representations U, V and W there is a composition
morphism in T G,

jU,V ,W : JG(V ,W ) ∧ JG(U,V ) → JG(U,W )

induced by composition of orthogonal embeddings
U → V → W . It is equivariant, even though the embeddings of
vector spaces need not be.
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1.7

Orthogonal G-spectra as functors (continued)
The relevant indexing category is the Mandell-May category
JG, which is enriched over T G.

Its objects are finite
dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) JG(V ,W ),
let O(V ,W ) denote the space of (nonequivariant) orthogonal
embeddings of V into W . It is a Stiefel manifold which could be
empty. The group G acts on it by conjugation.

Each such embedding t : V → W defines an orthogonal
complement t(V )⊥ ⊆ W . Thus we get a vector bundle over
O(V ,W ). The morphism object JG(V ,W ) is defined to be its
Thom space. It is a pointed G-space.

For representations U, V and W there is a composition
morphism in T G,

jU,V ,W : JG(V ,W ) ∧ JG(U,V ) → JG(U,W )

induced by composition of orthogonal embeddings
U → V → W . It is equivariant, even though the embeddings of
vector spaces need not be.
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Orthogonal G-spectra as functors (continued)
The relevant indexing category is the Mandell-May category
JG, which is enriched over T G. Its objects are finite
dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) JG(V ,W ),
let O(V ,W ) denote the space of (nonequivariant) orthogonal
embeddings of V into W . It is a Stiefel manifold which could be
empty. The group G acts on it by conjugation.

Each such embedding t : V → W defines an orthogonal
complement t(V )⊥ ⊆ W . Thus we get a vector bundle over
O(V ,W ). The morphism object JG(V ,W ) is defined to be its
Thom space. It is a pointed G-space.

For representations U, V and W there is a composition
morphism in T G,

jU,V ,W : JG(V ,W ) ∧ JG(U,V ) → JG(U,W )

induced by composition of orthogonal embeddings
U → V → W . It is equivariant, even though the embeddings of
vector spaces need not be.
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1.7

Orthogonal G-spectra as functors (continued)
The relevant indexing category is the Mandell-May category
JG, which is enriched over T G. Its objects are finite
dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) JG(V ,W ),

let O(V ,W ) denote the space of (nonequivariant) orthogonal
embeddings of V into W . It is a Stiefel manifold which could be
empty. The group G acts on it by conjugation.

Each such embedding t : V → W defines an orthogonal
complement t(V )⊥ ⊆ W . Thus we get a vector bundle over
O(V ,W ). The morphism object JG(V ,W ) is defined to be its
Thom space. It is a pointed G-space.

For representations U, V and W there is a composition
morphism in T G,

jU,V ,W : JG(V ,W ) ∧ JG(U,V ) → JG(U,W )

induced by composition of orthogonal embeddings
U → V → W . It is equivariant, even though the embeddings of
vector spaces need not be.
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Orthogonal G-spectra as functors (continued)
The relevant indexing category is the Mandell-May category
JG, which is enriched over T G. Its objects are finite
dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) JG(V ,W ),
let O(V ,W ) denote the space of (nonequivariant) orthogonal
embeddings of V into W .

It is a Stiefel manifold which could be
empty. The group G acts on it by conjugation.

Each such embedding t : V → W defines an orthogonal
complement t(V )⊥ ⊆ W . Thus we get a vector bundle over
O(V ,W ). The morphism object JG(V ,W ) is defined to be its
Thom space. It is a pointed G-space.

For representations U, V and W there is a composition
morphism in T G,

jU,V ,W : JG(V ,W ) ∧ JG(U,V ) → JG(U,W )

induced by composition of orthogonal embeddings
U → V → W . It is equivariant, even though the embeddings of
vector spaces need not be.
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Orthogonal G-spectra as functors (continued)
The relevant indexing category is the Mandell-May category
JG, which is enriched over T G. Its objects are finite
dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) JG(V ,W ),
let O(V ,W ) denote the space of (nonequivariant) orthogonal
embeddings of V into W . It is a Stiefel manifold which could be
empty.

The group G acts on it by conjugation.

Each such embedding t : V → W defines an orthogonal
complement t(V )⊥ ⊆ W . Thus we get a vector bundle over
O(V ,W ). The morphism object JG(V ,W ) is defined to be its
Thom space. It is a pointed G-space.

For representations U, V and W there is a composition
morphism in T G,

jU,V ,W : JG(V ,W ) ∧ JG(U,V ) → JG(U,W )

induced by composition of orthogonal embeddings
U → V → W . It is equivariant, even though the embeddings of
vector spaces need not be.
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Orthogonal G-spectra as functors (continued)
The relevant indexing category is the Mandell-May category
JG, which is enriched over T G. Its objects are finite
dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) JG(V ,W ),
let O(V ,W ) denote the space of (nonequivariant) orthogonal
embeddings of V into W . It is a Stiefel manifold which could be
empty. The group G acts on it by conjugation.

Each such embedding t : V → W defines an orthogonal
complement t(V )⊥ ⊆ W . Thus we get a vector bundle over
O(V ,W ). The morphism object JG(V ,W ) is defined to be its
Thom space. It is a pointed G-space.

For representations U, V and W there is a composition
morphism in T G,

jU,V ,W : JG(V ,W ) ∧ JG(U,V ) → JG(U,W )

induced by composition of orthogonal embeddings
U → V → W . It is equivariant, even though the embeddings of
vector spaces need not be.
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Orthogonal G-spectra as functors (continued)
The relevant indexing category is the Mandell-May category
JG, which is enriched over T G. Its objects are finite
dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) JG(V ,W ),
let O(V ,W ) denote the space of (nonequivariant) orthogonal
embeddings of V into W . It is a Stiefel manifold which could be
empty. The group G acts on it by conjugation.

Each such embedding t : V → W defines an orthogonal
complement t(V )⊥ ⊆ W .

Thus we get a vector bundle over
O(V ,W ). The morphism object JG(V ,W ) is defined to be its
Thom space. It is a pointed G-space.

For representations U, V and W there is a composition
morphism in T G,

jU,V ,W : JG(V ,W ) ∧ JG(U,V ) → JG(U,W )

induced by composition of orthogonal embeddings
U → V → W . It is equivariant, even though the embeddings of
vector spaces need not be.
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Orthogonal G-spectra as functors (continued)
The relevant indexing category is the Mandell-May category
JG, which is enriched over T G. Its objects are finite
dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) JG(V ,W ),
let O(V ,W ) denote the space of (nonequivariant) orthogonal
embeddings of V into W . It is a Stiefel manifold which could be
empty. The group G acts on it by conjugation.

Each such embedding t : V → W defines an orthogonal
complement t(V )⊥ ⊆ W . Thus we get a vector bundle over
O(V ,W ).

The morphism object JG(V ,W ) is defined to be its
Thom space. It is a pointed G-space.

For representations U, V and W there is a composition
morphism in T G,

jU,V ,W : JG(V ,W ) ∧ JG(U,V ) → JG(U,W )

induced by composition of orthogonal embeddings
U → V → W . It is equivariant, even though the embeddings of
vector spaces need not be.
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Orthogonal G-spectra as functors (continued)
The relevant indexing category is the Mandell-May category
JG, which is enriched over T G. Its objects are finite
dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) JG(V ,W ),
let O(V ,W ) denote the space of (nonequivariant) orthogonal
embeddings of V into W . It is a Stiefel manifold which could be
empty. The group G acts on it by conjugation.

Each such embedding t : V → W defines an orthogonal
complement t(V )⊥ ⊆ W . Thus we get a vector bundle over
O(V ,W ). The morphism object JG(V ,W ) is defined to be its
Thom space.

It is a pointed G-space.

For representations U, V and W there is a composition
morphism in T G,

jU,V ,W : JG(V ,W ) ∧ JG(U,V ) → JG(U,W )

induced by composition of orthogonal embeddings
U → V → W . It is equivariant, even though the embeddings of
vector spaces need not be.
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Orthogonal G-spectra as functors (continued)
The relevant indexing category is the Mandell-May category
JG, which is enriched over T G. Its objects are finite
dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) JG(V ,W ),
let O(V ,W ) denote the space of (nonequivariant) orthogonal
embeddings of V into W . It is a Stiefel manifold which could be
empty. The group G acts on it by conjugation.

Each such embedding t : V → W defines an orthogonal
complement t(V )⊥ ⊆ W . Thus we get a vector bundle over
O(V ,W ). The morphism object JG(V ,W ) is defined to be its
Thom space. It is a pointed G-space.

For representations U, V and W there is a composition
morphism in T G,

jU,V ,W : JG(V ,W ) ∧ JG(U,V ) → JG(U,W )

induced by composition of orthogonal embeddings
U → V → W . It is equivariant, even though the embeddings of
vector spaces need not be.
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Orthogonal G-spectra as functors (continued)
The relevant indexing category is the Mandell-May category
JG, which is enriched over T G. Its objects are finite
dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) JG(V ,W ),
let O(V ,W ) denote the space of (nonequivariant) orthogonal
embeddings of V into W . It is a Stiefel manifold which could be
empty. The group G acts on it by conjugation.

Each such embedding t : V → W defines an orthogonal
complement t(V )⊥ ⊆ W . Thus we get a vector bundle over
O(V ,W ). The morphism object JG(V ,W ) is defined to be its
Thom space. It is a pointed G-space.

For representations U, V and W there is a composition
morphism in T G,

jU,V ,W : JG(V ,W ) ∧ JG(U,V ) → JG(U,W )

induced by composition of orthogonal embeddings
U → V → W . It is equivariant, even though the embeddings of
vector spaces need not be.
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Orthogonal G-spectra as functors (continued)
The relevant indexing category is the Mandell-May category
JG, which is enriched over T G. Its objects are finite
dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) JG(V ,W ),
let O(V ,W ) denote the space of (nonequivariant) orthogonal
embeddings of V into W . It is a Stiefel manifold which could be
empty. The group G acts on it by conjugation.

Each such embedding t : V → W defines an orthogonal
complement t(V )⊥ ⊆ W . Thus we get a vector bundle over
O(V ,W ). The morphism object JG(V ,W ) is defined to be its
Thom space. It is a pointed G-space.

For representations U, V and W there is a composition
morphism in T G,

jU,V ,W : JG(V ,W ) ∧ JG(U,V ) → JG(U,W )

induced by composition of orthogonal embeddings
U → V → W .

It is equivariant, even though the embeddings of
vector spaces need not be.
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Orthogonal G-spectra as functors (continued)
The relevant indexing category is the Mandell-May category
JG, which is enriched over T G. Its objects are finite
dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) JG(V ,W ),
let O(V ,W ) denote the space of (nonequivariant) orthogonal
embeddings of V into W . It is a Stiefel manifold which could be
empty. The group G acts on it by conjugation.

Each such embedding t : V → W defines an orthogonal
complement t(V )⊥ ⊆ W . Thus we get a vector bundle over
O(V ,W ). The morphism object JG(V ,W ) is defined to be its
Thom space. It is a pointed G-space.

For representations U, V and W there is a composition
morphism in T G,

jU,V ,W : JG(V ,W ) ∧ JG(U,V ) → JG(U,W )

induced by composition of orthogonal embeddings
U → V → W . It is equivariant,

even though the embeddings of
vector spaces need not be.
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1.7

Orthogonal G-spectra as functors (continued)
The relevant indexing category is the Mandell-May category
JG, which is enriched over T G. Its objects are finite
dimensional orthogonal representations V of G.

To define the morphism object (pointed G-space) JG(V ,W ),
let O(V ,W ) denote the space of (nonequivariant) orthogonal
embeddings of V into W . It is a Stiefel manifold which could be
empty. The group G acts on it by conjugation.

Each such embedding t : V → W defines an orthogonal
complement t(V )⊥ ⊆ W . Thus we get a vector bundle over
O(V ,W ). The morphism object JG(V ,W ) is defined to be its
Thom space. It is a pointed G-space.

For representations U, V and W there is a composition
morphism in T G,

jU,V ,W : JG(V ,W ) ∧ JG(U,V ) → JG(U,W )

induced by composition of orthogonal embeddings
U → V → W . It is equivariant, even though the embeddings of
vector spaces need not be.
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1.8

Orthogonal G-spectra as functors (continued)

The morphism object JG(V ,W ) is the Thom space of the
orthogonal complement vector bundle over the space O(V ,W )
of (nonequivariant) orthogonal embeddings of V into W .

Some examples:

• For V = 0, the embedding space O(V ,W ) is a single
point, and JG(0,W ) = SW , the one point compactification
of W .

• When the dimension of V exceeds that of W , then the
embedding space is empty, and JG(V ,W ) is a point.

• When V and W have the same dimension, the embedding
space is the orthogonal group O(V ), with an action of G
defined in terms of its actions on V and W . The vector
bundle is zero dimensional, so its Thom space JG(V ,W )
is O(V )+, the orthogonal group with a disjoint base point.
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1.8

Orthogonal G-spectra as functors (continued)

The morphism object JG(V ,W ) is the Thom space of the
orthogonal complement vector bundle over the space O(V ,W )
of (nonequivariant) orthogonal embeddings of V into W .

Some examples:

• For V = 0, the embedding space O(V ,W ) is a single
point, and JG(0,W ) = SW , the one point compactification
of W .

• When the dimension of V exceeds that of W , then the
embedding space is empty, and JG(V ,W ) is a point.

• When V and W have the same dimension, the embedding
space is the orthogonal group O(V ), with an action of G
defined in terms of its actions on V and W . The vector
bundle is zero dimensional, so its Thom space JG(V ,W )
is O(V )+, the orthogonal group with a disjoint base point.
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1.8

Orthogonal G-spectra as functors (continued)

The morphism object JG(V ,W ) is the Thom space of the
orthogonal complement vector bundle over the space O(V ,W )
of (nonequivariant) orthogonal embeddings of V into W .

Some examples:

• For V = 0, the embedding space O(V ,W ) is a single
point,

and JG(0,W ) = SW , the one point compactification
of W .

• When the dimension of V exceeds that of W , then the
embedding space is empty, and JG(V ,W ) is a point.

• When V and W have the same dimension, the embedding
space is the orthogonal group O(V ), with an action of G
defined in terms of its actions on V and W . The vector
bundle is zero dimensional, so its Thom space JG(V ,W )
is O(V )+, the orthogonal group with a disjoint base point.
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1.8

Orthogonal G-spectra as functors (continued)

The morphism object JG(V ,W ) is the Thom space of the
orthogonal complement vector bundle over the space O(V ,W )
of (nonequivariant) orthogonal embeddings of V into W .

Some examples:

• For V = 0, the embedding space O(V ,W ) is a single
point, and JG(0,W ) = SW , the one point compactification
of W .

• When the dimension of V exceeds that of W , then the
embedding space is empty, and JG(V ,W ) is a point.

• When V and W have the same dimension, the embedding
space is the orthogonal group O(V ), with an action of G
defined in terms of its actions on V and W . The vector
bundle is zero dimensional, so its Thom space JG(V ,W )
is O(V )+, the orthogonal group with a disjoint base point.
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1.8

Orthogonal G-spectra as functors (continued)

The morphism object JG(V ,W ) is the Thom space of the
orthogonal complement vector bundle over the space O(V ,W )
of (nonequivariant) orthogonal embeddings of V into W .

Some examples:

• For V = 0, the embedding space O(V ,W ) is a single
point, and JG(0,W ) = SW , the one point compactification
of W .

• When the dimension of V exceeds that of W , then the
embedding space is empty, and JG(V ,W ) is a point.

• When V and W have the same dimension, the embedding
space is the orthogonal group O(V ), with an action of G
defined in terms of its actions on V and W . The vector
bundle is zero dimensional, so its Thom space JG(V ,W )
is O(V )+, the orthogonal group with a disjoint base point.
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1.8

Orthogonal G-spectra as functors (continued)

The morphism object JG(V ,W ) is the Thom space of the
orthogonal complement vector bundle over the space O(V ,W )
of (nonequivariant) orthogonal embeddings of V into W .

Some examples:

• For V = 0, the embedding space O(V ,W ) is a single
point, and JG(0,W ) = SW , the one point compactification
of W .

• When the dimension of V exceeds that of W , then the
embedding space is empty, and JG(V ,W ) is a point.

• When V and W have the same dimension, the embedding
space is the orthogonal group O(V ),

with an action of G
defined in terms of its actions on V and W . The vector
bundle is zero dimensional, so its Thom space JG(V ,W )
is O(V )+, the orthogonal group with a disjoint base point.



The eightfold way:
how to build the right
model structure on

orthogonal G-spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Functor categories

Orthogonal G-spectra
as functors

Modifying the model
structure

The Crans-Kan
transfer theorem

Equifibrant
enlargement

Positivization

Stabilization

1.8

Orthogonal G-spectra as functors (continued)

The morphism object JG(V ,W ) is the Thom space of the
orthogonal complement vector bundle over the space O(V ,W )
of (nonequivariant) orthogonal embeddings of V into W .

Some examples:

• For V = 0, the embedding space O(V ,W ) is a single
point, and JG(0,W ) = SW , the one point compactification
of W .

• When the dimension of V exceeds that of W , then the
embedding space is empty, and JG(V ,W ) is a point.

• When V and W have the same dimension, the embedding
space is the orthogonal group O(V ), with an action of G
defined in terms of its actions on V and W .

The vector
bundle is zero dimensional, so its Thom space JG(V ,W )
is O(V )+, the orthogonal group with a disjoint base point.
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1.8

Orthogonal G-spectra as functors (continued)

The morphism object JG(V ,W ) is the Thom space of the
orthogonal complement vector bundle over the space O(V ,W )
of (nonequivariant) orthogonal embeddings of V into W .

Some examples:

• For V = 0, the embedding space O(V ,W ) is a single
point, and JG(0,W ) = SW , the one point compactification
of W .

• When the dimension of V exceeds that of W , then the
embedding space is empty, and JG(V ,W ) is a point.

• When V and W have the same dimension, the embedding
space is the orthogonal group O(V ), with an action of G
defined in terms of its actions on V and W . The vector
bundle is zero dimensional,

so its Thom space JG(V ,W )
is O(V )+, the orthogonal group with a disjoint base point.



The eightfold way:
how to build the right
model structure on

orthogonal G-spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Functor categories

Orthogonal G-spectra
as functors

Modifying the model
structure

The Crans-Kan
transfer theorem

Equifibrant
enlargement

Positivization

Stabilization

1.8

Orthogonal G-spectra as functors (continued)

The morphism object JG(V ,W ) is the Thom space of the
orthogonal complement vector bundle over the space O(V ,W )
of (nonequivariant) orthogonal embeddings of V into W .

Some examples:

• For V = 0, the embedding space O(V ,W ) is a single
point, and JG(0,W ) = SW , the one point compactification
of W .

• When the dimension of V exceeds that of W , then the
embedding space is empty, and JG(V ,W ) is a point.

• When V and W have the same dimension, the embedding
space is the orthogonal group O(V ), with an action of G
defined in terms of its actions on V and W . The vector
bundle is zero dimensional, so its Thom space JG(V ,W )
is O(V )+,

the orthogonal group with a disjoint base point.
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1.8

Orthogonal G-spectra as functors (continued)

The morphism object JG(V ,W ) is the Thom space of the
orthogonal complement vector bundle over the space O(V ,W )
of (nonequivariant) orthogonal embeddings of V into W .

Some examples:

• For V = 0, the embedding space O(V ,W ) is a single
point, and JG(0,W ) = SW , the one point compactification
of W .

• When the dimension of V exceeds that of W , then the
embedding space is empty, and JG(V ,W ) is a point.

• When V and W have the same dimension, the embedding
space is the orthogonal group O(V ), with an action of G
defined in terms of its actions on V and W . The vector
bundle is zero dimensional, so its Thom space JG(V ,W )
is O(V )+, the orthogonal group with a disjoint base point.
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1.9

Orthogonal G-spectra as functors (continued)

An orthogonal G-spectrum X is an enriched functor JG → T G.
This means it consists of

• A collection pointed G-spaces XV , one for each
representation V of G, and

• structure maps JG(V ,W ) ∧ XV → XW . In particular, XV
has an action of the orthogonal group O(V ).

The Yoneda functorH
V

becomes the Yoneda spectrum S−V

defined by (S−V )W = JG(V ,W ). Its structure maps are
composition morphisms in JG.

In particular, (S−0)W = JG(0,W ) = SW and S−0 is the sphere
spectrum.
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1.9

Orthogonal G-spectra as functors (continued)

An orthogonal G-spectrum X is an enriched functor JG → T G.

This means it consists of

• A collection pointed G-spaces XV , one for each
representation V of G, and

• structure maps JG(V ,W ) ∧ XV → XW . In particular, XV
has an action of the orthogonal group O(V ).

The Yoneda functorH
V

becomes the Yoneda spectrum S−V

defined by (S−V )W = JG(V ,W ). Its structure maps are
composition morphisms in JG.

In particular, (S−0)W = JG(0,W ) = SW and S−0 is the sphere
spectrum.
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1.9

Orthogonal G-spectra as functors (continued)

An orthogonal G-spectrum X is an enriched functor JG → T G.
This means it consists of

• A collection pointed G-spaces XV , one for each
representation V of G, and

• structure maps JG(V ,W ) ∧ XV → XW . In particular, XV
has an action of the orthogonal group O(V ).

The Yoneda functorH
V

becomes the Yoneda spectrum S−V

defined by (S−V )W = JG(V ,W ). Its structure maps are
composition morphisms in JG.

In particular, (S−0)W = JG(0,W ) = SW and S−0 is the sphere
spectrum.
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1.9

Orthogonal G-spectra as functors (continued)

An orthogonal G-spectrum X is an enriched functor JG → T G.
This means it consists of

• A collection pointed G-spaces XV , one for each
representation V of G, and

• structure maps JG(V ,W ) ∧ XV → XW . In particular, XV
has an action of the orthogonal group O(V ).

The Yoneda functorH
V

becomes the Yoneda spectrum S−V

defined by (S−V )W = JG(V ,W ). Its structure maps are
composition morphisms in JG.

In particular, (S−0)W = JG(0,W ) = SW and S−0 is the sphere
spectrum.
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1.9

Orthogonal G-spectra as functors (continued)

An orthogonal G-spectrum X is an enriched functor JG → T G.
This means it consists of

• A collection pointed G-spaces XV , one for each
representation V of G, and

• structure maps JG(V ,W ) ∧ XV → XW .

In particular, XV
has an action of the orthogonal group O(V ).

The Yoneda functorH
V

becomes the Yoneda spectrum S−V

defined by (S−V )W = JG(V ,W ). Its structure maps are
composition morphisms in JG.

In particular, (S−0)W = JG(0,W ) = SW and S−0 is the sphere
spectrum.
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1.9

Orthogonal G-spectra as functors (continued)

An orthogonal G-spectrum X is an enriched functor JG → T G.
This means it consists of

• A collection pointed G-spaces XV , one for each
representation V of G, and

• structure maps JG(V ,W ) ∧ XV → XW . In particular, XV
has an action of the orthogonal group O(V ).

The Yoneda functorH
V

becomes the Yoneda spectrum S−V

defined by (S−V )W = JG(V ,W ). Its structure maps are
composition morphisms in JG.

In particular, (S−0)W = JG(0,W ) = SW and S−0 is the sphere
spectrum.
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1.9

Orthogonal G-spectra as functors (continued)

An orthogonal G-spectrum X is an enriched functor JG → T G.
This means it consists of

• A collection pointed G-spaces XV , one for each
representation V of G, and

• structure maps JG(V ,W ) ∧ XV → XW . In particular, XV
has an action of the orthogonal group O(V ).

The Yoneda functorH
V

becomes the Yoneda spectrum S−V

defined by (S−V )W = JG(V ,W ). Its structure maps are
composition morphisms in JG.

In particular, (S−0)W = JG(0,W ) = SW and S−0 is the sphere
spectrum.
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1.9

Orthogonal G-spectra as functors (continued)

An orthogonal G-spectrum X is an enriched functor JG → T G.
This means it consists of

• A collection pointed G-spaces XV , one for each
representation V of G, and

• structure maps JG(V ,W ) ∧ XV → XW . In particular, XV
has an action of the orthogonal group O(V ).

The Yoneda functorH
V

becomes the Yoneda spectrum S−V

defined by (S−V )W = JG(V ,W ).

Its structure maps are
composition morphisms in JG.

In particular, (S−0)W = JG(0,W ) = SW and S−0 is the sphere
spectrum.
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1.9

Orthogonal G-spectra as functors (continued)

An orthogonal G-spectrum X is an enriched functor JG → T G.
This means it consists of

• A collection pointed G-spaces XV , one for each
representation V of G, and

• structure maps JG(V ,W ) ∧ XV → XW . In particular, XV
has an action of the orthogonal group O(V ).

The Yoneda functorH
V

becomes the Yoneda spectrum S−V

defined by (S−V )W = JG(V ,W ). Its structure maps are
composition morphisms in JG.

In particular, (S−0)W = JG(0,W ) = SW and S−0 is the sphere
spectrum.
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1.9

Orthogonal G-spectra as functors (continued)

An orthogonal G-spectrum X is an enriched functor JG → T G.
This means it consists of

• A collection pointed G-spaces XV , one for each
representation V of G, and

• structure maps JG(V ,W ) ∧ XV → XW . In particular, XV
has an action of the orthogonal group O(V ).

The Yoneda functorH
V

becomes the Yoneda spectrum S−V

defined by (S−V )W = JG(V ,W ). Its structure maps are
composition morphisms in JG.

In particular, (S−0)W = JG(0,W ) = SW

and S−0 is the sphere
spectrum.
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1.9

Orthogonal G-spectra as functors (continued)

An orthogonal G-spectrum X is an enriched functor JG → T G.
This means it consists of

• A collection pointed G-spaces XV , one for each
representation V of G, and

• structure maps JG(V ,W ) ∧ XV → XW . In particular, XV
has an action of the orthogonal group O(V ).

The Yoneda functorH
V

becomes the Yoneda spectrum S−V

defined by (S−V )W = JG(V ,W ). Its structure maps are
composition morphisms in JG.

In particular, (S−0)W = JG(0,W ) = SW and S−0 is the sphere
spectrum.
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1.10

The projective model structure for orthogonal G-spectra

The category SpG of orthogonal G-spectra is the enriched
functor category [JG, T G]. Hence it has a projective model
structure as boringly described above. It is NOT the one we
want to use! It needs to be modified in three different ways.

1. The levelwise weak equivalences of the projective model
structure need to be replaced by stable equivalences. This
is a form of Bousfield localization.

2. It needs to play nicely with change of groups. For H ⊆ G
there is a change of group adjunction

G+ ∧
H
(−) : SpH ⊥

//
SpG : iGH ,oo

where iGH is the restriction functor. It needs to be a Quillen
adjunction. This means the class of cofibrations in SpG

needs to be enlarged to include cofibrations induced up
from H. When we have this for each H, we say the model
structure is equifibrant.
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The projective model structure for orthogonal G-spectra
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It needs to be modified in three different ways.

1. The levelwise weak equivalences of the projective model
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is a form of Bousfield localization.

2. It needs to play nicely with change of groups. For H ⊆ G
there is a change of group adjunction
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where iGH is the restriction functor. It needs to be a Quillen
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The projective model structure for orthogonal G-spectra
The category SpG of orthogonal G-spectra is the enriched
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1.11

The projective model structure for orthogonal G-spectra
(continued)

The projective model structure on SpG needs to be modified in
three different ways.

3. It needs to be positivized, a term to be defined later. This
is needed to define a model structure on the category of
commutative ring spectra. It involves confining the class of
cofibrations in a certain way. The sphere spectrum S−0

will no longer be cofibrant.
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1.12

Eight model structures for orthogonal G-spectra

projective stabilization //
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stableOO

equifibrant
enlargement
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::

positive //
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88
positive
stable
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6

��7
77

77
77

7equifibrant //
OO

positivization

stable
equifibrantOO

positive
equifibrant

//
positive
stable

equifibrant

Each arrow denotes the identity functor as a left Quillen
functor. The top four model structures were described by
Mandell-May. Our model structure of choice is the positive
stable equifibrant one on the lower right.
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1.13

The Crans-Kan transfer theorem

Definition

Let M be a cofibrantly generated model category,

let N be a
bicomplete category and let

M
F

⊥
//
N

U
oo

be a pair of adjoint functors. For cofibrant generating sets I
and J be of M, let FI = {Fi : i ∈ I} and FJ = {Fj : j ∈ J }.
Then the above is a transfer adjunction, and (F ,U) is a
transfer pair, if

1 both FI and FJ permit the small object argument in N
and

2 U takes relative FJ -cell complexes in N to weak
equivalences in M.
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1 both FI and FJ permit the small object argument in N
and

2 U takes relative FJ -cell complexes in N to weak
equivalences in M.
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The Crans-Kan transfer theorem (continued)

Crans-Kan Transfer Theorem

Let

M
F

⊥
//
N

U
oo

be a transfer adjunction as above. Then there is a cofibrantly
generated model structure on N (the transferred model
structure), for which FI and FJ are cofibrant generating sets,
and the weak equivalences and fibrations are the maps taken
by U to weak equivalences and fibrations in M. Furthermore,
with respect to this model structure, (F ,U) is a Quillen pair.

This is our main tool for constructing new model structures.
Note that N does not have a model structure to begin with. It
gets one though the adjunction.
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The Crans-Kan transfer theorem (continued)

Crans-Kan Transfer Theorem

Let

M
F

⊥
//
N

U
oo

be a transfer adjunction as above. Then there is a cofibrantly
generated model structure on N (the transferred model
structure),

for which FI and FJ are cofibrant generating sets,
and the weak equivalences and fibrations are the maps taken
by U to weak equivalences and fibrations in M. Furthermore,
with respect to this model structure, (F ,U) is a Quillen pair.

This is our main tool for constructing new model structures.
Note that N does not have a model structure to begin with. It
gets one though the adjunction.



The eightfold way:
how to build the right
model structure on

orthogonal G-spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Functor categories

Orthogonal G-spectra
as functors

Modifying the model
structure

The Crans-Kan
transfer theorem

Equifibrant
enlargement

Positivization

Stabilization

1.14

The Crans-Kan transfer theorem (continued)

Crans-Kan Transfer Theorem

Let

M
F

⊥
//
N

U
oo

be a transfer adjunction as above. Then there is a cofibrantly
generated model structure on N (the transferred model
structure), for which FI and FJ are cofibrant generating sets,

and the weak equivalences and fibrations are the maps taken
by U to weak equivalences and fibrations in M. Furthermore,
with respect to this model structure, (F ,U) is a Quillen pair.

This is our main tool for constructing new model structures.
Note that N does not have a model structure to begin with. It
gets one though the adjunction.



The eightfold way:
how to build the right
model structure on

orthogonal G-spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Functor categories

Orthogonal G-spectra
as functors

Modifying the model
structure

The Crans-Kan
transfer theorem

Equifibrant
enlargement

Positivization

Stabilization

1.14

The Crans-Kan transfer theorem (continued)

Crans-Kan Transfer Theorem

Let

M
F

⊥
//
N

U
oo

be a transfer adjunction as above. Then there is a cofibrantly
generated model structure on N (the transferred model
structure), for which FI and FJ are cofibrant generating sets,
and the weak equivalences and fibrations are the maps taken
by U to weak equivalences and fibrations in M.

Furthermore,
with respect to this model structure, (F ,U) is a Quillen pair.

This is our main tool for constructing new model structures.
Note that N does not have a model structure to begin with. It
gets one though the adjunction.



The eightfold way:
how to build the right
model structure on

orthogonal G-spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Functor categories

Orthogonal G-spectra
as functors

Modifying the model
structure

The Crans-Kan
transfer theorem

Equifibrant
enlargement

Positivization

Stabilization

1.14

The Crans-Kan transfer theorem (continued)
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The Crans-Kan transfer theorem (continued)
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1.15

Enlarging the class of cofibrations in a model category

Suppose we have pointed model categories M and M′ with an
adjunction

M′
F

⊥
//
M

U
oo

in which the right adjoint U preserves weak equivalences. It
need not be a Quillen adjunction. Consider the following
composite adjunction, which we will refer to as an enlarging
adjunction.

(X ,X ′) � // (X ,FX ′) � // X ∨ FX ′

M×M′
M×F

⊥
//
M×M

M×U
oo

∨
⊥

//
M

∆
oo

(Y ,UY ) (Y ,Y )�oo Y ,�oo

It is a transfer adjunction, so it induces a new model structure
on M. It has the same weak equivalences but more
cofibrations than the original one. They include the images
under F of cofibrations in M′.
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1.16

Enlarging the class of cofibrations in a model category
(continued)

We are using an adjunction of the form

M×M′
M×F

⊥
//
M×M

M×U
oo

∨
⊥

//
M

∆
oo

to induce a new model structure on M. The case of interest for
us is

M = SpG and M′ =
∏

H⊂G

SpH .

The product here is over all proper subgroups H. The functor
U is built out of restriction functors iGH , and F is built out of
induction functors

X 7→ G+ ∧
H

X for X ∈ SpH .

We call this process equifibrant enlargement. The resulting
model structure plays nicely with the norm and with geometric
fixed points.
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(continued)
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fixed points.
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Enlarging the class of cofibrations in a model category
(continued)
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⊥
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1.17

Positivization: back to functor categories

As in the start of this talk, let M be a pointed topological
cofibrantly generated model category, and let J be a small
category. Suppose further that J has a full subcategory K with
inclusion functor α : K → J.

This induces a precomposition functor α∗ : MJ → MK . It has
both a left and a right adjoint. They are the left and right Kan
extensions α! and α¡. (This notation for the right Kan extnesion
is new.) Consider the adjunction

MK
α!

⊥
//
MJ .

α∗
oo

In terms of the projective model structure on MK , this is a
transfer adjunction. The Crans-Kan transfer theorem gives us a
new model structure on MJ which differs from the projective
one.



The eightfold way:
how to build the right
model structure on

orthogonal G-spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Functor categories

Orthogonal G-spectra
as functors

Modifying the model
structure

The Crans-Kan
transfer theorem

Equifibrant
enlargement

Positivization

Stabilization

1.17

Positivization: back to functor categories

As in the start of this talk, let M be a pointed topological
cofibrantly generated model category,

and let J be a small
category. Suppose further that J has a full subcategory K with
inclusion functor α : K → J.

This induces a precomposition functor α∗ : MJ → MK . It has
both a left and a right adjoint. They are the left and right Kan
extensions α! and α¡. (This notation for the right Kan extnesion
is new.) Consider the adjunction

MK
α!

⊥
//
MJ .

α∗
oo

In terms of the projective model structure on MK , this is a
transfer adjunction. The Crans-Kan transfer theorem gives us a
new model structure on MJ which differs from the projective
one.



The eightfold way:
how to build the right
model structure on

orthogonal G-spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Functor categories

Orthogonal G-spectra
as functors

Modifying the model
structure

The Crans-Kan
transfer theorem

Equifibrant
enlargement

Positivization

Stabilization

1.17

Positivization: back to functor categories

As in the start of this talk, let M be a pointed topological
cofibrantly generated model category, and let J be a small
category.

Suppose further that J has a full subcategory K with
inclusion functor α : K → J.

This induces a precomposition functor α∗ : MJ → MK . It has
both a left and a right adjoint. They are the left and right Kan
extensions α! and α¡. (This notation for the right Kan extnesion
is new.) Consider the adjunction

MK
α!

⊥
//
MJ .

α∗
oo

In terms of the projective model structure on MK , this is a
transfer adjunction. The Crans-Kan transfer theorem gives us a
new model structure on MJ which differs from the projective
one.



The eightfold way:
how to build the right
model structure on

orthogonal G-spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Functor categories

Orthogonal G-spectra
as functors

Modifying the model
structure

The Crans-Kan
transfer theorem

Equifibrant
enlargement

Positivization

Stabilization

1.17

Positivization: back to functor categories

As in the start of this talk, let M be a pointed topological
cofibrantly generated model category, and let J be a small
category. Suppose further that J has a full subcategory K with
inclusion functor α : K → J.

This induces a precomposition functor α∗ : MJ → MK . It has
both a left and a right adjoint. They are the left and right Kan
extensions α! and α¡. (This notation for the right Kan extnesion
is new.) Consider the adjunction

MK
α!

⊥
//
MJ .

α∗
oo

In terms of the projective model structure on MK , this is a
transfer adjunction. The Crans-Kan transfer theorem gives us a
new model structure on MJ which differs from the projective
one.



The eightfold way:
how to build the right
model structure on

orthogonal G-spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Functor categories

Orthogonal G-spectra
as functors

Modifying the model
structure

The Crans-Kan
transfer theorem

Equifibrant
enlargement

Positivization

Stabilization

1.17

Positivization: back to functor categories

As in the start of this talk, let M be a pointed topological
cofibrantly generated model category, and let J be a small
category. Suppose further that J has a full subcategory K with
inclusion functor α : K → J.

This induces a precomposition functor α∗ : MJ → MK .

It has
both a left and a right adjoint. They are the left and right Kan
extensions α! and α¡. (This notation for the right Kan extnesion
is new.) Consider the adjunction

MK
α!

⊥
//
MJ .

α∗
oo

In terms of the projective model structure on MK , this is a
transfer adjunction. The Crans-Kan transfer theorem gives us a
new model structure on MJ which differs from the projective
one.



The eightfold way:
how to build the right
model structure on

orthogonal G-spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Functor categories

Orthogonal G-spectra
as functors

Modifying the model
structure

The Crans-Kan
transfer theorem

Equifibrant
enlargement

Positivization

Stabilization

1.17

Positivization: back to functor categories

As in the start of this talk, let M be a pointed topological
cofibrantly generated model category, and let J be a small
category. Suppose further that J has a full subcategory K with
inclusion functor α : K → J.

This induces a precomposition functor α∗ : MJ → MK . It has
both a left and a right adjoint.

They are the left and right Kan
extensions α! and α¡. (This notation for the right Kan extnesion
is new.) Consider the adjunction

MK
α!

⊥
//
MJ .

α∗
oo

In terms of the projective model structure on MK , this is a
transfer adjunction. The Crans-Kan transfer theorem gives us a
new model structure on MJ which differs from the projective
one.



The eightfold way:
how to build the right
model structure on

orthogonal G-spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Functor categories

Orthogonal G-spectra
as functors

Modifying the model
structure

The Crans-Kan
transfer theorem

Equifibrant
enlargement

Positivization

Stabilization

1.17

Positivization: back to functor categories

As in the start of this talk, let M be a pointed topological
cofibrantly generated model category, and let J be a small
category. Suppose further that J has a full subcategory K with
inclusion functor α : K → J.

This induces a precomposition functor α∗ : MJ → MK . It has
both a left and a right adjoint. They are the left and right Kan
extensions α! and α¡.

(This notation for the right Kan extnesion
is new.) Consider the adjunction

MK
α!

⊥
//
MJ .

α∗
oo

In terms of the projective model structure on MK , this is a
transfer adjunction. The Crans-Kan transfer theorem gives us a
new model structure on MJ which differs from the projective
one.



The eightfold way:
how to build the right
model structure on

orthogonal G-spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Functor categories

Orthogonal G-spectra
as functors

Modifying the model
structure

The Crans-Kan
transfer theorem

Equifibrant
enlargement

Positivization

Stabilization

1.17

Positivization: back to functor categories

As in the start of this talk, let M be a pointed topological
cofibrantly generated model category, and let J be a small
category. Suppose further that J has a full subcategory K with
inclusion functor α : K → J.

This induces a precomposition functor α∗ : MJ → MK . It has
both a left and a right adjoint. They are the left and right Kan
extensions α! and α¡. (This notation for the right Kan extnesion
is new.)

Consider the adjunction

MK
α!

⊥
//
MJ .

α∗
oo

In terms of the projective model structure on MK , this is a
transfer adjunction. The Crans-Kan transfer theorem gives us a
new model structure on MJ which differs from the projective
one.



The eightfold way:
how to build the right
model structure on

orthogonal G-spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Functor categories

Orthogonal G-spectra
as functors

Modifying the model
structure

The Crans-Kan
transfer theorem

Equifibrant
enlargement

Positivization

Stabilization

1.17

Positivization: back to functor categories

As in the start of this talk, let M be a pointed topological
cofibrantly generated model category, and let J be a small
category. Suppose further that J has a full subcategory K with
inclusion functor α : K → J.

This induces a precomposition functor α∗ : MJ → MK . It has
both a left and a right adjoint. They are the left and right Kan
extensions α! and α¡. (This notation for the right Kan extnesion
is new.) Consider the adjunction

MK
α!

⊥
//
MJ .

α∗
oo

In terms of the projective model structure on MK , this is a
transfer adjunction. The Crans-Kan transfer theorem gives us a
new model structure on MJ which differs from the projective
one.



The eightfold way:
how to build the right
model structure on

orthogonal G-spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Functor categories

Orthogonal G-spectra
as functors

Modifying the model
structure

The Crans-Kan
transfer theorem

Equifibrant
enlargement

Positivization

Stabilization

1.17

Positivization: back to functor categories

As in the start of this talk, let M be a pointed topological
cofibrantly generated model category, and let J be a small
category. Suppose further that J has a full subcategory K with
inclusion functor α : K → J.

This induces a precomposition functor α∗ : MJ → MK . It has
both a left and a right adjoint. They are the left and right Kan
extensions α! and α¡. (This notation for the right Kan extnesion
is new.) Consider the adjunction

MK
α!

⊥
//
MJ .

α∗
oo

In terms of the projective model structure on MK , this is a
transfer adjunction.

The Crans-Kan transfer theorem gives us a
new model structure on MJ which differs from the projective
one.



The eightfold way:
how to build the right
model structure on

orthogonal G-spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Functor categories

Orthogonal G-spectra
as functors

Modifying the model
structure

The Crans-Kan
transfer theorem

Equifibrant
enlargement

Positivization

Stabilization

1.17

Positivization: back to functor categories

As in the start of this talk, let M be a pointed topological
cofibrantly generated model category, and let J be a small
category. Suppose further that J has a full subcategory K with
inclusion functor α : K → J.

This induces a precomposition functor α∗ : MJ → MK . It has
both a left and a right adjoint. They are the left and right Kan
extensions α! and α¡. (This notation for the right Kan extnesion
is new.) Consider the adjunction

MK
α!

⊥
//
MJ .

α∗
oo

In terms of the projective model structure on MK , this is a
transfer adjunction. The Crans-Kan transfer theorem gives us a
new model structure on MJ

which differs from the projective
one.



The eightfold way:
how to build the right
model structure on

orthogonal G-spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Functor categories

Orthogonal G-spectra
as functors

Modifying the model
structure

The Crans-Kan
transfer theorem

Equifibrant
enlargement

Positivization

Stabilization

1.17

Positivization: back to functor categories

As in the start of this talk, let M be a pointed topological
cofibrantly generated model category, and let J be a small
category. Suppose further that J has a full subcategory K with
inclusion functor α : K → J.

This induces a precomposition functor α∗ : MJ → MK . It has
both a left and a right adjoint. They are the left and right Kan
extensions α! and α¡. (This notation for the right Kan extnesion
is new.) Consider the adjunction

MK
α!

⊥
//
MJ .

α∗
oo

In terms of the projective model structure on MK , this is a
transfer adjunction. The Crans-Kan transfer theorem gives us a
new model structure on MJ which differs from the projective
one.



The eightfold way:
how to build the right
model structure on

orthogonal G-spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Functor categories

Orthogonal G-spectra
as functors

Modifying the model
structure

The Crans-Kan
transfer theorem

Equifibrant
enlargement

Positivization

Stabilization

1.18

Back to functor categories (continued)

Consider the adjunction

MK
α!

⊥
//
MJ .

α∗
oo

In terms of the projective model structure on MK , this is a
transfer adjunction.

For a functor X in MK , we have

(α!X )j =

{
Xj for j ∈ Imα
∗ otherwise

The Crans-Kan transfer theorem gives us an induced model
structure on MJ which differs from the projective one. In it a
map f : X → Y is a weak equivalence or a fibration if fj is one
for each j ∈ Imα. It has more weak equivalences and fibrations
than the projective model structure.
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Back to functor categories (continued)
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Back to functor categories (continued)
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Back to functor categories (continued)
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Back to functor categories (continued)

Consider the adjunction
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1.19

Back to functor categories (continued)

Consider the adjunction

MK
α!

⊥
//
MJ .

α∗
oo

The Crans-Kan transfer theorem gives us an induced model
structure on MJ with more weak equivalences and fibrations,
and therefore fewer cofibrations, than the projective one.

A
map f : X → Y is an induced cofibration only when fj is an
isomorphism for each j not in the subcategory K . This also
means that there are fewer cofibrant objects.

We call this new model structure on [J,M] a confinement of
the projective one.
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Back to functor categories (continued)

Consider the adjunction
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Consider the adjunction

MK
α!

⊥
//
MJ .

α∗
oo

The Crans-Kan transfer theorem gives us an induced model
structure on MJ with more weak equivalences and fibrations,
and therefore fewer cofibrations, than the projective one. A
map f : X → Y is an induced cofibration only when fj is an
isomorphism for each j not in the subcategory K . This also
means that there are fewer cofibrant objects.

We call this new model structure on [J,M] a confinement of
the projective one.



The eightfold way:
how to build the right
model structure on

orthogonal G-spectra

Mike Hill
Mike Hopkins
Doug Ravenel

Functor categories

Orthogonal G-spectra
as functors

Modifying the model
structure

The Crans-Kan
transfer theorem

Equifibrant
enlargement

Positivization

Stabilization

1.19

Back to functor categories (continued)

Consider the adjunction
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1.20

A relevant example of confinement

We want to confine the projective model structure on the
category of orthogonal G-spectra

SpG = [JG, T G].

For this we need a full subcategory of JG.

We say an orthogonal representation V of G is positive if its
invariant subspace V G is nontrivial. The subcategory we want
is J

+
G , whose objects are positive representations.

The positive model structure on SpG is the one induced by the
transfer adjunction

SpG
+ := [J+

G , T
G]

α!

⊥
//
[JG, T G] = SpG.

α∗
oo

We call this type of confinement positivization.
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invariant subspace V G is nontrivial. The subcategory we want
is J

+
G , whose objects are positive representations.

The positive model structure on SpG is the one induced by the
transfer adjunction

SpG
+ := [J+

G , T
G]

α!

⊥
//
[JG, T G] = SpG.

α∗
oo

We call this type of confinement positivization.
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1.21

Positivization: why do it?

The category SpG is closed symmetric monoidal under smash
product, so we can speak of commutative ring objects in it, also
known as E∞-ring spectra. We denote the category of such
spectra by CommSpG.

We want to define a model structure on it. The issue here is
not equivariant, so we assume for simplicity that the group is
trivial. We want to define a transfer adjunction

Sp
Sym

⊥
//
CommSp,

U
oo

where U is the forgetful functor, and Sym is the free
commutative algebra functor

X 7→ Sym (X ) :=
∨
n≥0

SymnX ,

where Symn is the nth symmetric product functor,

X 7→ (X∧n)Σn .
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1.22

Positivization: why do it? (continued)

We want to define a transfer adjunction

Sp
Sym

⊥
//
CommSp.

U
oo

This means the functor Symn for each n must preserve weak
equivalences between cofibrant objects in Sp. We need this to
work for the stable model structure, which we have not yet
defined. There is a map

s1 : S−1 ∧ S1 → S−0,

which is a stable weak equivalence. Applying Sym2 gives a
map

Sym2s1 : Sym2(S−1 ∧ S1) → Sym2S−0 = S−0.

These two spectra are wildly different, so we have a problem.
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1.23

Positivization: why do it? (continued)

We want to define a transfer adjunction

Sp
Sym

⊥
//
CommSp,

U
oo

but the functor Sym2 fails to preserve the stable weak
equivalence

s1 : S−1 ∧ S1 → S−0.

This difficulty was first noticed by Jeff Smith in the 1990s. We
need Sym2 to preserve weak equivalences between cofibrant
objects.

After positivizing the stable model structure on Sp, the sphere
spectrum S−0 is no longer cofibrant, and (Sym,U) above
becomes a transfer pair as desired.
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1.24

Bousfield localization

Bousfield localization may be the best construction in model
category theory.

We start with a model category M and make
a new model structure on it by

• keeping the same class of cofibrations and
• expanding the class of weak equivalences in some way.

This means there will be more trivial cofibrations than before,
and hence fewer fibrations. This often leads to a more
interesting fibrant replacement functor.

The hard part of this is proving that each morphism can be
factored as a trivial cofibration followed by a fibration. It usually
involves some delicate set theory. It requires M to have certain
properties, but there are no restrictions on how we expand the
class of weak equivalences.
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This means there will be more trivial cofibrations than before,
and hence fewer fibrations.

This often leads to a more
interesting fibrant replacement functor.

The hard part of this is proving that each morphism can be
factored as a trivial cofibration followed by a fibration. It usually
involves some delicate set theory. It requires M to have certain
properties, but there are no restrictions on how we expand the
class of weak equivalences.
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Some examples of Bousfield localization

• Let T be the category of pointed topological spaces. Weak
equivalences are maps inducing isomorphisms of
homotopy groups, and all objects are fibrant. We can
expand the class of weak equivalences by requiring the to
induce inducing isomorphisms of homotopy groups only in
dimensions ≤ n. The resulting fibrant replacement functor
is the nth Postnikov section.

• Let h∗ be your favorite homology theory. We can expand
the class of weak equivalences in T by including all
h∗-isomorphisms. The resulting fibrant replacment functor
is Bousfield’s famous functor Lh. We can do the same in
the category of spectra. The functors LK (n) and LE(n) are
fundamental in chromatic homotopy theory.

• Let Sp = [J, T ] be the category of spectra with its
projective model structure. We can expand the class of
weak equivalences to include all maps inducing
isomorphisms in stable homotopy groups. The resulting
fibrant objects are precisely the Ω-spectra. We call this
process stabilization.
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homotopy groups, and all objects are fibrant. We can
expand the class of weak equivalences by requiring the to
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More about stabilization

In general there are two ways to describe Bousfield
localization:

1 Describe set or class of maps that are to
become weak equivalences. You need not
specify all of them. If you invite one to the
party, it will bring all of its friends.

2 Describe the new fibrant replacement functor. It is usually the
case that a map f : X → Y is a weak equivalence in the new
model structure iff the induced map between fibrant
replacements is a weak equivalence in the original model
structure. For example, a map of spaces or spectra is a
K (n)∗-equivalence iff its K (n)∗ localization (fibrant
replacement) is an ordinary weak equivalence.
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case that a map f : X → Y is a weak equivalence in the new
model structure iff the induced map between fibrant
replacements is a weak equivalence in the original model
structure. For example, a map of spaces or spectra is a
K (n)∗-equivalence iff its K (n)∗ localization (fibrant
replacement) is an ordinary weak equivalence.
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More about stabilization (continued)

In general there are two ways to describe Bousfield
localization.

In the case of orthogonal G-spectra we can do
both.

1 For each representation V , we define a stabilizing map
sV : S−V ∧SV → S−0 as follows. Its W th component is the
composition morphism

(S−V ∧ SV )W (S−0)W

JG(V ,W ) ∧ JG(0,V )
j0,V,W //JG(0,W ).

For V 6= 0 this map is a stable equivalence but not a
projective one.

2 To define the fibrant replacement RX of a spectrum X , let
ρ denote the regular representation of G. Then

(RX )V = hocolim
n

ΩnρXV+nρ.
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More about stabilization (continued)
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More about stabilization (continued)
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More about stabilization (continued)
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Happy Birthday John!
The Skye is the limit!
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