

Homotopy 2023 In Celebration of Paul Goerss

Northwestern University

Hiking in the Alps: C_{ρ} -fixed points of Lubin-Tate spectra

Doug Ravenel University of Rochester

March 23, 2023

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

▲□▶▲□▶▲≡▶▲≡▶ ≡ めへぐ

This is joint work with Mike Hill and Mike Hopkins.

Doug Ravenel

Historical introduction K(n) localization Properties of E_{Π} and G_{Π} Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

もちゃん 聞 (本語 を 本語 を 全日 を

This is joint work with Mike Hill and Mike Hopkins.

We were thinking about this problem in 2007-8,

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and \mathbb{G}_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

・ロト・日本・山下・ 山下・ 日下

This is joint work with Mike Hill and Mike Hopkins.

We were thinking about this problem in 2007-8, but we got distracted by the Kervaire invariant.

Mount Everest

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and \mathbb{G}_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

▲□▶▲□▶▲≡▶▲≡▶ ≡ めへぐ

This is joint work with Mike Hill and Mike Hopkins.

We were thinking about this problem in 2007-8, but we got distracted by the Kervaire invariant.

Mount Everest

For several years after that we could not remember what we had proved about C_p fixed points.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and \mathbb{G}_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

(日) (日) (日) (日) (日) (日) (日)

This is joint work with Mike Hill and Mike Hopkins.

We were thinking about this problem in 2007-8, but we got **distracted** by the Kervaire invariant.

Mount Everest

For several years after that we could not remember what we had proved about C_p fixed points.

Fortunately Mark Behrens took some careful notes for us.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

A central object of study in chromatic homotopy theory is $S^0_{K(n)}$,

A classical example

TMF at p = 3

Larger primes

もってい 叫 しゃきゃく 聞ゃく 日・

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

A theorem of Goerss-Hopkins-Miller identifies it as $E_n^{hG_n}$,

ししゃ 山田 そ 山 キャー 日 うくら

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

A theorem of Goerss-Hopkins-Miller identifies it as $E_n^{hG_n}$, the homotopy fixed point set of the action of the *n*th extended Morava stabilizer group \mathbb{G}_n

Hiking in the Alps:

Cn-fixed points of

A theorem of Goerss-Hopkins-Miller identifies it as $E_n^{hG_n}$, the homotopy fixed point set of the action of the *n*th extended Morava stabilizer group G_n on the *n*th Lubin-Tate spectrum E_n ,

Hiking in the Alps:

C_p-fixed points of Lubin-Tate spectra

A theorem of Goerss-Hopkins-Miller identifies it as $E_n^{hG_n}$, the homotopy fixed point set of the action of the *n*th extended Morava stabilizer group G_n on the *n*th Lubin-Tate spectrum E_n , also known as Morava E-theory.

Doug Ravenel

A theorem of Goerss-Hopkins-Miller identifies it as $E_n^{hG_n}$, the homotopy fixed point set of the action of the *n*th extended Morava stabilizer group G_n on the *n*th Lubin-Tate spectrum E_n , also known as Morava E-theory.

For any closed subgroup $H \subseteq \mathbb{G}_n$, one also has a homotopy fixed point spectrum E_n^{hH} under $S^0_{\mathcal{K}(n)}$.

Doug Ravenel

A theorem of Goerss-Hopkins-Miller identifies it as $E_n^{hG_n}$, the homotopy fixed point set of the action of the *n*th extended Morava stabilizer group G_n on the *n*th Lubin-Tate spectrum E_n , also known as Morava E-theory.

For any closed subgroup $H \subseteq \mathbb{G}_n$, one also has a homotopy fixed point spectrum E_n^{hH} under $S_{\mathcal{K}(n)}^0$. \mathbb{G}_n is known to have a subgroup of order p when p - 1 divides n.

Doug Ravenel

A theorem of Goerss-Hopkins-Miller identifies it as $E_n^{hG_n}$, the homotopy fixed point set of the action of the *n*th extended Morava stabilizer group G_n on the *n*th Lubin-Tate spectrum E_n , also known as Morava E-theory.

For any closed subgroup $H \subseteq \mathbb{G}_n$, one also has a homotopy fixed point spectrum E_n^{hH} under $S_{K(n)}^0$. \mathbb{G}_n is known to have a subgroup of order p when p - 1 divides n. Our goal is to study $E_{(p-1)f}^{hC_p}$ for positive integers f.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

 E_n is a complex oriented 2-periodic E_{∞} (meaning strictly commutative) ring spectrum.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction

K(n) localization

Properties of E_n and G_n

Finding a root of unity

 $Group\ cohomology$

The main theorem

A classical example

TMF at p = 3

 E_n is a complex oriented 2-periodic E_{∞} (meaning strictly commutative) ring spectrum. Its homotopy groups comprise the graded ring

$$\pi_* E_n = W\llbracket u_1, \ldots u_{n-1} \rrbracket [u^{\pm 1}]^{\wedge}$$

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

も日をよりをする (山下) もうしゃ

 E_n is a complex oriented 2-periodic E_{∞} (meaning strictly commutative) ring spectrum. Its homotopy groups comprise the graded ring

$$\pi_* E_n = W\llbracket u_1, \ldots u_{n-1} \rrbracket [u^{\pm 1}]^{\wedge}$$

where

W denotes the Witt ring W(F_{pⁿ}) of the field with pⁿ elements.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

 E_n is a complex oriented 2-periodic E_{∞} (meaning strictly commutative) ring spectrum. Its homotopy groups comprise the graded ring

$$\pi_* E_n = W\llbracket u_1, \ldots u_{n-1} \rrbracket [u^{\pm 1}]^{\wedge}$$

where

W denotes the Witt ring W(𝔽_{pⁿ}) of the field with pⁿ elements. This is a degree n extension of the ring ℤ_p of p-adic integers

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

 E_n is a complex oriented 2-periodic E_{∞} (meaning strictly commutative) ring spectrum. Its homotopy groups comprise the graded ring

$$\pi_* E_n = W\llbracket u_1, \ldots u_{n-1} \rrbracket [u^{\pm 1}]^{\wedge}$$

where

W denotes the Witt ring W(𝔽_{pⁿ}) of the field with pⁿ elements. This is a degree n extension of the ring ℤ_p of p-adic integers that lifts 𝔽_{pⁿ} as a degree n extension of the prime field 𝔽_p.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

 E_n is a complex oriented 2-periodic E_{∞} (meaning strictly commutative) ring spectrum. Its homotopy groups comprise the graded ring

$$\pi_* E_n = W\llbracket u_1, \ldots u_{n-1} \rrbracket [u^{\pm 1}]^{\wedge}$$

where

- W denotes the Witt ring W(𝔽_{pⁿ}) of the field with pⁿ elements. This is a degree n extension of the ring ℤ_p of p-adic integers that lifts 𝔽_{pⁿ} as a degree n extension of the prime field 𝔽_p.
- The power series variables *u_i* each have degree 0.

Doug Ravenel Historical introduction K(n) localization Properties of E_n and C_m Finding a root of unity Group cohomology

The main theorem A classical example

TMF at p = 3

Larger primes

- ロ ト 4 酉 ト 4 亘 ト 4 回 ト 4 日 -

 E_n is a complex oriented 2-periodic E_{∞} (meaning strictly commutative) ring spectrum. Its homotopy groups comprise the graded ring

$$\pi_* E_n = W\llbracket u_1, \ldots u_{n-1} \rrbracket [u^{\pm 1}]^{\wedge}$$

where

- W denotes the Witt ring W(𝔽_{pⁿ}) of the field with pⁿ elements. This is a degree *n* extension of the ring ℤ_p of *p*-adic integers that lifts 𝔽_{pⁿ} as a degree *n* extension of the prime field 𝔽_p.
- The power series variables *u_i* each have degree 0.
- The invertible variable *u* has degree -2.

Doug Ravenel

 E_n is a complex oriented 2-periodic E_{∞} (meaning strictly commutative) ring spectrum. Its homotopy groups comprise the graded ring

$$\pi_* E_n = W\llbracket u_1, \ldots u_{n-1} \rrbracket [u^{\pm 1}]^{\wedge}$$

where

- W denotes the Witt ring W(𝔽_{pⁿ}) of the field with pⁿ elements. This is a degree *n* extension of the ring ℤ_p of *p*-adic integers that lifts 𝔽_{pⁿ} as a degree *n* extension of the prime field 𝔽_p.
- The power series variables *u_i* each have degree 0.
- The invertible variable u has degree -2.
- The symbol ^ at the end denotes completion with respect to the maximal ideal *I_n* = (*p*, *u*₁, ... *u_{n-1}*).

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

 $\pi_* E_n = W[[u_1, \dots u_{n-1}]][u^{\pm 1}]^{\wedge}$

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction

K(n) localization

Properties of E_n and G_n

Finding a root of unity

Group cohomology

The main theorem

A classical example

TMF at p = 3

Larger primes

▲□▶▲@▶▲≧▶▲≧▶ ≧ りへぐ

$$\pi_* E_n = W\llbracket u_1, \ldots u_{n-1} \rrbracket [u^{\pm 1}]^{\wedge}$$

Here is an alternate description of this ring as a completed localization of a graded polynomial ring.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_n

Finding a root of unity

 $Group\ cohomology$

The main theorem

A classical example

TMF at p = 3

Larger primes

▲□▶▲舂▶▲≧▶▲≧▶ ≧ ∽��?

$$\pi_* E_n = W\llbracket u_1, \ldots u_{n-1} \rrbracket [u^{\pm 1}]^{\wedge}$$

Here is an alternate description of this ring as a completed localization of a graded polynomial ring.

• Let $R_n = W[x_0, ..., x_{n-1}]$ with $|x_i| = -2$.

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and \mathbb{G}_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3

$$\pi_* E_n = W\llbracket u_1, \ldots u_{n-1} \rrbracket [u^{\pm 1}]^{\wedge}$$

Here is an alternate description of this ring as a completed localization of a graded polynomial ring.

• Let $R_n = W[x_0, ..., x_{n-1}]$ with $|x_i| = -2$.

• Invert
$$\Phi := x_0 \cdots x_{n-1}$$
,

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem

A classical example

TMF at p = 3

$$\pi_* E_n = W[\![u_1, \dots u_{n-1}]\!][u^{\pm 1}]^n$$

Here is an alternate description of this ring as a completed localization of a graded polynomial ring.

- Let $R_n = W[x_0, ..., x_{n-1}]$ with $|x_i| = -2$.
- Invert $\Phi := x_0 \cdots x_{n-1}$, define $u_i := (x_0/x_i) 1$ for $1 \le i \le n 1$,

Doug Ravenel Historical introduction K(n) localization Properties of E_n and C_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3

$$\pi_* E_n = W[\![u_1, \dots u_{n-1}]\!][u^{\pm 1}]^n$$

Here is an alternate description of this ring as a completed localization of a graded polynomial ring.

• Let $R_n = W[x_0, ..., x_{n-1}]$ with $|x_i| = -2$.

• Invert
$$\Phi := x_0 \cdots x_{n-1}$$
, define $u_i := (x_0/x_i) - 1$ for $1 \le i \le n-1$, and $u := x_0^n/(x_1 \dots x_{n-1})$.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

$$\pi_* E_n = W[\![u_1, \dots u_{n-1}]\!][u^{\pm 1}]^n$$

Here is an alternate description of this ring as a completed localization of a graded polynomial ring.

- Let $R_n = W[x_0, ..., x_{n-1}]$ with $|x_i| = -2$.
- Invert $\Phi := x_0 \cdots x_{n-1}$, define $u_i := (x_0/x_i) 1$ for $1 \le i \le n-1$, and $u := x_0^n/(x_1 \dots x_{n-1})$. Then we have

$$R_n[\Phi^{\pm 1}] = W[u_1, \ldots, u_{n-1}][u^{\pm 1}].$$

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

・ロト・西ト・川州・山下・山下・山下

$$\pi_* E_n = W[\![u_1, \dots u_{n-1}]\!][u^{\pm 1}]^n$$

Here is an alternate description of this ring as a completed localization of a graded polynomial ring.

- Let $R_n = W[x_0, ..., x_{n-1}]$ with $|x_i| = -2$.
- Invert $\Phi := x_0 \cdots x_{n-1}$, define $u_i := (x_0/x_i) 1$ for $1 \le i \le n-1$, and $u := x_0^n/(x_1 \dots x_{n-1})$. Then we have

$$R_n[\Phi^{\pm 1}] = W[u_1, \ldots, u_{n-1}][u^{\pm 1}].$$

• Let \mathfrak{m} be the kernel of the map $R_n[\Phi^{\pm 1}] \to \mathbb{F}_{\rho^n}[u^{\pm 1}]$ sending each x_i to u.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel Historical introduction K(n) localization Properties of E_n and G_m Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

ふして 前 ふぶとうがい きょうちょう

$$\pi_* E_n = W[\![u_1, \dots u_{n-1}]\!][u^{\pm 1}]^n$$

Here is an alternate description of this ring as a completed localization of a graded polynomial ring.

- Let $R_n = W[x_0, ..., x_{n-1}]$ with $|x_i| = -2$.
- Invert $\Phi := x_0 \cdots x_{n-1}$, define $u_i := (x_0/x_i) 1$ for $1 \le i \le n-1$, and $u := x_0^n/(x_1 \dots x_{n-1})$. Then we have

$$R_n[\Phi^{\pm 1}] = W[u_1, \ldots, u_{n-1}][u^{\pm 1}].$$

• Let \mathfrak{m} be the kernel of the map $R_n[\Phi^{\pm 1}] \to \mathbb{F}_{\rho^n}[u^{\pm 1}]$ sending each x_i to u.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel Historical introduction K(n) localization Properties of E_n and G_m Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

ふして 前 ふぶとうがい きょうちょう

$$\pi_* E_n = W[\![u_1, \dots u_{n-1}]\!][u^{\pm 1}]^n$$

Here is an alternate description of this ring as a completed localization of a graded polynomial ring.

- Let $R_n = W[x_0, ..., x_{n-1}]$ with $|x_i| = -2$.
- Invert $\Phi := x_0 \cdots x_{n-1}$, define $u_i := (x_0/x_i) 1$ for $1 \le i \le n-1$, and $u := x_0^n/(x_1 \dots x_{n-1})$. Then we have

$$R_n[\Phi^{\pm 1}] = W[u_1, \ldots, u_{n-1}][u^{\pm 1}].$$

Let m be the kernel of the map R_n[Φ^{±1}] → F_{pⁿ}[u^{±1}] sending each x_i to u. Then complete with respect to m.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel Historical introduction K(n) localization Properties of E_n and G_m Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

うてん 川 ふかく 山 そう きょう

$$\pi_* E_n = W[\![u_1, \dots u_{n-1}]\!][u^{\pm 1}]^n$$

Here is an alternate description of this ring as a completed localization of a graded polynomial ring.

- Let $R_n = W[x_0, ..., x_{n-1}]$ with $|x_i| = -2$.
- Invert $\Phi := x_0 \cdots x_{n-1}$, define $u_i := (x_0/x_i) 1$ for $1 \le i \le n-1$, and $u := x_0^n/(x_1 \dots x_{n-1})$. Then we have

$$R_n[\Phi^{\pm 1}] = W[u_1,\ldots,u_{n-1}][u^{\pm 1}].$$

Let m be the kernel of the map R_n[Φ^{±1}] → 𝔽_{pⁿ}[u^{±1}] sending each x_i to u. Then complete with respect to m. The result is isomorphic to π_∗ E_n.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_m Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

(□▶ ▲□▶ ▲ 壹 ▶ ▲ 亘 → りへの

$$\pi_* E_n = W[\![u_1, \dots u_{n-1}]\!][u^{\pm 1}]^n$$

Here is an alternate description of this ring as a completed localization of a graded polynomial ring.

- Let $R_n = W[x_0, ..., x_{n-1}]$ with $|x_i| = -2$.
- Invert $\Phi := x_0 \cdots x_{n-1}$, define $u_i := (x_0/x_i) 1$ for $1 \le i \le n-1$, and $u := x_0^n/(x_1 \dots x_{n-1})$. Then we have

$$R_n[\Phi^{\pm 1}] = W[u_1,\ldots,u_{n-1}][u^{\pm 1}].$$

Let m be the kernel of the map *R_n*[Φ^{±1}] → 𝔽_{pⁿ}[*u*^{±1}] sending each *x_i* to *u*. Then complete with respect to m. The result is isomorphic to *π_∗E_n*.

In short, we start with a graded polynomial local ring,

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

$$\pi_* E_n = W\llbracket u_1, \ldots u_{n-1} \rrbracket \llbracket u^{\pm 1} \rrbracket^{\wedge}$$

Here is an alternate description of this ring as a completed localization of a graded polynomial ring.

- Let $R_n = W[x_0, ..., x_{n-1}]$ with $|x_i| = -2$.
- Invert $\Phi := x_0 \cdots x_{n-1}$, define $u_i := (x_0/x_i) 1$ for $1 \le i \le n-1$, and $u := x_0^n/(x_1 \dots x_{n-1})$. Then we have

$$R_n[\Phi^{\pm 1}] = W[u_1, \ldots, u_{n-1}][u^{\pm 1}].$$

Let m be the kernel of the map R_n[Φ^{±1}] → 𝔽_{pⁿ}[u^{±1}] sending each x_i to u. Then complete with respect to m. The result is isomorphic to π_∗ E_n.

In short, we start with a graded polynomial local ring, invert each of its specified generators, Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

$$\pi_* E_n = W\llbracket u_1, \ldots u_{n-1} \rrbracket [u^{\pm 1}]^{\wedge}$$

Here is an alternate description of this ring as a completed localization of a graded polynomial ring.

- Let $R_n = W[x_0, ..., x_{n-1}]$ with $|x_i| = -2$.
- Invert $\Phi := x_0 \cdots x_{n-1}$, define $u_i := (x_0/x_i) 1$ for $1 \le i \le n-1$, and $u := x_0^n/(x_1 \dots x_{n-1})$. Then we have

$$R_n[\Phi^{\pm 1}] = W[u_1,\ldots,u_{n-1}][u^{\pm 1}].$$

Let m be the kernel of the map R_n[Φ^{±1}] → F_{pⁿ}[u^{±1}] sending each x_i to u. Then complete with respect to m. The result is isomorphic to π_{*} E_n.

In short, we start with a graded polynomial local ring, invert each of its specified generators, and then complete at its graded maximal ideal. Hiking in the Alps: C_p-fixed points of Lubin-Tate spectra

Doug Ravenel

K(n) localization Properties of E_n and C_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3

Larger primes

$$\pi_* E_n = W\llbracket u_1, \ldots u_{n-1} \rrbracket [u^{\pm 1}]^{\wedge}$$

Here is an alternate description of this ring as a completed localization of a graded polynomial ring.

- Let $R_n = W[x_0, ..., x_{n-1}]$ with $|x_i| = -2$.
- Invert $\Phi := x_0 \cdots x_{n-1}$, define $u_i := (x_0/x_i) 1$ for $1 \le i \le n-1$, and $u := x_0^n/(x_1 \dots x_{n-1})$. Then we have

$$R_n[\Phi^{\pm 1}] = W[u_1,\ldots,u_{n-1}][u^{\pm 1}].$$

Let m be the kernel of the map R_n[Φ^{±1}] → F_{pⁿ}[u^{±1}] sending each x_i to u. Then complete with respect to m. The result is isomorphic to π_{*} E_n.

In short, we start with a graded polynomial local ring, invert each of its specified generators, and then complete at its graded maximal ideal. We will come back to this later.

The extended Morava stabilizer group \mathbb{G}_n is related to the automorphism group \mathbb{S}_n of the Honda height *n* formal group law F_n over \mathbb{F}_{p^n} .

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

●□▶●□▼●▼●▼●▼●

enlarge the field over which F_n is defined.

The extended Morava stabilizer group \mathbb{G}_n is related to the

automorphism group \mathbb{S}_n of the Honda height *n* formal group law F_n over \mathbb{F}_{p^n} . It is known that this group does does change if we

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

- ロ ト 4 酉 ト 4 亘 ト 4 亘 ト 4 回 -

The extended Morava stabilizer group \mathbb{G}_n is related to the automorphism group \mathbb{S}_n of the Honda height *n* formal group law F_n over \mathbb{F}_{p^n} . It is known that this group does does change if we enlarge the field over which F_n is defined.

To describe \mathbb{G}_n , we describe the endomorphism ring of F_n , End(F_n).

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

The extended Morava stabilizer group \mathbb{G}_n is related to the automorphism group \mathbb{S}_n of the Honda height *n* formal group law F_n over \mathbb{F}_{p^n} . It is known that this group does does change if we enlarge the field over which F_n is defined.

To describe \mathbb{G}_n , we describe the endomorphism ring of F_n , End(F_n). The Frobenius automorphism, the *p*th power map of \mathbb{F}_{p^n} ,

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

The extended Morava stabilizer group \mathbb{G}_n is related to the automorphism group \mathbb{S}_n of the Honda height *n* formal group law F_n over \mathbb{F}_{p^n} . It is known that this group does does change if we enlarge the field over which F_n is defined.

To describe \mathbb{G}_n , we describe the endomorphism ring of F_n , End(F_n). The Frobenius automorphism, the *p*th power map of \mathbb{F}_{p^n} , lifts to an ring automorphism of *W* which we denote by $w \mapsto w^{\sigma}$.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

The extended Morava stabilizer group \mathbb{G}_n is related to the automorphism group \mathbb{S}_n of the Honda height *n* formal group law F_n over \mathbb{F}_{p^n} . It is known that this group does does change if we enlarge the field over which F_n is defined.

To describe \mathbb{G}_n , we describe the endomorphism ring of F_n , End(F_n). The Frobenius automorphism, the *p*th power map of \mathbb{F}_{p^n} , lifts to an ring automorphism of *W* which we denote by $w \mapsto w^{\sigma}$.

Theorem

End(F_n) is the algebra obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^{\sigma}F$ for $w \in W$.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

(日・4回・4回・4回・4日)

Theorem

End(F_n) is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^{\sigma}F$ for $w \in W$.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Theorem

End(F_n) is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^{\sigma}F$ for $w \in W$.

This algebra is a free module over W of rank n,

Hiking in the Alps:

Theorem

End(F_n) is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^{\sigma}F$ for $w \in W$.

This algebra is a free module over *W* of rank *n*, and hence a free module over \mathbb{Z}_p of rank n^2 .

Theorem

End(F_n) is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^{\sigma}F$ for $w \in W$.

This algebra is a free module over W of rank n, and hence a free module over \mathbb{Z}_p of rank n^2 . An element of the form

$$e = e_0 + e_1F + \cdots + e_{n-1}F^{n-1}$$
 with $e_i \in W$

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Theorem

End(F_n) is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^{\sigma}F$ for $w \in W$.

This algebra is a free module over W of rank n, and hence a free module over \mathbb{Z}_p of rank n^2 . An element of the form

$$e = e_0 + e_1F + \cdots + e_{n-1}F^{n-1}$$
 with $e_i \in W$

is invertible if e_0 is a unit in W.

Hiking in the Alps:

C_p-fixed points of Lubin-Tate spectra

End(F_n) is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^{\sigma}F$ for $w \in W$.

This algebra is a free module over W of rank n, and hence a free module over \mathbb{Z}_p of rank n^2 . An element of the form

$$e = e_0 + e_1F + \cdots + e_{n-1}F^{n-1}$$
 with $e_i \in W$

is invertible if e_0 is a unit in W. They form a group under multiplication. This is the automorphism group $Aut(F_n)$ of F_n , commonly known as the *n*th Morava stabilizer group S_n .

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

End(F_n) is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^{\sigma}F$ for $w \in W$.

This algebra is a free module over W of rank n, and hence a free module over \mathbb{Z}_p of rank n^2 . An element of the form

$$e = e_0 + e_1F + \cdots + e_{n-1}F^{n-1}$$
 with $e_i \in W$

is invertible if e_0 is a unit in W. They form a group under multiplication. This is the automorphism group $\operatorname{Aut}(F_n)$ of F_n , commonly known as the *n*th Morava stabilizer group \mathbb{S}_n . \mathbb{G}_n is its extension by the Galois group

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

End(F_n) is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^{\sigma}F$ for $w \in W$.

This algebra is a free module over W of rank n, and hence a free module over \mathbb{Z}_p of rank n^2 . An element of the form

$$e = e_0 + e_1F + \cdots + e_{n-1}F^{n-1}$$
 with $e_i \in W$

is invertible if e_0 is a unit in W. They form a group under multiplication. This is the automorphism group $\operatorname{Aut}(F_n)$ of F_n , commonly known as the *n*th Morava stabilizer group \mathbb{S}_n . \mathbb{G}_n is its extension by the Galois group

$$\operatorname{Gal}(\mathbb{F}_{p^n},\mathbb{F}_p)\cong\operatorname{Gal}(W,\mathbb{Z}_p)\cong \mathcal{C}_n.$$

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Theorem

End(F_n) is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^{\sigma}F$ for $w \in W$.

Doug Ravenel

Theorem

End(F_n) is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^{\sigma}F$ for $w \in W$.

Let $\omega \in W$ be a primitive $(p^n - 1)$ th root of unity, and let $\overline{\omega} \in \mathbb{F}_{p^n}$ be its mod p reduction.

Hiking in the Alps:

Cp-fixed points of Lubin-Tate spectra

Theorem

End(F_n) is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^{\sigma}F$ for $w \in W$.

Let $\omega \in W$ be a primitive $(p^n - 1)$ th root of unity, and let $\overline{\omega} \in \mathbb{F}_{p^n}$ be its mod *p* reduction. Then the elements ω and *F* in End(*F_n*) correspond to the endomorphisms

Doug Ravenel Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

もってい 川山 そうせん 小山 そうしん

Theorem

End(F_n) is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^{\sigma}F$ for $w \in W$.

Let $\omega \in W$ be a primitive $(p^n - 1)$ th root of unity, and let $\overline{\omega} \in \mathbb{F}_{p^n}$ be its mod p reduction. Then the elements ω and F in $\text{End}(F_n)$ correspond to the endomorphisms

$$x \mapsto \overline{\omega} x$$
 and $x \mapsto x^p$

of F_n .

Hiking in the Alps:

Cp-fixed points of Lubin-Tate spectra

Theorem

End(F_n) is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^{\sigma}F$ for $w \in W$.

Let $\omega \in W$ be a primitive $(p^n - 1)$ th root of unity, and let $\overline{\omega} \in \mathbb{F}_{p^n}$ be its mod p reduction. Then the elements ω and F in $\text{End}(F_n)$ correspond to the endomorphisms

$$x \mapsto \overline{\omega}x$$
 and $x \mapsto x^p$

of F_n .

Our algebra $\text{End}(F_n)$ is a complete discrete valuation ring in which the valuation of *F* is 1/n.

Doug Ravenel Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

・ロト 4 酉 ト 4 亘 ト 4 亘 ト 4 回 -

Theorem

End(F_n) is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^{\sigma}F$ for $w \in W$.

Let $\omega \in W$ be a primitive $(p^n - 1)$ th root of unity, and let $\overline{\omega} \in \mathbb{F}_{p^n}$ be its mod p reduction. Then the elements ω and F in $\text{End}(F_n)$ correspond to the endomorphisms

$$x \mapsto \overline{\omega}x$$
 and $x \mapsto x^p$

of F_n .

Our algebra $\operatorname{End}(F_n)$ is a complete discrete valuation ring in which the valuation of *F* is 1/n. This valuation extends the usual one on *W*, in which the valuation of *p* is 1.

Hiking in the Alps:

Cp-fixed points of Lubin-Tate spectra

End(F_n) is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^{\sigma}F$ for $w \in W$.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3

Larger primes

End(F_n) is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^{\sigma}F$ for $w \in W$.

Finding an element of order p in \mathbb{S}_n ,

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

End(F_n) is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^{\sigma}F$ for $w \in W$.

Finding an element of order p in \mathbb{S}_n , is equivalent to finding a pth root of unity in $\text{End}(F_n)$. For this we will use the following facts about it.

End(F_n) is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^{\sigma}F$ for $w \in W$.

Finding an element of order p in S_n , is equivalent to finding a pth root of unity in $End(F_n)$. For this we will use the following facts about it.

End(*F_n*) ⊗ ℚ_ρ is a division algebra *D_n* with center ℚ_ρ.

End(F_n) is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^{\sigma}F$ for $w \in W$.

Finding an element of order p in S_n , is equivalent to finding a pth root of unity in $End(F_n)$. For this we will use the following facts about it.

- End(*F_n*) ⊗ ℚ_ρ is a division algebra *D_n* with center ℚ_ρ.
- *D_n* is known to contain every field *K* that is a finite extension of Q_p whose degree divides *n*.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

End(F_n) is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^{\sigma}F$ for $w \in W$.

Finding an element of order p in S_n , is equivalent to finding a pth root of unity in $End(F_n)$. For this we will use the following facts about it.

- End(*F_n*) ⊗ ℚ_ρ is a division algebra *D_n* with center ℚ_ρ.
- *D_n* is known to contain every field *K* that is a finite extension of Q_p whose degree divides *n*. The valuation we have defined on *D_n* restricts to the usual one on each such *K*.

Hiking in the Alps: C_p-fixed points of Lubin-Tate spectra

End(F_n) is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^{\sigma}F$ for $w \in W$.

Finding an element of order p in S_n , is equivalent to finding a pth root of unity in $End(F_n)$. For this we will use the following facts about it.

- End(*F_n*) ⊗ ℚ_ρ is a division algebra *D_n* with center ℚ_ρ.
- *D_n* is known to contain every field *K* that is a finite extension of Q_p whose degree divides *n*. The valuation we have defined on *D_n* restricts to the usual one on each such *K*.
- The field $L = \mathbb{Q}_{\rho}[\sqrt[p]{1}]$ has degree p 1,

End(F_n) is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^{\sigma}F$ for $w \in W$.

Finding an element of order p in S_n , is equivalent to finding a pth root of unity in $End(F_n)$. For this we will use the following facts about it.

- End(*F_n*) ⊗ ℚ_ρ is a division algebra *D_n* with center ℚ_ρ.
- *D_n* is known to contain every field *K* that is a finite extension of Q_p whose degree divides *n*. The valuation we have defined on *D_n* restricts to the usual one on each such *K*.
- The field $L = \mathbb{Q}_p[\sqrt[p]{1}]$ has degree p 1, and is thus contained in D_n iff p 1 divides n.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

End(F_n) is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^{\sigma}F$ for $w \in W$.

Finding an element of order p in S_n , is equivalent to finding a pth root of unity in $End(F_n)$. For this we will use the following facts about it.

- End(*F_n*) ⊗ ℚ_ρ is a division algebra *D_n* with center ℚ_ρ.
- *D_n* is known to contain every field *K* that is a finite extension of Q_p whose degree divides *n*. The valuation we have defined on *D_n* restricts to the usual one on each such *K*.
- The field $L = \mathbb{Q}_p[\sqrt[p]{1}]$ has degree p 1, and is thus contained in D_n iff p 1 divides n. Its maximal ideal is generated by an element π with valuation 1/(p 1).

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Theorem

End(F_n) is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^{\sigma}F$ for $w \in W$.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Theorem

End(F_n) is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^{\sigma}F$ for $w \in W$.

The above discussion implies that for n = (p - 1)f for a positive integer *f*,

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

Theorem

End(F_n) is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^{\sigma}F$ for $w \in W$.

The above discussion implies that for n = (p - 1)f for a positive integer *f*, a primitive *p*th root of unity exists in the sub *W*-algebra of End(*F_n*) generated by *F^f*.

Hiking in the Alps: C_p-fixed points of Lubin-Tate spectra

Doug Ravenel Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

▲□▶▲□▶▲□▶▲□▶▲□

Theorem

End(F_n) is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^{\sigma}F$ for $w \in W$.

The above discussion implies that for n = (p - 1)f for a positive integer *f*, a primitive *p*th root of unity exists in the sub *W*-algebra of End(*F_n*) generated by *F^f*. It thus has the form

$$\zeta = 1 + z_1 F^f + \dots + z_{p-2} F^{(p-2)f} + p z_{p-1} \qquad \text{with } z_i \in W,$$

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Theorem

End(F_n) is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^{\sigma}F$ for $w \in W$.

The above discussion implies that for n = (p - 1)f for a positive integer *f*, a primitive *p*th root of unity exists in the sub *W*-algebra of End(*F_n*) generated by *F^f*. It thus has the form

$$\zeta = 1 + z_1 F^f + \dots + z_{p-2} F^{(p-2)f} + p z_{p-1} \qquad \text{with } z_i \in W,$$

where z_1 is a unit.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Finding a *p*th root of unity (continued)

Theorem

End(F_n) is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^{\sigma}F$ for $w \in W$.

The above discussion implies that for n = (p - 1)f for a positive integer *f*, a primitive *p*th root of unity exists in the sub *W*-algebra of End(*F_n*) generated by *F^f*. It thus has the form

$$\zeta = 1 + z_1 F^f + \dots + z_{p-2} F^{(p-2)f} + p z_{p-1} \qquad \text{with } z_i \in W,$$

where z_1 is a unit. Recall that $F^{(p-1)f} = p$.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Finding a *p*th root of unity (continued)

Theorem

End(F_n) is the algebra $W\langle\langle F \rangle\rangle$ obtained from W by adjoining a noncommuting indeterminate F with $F^n = p$ and $Fw = w^{\sigma}F$ for $w \in W$.

The above discussion implies that for n = (p - 1)f for a positive integer *f*, a primitive *p*th root of unity exists in the sub *W*-algebra of End(*F_n*) generated by *F^f*. It thus has the form

$$\zeta = \mathbf{1} + z_1 F^f + \dots + z_{p-2} F^{(p-2)f} + p z_{p-1} \qquad \text{with } z_i \in W,$$

where z_1 is a unit. Recall that $F^{(p-1)f} = p$. There are many such elements ζ .

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

$$E_2^{s,t} = H^s(G; \pi_t E) \implies \pi_{t-s} E^{hG}$$

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

$$E_2^{s,t} = H^s(G; \pi_t E) \implies \pi_{t-s} E^{hG}$$

Its use requires knowledge of the action of G on π_*E .

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

▲□▶▲舂▶▲≧▶▲≧▶ ≧ りへぐ

$$E_2^{s,t} = H^s(G; \pi_t E) \implies \pi_{t-s} E^{hG}$$

Its use requires knowledge of the action of *G* on π_*E . In the case of \mathbb{G} acting on π_*E_n this is far from easy,

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization $Properties of E_n and G_n$ Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

・ロト 4 母 ト 4 画 ト 4 画 ト 4 日 -

$$E_2^{s,t} = H^s(G; \pi_t E) \implies \pi_{t-s} E^{hG}$$

Its use requires knowledge of the action of G on π_*E . In the case of \mathbb{G} acting on π_*E_n this is far from easy, despite the identification of the above with the E_2 -term of the Adams-Novikov spectral sequence.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

$$E_2^{s,t} = H^s(G; \pi_t E) \implies \pi_{t-s} E^{hG}$$

Its use requires knowledge of the action of G on π_*E . In the case of \mathbb{G} acting on π_*E_n this is far from easy, despite the identification of the above with the E_2 -term of the Adams-Novikov spectral sequence. It is more manageable when we replace \mathbb{G} by a subgroup of order p.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

We recall some facts about group cohomology for $G = C_{\rho}$.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization

Properties of En and Gn

Finding a root of unity

Group cohomology

The main theorem

A classical example

TMF at p = 3

Larger primes

▲□▶▲舂▶▲壹▶▲壹▶ 壹 ∽९०

We recall some facts about group cohomology for $G = C_p$. For a generator $\gamma \in C_p$, the integral group ring $\mathbb{Z}C_p$ is $\mathbb{Z}[\gamma]/(\gamma^p - 1)$.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction

K(n) localization Properties of En and Gn

Finding a root of unity

Group cohomology

The main theorem

A classical example

TMF at p = 3

Larger primes

▲□▶▲□▶▲≡▶▲≡▶ ■ りへぐ

We recall some facts about group cohomology for $G = C_p$. For a generator $\gamma \in C_p$, the integral group ring $\mathbb{Z}C_p$ is $\mathbb{Z}[\gamma]/(\gamma^p - 1)$. The following is a minimal free $\mathbb{Z}C_p$ -resolution of \mathbb{Z} with the trivial C_p -action. Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_n

Finding a root of unity

Group cohomology

The main theorem

A classical example

TMF at p = 3

Larger primes

We recall some facts about group cohomology for $G = C_p$. For a generator $\gamma \in C_p$, the integral group ring $\mathbb{Z}C_p$ is $\mathbb{Z}[\gamma]/(\gamma^p - 1)$. The following is a minimal free $\mathbb{Z}C_p$ -resolution of \mathbb{Z} with the trivial C_p -action.

$$0 \longleftarrow \mathbb{Z} \xleftarrow{\nabla} \mathbb{Z} C_{p} \xleftarrow{1-\gamma} \mathbb{Z} C_{p} \xleftarrow{T} \mathbb{Z} C_{p} \xleftarrow{T} \cdots$$

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and \mathbb{G}_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3

Larger primes

We recall some facts about group cohomology for $G = C_p$. For a generator $\gamma \in C_p$, the integral group ring $\mathbb{Z}C_p$ is $\mathbb{Z}[\gamma]/(\gamma^p - 1)$. The following is a minimal free $\mathbb{Z}C_p$ -resolution of \mathbb{Z} with the trivial C_p -action.

$$0 \longleftarrow \mathbb{Z} \xleftarrow{\nabla} \mathbb{Z} C_{p} \xleftarrow{1-\gamma} \mathbb{Z} C_{p} \xleftarrow{T} \mathbb{Z} C_{p} \xleftarrow{T} \cdots$$

where ∇ is the augmentation defined by $\nabla(\gamma^i) = 1$,

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

We recall some facts about group cohomology for $G = C_p$. For a generator $\gamma \in C_p$, the integral group ring $\mathbb{Z}C_p$ is $\mathbb{Z}[\gamma]/(\gamma^p - 1)$. The following is a minimal free $\mathbb{Z}C_p$ -resolution of \mathbb{Z} with the trivial C_p -action.

$$0 \leftarrow \mathbb{Z} \leftarrow \nabla \mathbb{Z} C_{p} \leftarrow \mathbb{Z} C_{p} \leftarrow \mathbb{Z} C_{p} \leftarrow \mathbb{Z} C_{p} \leftarrow \cdots$$

where ∇ is the augmentation defined by $\nabla(\gamma^i) = 1$, and $T = 1 + \gamma + \cdots + \gamma^{p-1}$ is the trace.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

We recall some facts about group cohomology for $G = C_p$. For a generator $\gamma \in C_p$, the integral group ring $\mathbb{Z}C_p$ is $\mathbb{Z}[\gamma]/(\gamma^p - 1)$. The following is a minimal free $\mathbb{Z}C_p$ -resolution of \mathbb{Z} with the trivial C_p -action.

$$0 \longleftarrow \mathbb{Z} \xleftarrow{\nabla} \mathbb{Z} C_{p} \xleftarrow{1-\gamma} \mathbb{Z} C_{p} \xleftarrow{T} \mathbb{Z} C_{p} \xleftarrow{T} \cdots$$

where ∇ is the augmentation defined by $\nabla(\gamma^i) = 1$, and $T = 1 + \gamma + \cdots + \gamma^{p-1}$ is the trace.

Applying the functor $\operatorname{Hom}_{\mathbb{Z}C_p}(-,\mathbb{Z}_p)$ to this chain complex gives the cochain complex

$$\mathbb{Z}_p \xrightarrow{0} \mathbb{Z}_p \xrightarrow{p} \mathbb{Z}_p \xrightarrow{0} \cdots$$

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

We recall some facts about group cohomology for $G = C_p$. For a generator $\gamma \in C_p$, the integral group ring $\mathbb{Z}C_p$ is $\mathbb{Z}[\gamma]/(\gamma^p - 1)$. The following is a minimal free $\mathbb{Z}C_p$ -resolution of \mathbb{Z} with the trivial C_p -action.

$$0 \longleftarrow \mathbb{Z} \xleftarrow{\nabla} \mathbb{Z} C_{\rho} \xleftarrow{1-\gamma} \mathbb{Z} C_{\rho} \xleftarrow{T} \mathbb{Z} C_{\rho} \xleftarrow{T} \cdots$$

where ∇ is the augmentation defined by $\nabla(\gamma^i) = 1$, and $T = 1 + \gamma + \cdots + \gamma^{p-1}$ is the trace.

Applying the functor $\operatorname{Hom}_{\mathbb{Z}C_p}(-,\mathbb{Z}_p)$ to this chain complex gives the cochain complex

$$\mathbb{Z}_p \xrightarrow{0} \mathbb{Z}_p \xrightarrow{p} \mathbb{Z}_p \xrightarrow{0} \cdots$$

leading to the expected

$$H^i(C_{
ho};\mathbb{Z}_{
ho})= \left\{egin{array}{ccc} \mathbb{Z}_{
ho} & ext{for }i=0 \ \mathbb{Z}/p & ext{for }i>0 ext{ even} \ 0 & ext{otherwise.} \end{array}
ight.$$

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

 $0 < \cdots \mathbb{Z} < \nabla \mathbb{Z} C_{\rho} < \cdots$

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization

Properties of En and Gn

Finding a root of unity

Group cohomology

The main theorem

A classical example

TMF at p = 3

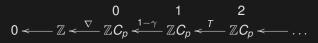
Larger primes

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ . 三 りへぐ

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes



The cokernel of *T*, also the kernel of ∇ , is the reduced regular representation $\overline{\rho}$.

 $0 \longleftarrow \mathbb{Z} \xleftarrow{\nabla} \mathbb{Z} C_{\rho} \xleftarrow{1-\gamma} \mathbb{Z} C_{\rho} \xleftarrow{T} \mathbb{Z} C_{\rho} \xleftarrow{T} \cdots$

The cokernel of T, also the kernel of ∇ , is the reduced regular representation $\overline{\rho}$.

Similar computations give

$$H^i(\mathcal{C}_{
ho};\overline{
ho}) = \left\{egin{array}{ccc} 0 & ext{for } i=0 \ \mathbb{Z}/p & ext{for } i ext{ odd} \ 0 & ext{otherwise}. \end{array}
ight.$$

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

 $0 \longleftarrow \mathbb{Z} \xleftarrow{\nabla} \mathbb{Z} C_{\rho} \xleftarrow{1-\gamma} \mathbb{Z} C_{\rho} \xleftarrow{T} \mathbb{Z} C_{\rho} ः{T} \mathbb{Z} C_{\rho} :{T} \mathbb{Z} C_{\rho} :{T} \mathbb{Z} C_{\rho} :{T} \mathbb{Z} C_{\rho} :$

The cokernel of *T*, also the kernel of ∇ , is the reduced regular representation $\overline{\rho}$.

Similar computations give

$$H^i(\mathcal{C}_{
ho};\overline{
ho}) = \left\{egin{array}{ccc} 0 & ext{for } i=0 \ \mathbb{Z}/p & ext{for } i ext{ odd} \ 0 & ext{otherwise}. \end{array}
ight.$$

and

$$H^{i}(C_{
ho};\mathbb{Z}C_{
ho})=\left\{egin{array}{cc} \mathbb{Z} & ext{for }i=0\ 0 & ext{otherwise} \end{array}
ight.$$

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization $Properties of E_n and G_n$ Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

うから 叫 ふぼをょぼやょ 聞をょう

We will now describe $\pi_* E_n$ for n = (p - 1)f as a module over the group ring WC_p , where $W = W(\mathbb{F}_{p^n})$. Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction

K(n) localization

Properties of E_n and \mathbb{G}_n

Finding a root of unity

Group cohomology

The main theorem

A classical example

TMF at p = 3

Larger primes

▲□▶▲舂▶▲≧▶▲≧▶ ≧ りへぐ

We will now describe $\pi_* E_n$ for n = (p - 1)f as a module over the group ring WC_p , where $W = W(\mathbb{F}_{p^n})$. We will do this more generally, replacing C_p by any finite subgroup H of the (nonextended) Morava stabilizer group $Aut(F_n)$ Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

▲□▶▲□▶▲≡▶▲≡▶ ■ めんの

We will now describe $\pi_* E_n$ for n = (p-1)f as a module over the group ring WC_p , where $W = W(\mathbb{F}_{p^n})$. We will do this more generally, replacing C_p by any finite subgroup H of the (nonextended) Morava stabilizer group $Aut(F_n)$ whose p-Sylow subgroup is cyclic. Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

・ロト・西・・川・・ ・ 日・

We will now describe $\pi_* E_n$ for n = (p - 1)f as a module over the group ring WC_p , where $W = W(\mathbb{F}_{p^n})$. We will do this more generally, replacing C_p by any finite subgroup H of the (nonextended) Morava stabilizer group $Aut(F_n)$ whose p-Sylow subgroup is cyclic.

We saw earlier that $\pi_* E_n$ is a completed localization of the graded ring

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and \mathbb{G}_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

●□▶●□▼●▼■▼●

We will now describe $\pi_* E_n$ for n = (p - 1)f as a module over the group ring WC_p , where $W = W(\mathbb{F}_{p^n})$. We will do this more generally, replacing C_p by any finite subgroup H of the (nonextended) Morava stabilizer group $Aut(F_n)$ whose p-Sylow subgroup is cyclic.

We saw earlier that $\pi_* E_n$ is a completed localization of the graded ring

$$R_n = W[x_0, \ldots, x_{n-1}]$$
 with $|x_i| = -2$.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3

Larger primes

・ロト・日本・山市・ 山市・ トロ・

We will now describe $\pi_* E_n$ for n = (p - 1)f as a module over the group ring WC_p , where $W = W(\mathbb{F}_{p^n})$. We will do this more generally, replacing C_p by any finite subgroup H of the (nonextended) Morava stabilizer group $Aut(F_n)$ whose p-Sylow subgroup is cyclic.

We saw earlier that $\pi_* E_n$ is a completed localization of the graded ring

$$R_n = W[x_0, \ldots, x_{n-1}]$$
 with $|x_i| = -2$.

Its component in degree -2 is a free *W*-module of rank *n*,

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and \mathbb{G}_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

・ロ・▲中・▲州・▲日・

We will now describe $\pi_* E_n$ for n = (p - 1)f as a module over the group ring WC_p , where $W = W(\mathbb{F}_{p^n})$. We will do this more generally, replacing C_p by any finite subgroup H of the (nonextended) Morava stabilizer group $Aut(F_n)$ whose p-Sylow subgroup is cyclic.

We saw earlier that $\pi_* E_n$ is a completed localization of the graded ring

$$R_n = W[x_0, \dots, x_{n-1}]$$
 with $|x_i| = -2$.

Its component in degree -2 is a free *W*-module of rank *n*, as is our endomorphism ring $End(F_n)$.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and \mathbb{G}_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

- ロ ト 4 酉 ト 4 亘 ト 4 回 - 4 日 -

We will now describe $\pi_* E_n$ for n = (p - 1)f as a module over the group ring WC_p , where $W = W(\mathbb{F}_{p^n})$. We will do this more generally, replacing C_p by any finite subgroup H of the (nonextended) Morava stabilizer group $Aut(F_n)$ whose p-Sylow subgroup is cyclic.

We saw earlier that $\pi_* E_n$ is a completed localization of the graded ring

$$R_n = W[x_0, \ldots, x_{n-1}]$$
 with $|x_i| = -2$.

Its component in degree -2 is a free *W*-module of rank *n*, as is our endomorphism ring $\text{End}(F_n)$. This isomorphism defines an action of *H* on the degree -2 component of R_n ,

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

We will now describe $\pi_* E_n$ for n = (p - 1)f as a module over the group ring WC_p , where $W = W(\mathbb{F}_{p^n})$. We will do this more generally, replacing C_p by any finite subgroup H of the (nonextended) Morava stabilizer group $Aut(F_n)$ whose p-Sylow subgroup is cyclic.

We saw earlier that $\pi_* E_n$ is a completed localization of the graded ring

$$R_n = W[x_0, \ldots, x_{n-1}]$$
 with $|x_i| = -2$.

Its component in degree -2 is a free *W*-module of rank *n*, as is our endomorphism ring $\text{End}(F_n)$. This isomorphism defines an action of *H* on the degree -2 component of R_n , which extends to an action on all of R_n and its completed localization by continuous ring homomorphisms.

Hiking in the Alps: C_p-fixed points of Lubin-Tate spectra

Doug Ravenel

For the case $H = C_p$, R_n is isomorphic as a WC_p -algebra to

Doug Ravenel

Historical introduction K(n) localization

Properties of E_{Π} and \mathbb{G}_{Π}

Finding a root of unity

Group cohomology

The main theorem

A classical example

TMF at p = 3

Larger primes

▲□▶▲舂▶▲≧▶▲≧▶ ≧ りへぐ

For the case $H = C_p$, R_n is isomorphic as a WC_p -algebra to

$$\widetilde{R}_n = W[x_{i,j} : 1 \le i \le f, j \in \mathbb{Z}/p] \left/ \left(\sum_j x_{i,j} : 1 \le i \le f \right) \right|$$

with
$$|x_{i,j}| = -2$$
.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

・ロト・国・・州州・王・

For the case $H = C_{\rho}$, R_n is isomorphic as a WC_{ρ} -algebra to

$$\widetilde{R}_n = W[x_{i,j} : 1 \le i \le f, j \in \mathbb{Z}/p] \left/ \left(\sum_j x_{i,j} : 1 \le i \le f \right) \right.$$

with $|x_{i,j}| = -2$.

For a generator $\gamma \in C_{\rho}$ we have $\gamma x_{i,j} = x_{i,j+1}$, and the trace $Tx_{i,j}$ vanishes.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

For the case $H = C_p$, R_n is isomorphic as a WC_p -algebra to

$$\widetilde{R}_n = W[x_{i,j} : 1 \le i \le f, j \in \mathbb{Z}/p] \left/ \left(\sum_j x_{i,j} : 1 \le i \le f \right) \right|$$
with $|x_{i,j}| = -2$.

For a generator $\gamma \in C_p$ we have $\gamma x_{i,j} = x_{i,j+1}$, and the trace $Tx_{i,j}$ vanishes. It follows that the degree -2 component of \widetilde{R}_n is the direct sum of f copies of $\overline{\rho} \otimes W$. Thus \widetilde{R}_n is the symmetric W-algebra

$$\operatorname{Symm}_{W}\left(\overline{\rho}^{\oplus f}\right)$$

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

 $\cong \operatorname{Symm}_W \left(\overline{\rho}^{\oplus} \right)$

$$\widetilde{R}_n = W[x_{i,j} : 1 \le i \le f, j \in \mathbb{Z}/p] / \left(\sum_{j \in \mathbb{Z}/p} x_{i,j} : 1 \le i \le f \right)$$

with $|x_{i,j}| = -2$

).

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and \mathbb{G}_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3

Larger primes

(□▶▲母▶▲≧▶▲≧▶ = うへの

$$\widetilde{R}_{n} = W[x_{i,j} : 1 \le i \le f, j \in \mathbb{Z}/p] / \left(\sum_{j \in \mathbb{Z}/p} x_{i,j} : 1 \le i \le f \right)$$

with $|x_{i,j}| = -2$
 $\cong \operatorname{Symm}_{W} \left(\overline{\rho}^{\oplus f} \right).$

Even though the $x_{i,j}$ s are not linearly independent, we define

$$\Phi' = \prod_{1 \le i \le f} \prod_{0 \le i \le p} X_{i,j}$$

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

・ロト・日下・山下・ 山下・ 日下

$$\widetilde{R}_{n} = W[x_{i,j} : 1 \le i \le f, j \in \mathbb{Z}/p] / \left(\sum_{j \in \mathbb{Z}/p} x_{i,j} : 1 \le i \le f \right)$$

with $|x_{i,j}| = -2$
 $\cong \operatorname{Symm}_{W} \left(\overline{\rho}^{\oplus f} \right).$

Even though the $x_{i,j}$ s are not linearly independent, we define

$$\Phi' = \prod_{1 \le i \le f} \prod_{0 \le j < p} X_{i,j}$$

and complete $\widetilde{R}_n[\Phi'^{\pm 1}]$ with respect to the kernel $\widetilde{\mathfrak{m}}$ of the map

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

$$\widetilde{R}_{n} = W[x_{i,j} : 1 \le i \le f, j \in \mathbb{Z}/p] / \left(\sum_{j \in \mathbb{Z}/p} x_{i,j} : 1 \le i \le f \right)$$

with $|x_{i,j}| = -2$
 $\cong \operatorname{Symm}_{W} \left(\overline{\rho}^{\oplus f} \right).$

Even though the $x_{i,j}$ s are not linearly independent, we define

$$\Phi' = \prod_{1 \le i \le f} \prod_{0 \le j < p} x_{i,j}$$

and complete $\widetilde{R}_n[\Phi'^{\pm 1}]$ with respect to the kernel $\widetilde{\mathfrak{m}}$ of the map

$$\widetilde{R}_n[\Phi'^{\pm 1}] \to \mathbb{F}_{p^n}[u^{\pm 1}]$$
 with $x_{i,j} \mapsto u$ and $\gamma u = u$.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_m Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

●□▶●□▶●□▶●□▶●□▶●□

$$\widetilde{R}_n = W[x_{i,j} : 1 \le i \le f, j \in \mathbb{Z}/p] / \left(\sum_{j \in \mathbb{Z}/p} x_{i,j} : 1 \le i \le f \right)$$

with $|x_{i,j}| = -2$
 $\cong \operatorname{Symm}_W \left(\overline{\rho}^{\oplus f} \right).$

Even though the $x_{i,j}$ s are not linearly independent, we define

$$\Phi' = \prod_{1 \le i \le f} \prod_{0 \le j < p} x_{i,j}$$

and complete $\widetilde{R}_n[\Phi'^{\pm 1}]$ with respect to the kernel $\widetilde{\mathfrak{m}}$ of the map

$$\widetilde{R}_n[\Phi'^{\pm 1}] \to \mathbb{F}_{p^n}[u^{\pm 1}]$$
 with $x_{i,j} \mapsto u$ and $\gamma u = u$.

to obtain

$$\widehat{R}_n := \widetilde{R}_n [\Phi'^{\pm 1}]^\wedge_{\widetilde{\mathfrak{m}}}.$$

Hiking in the Alps: C_p-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_m Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

 $\widehat{R}_n := \widetilde{R}_n [\Phi'^{\pm 1}]^{\wedge}_{\widetilde{\mathfrak{m}}_n} \quad \text{ and } \quad \widetilde{R}_n \cong \operatorname{Symm}_W \overline{\left(\overline{\rho}^{\oplus f}\right)}.$

Doug Ravenel

Historical introduction K(n) localization

Properties of En and Gn

Finding a root of unity

Group cohomology

The main theorem

A classical example

TMF at p = 3

Larger primes

▲□▶▲@▶▲≧▶▲≧▶ ≧ りへぐ

$$\widehat{R}_n := \widetilde{R}_n [\Phi'^{\pm 1}]^{\wedge}_{\widetilde{\mathfrak{m}}_n}$$
 and $\widetilde{R}_n \cong \operatorname{Symm}_W \left(\overline{\rho}^{\oplus f} \right).$

Theorem

For n = (p - 1)f, the Lubin-Tate ring E_n is isomorphic to \widehat{R}_n as an algebra over $W[C_p]$.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example

TMF at p = 3

Larger primes

 $\widehat{R}_n := \widetilde{R}_n [\Phi'^{\pm 1}]^{\wedge}_{\widetilde{\mathfrak{m}}_n} \quad \text{and} \quad \widetilde{R}_n \cong \operatorname{Symm}_W \left(\overline{\rho}^{\oplus f} \right).$

Theorem

For n = (p - 1)f, the Lubin-Tate ring E_n is isomorphic to \widehat{R}_n as an algebra over $W[C_p]$.

This means that $H^*(C_p; E_n)$ is closely related to $H^*(C_p; \operatorname{Symm}_W(\overline{\rho}^{\oplus f}))$.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3

Larger primes

 $\widehat{R}_n := \widetilde{R}_n [\Phi'^{\pm 1}]^{\wedge}_{\widetilde{\mathfrak{m}}_n}$ and $\widetilde{R}_n \cong \operatorname{Symm}_W \left(\overline{\rho}^{\oplus f} \right).$

Theorem

For n = (p - 1)f, the Lubin-Tate ring E_n is isomorphic to \widehat{R}_n as an algebra over $W[C_p]$.

This means that $H^*(C_p; E_n)$ is closely related to $H^*(C_p; \operatorname{Symm}_W(\overline{p}^{\oplus f}))$. That symmetric algebra is easy to describe modulo free summands over $W[C_p]$,

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel Historical introduction K(n) localization Properties of En and Gn Finding a root of unity Group cohomology The main theorem

A classical example

TMF at p = 3

Larger primes

 $\widehat{R}_n := \widetilde{R}_n [\Phi'^{\pm 1}]^{\wedge}_{\widetilde{\mathfrak{m}}_n}$ and $\widetilde{R}_n \cong \operatorname{Symm}_W \left(\overline{\rho}^{\oplus f} \right).$

Theorem

For n = (p - 1)f, the Lubin-Tate ring E_n is isomorphic to \widehat{R}_n as an algebra over $W[C_p]$.

This means that $H^*(C_{\rho}; E_n)$ is closely related to $H^*(C_{\rho}; \operatorname{Symm}_W(\overline{\rho}^{\oplus f}))$. That symmetric algebra is easy to describe modulo free summands over $W[C_{\rho}]$, which contribute nothing to cohomology in positive degrees.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and \mathbb{G}_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

しちゃ 前 えばやえばや 4日・

 $\widehat{R}_n := \widetilde{R}_n [\Phi'^{\pm 1}]^{\wedge}_{\widetilde{\mathfrak{m}}_n}$ and $\widetilde{R}_n \cong \operatorname{Symm}_W \left(\overline{\rho}^{\oplus f} \right).$

Theorem

For n = (p - 1)f, the Lubin-Tate ring E_n is isomorphic to \widehat{R}_n as an algebra over $W[C_p]$.

This means that $H^*(C_{\rho}; E_n)$ is closely related to $H^*(C_{\rho}; \operatorname{Symm}_W(\overline{\rho}^{\oplus f}))$. That symmetric algebra is easy to describe modulo free summands over $W[C_{\rho}]$, which contribute nothing to cohomology in positive degrees.

We know that

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

| □ ▶ ◀ 🗗 ▶ ◀ 🖻 ▶ ◀ 🖷 ▶ ◀ 💷 – 이 및 이

 $\widehat{R}_n := \widetilde{R}_n [\Phi'^{\pm 1}]^{\wedge}_{\widetilde{\mathfrak{m}}_n} \quad \text{ and } \quad \widetilde{R}_n \cong \operatorname{Symm}_W \left(\overline{\rho}^{\oplus f} \right).$

Theorem

For n = (p - 1)f, the Lubin-Tate ring E_n is isomorphic to \widehat{R}_n as an algebra over $W[C_p]$.

This means that $H^*(C_{\rho}; E_n)$ is closely related to $H^*(C_{\rho}; \operatorname{Symm}_W(\overline{\rho}^{\oplus f}))$. That symmetric algebra is easy to describe modulo free summands over $W[C_{\rho}]$, which contribute nothing to cohomology in positive degrees.

We know that

$$\operatorname{Symm}^{\ell}(\overline{\rho}) \equiv \begin{cases} \mathbb{Z} & \text{for } \ell \equiv 0 \mod p \\ \overline{\rho} & \text{for } \ell \equiv 1 \mod p \\ 0 & \text{otherwise} \end{cases}$$

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel Historical introduction K(n) localization Properties of E_{Π} and G_{Π} Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

 $\widehat{R}_n := \widetilde{R}_n [\Phi'^{\pm 1}]^{\wedge}_{\widetilde{\mathfrak{m}}_n} \quad \text{ and } \quad \widetilde{R}_n \cong \operatorname{Symm}_W \left(\overline{\rho}^{\oplus f} \right).$

Theorem

For n = (p - 1)f, the Lubin-Tate ring E_n is isomorphic to \widehat{R}_n as an algebra over $W[C_p]$.

This means that $H^*(C_{\rho}; E_n)$ is closely related to $H^*(C_{\rho}; \operatorname{Symm}_W(\overline{\rho}^{\oplus f}))$. That symmetric algebra is easy to describe modulo free summands over $W[C_{\rho}]$, which contribute nothing to cohomology in positive degrees.

We know that

 $\operatorname{Symm}^{\ell}(\overline{\rho}) \equiv \begin{cases} \mathbb{Z} & \text{for } \ell \equiv 0 \mod p \\ \overline{\rho} & \text{for } \ell \equiv 1 \mod p \\ 0 & \text{otherwise} \end{cases}$

and that $\overline{\rho} \otimes \overline{\rho} \equiv \mathbb{Z}$.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel
Historical introduction

Properties of En and Gn

Finding a root of unity

Group cohomology

K(n) localization

The main theorem

A classical example

TMF at p = 3

Larger primes

ロト 4 四 ト 4 三 ト 4 三 ト 9 へ ()

For p = 2,

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization

Properties of E_n and \mathbb{G}_n

Finding a root of unity

Group cohomology

The main theorem

A classical example

TMF at p = 3

Larger primes

もつてい 州 キャー・ボット 白マ

For p = 2,

• *E*₁ is the 2-adic completion of complex K-theory spectrum *K*.

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and \mathbb{G}_n Finding a root of unity Group cohomology The main theorem A classical example

TMF at p = 3

Larger primes

・ロト・西ト・川川・三下・山下・

For p = 2,

- *E*₁ is the 2-adic completion of complex K-theory spectrum *K*.
- The group \mathbb{G}_1 is the group of 2-adic units, which is isomorphic to $\{\pm 1\}\times \mathbb{Z}_2.$

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

・ロト・日本・山本・山本・山本

For p = 2,

- *E*₁ is the 2-adic completion of complex K-theory spectrum *K*.
- The group \mathbb{G}_1 is the group of 2-adic units, which is isomorphic to $\{\pm 1\}\times \mathbb{Z}_2.$
- For a generator $\gamma \in C_2$ (namely $-1 \in \mathbb{Z}_2^{\times}$), we have $\gamma(u^i) = (-1)^i u^i$.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

・ロト・日本・山林・山本・日・

For p = 2,

- *E*₁ is the 2-adic completion of complex K-theory spectrum *K*.
- The group \mathbb{G}_1 is the group of 2-adic units, which is isomorphic to $\{\pm 1\}\times \mathbb{Z}_2.$
- For a generator $\gamma \in C_2$ (namely $-1 \in \mathbb{Z}_2^{\times}$), we have $\gamma(u^i) = (-1)^i u^i$.
- The homotopy fixed point spectrum $E_1^{hC_2}$ is the 2-adic completion of the the real K-theory spectrum KO.

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

しちょうしゃ 山下 きょうしょう

For p = 2,

- *E*₁ is the 2-adic completion of complex K-theory spectrum *K*.
- The group \mathbb{G}_1 is the group of 2-adic units, which is isomorphic to $\{\pm 1\}\times \mathbb{Z}_2.$
- For a generator $\gamma \in C_2$ (namely $-1 \in \mathbb{Z}_2^{\times}$), we have $\gamma(u^i) = (-1)^i u^i$.
- The homotopy fixed point spectrum $E_1^{hC_2}$ is the 2-adic completion of the the real K-theory spectrum KO.

It follows that as $\mathbb{Z}C_2$ -modules,

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3 Larger primes

For p = 2,

- *E*₁ is the 2-adic completion of complex K-theory spectrum *K*.
- The group \mathbb{G}_1 is the group of 2-adic units, which is isomorphic to $\{\pm 1\}\times \mathbb{Z}_2.$
- For a generator $\gamma \in C_2$ (namely $-1 \in \mathbb{Z}_2^{\times}$), we have $\gamma(u^i) = (-1)^i u^i$.
- The homotopy fixed point spectrum $E_1^{hC_2}$ is the 2-adic completion of the the real K-theory spectrum KO.

It follows that as $\mathbb{Z}C_2$ -modules,

$$\pi_{2i}E_1 = \begin{cases} \mathbb{Z}_2 & \text{for } i \text{ even} \\ \mathbb{Z}_2 \otimes \overline{\rho} & \text{for } i \text{ odd} \end{cases}$$

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_m Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

● □ ▶ ▲ 🗗 ▶ ▲ 🖻 ▶ ▲ 🖻 ▶ ▲ 💷 ▶

For p = 2,

- *E*₁ is the 2-adic completion of complex K-theory spectrum *K*.
- The group \mathbb{G}_1 is the group of 2-adic units, which is isomorphic to $\{\pm 1\}\times \mathbb{Z}_2.$
- For a generator $\gamma \in C_2$ (namely $-1 \in \mathbb{Z}_2^{\times}$), we have $\gamma(u^i) = (-1)^i u^i$.
- The homotopy fixed point spectrum $E_1^{hC_2}$ is the 2-adic completion of the the real K-theory spectrum KO.

It follows that as $\mathbb{Z}C_2$ -modules,

 $\pi_{2i}E_1 = \begin{cases} \mathbb{Z}_2 & \text{for } i \text{ even} \\ \mathbb{Z}_2 \otimes \overline{\rho} & \text{for } i \text{ odd} \end{cases}$

where $\overline{\rho}$ is isomorphic to the integers with the sign action.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_m Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

ロト 4 四 ト 4 三 ト 4 三 ト 9 へ ()

A classical example: p = 2 and n = 1 (continued)

As $\mathbb{Z}C_2$ -modules,

$$\pi_{2i}E_1 = \begin{cases} \mathbb{Z}_2 & \text{for } i \text{ even} \\ \mathbb{Z}_2 \otimes \overline{\rho} & \text{for } i \text{ odd} \end{cases}$$

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and \mathbb{G}_n Finding a root of unity Group cohomology The main theorem A classical example

TMF at p = 3

Larger primes

▲□▶ < □▶ < 三▶ < 三▶ < 三 りへぐ</p>

A classical example: p = 2 and n = 1 (continued)

As $\mathbb{Z}C_2$ -modules,

$$\pi_{2i}E_1 = \begin{cases} \mathbb{Z}_2 & \text{for } i \text{ even} \\ \mathbb{Z}_2 \otimes \overline{\rho} & \text{for } i \text{ odd} \end{cases}$$

It follows that the E_2 -term of the homotopy fixed point spectral sequence is

$$E_2^{s,t} = H^s(C_2; \pi_t E_2) = egin{cases} \mathbb{Z}_2 & ext{ for } s = 0 ext{ and } t ext{ divisible by 4} \ 0 & ext{ for } s = 0 ext{ and } t \equiv 2 ext{ mod 4} \ \mathbb{Z}/2 & ext{ for } s > 0, t ext{ even,} \ ext{ and } s \equiv t ext{ mod 2} \ 0 & ext{ otherwise.} \end{cases}$$

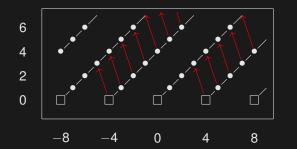
Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3

Larger primes

ロト 4 団 ト 4 三 ト 4 団 ト 4 団

The homotopy fixed point spectral sequence for $\pi_* KO$



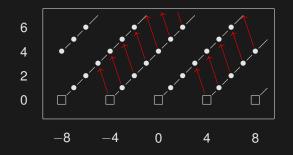
Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

▲□▶▲□▶▲≡▶▲≡▶ ■ のへの

The homotopy fixed point spectral sequence for $\pi_* KO$

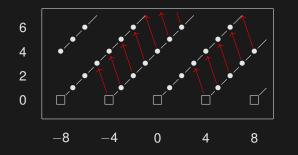


Squares and bullets denote copies of \mathbb{Z}_2 and $\mathbb{Z}/2$.

Doug Ravenel Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

●□▶●□▶●□▼●▼■▼●

The homotopy fixed point spectral sequence for $\pi_* \mathbf{KO}$



Squares and bullets denote copies of \mathbb{Z}_2 and $\mathbb{Z}/2$. The white diagonal lines indicate multiplication by $\eta \in E_2^{1,2}$.

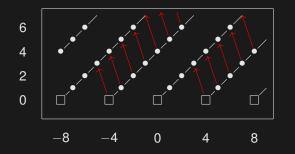
Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

□ ▶ 4 日 ▶ 4 王 ▶ 4 王 • 0 Q C

The homotopy fixed point spectral sequence for $\pi_* \mathbf{KO}$



Squares and bullets denote copies of \mathbb{Z}_2 and $\mathbb{Z}/2$. The white diagonal lines indicate multiplication by $\eta \in E_2^{1,2}$.

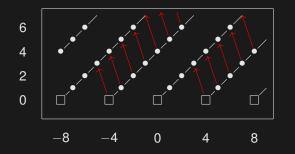
The indicated d_3 s can be established by equivariant methods,

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

The homotopy fixed point spectral sequence for $\pi_* \mathbf{KO}$



Squares and bullets denote copies of \mathbb{Z}_2 and $\mathbb{Z}/2$. The white diagonal lines indicate multiplication by $\eta \in E_2^{1,2}$.

The indicated d_3 s can be established by equivariant methods, or by the requirement that the spectral sequence must converge to the known value of $\pi_* KO$.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization

Properties of E_{Π} and \mathbb{G}_{Π}

Finding a root of unity

Group cohomology

The main theorem

A classical example

TMF at p = 3

Larger primes

Here is the homotopy fixed point spectral sequence for $E_2^{hC_3}$

Here is the homotopy fixed point spectral sequence for $E_2^{hC_3}$ with copies of WC_3 in π_*E_2 omitted.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization

Properties of E_{N} and \mathbb{G}_{N}

Finding a root of unity

Group cohomology

The main theorem

A classical example

TMF at p = 3

Larger primes

・ロト・四ト・ヨー・ キャー ひゃく

Here is the homotopy fixed point spectral sequence for $E_2^{hC_3}$ with copies of WC_3 in π_*E_2 omitted.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and \mathbb{G}_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

▲□▶▲□▶▲□▶▲□▶ ■ うへぐ

Here is the homotopy fixed point spectral sequence for $E_2^{hC_3}$ with copies of WC_3 in π_*E_2 omitted.

Squares and bullets denote copies of $W(\mathbb{F}_9)$ and \mathbb{F}_9 .

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and \mathbb{G}_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

(日) 4 酉) 4 三) 4 三) 9 0 0

Here is the homotopy fixed point spectral sequence for $E_2^{hC_3}$ with copies of WC_3 in π_*E_2 omitted.

Squares and bullets denote copies of $W(\mathbb{F}_9)$ and \mathbb{F}_9 . Green and blue lines indicate multiplication by $\alpha_1 \in E_2^{1,4}$

・ロ・ 4 酉 > 4 回 > 4 回 > 4 回 >

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and \mathbb{G}_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

Here is the homotopy fixed point spectral sequence for $E_2^{hC_3}$ with copies of WC_3 in π_*E_2 omitted.

12 10 8 6 4 2 0 -18-12 -6 0 6 12 18

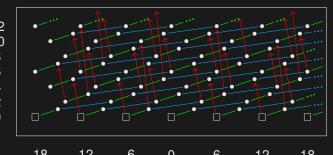
Squares and bullets denote copies of $W(\mathbb{F}_9)$ and \mathbb{F}_9 . Green and blue lines indicate multiplication by $\alpha_1 \in E_2^{1,4}$ and the Massey product operation $\langle \alpha_1, \alpha_1, - \rangle$.

Hiking in the Alps:

Cn-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of En and Gn Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes



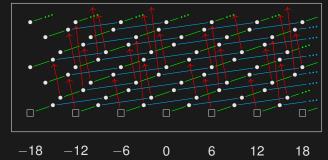
Here is the homotopy fixed point spectral sequence for $E_2^{hC_3}$ with copies of WC_3 in π_*E_2 omitted.

 $\begin{array}{c}
12 \\
10 \\
8 \\
6 \\
4 \\
2 \\
0 \\
-18 \\
-12 \\
-6 \\
0 \\
6 \\
-18 \\
-12 \\
-6 \\
0 \\
6 \\
-18 \\
-12 \\
-6 \\
0 \\
6 \\
12 \\
18 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-12 \\
-18 \\
-18 \\
-12 \\
-18 \\
-18 \\
-12 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18 \\
-18$

Squares and bullets denote copies of $W(\mathbb{F}_9)$ and \mathbb{F}_9 . Green and blue lines indicate multiplication by $\alpha_1 \in E_2^{1,4}$ and the Massey product operation $\langle \alpha_1, \alpha_1, - \rangle$. The composite is multiplication by $\beta_1 \in E_2^{2,12}$. Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and \mathbb{G}_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

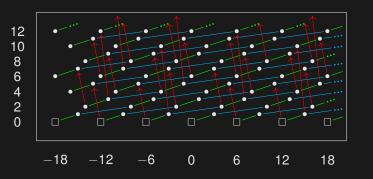


Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

・ロト・西・・川・・山・・日・

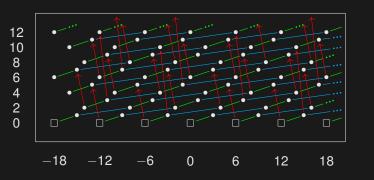


This pattern of differentials is 18-periodic.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

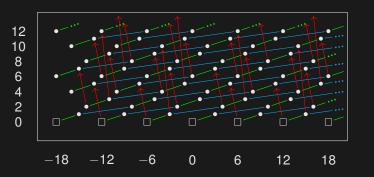


This pattern of differentials is 18-periodic. A comparable homotopy fixed point spectral sequence for *TMF* is 72-periodic.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes



This pattern of differentials is 18-periodic. A comparable homotopy fixed point spectral sequence for *TMF* is 72-periodic. The picture above can be "spread out" by enlarging the group C_3 by adjoining the fourth roots of unity in *W*.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and \mathbb{G}_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

This pattern of differentials is 18-periodic. A comparable homotopy fixed point spectral sequence for *TMF* is 72-periodic. The picture above can be "spread out" by enlarging the group C_3 by adjoining the fourth roots of unity in *W*. Extending by the Galois group converts each copy of *W* and \mathbb{F}_9 to \mathbb{Z}_3 and \mathbb{F}_3 .

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

This pattern of differentials is 18-periodic. A comparable homotopy fixed point spectral sequence for *TMF* is 72-periodic. The picture above can be "spread out" by enlarging the group C_3 by adjoining the fourth roots of unity in W. Extending by the Galois group converts each copy of W and \mathbb{F}_9 to \mathbb{Z}_3 and \mathbb{F}_3 . Thus we are extending C_3 by D_8 , the group dihedral group of order 8 to get a group G_{24} .

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

In terms of the algebra $End(F_2)$ at p = 3,

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization

Properties of E_{Π} and \mathbb{G}_{Π}

Finding a root of unity

Group cohomology

The main theorem

A classical example

TMF at p = 3

Larger primes

もつてい 聞 ふぼやえばやく聞やる日で

In terms of the algebra $End(F_2)$ at p = 3, let $\omega \in W$ be a primitive 8th root of unity, and $i = \omega^2$.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_n

Finding a root of unity

Group cohomology

The main theorem

A classical example

TMF at p = 3

Larger primes

◆□▶▲□▶▲≧▶▲≧▶ ≧ りへぐ

$$\zeta = \frac{-1 - \omega F}{2}$$
 with $i\zeta i^{-1} = \zeta^{-1} = \frac{-1 + \omega F}{2}$.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

$$\zeta = \frac{-1 - \omega F}{2} \quad \text{with} \quad i\zeta i^{-1} = \zeta^{-1} = \frac{-1 + \omega F}{2}.$$

Let $\phi \in \operatorname{Gal}(\mathbb{F}_9 : \mathbb{F}_3)$ be the Frobenius element.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and \mathbb{G}_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

もくらい 加 エル・山・ きゅう

$$\zeta = \frac{-1 - \omega F}{2} \quad \text{with} \quad i\zeta i^{-1} = \zeta^{-1} = \frac{-1 + \omega F}{2}.$$

Let $\phi \in \text{Gal}(\mathbb{F}_9 : \mathbb{F}_3)$ be the Frobenius element. Then $\omega \phi$ commutes with ζ and has order 4.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3

Larger primes

$$\zeta = \frac{-1 - \omega F}{2} \quad \text{with} \quad i\zeta i^{-1} = \zeta^{-1} = \frac{-1 + \omega F}{2}.$$

Let $\phi \in \text{Gal}(\mathbb{F}_9 : \mathbb{F}_3)$ be the Frobenius element. Then $\omega \phi$ commutes with ζ and has order 4. The group $\langle i, \omega \phi \rangle$ is isomorphic to Q_8 ,

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and \mathbb{G}_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

ものの 叫 エル・山を・山を・山

$$\zeta = \frac{-1 - \omega F}{2}$$
 with $i\zeta i^{-1} = \zeta^{-1} = \frac{-1 + \omega F}{2}$.

Let $\phi \in \text{Gal}(\mathbb{F}_9 : \mathbb{F}_3)$ be the Frobenius element. Then $\omega \phi$ commutes with ζ and has order 4. The group $\langle i, \omega \phi \rangle$ is isomorphic to Q_8 , and the group $C_3 \rtimes Q_8$ is the group G_{24} of Goerss-Henn-Mahowald-Rezk.

Hiking in the Alps: C_p-fixed points of Lubin-Tate spectra

Doug Ravenel

This is the homotopy fixed point spectral sequence for $E_2^{hG_{24}}$, which is $TMF_{K(2)}$, also known as EO_3 .

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_n

Finding a root of unity

Group cohomology

The main theorem

A classical example

TMF at p = 3

Larger primes

▲□▶▲@▶▲≧▶▲≧▶ ≧ りへぐ

This is the homotopy fixed point spectral sequence for $E_2^{hG_{24}}$ which is $TMF_{K(2)}$, also known as EO_3 .

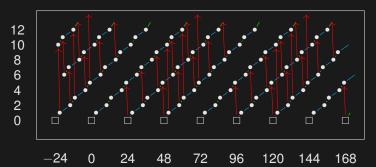
Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

もって 叫「」 エット 山口 ト トロー

This is the homotopy fixed point spectral sequence for $E_2^{hG_{24}}$, which is $TMF_{K(2)}$, also known as EO_3 .

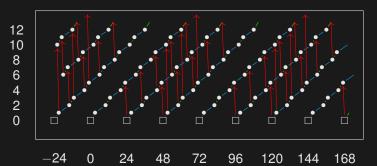


It is known that the following elements in the Adams-Novikov E_2 -term have nontrivial images here.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

This is the homotopy fixed point spectral sequence for $E_2^{hG_{24}}$, which is $TMF_{K(2)}$, also known as EO_3 .



It is known that the following elements in the Adams-Novikov E_2 -term have nontrivial images here.

X	β_1	$\beta_{3/3}$	β_4	$\beta_{6/3}$	$\beta_{9,9}, \beta_7$	$\beta_{12/3}$	β_{13}
X	10	34	58	82	106	130	154

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

For $p \ge 3$ one has an extension H of C_p by $C_{(p-1)^2}$,

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and \mathbb{G}_n Finding a root of unity Group cohomology The main theorem A classical example

TMF at p = 3

Larger primes

▲□▶▲□▶▲≡▶▲≡▶ ■ めんの

For $p \ge 3$ one has an extension H of C_p by $C_{(p-1)^2}$, where a generator of the quotient acts on C_p by an automorphism of order p-1.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3

arger primes

▲□▶▲□▶▲≡▶▲≡▶ ≡ りへぐ

For $p \ge 3$ one has an extension H of C_p by $C_{(p-1)^2}$, where a generator of the quotient acts on C_p by an automorphism of order p-1. This subgroup of \mathbb{S}_{p-1} can be extended by the Galois group C_{p-1} to give a maximal finite subgroup $G \subseteq \mathbb{G}_{p-1}$ of order $p(p-1)^3$.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

For $p \ge 3$ one has an extension H of C_p by $C_{(p-1)^2}$, where a generator of the quotient acts on C_p by an automorphism of order p-1. This subgroup of \mathbb{S}_{p-1} can be extended by the Galois group C_{p-1} to give a maximal finite subgroup $G \subseteq \mathbb{G}_{p-1}$ of order $p(p-1)^3$. We define $EO_p := E_{p-1}^{hG}$.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3

Larger primes

For $p \ge 3$ one has an extension H of C_p by $C_{(p-1)^2}$, where a generator of the quotient acts on C_p by an automorphism of order p-1. This subgroup of \mathbb{S}_{p-1} can be extended by the Galois group C_{p-1} to give a maximal finite subgroup $G \subseteq \mathbb{G}_{p-1}$ of order $p(p-1)^3$. We define $EO_p := E_{p-1}^{hG}$.

In the E_2 -term of the resulting homotopy fixed point spectral sequence we have

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

For $p \ge 3$ one has an extension H of C_p by $C_{(p-1)^2}$, where a generator of the quotient acts on C_p by an automorphism of order p-1. This subgroup of \mathbb{S}_{p-1} can be extended by the Galois group C_{p-1} to give a maximal finite subgroup $G \subseteq \mathbb{G}_{p-1}$ of order $p(p-1)^3$. We define $EO_p := E_{p-1}^{hG}$.

In the E_2 -term of the resulting homotopy fixed point spectral sequence we have

$$\alpha_1 \in E_2^{1,2p-2}, \quad \beta_1 \in E_2^{2,2p^2-2p}, \quad \text{and} \quad \Delta \in E_2^{0,2p(p-1)^2},$$

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

For $p \ge 3$ one has an extension H of C_p by $C_{(p-1)^2}$, where a generator of the quotient acts on C_p by an automorphism of order p-1. This subgroup of \mathbb{S}_{p-1} can be extended by the Galois group C_{p-1} to give a maximal finite subgroup $G \subseteq \mathbb{G}_{p-1}$ of order $p(p-1)^3$. We define $EO_p := E_{p-1}^{hG}$.

In the E_2 -term of the resulting homotopy fixed point spectral sequence we have

$$lpha_1 \in E_2^{1,2p-2}, \quad eta_1 \in E_2^{2,2p^2-2p}, \quad \text{and} \qquad \Delta \in E_2^{0,2p(p-1)^2},$$
vith

 $E_2 = E(\alpha_1) \otimes P(\beta_1) \otimes P(\Delta^{\pm 1}).$

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

For $p \ge 3$ one has an extension H of C_p by $C_{(p-1)^2}$, where a generator of the quotient acts on C_p by an automorphism of order p-1. This subgroup of \mathbb{S}_{p-1} can be extended by the Galois group C_{p-1} to give a maximal finite subgroup $G \subseteq \mathbb{G}_{p-1}$ of order $p(p-1)^3$. We define $EO_p := E_{p-1}^{hG}$.

In the E_2 -term of the resulting homotopy fixed point spectral sequence we have

$$\alpha_1 \in E_2^{1,2p-2}, \quad \beta_1 \in E_2^{2,2p^2-2p}, \quad \text{and} \qquad \Delta \in E_2^{0,2p(p-1)^2},$$
th

$$E_2 = E(\alpha_1) \otimes P(\beta_1) \otimes P(\Delta^{\pm 1}).$$

Here are the dimensions of these elements for small primes.

p	$ \alpha_1 $	$ \beta_1 $	$ \Delta $
3	3	10	24
5	7	38	160
7	11	82	504

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Larger primes (continued)

In the homotopy fixed point spectral sequence for EO_p we have

$$E_2 = E(\alpha_1) \otimes P(\beta_1) \otimes P(\Delta^{\pm 1}).$$

with

$$\alpha_1\in \textit{\textbf{E}}_2^{1,2p-2}, \quad \beta_1\in \textit{\textbf{E}}_2^{2,2p^2-2p}, \quad \text{and} \qquad \Delta\in \textit{\textbf{E}}_2^{0,2p(p-1)^2}.$$

Then there are differentials

$$d_{2p-1}\Delta = \alpha_1 \beta_1^{p-1}$$
 and $d_{2(p-1)^2+1}(\alpha_1 \Delta^{p-1}) = \beta_1^{(p-1)^2+1}$.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Larger primes (continued)

In the homotopy fixed point spectral sequence for EO_p we have

$$E_2 = E(\alpha_1) \otimes P(\beta_1) \otimes P(\Delta^{\pm 1}).$$

with

$$\alpha_1 \in E_2^{1,2p-2}, \quad \beta_1 \in E_2^{2,2p^2-2p}, \quad \text{and} \quad \Delta \in E_2^{0,2p(p-1)^2}.$$

Then there are differentials

$$d_{2p-1}\Delta = \alpha_1 \beta_1^{p-1}$$
 and $d_{2(p-1)^2+1}(\alpha_1 \Delta^{p-1}) = \beta_1^{(p-1)^2+1}$.

From the Adams-Novikov E_2 -term for the sphere spectrum we have

$$\theta_j := \beta_{p^{j-1}/p^{j-1}} \mapsto \beta_1 \Delta^{(p^{j-1}-1)/(p-1)} \quad \text{for all } j \ge 1,$$

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Larger primes (continued)

In the homotopy fixed point spectral sequence for EO_{ρ} we have

 $E_2 = E(\alpha_1) \otimes P(\beta_1) \otimes P(\Delta^{\pm 1}).$

with

$$\alpha_1\in \textit{\textit{E}}_2^{1,2p-2}, \quad \beta_1\in \textit{\textit{E}}_2^{2,2p^2-2p}, \quad \text{and} \qquad \Delta\in \textit{\textit{E}}_2^{0,2p(p-1)^2}.$$

Then there are differentials

$$d_{2p-1}\Delta = \alpha_1 \beta_1^{p-1}$$
 and $d_{2(p-1)^2+1}(\alpha_1 \Delta^{p-1}) = \beta_1^{(p-1)^2+1}$.

From the Adams-Novikov *E*₂-term for the sphere spectrum we have

$$\theta_j := \beta_{p^{j-1}/p^{j-1}} \mapsto \beta_1 \Delta^{(p^{j-1}-1)/(p-1)} \quad \text{for all } j \ge 1,$$

and for p = 5 only, we have

 $\gamma_3 \mapsto \alpha_1 \beta_1 \Delta^4$ in dimension 685.

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

THANK YOU

and have a wonderful retirement, Paul!

Hiking in the Alps: Cp-fixed points of Lubin-Tate spectra

Doug Ravenel

Historical introduction K(n) localization Properties of E_n and G_n Finding a root of unity Group cohomology The main theorem A classical example TMF at p = 3Larger primes

▲□▶▲□▶▲□▶▲□▶ ▲□ ▼ ろへの