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1.2

Introduction
Algebraic topologists have been studying spectra for over 50
years

and G-spectra for over 30 years.

The basic definitions have changed several times, yet our
intuition about spectra has not.

We have made extensive calculations with them from the very
beginning. None of these have been affected in the least by the
changing foundations of the subject.

This is a peculiar state of affairs!
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1.3

Introduction (continued)

Spectra were first defined in a 1959 pa-
per of Lima,

who is now a very promi-
nent mathematician in Brazil. He was
a student of Spanier at the University
of Chicago.

Ed Spanier
1921-1996
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1.4

Introduction (continued)

George Whitehead
1918-2004

Here is the original definition in a 1962 paper by Whitehead,
the earliest online reference I could find.
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1.5

Introduction (continued)

This definition was adequate for many calculations over the
next 20 years.

It was used by
Adams in his “blue
book” of 1974.

Frank Adams
1930-1989

The definition led to a lot of technical problems especially in
connection with smash products. The definition we use today is
more categorical.
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1.6

Introduction (continued)

Some words you will not hear again in this talk:

• up to homotopy
• simplicial
• operad
• universe
• ∞-category
• chromatic
• Mackey functor
• slice spectral sequence
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1.7

Some categorical notions: Enrichment, I

In a (locally small) category C,

for each pair of object X and Y ,
one has a set of morphisms C(X ,Y ). It sometimes happens
that this set has a richer structure. Here are two examples.

(i) Let Ab be the category of abelian groups. Then for
abelian groups A and B, the set Ab(A,B) of
homomorphisms A → B, is itself an abelian group.
Composition of morphisms A → B → C induces a map
Ab(B,C)⊗Ab(A,B) → Ab(A,C).

(ii) Let T be the category of pointed compactly generated
weak Hausdorff spaces. Then for such spaces X and Y ,
the set T (X ,Y ) of pointed continuous maps X → Y , is
itself a pointed space under the compact open topology,
the base point being the constant map. Here composition
leads to a map T (X ,Y ) ∧ T (W ,X ) → T (W ,Y ). (From
now on, all topological spaces will be assumed to be
compactly generated weak Hausdorff.)

We say that both of these categories are enriched over
themselves.



What is a
G-spectrum?

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment I

Symmetric monoidal
categories

Enrichment II

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra

The spectrum S−V

Naive G-spectra

Change of group

The smash product

Homotopy theory
Quillen model structures

A new model structure on
SG

A counterexample

1.7

Some categorical notions: Enrichment, I

In a (locally small) category C, for each pair of object X and Y ,

one has a set of morphisms C(X ,Y ). It sometimes happens
that this set has a richer structure. Here are two examples.

(i) Let Ab be the category of abelian groups. Then for
abelian groups A and B, the set Ab(A,B) of
homomorphisms A → B, is itself an abelian group.
Composition of morphisms A → B → C induces a map
Ab(B,C)⊗Ab(A,B) → Ab(A,C).

(ii) Let T be the category of pointed compactly generated
weak Hausdorff spaces. Then for such spaces X and Y ,
the set T (X ,Y ) of pointed continuous maps X → Y , is
itself a pointed space under the compact open topology,
the base point being the constant map. Here composition
leads to a map T (X ,Y ) ∧ T (W ,X ) → T (W ,Y ). (From
now on, all topological spaces will be assumed to be
compactly generated weak Hausdorff.)

We say that both of these categories are enriched over
themselves.



What is a
G-spectrum?

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment I

Symmetric monoidal
categories

Enrichment II

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra

The spectrum S−V

Naive G-spectra

Change of group

The smash product

Homotopy theory
Quillen model structures

A new model structure on
SG

A counterexample

1.7

Some categorical notions: Enrichment, I

In a (locally small) category C, for each pair of object X and Y ,
one has a set of morphisms C(X ,Y ).

It sometimes happens
that this set has a richer structure. Here are two examples.

(i) Let Ab be the category of abelian groups. Then for
abelian groups A and B, the set Ab(A,B) of
homomorphisms A → B, is itself an abelian group.
Composition of morphisms A → B → C induces a map
Ab(B,C)⊗Ab(A,B) → Ab(A,C).

(ii) Let T be the category of pointed compactly generated
weak Hausdorff spaces. Then for such spaces X and Y ,
the set T (X ,Y ) of pointed continuous maps X → Y , is
itself a pointed space under the compact open topology,
the base point being the constant map. Here composition
leads to a map T (X ,Y ) ∧ T (W ,X ) → T (W ,Y ). (From
now on, all topological spaces will be assumed to be
compactly generated weak Hausdorff.)

We say that both of these categories are enriched over
themselves.



What is a
G-spectrum?

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment I

Symmetric monoidal
categories

Enrichment II

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra

The spectrum S−V

Naive G-spectra

Change of group

The smash product

Homotopy theory
Quillen model structures

A new model structure on
SG

A counterexample

1.7

Some categorical notions: Enrichment, I

In a (locally small) category C, for each pair of object X and Y ,
one has a set of morphisms C(X ,Y ). It sometimes happens
that this set has a richer structure.

Here are two examples.

(i) Let Ab be the category of abelian groups. Then for
abelian groups A and B, the set Ab(A,B) of
homomorphisms A → B, is itself an abelian group.
Composition of morphisms A → B → C induces a map
Ab(B,C)⊗Ab(A,B) → Ab(A,C).

(ii) Let T be the category of pointed compactly generated
weak Hausdorff spaces. Then for such spaces X and Y ,
the set T (X ,Y ) of pointed continuous maps X → Y , is
itself a pointed space under the compact open topology,
the base point being the constant map. Here composition
leads to a map T (X ,Y ) ∧ T (W ,X ) → T (W ,Y ). (From
now on, all topological spaces will be assumed to be
compactly generated weak Hausdorff.)

We say that both of these categories are enriched over
themselves.



What is a
G-spectrum?

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment I

Symmetric monoidal
categories

Enrichment II

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra

The spectrum S−V

Naive G-spectra

Change of group

The smash product

Homotopy theory
Quillen model structures

A new model structure on
SG

A counterexample

1.7

Some categorical notions: Enrichment, I

In a (locally small) category C, for each pair of object X and Y ,
one has a set of morphisms C(X ,Y ). It sometimes happens
that this set has a richer structure. Here are two examples.

(i) Let Ab be the category of abelian groups. Then for
abelian groups A and B, the set Ab(A,B) of
homomorphisms A → B, is itself an abelian group.
Composition of morphisms A → B → C induces a map
Ab(B,C)⊗Ab(A,B) → Ab(A,C).

(ii) Let T be the category of pointed compactly generated
weak Hausdorff spaces. Then for such spaces X and Y ,
the set T (X ,Y ) of pointed continuous maps X → Y , is
itself a pointed space under the compact open topology,
the base point being the constant map. Here composition
leads to a map T (X ,Y ) ∧ T (W ,X ) → T (W ,Y ). (From
now on, all topological spaces will be assumed to be
compactly generated weak Hausdorff.)

We say that both of these categories are enriched over
themselves.



What is a
G-spectrum?

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment I

Symmetric monoidal
categories

Enrichment II

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra

The spectrum S−V

Naive G-spectra

Change of group

The smash product

Homotopy theory
Quillen model structures

A new model structure on
SG

A counterexample

1.7

Some categorical notions: Enrichment, I

In a (locally small) category C, for each pair of object X and Y ,
one has a set of morphisms C(X ,Y ). It sometimes happens
that this set has a richer structure. Here are two examples.

(i) Let Ab be the category of abelian groups.

Then for
abelian groups A and B, the set Ab(A,B) of
homomorphisms A → B, is itself an abelian group.
Composition of morphisms A → B → C induces a map
Ab(B,C)⊗Ab(A,B) → Ab(A,C).

(ii) Let T be the category of pointed compactly generated
weak Hausdorff spaces. Then for such spaces X and Y ,
the set T (X ,Y ) of pointed continuous maps X → Y , is
itself a pointed space under the compact open topology,
the base point being the constant map. Here composition
leads to a map T (X ,Y ) ∧ T (W ,X ) → T (W ,Y ). (From
now on, all topological spaces will be assumed to be
compactly generated weak Hausdorff.)

We say that both of these categories are enriched over
themselves.



What is a
G-spectrum?

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment I

Symmetric monoidal
categories

Enrichment II

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra

The spectrum S−V

Naive G-spectra

Change of group

The smash product

Homotopy theory
Quillen model structures

A new model structure on
SG

A counterexample

1.7

Some categorical notions: Enrichment, I

In a (locally small) category C, for each pair of object X and Y ,
one has a set of morphisms C(X ,Y ). It sometimes happens
that this set has a richer structure. Here are two examples.

(i) Let Ab be the category of abelian groups. Then for
abelian groups A and B,

the set Ab(A,B) of
homomorphisms A → B, is itself an abelian group.
Composition of morphisms A → B → C induces a map
Ab(B,C)⊗Ab(A,B) → Ab(A,C).

(ii) Let T be the category of pointed compactly generated
weak Hausdorff spaces. Then for such spaces X and Y ,
the set T (X ,Y ) of pointed continuous maps X → Y , is
itself a pointed space under the compact open topology,
the base point being the constant map. Here composition
leads to a map T (X ,Y ) ∧ T (W ,X ) → T (W ,Y ). (From
now on, all topological spaces will be assumed to be
compactly generated weak Hausdorff.)

We say that both of these categories are enriched over
themselves.



What is a
G-spectrum?

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment I

Symmetric monoidal
categories

Enrichment II

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra

The spectrum S−V

Naive G-spectra

Change of group

The smash product

Homotopy theory
Quillen model structures

A new model structure on
SG

A counterexample

1.7

Some categorical notions: Enrichment, I

In a (locally small) category C, for each pair of object X and Y ,
one has a set of morphisms C(X ,Y ). It sometimes happens
that this set has a richer structure. Here are two examples.

(i) Let Ab be the category of abelian groups. Then for
abelian groups A and B, the set Ab(A,B) of
homomorphisms A → B,

is itself an abelian group.
Composition of morphisms A → B → C induces a map
Ab(B,C)⊗Ab(A,B) → Ab(A,C).

(ii) Let T be the category of pointed compactly generated
weak Hausdorff spaces. Then for such spaces X and Y ,
the set T (X ,Y ) of pointed continuous maps X → Y , is
itself a pointed space under the compact open topology,
the base point being the constant map. Here composition
leads to a map T (X ,Y ) ∧ T (W ,X ) → T (W ,Y ). (From
now on, all topological spaces will be assumed to be
compactly generated weak Hausdorff.)

We say that both of these categories are enriched over
themselves.



What is a
G-spectrum?

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment I

Symmetric monoidal
categories

Enrichment II

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra

The spectrum S−V

Naive G-spectra

Change of group

The smash product

Homotopy theory
Quillen model structures

A new model structure on
SG

A counterexample

1.7

Some categorical notions: Enrichment, I

In a (locally small) category C, for each pair of object X and Y ,
one has a set of morphisms C(X ,Y ). It sometimes happens
that this set has a richer structure. Here are two examples.

(i) Let Ab be the category of abelian groups. Then for
abelian groups A and B, the set Ab(A,B) of
homomorphisms A → B, is itself an abelian group.

Composition of morphisms A → B → C induces a map
Ab(B,C)⊗Ab(A,B) → Ab(A,C).

(ii) Let T be the category of pointed compactly generated
weak Hausdorff spaces. Then for such spaces X and Y ,
the set T (X ,Y ) of pointed continuous maps X → Y , is
itself a pointed space under the compact open topology,
the base point being the constant map. Here composition
leads to a map T (X ,Y ) ∧ T (W ,X ) → T (W ,Y ). (From
now on, all topological spaces will be assumed to be
compactly generated weak Hausdorff.)

We say that both of these categories are enriched over
themselves.



What is a
G-spectrum?

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment I

Symmetric monoidal
categories

Enrichment II

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra

The spectrum S−V

Naive G-spectra

Change of group

The smash product

Homotopy theory
Quillen model structures

A new model structure on
SG

A counterexample

1.7

Some categorical notions: Enrichment, I

In a (locally small) category C, for each pair of object X and Y ,
one has a set of morphisms C(X ,Y ). It sometimes happens
that this set has a richer structure. Here are two examples.

(i) Let Ab be the category of abelian groups. Then for
abelian groups A and B, the set Ab(A,B) of
homomorphisms A → B, is itself an abelian group.
Composition of morphisms A → B → C

induces a map
Ab(B,C)⊗Ab(A,B) → Ab(A,C).

(ii) Let T be the category of pointed compactly generated
weak Hausdorff spaces. Then for such spaces X and Y ,
the set T (X ,Y ) of pointed continuous maps X → Y , is
itself a pointed space under the compact open topology,
the base point being the constant map. Here composition
leads to a map T (X ,Y ) ∧ T (W ,X ) → T (W ,Y ). (From
now on, all topological spaces will be assumed to be
compactly generated weak Hausdorff.)

We say that both of these categories are enriched over
themselves.



What is a
G-spectrum?

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment I

Symmetric monoidal
categories

Enrichment II

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra

The spectrum S−V

Naive G-spectra

Change of group

The smash product

Homotopy theory
Quillen model structures

A new model structure on
SG

A counterexample

1.7

Some categorical notions: Enrichment, I

In a (locally small) category C, for each pair of object X and Y ,
one has a set of morphisms C(X ,Y ). It sometimes happens
that this set has a richer structure. Here are two examples.

(i) Let Ab be the category of abelian groups. Then for
abelian groups A and B, the set Ab(A,B) of
homomorphisms A → B, is itself an abelian group.
Composition of morphisms A → B → C induces a map
Ab(B,C)⊗Ab(A,B) → Ab(A,C).

(ii) Let T be the category of pointed compactly generated
weak Hausdorff spaces. Then for such spaces X and Y ,
the set T (X ,Y ) of pointed continuous maps X → Y , is
itself a pointed space under the compact open topology,
the base point being the constant map. Here composition
leads to a map T (X ,Y ) ∧ T (W ,X ) → T (W ,Y ). (From
now on, all topological spaces will be assumed to be
compactly generated weak Hausdorff.)

We say that both of these categories are enriched over
themselves.



What is a
G-spectrum?

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment I

Symmetric monoidal
categories

Enrichment II

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra

The spectrum S−V

Naive G-spectra

Change of group

The smash product

Homotopy theory
Quillen model structures

A new model structure on
SG

A counterexample

1.7

Some categorical notions: Enrichment, I

In a (locally small) category C, for each pair of object X and Y ,
one has a set of morphisms C(X ,Y ). It sometimes happens
that this set has a richer structure. Here are two examples.

(i) Let Ab be the category of abelian groups. Then for
abelian groups A and B, the set Ab(A,B) of
homomorphisms A → B, is itself an abelian group.
Composition of morphisms A → B → C induces a map
Ab(B,C)⊗Ab(A,B) → Ab(A,C).

(ii) Let T be the category of pointed compactly generated
weak Hausdorff spaces.

Then for such spaces X and Y ,
the set T (X ,Y ) of pointed continuous maps X → Y , is
itself a pointed space under the compact open topology,
the base point being the constant map. Here composition
leads to a map T (X ,Y ) ∧ T (W ,X ) → T (W ,Y ). (From
now on, all topological spaces will be assumed to be
compactly generated weak Hausdorff.)

We say that both of these categories are enriched over
themselves.



What is a
G-spectrum?

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment I

Symmetric monoidal
categories

Enrichment II

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra

The spectrum S−V

Naive G-spectra

Change of group

The smash product

Homotopy theory
Quillen model structures

A new model structure on
SG

A counterexample

1.7

Some categorical notions: Enrichment, I

In a (locally small) category C, for each pair of object X and Y ,
one has a set of morphisms C(X ,Y ). It sometimes happens
that this set has a richer structure. Here are two examples.

(i) Let Ab be the category of abelian groups. Then for
abelian groups A and B, the set Ab(A,B) of
homomorphisms A → B, is itself an abelian group.
Composition of morphisms A → B → C induces a map
Ab(B,C)⊗Ab(A,B) → Ab(A,C).

(ii) Let T be the category of pointed compactly generated
weak Hausdorff spaces. Then for such spaces X and Y ,

the set T (X ,Y ) of pointed continuous maps X → Y , is
itself a pointed space under the compact open topology,
the base point being the constant map. Here composition
leads to a map T (X ,Y ) ∧ T (W ,X ) → T (W ,Y ). (From
now on, all topological spaces will be assumed to be
compactly generated weak Hausdorff.)

We say that both of these categories are enriched over
themselves.



What is a
G-spectrum?

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment I

Symmetric monoidal
categories

Enrichment II

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra

The spectrum S−V

Naive G-spectra

Change of group

The smash product

Homotopy theory
Quillen model structures

A new model structure on
SG

A counterexample

1.7

Some categorical notions: Enrichment, I

In a (locally small) category C, for each pair of object X and Y ,
one has a set of morphisms C(X ,Y ). It sometimes happens
that this set has a richer structure. Here are two examples.

(i) Let Ab be the category of abelian groups. Then for
abelian groups A and B, the set Ab(A,B) of
homomorphisms A → B, is itself an abelian group.
Composition of morphisms A → B → C induces a map
Ab(B,C)⊗Ab(A,B) → Ab(A,C).

(ii) Let T be the category of pointed compactly generated
weak Hausdorff spaces. Then for such spaces X and Y ,
the set T (X ,Y ) of pointed continuous maps X → Y ,

is
itself a pointed space under the compact open topology,
the base point being the constant map. Here composition
leads to a map T (X ,Y ) ∧ T (W ,X ) → T (W ,Y ). (From
now on, all topological spaces will be assumed to be
compactly generated weak Hausdorff.)

We say that both of these categories are enriched over
themselves.



What is a
G-spectrum?

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment I

Symmetric monoidal
categories

Enrichment II

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra

The spectrum S−V

Naive G-spectra

Change of group

The smash product

Homotopy theory
Quillen model structures

A new model structure on
SG

A counterexample

1.7

Some categorical notions: Enrichment, I

In a (locally small) category C, for each pair of object X and Y ,
one has a set of morphisms C(X ,Y ). It sometimes happens
that this set has a richer structure. Here are two examples.

(i) Let Ab be the category of abelian groups. Then for
abelian groups A and B, the set Ab(A,B) of
homomorphisms A → B, is itself an abelian group.
Composition of morphisms A → B → C induces a map
Ab(B,C)⊗Ab(A,B) → Ab(A,C).

(ii) Let T be the category of pointed compactly generated
weak Hausdorff spaces. Then for such spaces X and Y ,
the set T (X ,Y ) of pointed continuous maps X → Y , is
itself a pointed space under the compact open topology,

the base point being the constant map. Here composition
leads to a map T (X ,Y ) ∧ T (W ,X ) → T (W ,Y ). (From
now on, all topological spaces will be assumed to be
compactly generated weak Hausdorff.)

We say that both of these categories are enriched over
themselves.



What is a
G-spectrum?

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment I

Symmetric monoidal
categories

Enrichment II

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra

The spectrum S−V

Naive G-spectra

Change of group

The smash product

Homotopy theory
Quillen model structures

A new model structure on
SG

A counterexample

1.7

Some categorical notions: Enrichment, I

In a (locally small) category C, for each pair of object X and Y ,
one has a set of morphisms C(X ,Y ). It sometimes happens
that this set has a richer structure. Here are two examples.

(i) Let Ab be the category of abelian groups. Then for
abelian groups A and B, the set Ab(A,B) of
homomorphisms A → B, is itself an abelian group.
Composition of morphisms A → B → C induces a map
Ab(B,C)⊗Ab(A,B) → Ab(A,C).

(ii) Let T be the category of pointed compactly generated
weak Hausdorff spaces. Then for such spaces X and Y ,
the set T (X ,Y ) of pointed continuous maps X → Y , is
itself a pointed space under the compact open topology,
the base point being the constant map.

Here composition
leads to a map T (X ,Y ) ∧ T (W ,X ) → T (W ,Y ). (From
now on, all topological spaces will be assumed to be
compactly generated weak Hausdorff.)

We say that both of these categories are enriched over
themselves.



What is a
G-spectrum?

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment I

Symmetric monoidal
categories

Enrichment II

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra

The spectrum S−V

Naive G-spectra

Change of group

The smash product

Homotopy theory
Quillen model structures

A new model structure on
SG

A counterexample

1.7

Some categorical notions: Enrichment, I

In a (locally small) category C, for each pair of object X and Y ,
one has a set of morphisms C(X ,Y ). It sometimes happens
that this set has a richer structure. Here are two examples.

(i) Let Ab be the category of abelian groups. Then for
abelian groups A and B, the set Ab(A,B) of
homomorphisms A → B, is itself an abelian group.
Composition of morphisms A → B → C induces a map
Ab(B,C)⊗Ab(A,B) → Ab(A,C).

(ii) Let T be the category of pointed compactly generated
weak Hausdorff spaces. Then for such spaces X and Y ,
the set T (X ,Y ) of pointed continuous maps X → Y , is
itself a pointed space under the compact open topology,
the base point being the constant map. Here composition
leads to a map T (X ,Y ) ∧ T (W ,X ) → T (W ,Y ).

(From
now on, all topological spaces will be assumed to be
compactly generated weak Hausdorff.)

We say that both of these categories are enriched over
themselves.



What is a
G-spectrum?

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment I

Symmetric monoidal
categories

Enrichment II

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra

The spectrum S−V

Naive G-spectra

Change of group

The smash product

Homotopy theory
Quillen model structures

A new model structure on
SG

A counterexample

1.7

Some categorical notions: Enrichment, I

In a (locally small) category C, for each pair of object X and Y ,
one has a set of morphisms C(X ,Y ). It sometimes happens
that this set has a richer structure. Here are two examples.

(i) Let Ab be the category of abelian groups. Then for
abelian groups A and B, the set Ab(A,B) of
homomorphisms A → B, is itself an abelian group.
Composition of morphisms A → B → C induces a map
Ab(B,C)⊗Ab(A,B) → Ab(A,C).

(ii) Let T be the category of pointed compactly generated
weak Hausdorff spaces. Then for such spaces X and Y ,
the set T (X ,Y ) of pointed continuous maps X → Y , is
itself a pointed space under the compact open topology,
the base point being the constant map. Here composition
leads to a map T (X ,Y ) ∧ T (W ,X ) → T (W ,Y ). (From
now on, all topological spaces will be assumed to be
compactly generated weak Hausdorff.)

We say that both of these categories are enriched over
themselves.



What is a
G-spectrum?

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment I

Symmetric monoidal
categories

Enrichment II

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra

The spectrum S−V

Naive G-spectra

Change of group

The smash product

Homotopy theory
Quillen model structures

A new model structure on
SG

A counterexample

1.7

Some categorical notions: Enrichment, I

In a (locally small) category C, for each pair of object X and Y ,
one has a set of morphisms C(X ,Y ). It sometimes happens
that this set has a richer structure. Here are two examples.

(i) Let Ab be the category of abelian groups. Then for
abelian groups A and B, the set Ab(A,B) of
homomorphisms A → B, is itself an abelian group.
Composition of morphisms A → B → C induces a map
Ab(B,C)⊗Ab(A,B) → Ab(A,C).

(ii) Let T be the category of pointed compactly generated
weak Hausdorff spaces. Then for such spaces X and Y ,
the set T (X ,Y ) of pointed continuous maps X → Y , is
itself a pointed space under the compact open topology,
the base point being the constant map. Here composition
leads to a map T (X ,Y ) ∧ T (W ,X ) → T (W ,Y ). (From
now on, all topological spaces will be assumed to be
compactly generated weak Hausdorff.)

We say that both of these categories are enriched over
themselves.



What is a
G-spectrum?

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment I

Symmetric monoidal
categories

Enrichment II

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra

The spectrum S−V

Naive G-spectra

Change of group

The smash product

Homotopy theory
Quillen model structures

A new model structure on
SG

A counterexample

1.8

Some categorical notions: Enrichment, I (continued)

Let G be a finite group.

There are two categories whose
objects are pointed G-spaces, where the base point is always
fixed by G, because there are two types of morphisms to
consider.

(i) Let T G denote the category of pointed G-spaces and
equivariant continuous pointed maps. Then T G(X ,Y ) is a
pointed topological space, so T G is enriched over T .

(ii) Let TG denote the category of pointed G-spaces and all
(not necessarily equivariant) continuous pointed maps.
Then TG(X ,Y ) is a pointed G-space. For f : X → Y and
γ ∈ G, we define γ(f ) = γfγ−1, the lower composite map
in the noncommutative diagram

X f //

γ−1 ��

Y

X f // Y .

γ
OO

TG is enriched T G and hence over itself.
TG(X ,Y )G = T G(X ,Y ).
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TG(X ,Y )G = T G(X ,Y ).
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1.8

Some categorical notions: Enrichment, I (continued)

Let G be a finite group. There are two categories whose
objects are pointed G-spaces, where the base point is always
fixed by G, because there are two types of morphisms to
consider.

(i) Let T G denote the category of pointed G-spaces and
equivariant continuous pointed maps. Then T G(X ,Y ) is a
pointed topological space, so T G is enriched over T .

(ii) Let TG denote the category of pointed G-spaces and all
(not necessarily equivariant) continuous pointed maps.

Then TG(X ,Y ) is a pointed G-space. For f : X → Y and
γ ∈ G, we define γ(f ) = γfγ−1, the lower composite map
in the noncommutative diagram

X f //

γ−1 ��

Y

X f // Y .

γ
OO

TG is enriched T G and hence over itself.
TG(X ,Y )G = T G(X ,Y ).
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1.8

Some categorical notions: Enrichment, I (continued)

Let G be a finite group. There are two categories whose
objects are pointed G-spaces, where the base point is always
fixed by G, because there are two types of morphisms to
consider.

(i) Let T G denote the category of pointed G-spaces and
equivariant continuous pointed maps. Then T G(X ,Y ) is a
pointed topological space, so T G is enriched over T .

(ii) Let TG denote the category of pointed G-spaces and all
(not necessarily equivariant) continuous pointed maps.
Then TG(X ,Y ) is a pointed G-space.

For f : X → Y and
γ ∈ G, we define γ(f ) = γfγ−1, the lower composite map
in the noncommutative diagram

X f //

γ−1 ��

Y

X f // Y .

γ
OO

TG is enriched T G and hence over itself.
TG(X ,Y )G = T G(X ,Y ).
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Some categorical notions: Enrichment, I (continued)

Let G be a finite group. There are two categories whose
objects are pointed G-spaces, where the base point is always
fixed by G, because there are two types of morphisms to
consider.

(i) Let T G denote the category of pointed G-spaces and
equivariant continuous pointed maps. Then T G(X ,Y ) is a
pointed topological space, so T G is enriched over T .

(ii) Let TG denote the category of pointed G-spaces and all
(not necessarily equivariant) continuous pointed maps.
Then TG(X ,Y ) is a pointed G-space. For f : X → Y and
γ ∈ G,

we define γ(f ) = γfγ−1, the lower composite map
in the noncommutative diagram

X f //

γ−1 ��

Y

X f // Y .

γ
OO

TG is enriched T G and hence over itself.
TG(X ,Y )G = T G(X ,Y ).
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Some categorical notions: Enrichment, I (continued)

Let G be a finite group. There are two categories whose
objects are pointed G-spaces, where the base point is always
fixed by G, because there are two types of morphisms to
consider.

(i) Let T G denote the category of pointed G-spaces and
equivariant continuous pointed maps. Then T G(X ,Y ) is a
pointed topological space, so T G is enriched over T .

(ii) Let TG denote the category of pointed G-spaces and all
(not necessarily equivariant) continuous pointed maps.
Then TG(X ,Y ) is a pointed G-space. For f : X → Y and
γ ∈ G, we define γ(f ) = γfγ−1,

the lower composite map
in the noncommutative diagram

X f //

γ−1 ��

Y

X f // Y .

γ
OO

TG is enriched T G and hence over itself.
TG(X ,Y )G = T G(X ,Y ).
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1.8

Some categorical notions: Enrichment, I (continued)

Let G be a finite group. There are two categories whose
objects are pointed G-spaces, where the base point is always
fixed by G, because there are two types of morphisms to
consider.

(i) Let T G denote the category of pointed G-spaces and
equivariant continuous pointed maps. Then T G(X ,Y ) is a
pointed topological space, so T G is enriched over T .

(ii) Let TG denote the category of pointed G-spaces and all
(not necessarily equivariant) continuous pointed maps.
Then TG(X ,Y ) is a pointed G-space. For f : X → Y and
γ ∈ G, we define γ(f ) = γfγ−1, the lower composite map
in the noncommutative diagram

X f //

γ−1 ��

Y

X f // Y .

γ
OO

TG is enriched T G and hence over itself.
TG(X ,Y )G = T G(X ,Y ).
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1.8

Some categorical notions: Enrichment, I (continued)

Let G be a finite group. There are two categories whose
objects are pointed G-spaces, where the base point is always
fixed by G, because there are two types of morphisms to
consider.

(i) Let T G denote the category of pointed G-spaces and
equivariant continuous pointed maps. Then T G(X ,Y ) is a
pointed topological space, so T G is enriched over T .

(ii) Let TG denote the category of pointed G-spaces and all
(not necessarily equivariant) continuous pointed maps.
Then TG(X ,Y ) is a pointed G-space. For f : X → Y and
γ ∈ G, we define γ(f ) = γfγ−1, the lower composite map
in the noncommutative diagram

X f //

γ−1 ��

Y

X f // Y .

γ
OO

TG is enriched T G and hence over itself.
TG(X ,Y )G = T G(X ,Y ).
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1.8

Some categorical notions: Enrichment, I (continued)

Let G be a finite group. There are two categories whose
objects are pointed G-spaces, where the base point is always
fixed by G, because there are two types of morphisms to
consider.

(i) Let T G denote the category of pointed G-spaces and
equivariant continuous pointed maps. Then T G(X ,Y ) is a
pointed topological space, so T G is enriched over T .

(ii) Let TG denote the category of pointed G-spaces and all
(not necessarily equivariant) continuous pointed maps.
Then TG(X ,Y ) is a pointed G-space. For f : X → Y and
γ ∈ G, we define γ(f ) = γfγ−1, the lower composite map
in the noncommutative diagram

X f //

γ−1 ��

Y

X f // Y .

γ
OO

TG is enriched T G and hence over itself.

TG(X ,Y )G = T G(X ,Y ).
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1.8

Some categorical notions: Enrichment, I (continued)

Let G be a finite group. There are two categories whose
objects are pointed G-spaces, where the base point is always
fixed by G, because there are two types of morphisms to
consider.

(i) Let T G denote the category of pointed G-spaces and
equivariant continuous pointed maps. Then T G(X ,Y ) is a
pointed topological space, so T G is enriched over T .

(ii) Let TG denote the category of pointed G-spaces and all
(not necessarily equivariant) continuous pointed maps.
Then TG(X ,Y ) is a pointed G-space. For f : X → Y and
γ ∈ G, we define γ(f ) = γfγ−1, the lower composite map
in the noncommutative diagram

X f //

γ−1 ��

Y

X f // Y .

γ
OO

TG is enriched T G and hence over itself.
TG(X ,Y )G

= T G(X ,Y ).
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1.8

Some categorical notions: Enrichment, I (continued)

Let G be a finite group. There are two categories whose
objects are pointed G-spaces, where the base point is always
fixed by G, because there are two types of morphisms to
consider.

(i) Let T G denote the category of pointed G-spaces and
equivariant continuous pointed maps. Then T G(X ,Y ) is a
pointed topological space, so T G is enriched over T .

(ii) Let TG denote the category of pointed G-spaces and all
(not necessarily equivariant) continuous pointed maps.
Then TG(X ,Y ) is a pointed G-space. For f : X → Y and
γ ∈ G, we define γ(f ) = γfγ−1, the lower composite map
in the noncommutative diagram

X f //

γ−1 ��

Y

X f // Y .

γ
OO

TG is enriched T G and hence over itself.
TG(X ,Y )G = T G(X ,Y ).
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1.9

Symmetric monoidal categories

A symmetric monoidal category is a category V equipped with
a map ⊗ : V × V → V

with natural associativity isomorphisms
(X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z ), natural symmetry isomorphisms
X ⊗ Y → Y ⊗ X and a unit object 1 with unit isomorphisms
ιX : 1 ⊗ X → X . We will denote this structure by (V,⊗,1),
surpressing the required isomorphisms from the notation.

The monoidal structure is closed if the functor A ⊗ (·) has a
right adjoint (·)A, the internal Hom with V(1,X A) = V(A,X ).
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Symmetric monoidal categories

A symmetric monoidal category is a category V equipped with
a map ⊗ : V × V → V with natural associativity isomorphisms
(X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z ),

natural symmetry isomorphisms
X ⊗ Y → Y ⊗ X and a unit object 1 with unit isomorphisms
ιX : 1 ⊗ X → X . We will denote this structure by (V,⊗,1),
surpressing the required isomorphisms from the notation.

The monoidal structure is closed if the functor A ⊗ (·) has a
right adjoint (·)A, the internal Hom with V(1,X A) = V(A,X ).
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1.9

Symmetric monoidal categories

A symmetric monoidal category is a category V equipped with
a map ⊗ : V × V → V with natural associativity isomorphisms
(X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z ), natural symmetry isomorphisms
X ⊗ Y → Y ⊗ X

and a unit object 1 with unit isomorphisms
ιX : 1 ⊗ X → X . We will denote this structure by (V,⊗,1),
surpressing the required isomorphisms from the notation.

The monoidal structure is closed if the functor A ⊗ (·) has a
right adjoint (·)A, the internal Hom with V(1,X A) = V(A,X ).
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1.9

Symmetric monoidal categories

A symmetric monoidal category is a category V equipped with
a map ⊗ : V × V → V with natural associativity isomorphisms
(X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z ), natural symmetry isomorphisms
X ⊗ Y → Y ⊗ X and a unit object 1 with unit isomorphisms
ιX : 1 ⊗ X → X .

We will denote this structure by (V,⊗,1),
surpressing the required isomorphisms from the notation.

The monoidal structure is closed if the functor A ⊗ (·) has a
right adjoint (·)A, the internal Hom with V(1,X A) = V(A,X ).



What is a
G-spectrum?

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment I

Symmetric monoidal
categories

Enrichment II

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra

The spectrum S−V

Naive G-spectra

Change of group

The smash product

Homotopy theory
Quillen model structures

A new model structure on
SG

A counterexample

1.9

Symmetric monoidal categories

A symmetric monoidal category is a category V equipped with
a map ⊗ : V × V → V with natural associativity isomorphisms
(X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z ), natural symmetry isomorphisms
X ⊗ Y → Y ⊗ X and a unit object 1 with unit isomorphisms
ιX : 1 ⊗ X → X . We will denote this structure by (V,⊗,1),

surpressing the required isomorphisms from the notation.

The monoidal structure is closed if the functor A ⊗ (·) has a
right adjoint (·)A, the internal Hom with V(1,X A) = V(A,X ).
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1.9

Symmetric monoidal categories

A symmetric monoidal category is a category V equipped with
a map ⊗ : V × V → V with natural associativity isomorphisms
(X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z ), natural symmetry isomorphisms
X ⊗ Y → Y ⊗ X and a unit object 1 with unit isomorphisms
ιX : 1 ⊗ X → X . We will denote this structure by (V,⊗,1),
surpressing the required isomorphisms from the notation.

The monoidal structure is closed if the functor A ⊗ (·) has a
right adjoint (·)A, the internal Hom with V(1,X A) = V(A,X ).



What is a
G-spectrum?

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment I

Symmetric monoidal
categories

Enrichment II

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra

The spectrum S−V

Naive G-spectra

Change of group

The smash product

Homotopy theory
Quillen model structures

A new model structure on
SG

A counterexample

1.9

Symmetric monoidal categories

A symmetric monoidal category is a category V equipped with
a map ⊗ : V × V → V with natural associativity isomorphisms
(X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z ), natural symmetry isomorphisms
X ⊗ Y → Y ⊗ X and a unit object 1 with unit isomorphisms
ιX : 1 ⊗ X → X . We will denote this structure by (V,⊗,1),
surpressing the required isomorphisms from the notation.

The monoidal structure is closed if the functor A ⊗ (·) has a
right adjoint (·)A, the internal Hom with V(1,X A) = V(A,X ).
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1.10

Symmetric monoidal categories (continued)

Here are some familiar examples:

(i) (Sets,×, ∗), the category of sets under Cartesian product,
where the unit is a set ∗ with one element.

(ii) (Ab,⊗,Z), the category of abelian groups under tensor
product, with the integers Z as unit.

(ii) (Ab,⊕,0), the category of abelian groups under direct
sum, with the trivial group as unit.

(iv) (T op,×, ∗), the category of topological spaces (without
base point) under Cartesian product with the one point
space ∗ as unit.

(v) (TG,∧,S0), the category of pointed G-spaces and
nonequivariant maps under smash product with the
0-sphere S0 as unit.

(vi) (T G,∧,S0), the category of pointed G-spaces and
equivariant maps under smash product with S0 as unit.



What is a
G-spectrum?

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment I

Symmetric monoidal
categories

Enrichment II

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra

The spectrum S−V

Naive G-spectra

Change of group

The smash product

Homotopy theory
Quillen model structures

A new model structure on
SG

A counterexample

1.10

Symmetric monoidal categories (continued)

Here are some familiar examples:

(i) (Sets,×, ∗),

the category of sets under Cartesian product,
where the unit is a set ∗ with one element.

(ii) (Ab,⊗,Z), the category of abelian groups under tensor
product, with the integers Z as unit.

(ii) (Ab,⊕,0), the category of abelian groups under direct
sum, with the trivial group as unit.

(iv) (T op,×, ∗), the category of topological spaces (without
base point) under Cartesian product with the one point
space ∗ as unit.

(v) (TG,∧,S0), the category of pointed G-spaces and
nonequivariant maps under smash product with the
0-sphere S0 as unit.

(vi) (T G,∧,S0), the category of pointed G-spaces and
equivariant maps under smash product with S0 as unit.
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1.10

Symmetric monoidal categories (continued)

Here are some familiar examples:

(i) (Sets,×, ∗), the category of sets under Cartesian product,

where the unit is a set ∗ with one element.
(ii) (Ab,⊗,Z), the category of abelian groups under tensor

product, with the integers Z as unit.
(ii) (Ab,⊕,0), the category of abelian groups under direct

sum, with the trivial group as unit.
(iv) (T op,×, ∗), the category of topological spaces (without

base point) under Cartesian product with the one point
space ∗ as unit.

(v) (TG,∧,S0), the category of pointed G-spaces and
nonequivariant maps under smash product with the
0-sphere S0 as unit.

(vi) (T G,∧,S0), the category of pointed G-spaces and
equivariant maps under smash product with S0 as unit.
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1.10

Symmetric monoidal categories (continued)

Here are some familiar examples:

(i) (Sets,×, ∗), the category of sets under Cartesian product,
where the unit is a set ∗ with one element.

(ii) (Ab,⊗,Z), the category of abelian groups under tensor
product, with the integers Z as unit.

(ii) (Ab,⊕,0), the category of abelian groups under direct
sum, with the trivial group as unit.

(iv) (T op,×, ∗), the category of topological spaces (without
base point) under Cartesian product with the one point
space ∗ as unit.

(v) (TG,∧,S0), the category of pointed G-spaces and
nonequivariant maps under smash product with the
0-sphere S0 as unit.

(vi) (T G,∧,S0), the category of pointed G-spaces and
equivariant maps under smash product with S0 as unit.
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1.10

Symmetric monoidal categories (continued)

Here are some familiar examples:

(i) (Sets,×, ∗), the category of sets under Cartesian product,
where the unit is a set ∗ with one element.

(ii) (Ab,⊗,Z),

the category of abelian groups under tensor
product, with the integers Z as unit.

(ii) (Ab,⊕,0), the category of abelian groups under direct
sum, with the trivial group as unit.

(iv) (T op,×, ∗), the category of topological spaces (without
base point) under Cartesian product with the one point
space ∗ as unit.

(v) (TG,∧,S0), the category of pointed G-spaces and
nonequivariant maps under smash product with the
0-sphere S0 as unit.

(vi) (T G,∧,S0), the category of pointed G-spaces and
equivariant maps under smash product with S0 as unit.
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Symmetric monoidal categories (continued)

Here are some familiar examples:

(i) (Sets,×, ∗), the category of sets under Cartesian product,
where the unit is a set ∗ with one element.

(ii) (Ab,⊗,Z), the category of abelian groups under tensor
product, with the integers Z as unit.

(ii) (Ab,⊕,0), the category of abelian groups under direct
sum, with the trivial group as unit.

(iv) (T op,×, ∗), the category of topological spaces (without
base point) under Cartesian product with the one point
space ∗ as unit.

(v) (TG,∧,S0), the category of pointed G-spaces and
nonequivariant maps under smash product with the
0-sphere S0 as unit.

(vi) (T G,∧,S0), the category of pointed G-spaces and
equivariant maps under smash product with S0 as unit.
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1.10

Symmetric monoidal categories (continued)

Here are some familiar examples:

(i) (Sets,×, ∗), the category of sets under Cartesian product,
where the unit is a set ∗ with one element.

(ii) (Ab,⊗,Z), the category of abelian groups under tensor
product, with the integers Z as unit.

(ii) (Ab,⊕,0),

the category of abelian groups under direct
sum, with the trivial group as unit.

(iv) (T op,×, ∗), the category of topological spaces (without
base point) under Cartesian product with the one point
space ∗ as unit.

(v) (TG,∧,S0), the category of pointed G-spaces and
nonequivariant maps under smash product with the
0-sphere S0 as unit.

(vi) (T G,∧,S0), the category of pointed G-spaces and
equivariant maps under smash product with S0 as unit.
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Here are some familiar examples:

(i) (Sets,×, ∗), the category of sets under Cartesian product,
where the unit is a set ∗ with one element.

(ii) (Ab,⊗,Z), the category of abelian groups under tensor
product, with the integers Z as unit.

(ii) (Ab,⊕,0), the category of abelian groups under direct
sum, with the trivial group as unit.

(iv) (T op,×, ∗), the category of topological spaces (without
base point) under Cartesian product with the one point
space ∗ as unit.

(v) (TG,∧,S0), the category of pointed G-spaces and
nonequivariant maps under smash product with the
0-sphere S0 as unit.

(vi) (T G,∧,S0), the category of pointed G-spaces and
equivariant maps under smash product with S0 as unit.
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Enrichment II

The following definitions
were first published by
Eilenberg-Kelly in 1966.

Sammy Eilenberg Max Kelly
1913-1998 1930-2007

Let V = (V0,⊗,1) be a symmetric monoidal category. A
V-category C (or a category enriched over V) has a collection
of objects ob(C) and for each pair of objects X ,Y an object
C(X ,Y ) in V0, instead of a morphism set.

For each object X in C we have a morphism 1 → C(X ,X ) in V0
instead of an identity morphism. For each triple of objects
X ,Y ,Z in C, we have composition morphism
C(Y ,Z )⊗ C(X ,Y ) → C(X ,Z ) in V0.
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1.12

Enrichment II (continued)

A V-category C is underlain by an ordinary category C0 having
the same objects as C

and morphism sets
C0(X ,Y ) = V0(1, C(X ,Y )).

A functor F : C → D between V-categories consists of a
function F : ob(C) → ob(D), and for each pair of objects X and
Y in C, a morphism C(X ,Y ) → D(FX ,FY ) in V0 satisfying
suitable naturality conditions.

A symmetric monoidal category is closed iff it is enriched over
itself.

When V = (T ,∧,S0), we say, C is a topological category.

When V = (T G,∧,S0), we say, C is a topological G-category. It
is also enriched over TG, since TG has the same objects as T G,
and more morphisms.
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the same objects as C and morphism sets
C0(X ,Y ) = V0(1, C(X ,Y )).

A functor F : C → D between V-categories consists of a
function F : ob(C) → ob(D), and for each pair of objects X and
Y in C, a morphism C(X ,Y ) → D(FX ,FY ) in V0 satisfying
suitable naturality conditions.

A symmetric monoidal category is closed iff it is enriched over
itself.

When V = (T ,∧,S0), we say, C is a topological category.

When V = (T G,∧,S0), we say, C is a topological G-category.

It
is also enriched over TG, since TG has the same objects as T G,
and more morphisms.
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1.13

The definition of a G-spectrum

We will define spectra as functors to TG from a certain indexing
category JG.

Both are topological G-categories.

Definition

The indexing category JG is the topological G-category whose
objects are finite dimensional real orthogonal representations
V of G. Let O(V ,W ) denote the Stiefel manifold of (possibly
nonequivariant) orthogonal embeddings V → W. For each
such embedding we have an orthogonal complement W − V,
giving us a vector bundle over O(V ,W ). The morphism object
JG(V ,W ) is its Thom space, which is a pointed G-space.

Informally, JG(V ,W ) is a wedge of spheres SW−V (where
W − V denotes the orthogonal complement of V embedded in
W ) parametrized by the orthogonal embeddings V → W .

Main Definition

An orthogonal G-spectrum E is a functor JG → TG. We will
denote its value on V by EV .
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V of G. Let O(V ,W ) denote the Stiefel manifold of (possibly
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We will define spectra as functors to TG from a certain indexing
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We will define spectra as functors to TG from a certain indexing
category JG. Both are topological G-categories.

Definition

The indexing category JG is the topological G-category whose
objects are finite dimensional real orthogonal representations
V of G. Let O(V ,W ) denote the Stiefel manifold of (possibly
nonequivariant) orthogonal embeddings V → W. For each
such embedding we have an orthogonal complement W − V,
giving us a vector bundle over O(V ,W ). The morphism object
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Main Definition
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1.14

The definition of a G-spectrum (continued)

Main Definition

An orthogonal G-spectrum E is a functor JG → TG. We will
denote its value on V by EV .

Mike Mandell Peter May

This definition is due to Mandell–May and can be found in their
book, Equivariant orthogonal spectra and S-modules, 2002.

There are similar definitions by other authors, such as that of
symmetric spectra by Jeff Smith et al in 2000, in which JG is
replaced by other symmetric monoidal categories.
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The definition of a G-spectrum (continued)

Main Definition

An orthogonal G-spectrum E is a functor JG → TG. We will
denote its value on V by EV .

Mike Mandell Peter May

This definition is due to Mandell–May and can be found in their
book, Equivariant orthogonal spectra and S-modules, 2002.

There are similar definitions by other authors, such as that of
symmetric spectra by Jeff Smith et al in 2000, in which JG is
replaced by other symmetric monoidal categories.
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The definition of a G-spectrum (continued)

Main Definition

An orthogonal G-spectrum E is a functor JG → TG. We will
denote its value on V by EV .

Mike Mandell Peter May

This definition is due to Mandell–May

and can be found in their
book, Equivariant orthogonal spectra and S-modules, 2002.

There are similar definitions by other authors, such as that of
symmetric spectra by Jeff Smith et al in 2000, in which JG is
replaced by other symmetric monoidal categories.
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Main Definition

An orthogonal G-spectrum E is a functor JG → TG. We will
denote its value on V by EV .

Mike Mandell Peter May

This definition is due to Mandell–May and can be found in their
book, Equivariant orthogonal spectra and S-modules, 2002.

There are similar definitions by other authors, such as that of
symmetric spectra by Jeff Smith et al in 2000, in which JG is
replaced by other symmetric monoidal categories.



What is a
G-spectrum?

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment I

Symmetric monoidal
categories

Enrichment II

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra

The spectrum S−V

Naive G-spectra

Change of group

The smash product

Homotopy theory
Quillen model structures

A new model structure on
SG

A counterexample

1.14

The definition of a G-spectrum (continued)

Main Definition

An orthogonal G-spectrum E is a functor JG → TG. We will
denote its value on V by EV .

Mike Mandell Peter May

This definition is due to Mandell–May and can be found in their
book, Equivariant orthogonal spectra and S-modules, 2002.

There are similar definitions by other authors,

such as that of
symmetric spectra by Jeff Smith et al in 2000, in which JG is
replaced by other symmetric monoidal categories.
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The definition of a G-spectrum (continued)

Main Definition

An orthogonal G-spectrum E is a functor JG → TG. We will
denote its value on V by EV .

Mike Mandell Peter May

This definition is due to Mandell–May and can be found in their
book, Equivariant orthogonal spectra and S-modules, 2002.

There are similar definitions by other authors, such as that of
symmetric spectra by Jeff Smith et al in 2000,

in which JG is
replaced by other symmetric monoidal categories.
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1.14

The definition of a G-spectrum (continued)

Main Definition

An orthogonal G-spectrum E is a functor JG → TG. We will
denote its value on V by EV .

Mike Mandell Peter May

This definition is due to Mandell–May and can be found in their
book, Equivariant orthogonal spectra and S-modules, 2002.

There are similar definitions by other authors, such as that of
symmetric spectra by Jeff Smith et al in 2000, in which JG is
replaced by other symmetric monoidal categories.
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1.15

The definition of a G-spectrum (continued)

Main Definition

An orthogonal G-spectrum E is a functor JG → TG. We will
denote its value on V by EV .

This definition requires some unpacking!

First we examine the indexing spaces JG(V ,W ).
• When dim(V ) > dim(W ), the embedding space O(V ,W )

is empty, so JG(V ,W ) = ∗.
• When dim(V ) = dim(W ), the vector bundle is

0-dimensional, so JG(V ,W ) = O(V ,W )+, the orthogonal
group (equipped with a G-action) with a disjoint base point.

• When dim(V ) = 0, the embedding space is a point, so
JG(0,W ) = SW , the one point compactification of W .

• When dim(V ) = 1, the embedding space is the unit
sphere S(W ), and JG(V ,W ) is its tangent Thom space.
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1.15

The definition of a G-spectrum (continued)

Main Definition

An orthogonal G-spectrum E is a functor JG → TG. We will
denote its value on V by EV .

This definition requires some unpacking!

First we examine the indexing spaces JG(V ,W ).
• When dim(V ) > dim(W ), the embedding space O(V ,W )

is empty, so JG(V ,W ) = ∗.
• When dim(V ) = dim(W ), the vector bundle is

0-dimensional, so JG(V ,W ) = O(V ,W )+, the orthogonal
group (equipped with a G-action) with a disjoint base point.

• When dim(V ) = 0, the embedding space is a point, so
JG(0,W ) = SW , the one point compactification of W .

• When dim(V ) = 1, the embedding space is the unit
sphere S(W ), and JG(V ,W ) is its tangent Thom space.
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The definition of a G-spectrum (continued)

Main Definition

An orthogonal G-spectrum E is a functor JG → TG. We will
denote its value on V by EV .

This definition requires some unpacking!

First we examine the indexing spaces JG(V ,W ).

• When dim(V ) > dim(W ), the embedding space O(V ,W )
is empty, so JG(V ,W ) = ∗.

• When dim(V ) = dim(W ), the vector bundle is
0-dimensional, so JG(V ,W ) = O(V ,W )+, the orthogonal
group (equipped with a G-action) with a disjoint base point.

• When dim(V ) = 0, the embedding space is a point, so
JG(0,W ) = SW , the one point compactification of W .

• When dim(V ) = 1, the embedding space is the unit
sphere S(W ), and JG(V ,W ) is its tangent Thom space.
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The definition of a G-spectrum (continued)

Main Definition

An orthogonal G-spectrum E is a functor JG → TG. We will
denote its value on V by EV .

This definition requires some unpacking!

First we examine the indexing spaces JG(V ,W ).
• When dim(V ) > dim(W ),

the embedding space O(V ,W )
is empty, so JG(V ,W ) = ∗.

• When dim(V ) = dim(W ), the vector bundle is
0-dimensional, so JG(V ,W ) = O(V ,W )+, the orthogonal
group (equipped with a G-action) with a disjoint base point.

• When dim(V ) = 0, the embedding space is a point, so
JG(0,W ) = SW , the one point compactification of W .

• When dim(V ) = 1, the embedding space is the unit
sphere S(W ), and JG(V ,W ) is its tangent Thom space.
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The definition of a G-spectrum (continued)

Main Definition

An orthogonal G-spectrum E is a functor JG → TG. We will
denote its value on V by EV .

This definition requires some unpacking!

First we examine the indexing spaces JG(V ,W ).
• When dim(V ) > dim(W ), the embedding space O(V ,W )

is empty,

so JG(V ,W ) = ∗.
• When dim(V ) = dim(W ), the vector bundle is

0-dimensional, so JG(V ,W ) = O(V ,W )+, the orthogonal
group (equipped with a G-action) with a disjoint base point.

• When dim(V ) = 0, the embedding space is a point, so
JG(0,W ) = SW , the one point compactification of W .

• When dim(V ) = 1, the embedding space is the unit
sphere S(W ), and JG(V ,W ) is its tangent Thom space.
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The definition of a G-spectrum (continued)

Main Definition

An orthogonal G-spectrum E is a functor JG → TG. We will
denote its value on V by EV .

This definition requires some unpacking!

First we examine the indexing spaces JG(V ,W ).
• When dim(V ) > dim(W ), the embedding space O(V ,W )

is empty, so JG(V ,W ) = ∗.

• When dim(V ) = dim(W ), the vector bundle is
0-dimensional, so JG(V ,W ) = O(V ,W )+, the orthogonal
group (equipped with a G-action) with a disjoint base point.

• When dim(V ) = 0, the embedding space is a point, so
JG(0,W ) = SW , the one point compactification of W .

• When dim(V ) = 1, the embedding space is the unit
sphere S(W ), and JG(V ,W ) is its tangent Thom space.



What is a
G-spectrum?

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment I

Symmetric monoidal
categories

Enrichment II

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra

The spectrum S−V

Naive G-spectra

Change of group

The smash product

Homotopy theory
Quillen model structures

A new model structure on
SG

A counterexample

1.15

The definition of a G-spectrum (continued)

Main Definition

An orthogonal G-spectrum E is a functor JG → TG. We will
denote its value on V by EV .

This definition requires some unpacking!

First we examine the indexing spaces JG(V ,W ).
• When dim(V ) > dim(W ), the embedding space O(V ,W )

is empty, so JG(V ,W ) = ∗.
• When dim(V ) = dim(W ),

the vector bundle is
0-dimensional, so JG(V ,W ) = O(V ,W )+, the orthogonal
group (equipped with a G-action) with a disjoint base point.

• When dim(V ) = 0, the embedding space is a point, so
JG(0,W ) = SW , the one point compactification of W .

• When dim(V ) = 1, the embedding space is the unit
sphere S(W ), and JG(V ,W ) is its tangent Thom space.
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The definition of a G-spectrum (continued)

Main Definition

An orthogonal G-spectrum E is a functor JG → TG. We will
denote its value on V by EV .

This definition requires some unpacking!

First we examine the indexing spaces JG(V ,W ).
• When dim(V ) > dim(W ), the embedding space O(V ,W )

is empty, so JG(V ,W ) = ∗.
• When dim(V ) = dim(W ), the vector bundle is

0-dimensional,

so JG(V ,W ) = O(V ,W )+, the orthogonal
group (equipped with a G-action) with a disjoint base point.

• When dim(V ) = 0, the embedding space is a point, so
JG(0,W ) = SW , the one point compactification of W .

• When dim(V ) = 1, the embedding space is the unit
sphere S(W ), and JG(V ,W ) is its tangent Thom space.
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The definition of a G-spectrum (continued)

Main Definition

An orthogonal G-spectrum E is a functor JG → TG. We will
denote its value on V by EV .

This definition requires some unpacking!

First we examine the indexing spaces JG(V ,W ).
• When dim(V ) > dim(W ), the embedding space O(V ,W )

is empty, so JG(V ,W ) = ∗.
• When dim(V ) = dim(W ), the vector bundle is

0-dimensional, so JG(V ,W ) = O(V ,W )+,

the orthogonal
group (equipped with a G-action) with a disjoint base point.

• When dim(V ) = 0, the embedding space is a point, so
JG(0,W ) = SW , the one point compactification of W .

• When dim(V ) = 1, the embedding space is the unit
sphere S(W ), and JG(V ,W ) is its tangent Thom space.
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The definition of a G-spectrum (continued)

Main Definition

An orthogonal G-spectrum E is a functor JG → TG. We will
denote its value on V by EV .

This definition requires some unpacking!

First we examine the indexing spaces JG(V ,W ).
• When dim(V ) > dim(W ), the embedding space O(V ,W )

is empty, so JG(V ,W ) = ∗.
• When dim(V ) = dim(W ), the vector bundle is

0-dimensional, so JG(V ,W ) = O(V ,W )+, the orthogonal
group (equipped with a G-action)

with a disjoint base point.
• When dim(V ) = 0, the embedding space is a point, so

JG(0,W ) = SW , the one point compactification of W .
• When dim(V ) = 1, the embedding space is the unit

sphere S(W ), and JG(V ,W ) is its tangent Thom space.
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The definition of a G-spectrum (continued)

Main Definition

An orthogonal G-spectrum E is a functor JG → TG. We will
denote its value on V by EV .

This definition requires some unpacking!

First we examine the indexing spaces JG(V ,W ).
• When dim(V ) > dim(W ), the embedding space O(V ,W )

is empty, so JG(V ,W ) = ∗.
• When dim(V ) = dim(W ), the vector bundle is

0-dimensional, so JG(V ,W ) = O(V ,W )+, the orthogonal
group (equipped with a G-action) with a disjoint base point.

• When dim(V ) = 0, the embedding space is a point, so
JG(0,W ) = SW , the one point compactification of W .

• When dim(V ) = 1, the embedding space is the unit
sphere S(W ), and JG(V ,W ) is its tangent Thom space.
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The definition of a G-spectrum (continued)

Main Definition

An orthogonal G-spectrum E is a functor JG → TG. We will
denote its value on V by EV .

This definition requires some unpacking!

First we examine the indexing spaces JG(V ,W ).
• When dim(V ) > dim(W ), the embedding space O(V ,W )

is empty, so JG(V ,W ) = ∗.
• When dim(V ) = dim(W ), the vector bundle is

0-dimensional, so JG(V ,W ) = O(V ,W )+, the orthogonal
group (equipped with a G-action) with a disjoint base point.

• When dim(V ) = 0,

the embedding space is a point, so
JG(0,W ) = SW , the one point compactification of W .

• When dim(V ) = 1, the embedding space is the unit
sphere S(W ), and JG(V ,W ) is its tangent Thom space.
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The definition of a G-spectrum (continued)

Main Definition

An orthogonal G-spectrum E is a functor JG → TG. We will
denote its value on V by EV .

This definition requires some unpacking!

First we examine the indexing spaces JG(V ,W ).
• When dim(V ) > dim(W ), the embedding space O(V ,W )

is empty, so JG(V ,W ) = ∗.
• When dim(V ) = dim(W ), the vector bundle is

0-dimensional, so JG(V ,W ) = O(V ,W )+, the orthogonal
group (equipped with a G-action) with a disjoint base point.

• When dim(V ) = 0, the embedding space is a point,

so
JG(0,W ) = SW , the one point compactification of W .

• When dim(V ) = 1, the embedding space is the unit
sphere S(W ), and JG(V ,W ) is its tangent Thom space.



What is a
G-spectrum?

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment I

Symmetric monoidal
categories

Enrichment II

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra

The spectrum S−V

Naive G-spectra

Change of group

The smash product

Homotopy theory
Quillen model structures

A new model structure on
SG

A counterexample

1.15

The definition of a G-spectrum (continued)

Main Definition

An orthogonal G-spectrum E is a functor JG → TG. We will
denote its value on V by EV .

This definition requires some unpacking!

First we examine the indexing spaces JG(V ,W ).
• When dim(V ) > dim(W ), the embedding space O(V ,W )

is empty, so JG(V ,W ) = ∗.
• When dim(V ) = dim(W ), the vector bundle is

0-dimensional, so JG(V ,W ) = O(V ,W )+, the orthogonal
group (equipped with a G-action) with a disjoint base point.

• When dim(V ) = 0, the embedding space is a point, so
JG(0,W ) = SW ,

the one point compactification of W .
• When dim(V ) = 1, the embedding space is the unit

sphere S(W ), and JG(V ,W ) is its tangent Thom space.
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The definition of a G-spectrum (continued)

Main Definition

An orthogonal G-spectrum E is a functor JG → TG. We will
denote its value on V by EV .

This definition requires some unpacking!

First we examine the indexing spaces JG(V ,W ).
• When dim(V ) > dim(W ), the embedding space O(V ,W )

is empty, so JG(V ,W ) = ∗.
• When dim(V ) = dim(W ), the vector bundle is

0-dimensional, so JG(V ,W ) = O(V ,W )+, the orthogonal
group (equipped with a G-action) with a disjoint base point.

• When dim(V ) = 0, the embedding space is a point, so
JG(0,W ) = SW , the one point compactification of W .

• When dim(V ) = 1, the embedding space is the unit
sphere S(W ), and JG(V ,W ) is its tangent Thom space.
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1.15

The definition of a G-spectrum (continued)

Main Definition

An orthogonal G-spectrum E is a functor JG → TG. We will
denote its value on V by EV .

This definition requires some unpacking!

First we examine the indexing spaces JG(V ,W ).
• When dim(V ) > dim(W ), the embedding space O(V ,W )

is empty, so JG(V ,W ) = ∗.
• When dim(V ) = dim(W ), the vector bundle is

0-dimensional, so JG(V ,W ) = O(V ,W )+, the orthogonal
group (equipped with a G-action) with a disjoint base point.

• When dim(V ) = 0, the embedding space is a point, so
JG(0,W ) = SW , the one point compactification of W .

• When dim(V ) = 1,

the embedding space is the unit
sphere S(W ), and JG(V ,W ) is its tangent Thom space.
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1.15

The definition of a G-spectrum (continued)

Main Definition

An orthogonal G-spectrum E is a functor JG → TG. We will
denote its value on V by EV .

This definition requires some unpacking!

First we examine the indexing spaces JG(V ,W ).
• When dim(V ) > dim(W ), the embedding space O(V ,W )

is empty, so JG(V ,W ) = ∗.
• When dim(V ) = dim(W ), the vector bundle is

0-dimensional, so JG(V ,W ) = O(V ,W )+, the orthogonal
group (equipped with a G-action) with a disjoint base point.

• When dim(V ) = 0, the embedding space is a point, so
JG(0,W ) = SW , the one point compactification of W .

• When dim(V ) = 1, the embedding space is the unit
sphere S(W ),

and JG(V ,W ) is its tangent Thom space.
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1.15

The definition of a G-spectrum (continued)

Main Definition

An orthogonal G-spectrum E is a functor JG → TG. We will
denote its value on V by EV .

This definition requires some unpacking!

First we examine the indexing spaces JG(V ,W ).
• When dim(V ) > dim(W ), the embedding space O(V ,W )

is empty, so JG(V ,W ) = ∗.
• When dim(V ) = dim(W ), the vector bundle is

0-dimensional, so JG(V ,W ) = O(V ,W )+, the orthogonal
group (equipped with a G-action) with a disjoint base point.

• When dim(V ) = 0, the embedding space is a point, so
JG(0,W ) = SW , the one point compactification of W .

• When dim(V ) = 1, the embedding space is the unit
sphere S(W ), and JG(V ,W ) is its tangent Thom space.
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1.16

The definition of a G-spectrum (continued)

Main Definition

An orthogonal G-spectrum E is a functor JG → TG. We will
denote its value on V by EV .

There are equivariant structure maps
JG(V ,W ) ∧ JG(U,V ) → JG(U,W ) (composition in JG)
⊕ : JG(V ,W ) ∧ JG(V ′,W ′) → JG(V ⊕ V ′,W ⊕ W ′)
and εV ,W : JG(V ,W ) ∧ EV → EW .

In particular, JG(U,V ) and EV each have a base point
preserving left action of the orthogonal group O(V ) = O(V ,V ),
and JG(V ,W ) has a right O(V )-action.

The structure map εV ,W factors through the orbit space
JG(V ,W ) ∧

O(V )
EV . When dim(V ) = dim(W ), this space

equivariantly homeomorphic to EW . This means that a
G-spectrum E is determined by its values on vector spaces V
with trivial G-action. We will come back to this later.
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1.16

The definition of a G-spectrum (continued)

Main Definition

An orthogonal G-spectrum E is a functor JG → TG. We will
denote its value on V by EV .

There are equivariant structure maps
JG(V ,W ) ∧ JG(U,V ) → JG(U,W ) (composition in JG)

⊕ : JG(V ,W ) ∧ JG(V ′,W ′) → JG(V ⊕ V ′,W ⊕ W ′)
and εV ,W : JG(V ,W ) ∧ EV → EW .

In particular, JG(U,V ) and EV each have a base point
preserving left action of the orthogonal group O(V ) = O(V ,V ),
and JG(V ,W ) has a right O(V )-action.

The structure map εV ,W factors through the orbit space
JG(V ,W ) ∧

O(V )
EV . When dim(V ) = dim(W ), this space

equivariantly homeomorphic to EW . This means that a
G-spectrum E is determined by its values on vector spaces V
with trivial G-action. We will come back to this later.
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The definition of a G-spectrum (continued)

Main Definition

An orthogonal G-spectrum E is a functor JG → TG. We will
denote its value on V by EV .

There are equivariant structure maps
JG(V ,W ) ∧ JG(U,V ) → JG(U,W ) (composition in JG)
⊕ : JG(V ,W ) ∧ JG(V ′,W ′) → JG(V ⊕ V ′,W ⊕ W ′)

and εV ,W : JG(V ,W ) ∧ EV → EW .

In particular, JG(U,V ) and EV each have a base point
preserving left action of the orthogonal group O(V ) = O(V ,V ),
and JG(V ,W ) has a right O(V )-action.

The structure map εV ,W factors through the orbit space
JG(V ,W ) ∧

O(V )
EV . When dim(V ) = dim(W ), this space

equivariantly homeomorphic to EW . This means that a
G-spectrum E is determined by its values on vector spaces V
with trivial G-action. We will come back to this later.
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The definition of a G-spectrum (continued)

Main Definition

An orthogonal G-spectrum E is a functor JG → TG. We will
denote its value on V by EV .

There are equivariant structure maps
JG(V ,W ) ∧ JG(U,V ) → JG(U,W ) (composition in JG)
⊕ : JG(V ,W ) ∧ JG(V ′,W ′) → JG(V ⊕ V ′,W ⊕ W ′)
and εV ,W : JG(V ,W ) ∧ EV → EW .

In particular, JG(U,V ) and EV each have a base point
preserving left action of the orthogonal group O(V ) = O(V ,V ),
and JG(V ,W ) has a right O(V )-action.

The structure map εV ,W factors through the orbit space
JG(V ,W ) ∧

O(V )
EV . When dim(V ) = dim(W ), this space

equivariantly homeomorphic to EW . This means that a
G-spectrum E is determined by its values on vector spaces V
with trivial G-action. We will come back to this later.
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1.17

Comparison with the original definition

Main Definition

An orthogonal G-spectrum E is a functor JG → TG. We will
denote its value on V by EV .

For trivial G we have a functor J → T , where J is the
topological category of finite dimensional orthogonal vector
spaces with morphism spaces as before.

Such vector spaces are determined by their dimensions, so we
study the structure map εn,n+1 : J (n,n + 1) ∧ En → En+1,
which factors through J (n,n + 1) ∧

O(n)
En. We want to compare

this with Whitehead’s structure map εn : S1 ∧ En → En+1.

The latter is based on a previously chosen orthogonal
embedding Rn → Rn+1. Mandell-May’s εn,n+1 amounts to a
family of maps S1 ∧ En → En+1 parameterized by all such
embeddings. This coordinate free approach is technically
convenient.
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1.18

Smash products with spaces and the sphere spectrum

Given a G-spectrum E and a pointed G-space X ,

we can
define a spectrum E ∧ X by (E ∧ X )V = EV ∧ X . We will define
the smash product of two spectra shortly. We can also define a
spectrum FG(X ,E) by FG(X ,E)V = TG(X ,EV ). For X = SW ,
these spectra also denoted by ΣW E and ΩW E .

We can also define limits and colimits object wise,

(lim
→

Eα)V = lim
→

(Eα
V ) and (lim

←
Eα)V = lim

←
(Eα

V ).

We will denote the sphere spectrum by S−0 to avoid confusion
with the space S0. It is defined by (S−0)V = SV with structure
map induced by composition in JG

JG(V ,W ) ∧ SV = JG(V ,W ) ∧ JG(0,V ) → JG(0,W ) = SW .

For a pointed G-space X , the suspension spectrum Σ∞X is
S−0 ∧ X .
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the smash product of two spectra shortly.

We can also define a
spectrum FG(X ,E) by FG(X ,E)V = TG(X ,EV ). For X = SW ,
these spectra also denoted by ΣW E and ΩW E .

We can also define limits and colimits object wise,

(lim
→

Eα)V = lim
→

(Eα
V ) and (lim

←
Eα)V = lim

←
(Eα

V ).

We will denote the sphere spectrum by S−0 to avoid confusion
with the space S0. It is defined by (S−0)V = SV with structure
map induced by composition in JG

JG(V ,W ) ∧ SV = JG(V ,W ) ∧ JG(0,V ) → JG(0,W ) = SW .

For a pointed G-space X , the suspension spectrum Σ∞X is
S−0 ∧ X .
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1.19

The spectrum S−V

We define the spectrum S−V by (S−V )W = JG(V ,W ).

We
have structure maps jV ,W : S−W ∧ JG(V ,W ) → S−V induced
by composition in JG.

Let SG denote the category of orthogonal G-spectra. Since its
objects are functors JG → TG, its morphisms are natural
transformations between such functors. It is a topological
G-category.

One can use the enriched Yoneda lemma to show that
SG(S−V ,E) = EV . In particular,

SG(S−0,E) = E0 = TG(S0,E0) = TG(S0,Ω∞E),

where the 0th space functor Ω∞ sends a spectrum E to the
space E0. For a pointed G-space X we have

SG(Σ
∞X ,E) = SG(S−0 ∧ X ,E) = TG(X ,Ω∞E),

so the functors Σ∞ : TG → SG and Ω∞ : SG → TG are adjoint.
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1.20

Naive G-spectra

An ordinary orthogonal spectrum is a functor J → T .

Since
J is a full subcategory of JG, an orthogonal G-spectrum
induces a functor J → TG. This amounts to an ordinary
spectrum equipped with a G-action, and is called a naive
G-spectrum. We denote the corresponding category by Snaive

G .
A functor on JG is sometimes called a genuine G-spectrum.

As noted above, a functor on JG is determined by its value on
J . It can be shown that the categories of naive and genuine
G-spectra are equivalent. However their homotopy theories are
different. The category SG has more weak equivalences than
Snaive

G . We will give an explicit example of this below if time
permits.

Nevertheless, the categorical equivalence is useful for certain
definitions.
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1.21

Fixed point spectra and change of group

The fixed point spectrum EG of G-spectrum E

is the ordinary
spectrum (functor on J ) EG defined by (EG)n = (En)

G.

For a subgroup H ⊆ G, there are forgetful functors TG → TH
and JG → JH . The latter is not surjective on objects since not
every representation of H is the restriction of a representation
on G. Hence these forgetful functors do not lead directly to one
from the category of G-spectra SG to the category of H-spectra
SH .

However we do get a forgetful functor Snaive
G → Snaive

H since both
are functor categories on J . Then we can use the categorical
equivalance of naive and genuine G (or H)-spectra to get the
desired forgetful functor iGH : SG → SH .
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However we do get a forgetful functor Snaive
G → Snaive

H

since both
are functor categories on J . Then we can use the categorical
equivalance of naive and genuine G (or H)-spectra to get the
desired forgetful functor iGH : SG → SH .
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Fixed point spectra and change of group
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1.22

Change of group (continued)

The forgetful functor iGH : SG → SH has a left adjoint (induction)
sending an H-spectrum E to the G-spectrum G+ ∧

H
E ,

defined

objectwise by

(G+ ∧
H

E)V = G+ ∧
H
(EResG

H V ).

This may be written as a wedge indexed by the G-set G/H,

G+ ∧
H

E =
∨

i∈G/H

Ei where Ei = (Hi)+ ∧
H

E

with Hi ⊆ G the coset indexed by i .
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1.23

Change of group (continued)

There is a similar construction with the smash product,

NG
H E :=

∧
i∈G/H

Ei with Ei as above,

the norm of the H-spectrum E .

In proving the Kervaire invariant theorem we used this for
H = C2, G = C8 and E = MUR.
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Change of group (continued)

There is a similar construction with the smash product,

NG
H E :=

∧
i∈G/H

Ei with Ei as above,

the norm of the H-spectrum E .

In proving the Kervaire invariant theorem we used this for
H = C2, G = C8 and E = MUR.
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Change of group (continued)

There is a similar construction with the smash product,

NG
H E :=

∧
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In proving the Kervaire invariant theorem we used this for
H = C2, G = C8 and E = MUR.



What is a
G-spectrum?

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment I

Symmetric monoidal
categories

Enrichment II

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra

The spectrum S−V

Naive G-spectra

Change of group

The smash product

Homotopy theory
Quillen model structures

A new model structure on
SG

A counterexample

1.24

The tautological presentation and smash product

Any spectrum E is the reflexive coequalizer (i.e., the colimit) of
the diagram

∨
V ,W

S−W ∧ JG(V ,W ) ∧ EV

jV,W∧EV //

S−W∧εV,W

//
∨
V

S−V ∧ EV

This is the tautological presentation of E . We abbreviate it by

lim
→
V

S−V ∧ EV .
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1.25

The tautological presentation and smash product (continued)

E = lim
→
V

S−V ∧ EV .

Similarly we define the smash product of two spectra E and F
by

E ∧ F = lim
→

V,V ′
S−V⊕V ′

∧ EV ∧ FV ′ ,

the reflexive coequalizer of∨
V ,V ′,W ,W ′

S−W⊕W ′
∧ JG(V ,W ) ∧ JG(V ′,W ′) ∧ EV ∧ FV ′

����∨
V ,V ′

S−V⊕V ′
∧ EV ∧ FV ′ =

∨
W ,W ′

S−W⊕W ′
∧ EW ∧ FW ′ ,

which makes use of the map
⊕ : JG(V ,W ) ∧ JG(V ′,W ′) → JG(V ⊕ V ′,W ⊕ W ′).
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The tautological presentation and smash product (continued)
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1.26

The tautological presentation and smash product (continued)

We want to say that the smash product as defined above
makes SG into a closed symmetric monoidal category with unit
S−0.

This would mean that it is strictly associative and
commutative, thereby solving decades of technical problems in
stable homotopy theory!

It turns out that this is purely formal. We are looking at the
category of functors from the (skeletally) small symmetric
monoidal category (JG,⊕,0) to the cocomplete closed
symmetric monoidal category (TG,∧,S0). Both are topological
G-categories and hence enriched over the target category TG.
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The tautological presentation and smash product (continued)

We want to say that the smash product as defined above
makes SG into a closed symmetric monoidal category with unit
S−0. This would mean that it is strictly associative and
commutative,

thereby solving decades of technical problems in
stable homotopy theory!

It turns out that this is purely formal. We are looking at the
category of functors from the (skeletally) small symmetric
monoidal category (JG,⊕,0) to the cocomplete closed
symmetric monoidal category (TG,∧,S0). Both are topological
G-categories and hence enriched over the target category TG.
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The tautological presentation and smash product (continued)
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It turns out that this is purely formal.
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The tautological presentation and smash product (continued)

We want to say that the smash product as defined above
makes SG into a closed symmetric monoidal category with unit
S−0. This would mean that it is strictly associative and
commutative, thereby solving decades of technical problems in
stable homotopy theory!

It turns out that this is purely formal. We are looking at the
category of functors from the (skeletally) small symmetric
monoidal category (JG,⊕,0)

to the cocomplete closed
symmetric monoidal category (TG,∧,S0). Both are topological
G-categories and hence enriched over the target category TG.
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The tautological presentation and smash product (continued)

We want to say that the smash product as defined above
makes SG into a closed symmetric monoidal category with unit
S−0. This would mean that it is strictly associative and
commutative, thereby solving decades of technical problems in
stable homotopy theory!

It turns out that this is purely formal. We are looking at the
category of functors from the (skeletally) small symmetric
monoidal category (JG,⊕,0) to the cocomplete closed
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The tautological presentation and smash product (continued)

We want to say that the smash product as defined above
makes SG into a closed symmetric monoidal category with unit
S−0. This would mean that it is strictly associative and
commutative, thereby solving decades of technical problems in
stable homotopy theory!

It turns out that this is purely formal. We are looking at the
category of functors from the (skeletally) small symmetric
monoidal category (JG,⊕,0) to the cocomplete closed
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The tautological presentation and smash product (continued)

In 1970 the Australian category theorist Brian Day
(1945-2012), a student of Max Kelly,

studied this very problem.
He defined a symmetric monoidal structure on the category of
functors (SG in our case) between two symmetric monoidal
categories as above. It is called the Day convolution. It can be
described as a left Kan extension.

Jeff Smith

Its relevance to spectra was first
noticed by Jeff Smith in the
1990s.

(The symmetric monoidal structure on the category of spectra
first discovered by Elmendorf, Kriz, Mandell and May (1997) is
not of this type.)
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1.28

The tautological presentation and smash product (continued)

Jean Dieudonné, Imogene Kelly, Max Kelly, Odette Dieudonné,
Brian Day, Margery Street and Ross Street

at a restaurant in Sydney in 1972



What is a
G-spectrum?

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment I

Symmetric monoidal
categories

Enrichment II

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra

The spectrum S−V

Naive G-spectra

Change of group

The smash product

Homotopy theory
Quillen model structures

A new model structure on
SG

A counterexample

1.29

Homotopy theory of G-spectra

To do homotopy theory in SG,

we need to define a weak
equivalence of G-spectra. First we need to know how to
recognize an equivariant homotopy equivalence of G-spaces.

Glen Bredon
1932-2000

A theorem of Bredon (1967) states that
a map of G-CW-complexes f : X → Y
is an equivariant homotopy equiva-
lence (meaning an equivalence for
which the homotopies are equivariant)
iff the induced maps X H → Y H of
fixed point sets are ordinary homotopy
equivalences for all subgroups H ⊆ G.
Fixed point maps tell all!
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1.30

Homotopy theory of G-spectra (continued)

For a pointed G-space X , let πH
∗ X = π∗X H .

Bredon’s theorem
leads us to define a weak equivalence of G-spaces to be an
equivariant map f : X → Y inducing an isomorphism
πH
∗ X → πH

∗ X for all H.

What about weak equivalences of spectra? Experience has
shown that for a map f : E → E ′ of spectra, we do not want to
require each map EV → E ′V to be a weak equivalence. That
would be far too rigid.

In the nonequivariant case we define πk E to be lim→ πn+k En
and define a weak equivalence f : E → E ′ to be a map
inducing an isomorphism in these homotopy groups.
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1.30

Homotopy theory of G-spectra (continued)

For a pointed G-space X , let πH
∗ X = π∗X H . Bredon’s theorem

leads us to define a weak equivalence of G-spaces to be an
equivariant map f : X → Y inducing an isomorphism
πH
∗ X → πH

∗ X for all H.

What about weak equivalences of spectra? Experience has
shown that for a map f : E → E ′ of spectra, we do not want to
require each map EV → E ′V to be a weak equivalence. That
would be far too rigid.

In the nonequivariant case we define πk E to be lim→ πn+k En
and define a weak equivalence f : E → E ′

to be a map
inducing an isomorphism in these homotopy groups.



What is a
G-spectrum?

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment I

Symmetric monoidal
categories

Enrichment II

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra

The spectrum S−V

Naive G-spectra

Change of group

The smash product

Homotopy theory
Quillen model structures

A new model structure on
SG

A counterexample

1.30

Homotopy theory of G-spectra (continued)

For a pointed G-space X , let πH
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leads us to define a weak equivalence of G-spaces to be an
equivariant map f : X → Y inducing an isomorphism
πH
∗ X → πH

∗ X for all H.

What about weak equivalences of spectra? Experience has
shown that for a map f : E → E ′ of spectra, we do not want to
require each map EV → E ′V to be a weak equivalence. That
would be far too rigid.

In the nonequivariant case we define πk E to be lim→ πn+k En
and define a weak equivalence f : E → E ′ to be a map
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1.31

Homotopy theory of G-spectra (continued)

In the nonequivariant case we define πk E to be lim→ πn+k En,
where the limit is over all n ≥ −k , and define a weak
equivalence f : E → E ′ to be a map inducing an isomorphism
in these homotopy groups.

In the equivariant case we will replace the colimit above by one
indexed by a family of orthogonal inclusions

V0 → V1 → V2 → V3 → · · ·

which is exhaustive, meaning that each V is contained in some
Vn.

We define πH
k E to be lim→ πH

k+Vn
EVn , and define a weak

equivalence of G-spectra to be a map f : E → E ′ inducing an
isomorphism in πH

k for all subgroups H ⊆ G and all integers k .
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In the nonequivariant case we define πk E to be lim→ πn+k En,
where the limit is over all n ≥ −k , and define a weak
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in these homotopy groups.
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In the nonequivariant case we define πk E to be lim→ πn+k En,
where the limit is over all n ≥ −k , and define a weak
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in these homotopy groups.

In the equivariant case we will replace the colimit above by one
indexed by a family of orthogonal inclusions
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In the nonequivariant case we define πk E to be lim→ πn+k En,
where the limit is over all n ≥ −k , and define a weak
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where the limit is over all n ≥ −k , and define a weak
equivalence f : E → E ′ to be a map inducing an isomorphism
in these homotopy groups.

In the equivariant case we will replace the colimit above by one
indexed by a family of orthogonal inclusions
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which is exhaustive, meaning that each V is contained in some
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1.32

Homotopy theory (continued)

This definition of weak equivalence leaves a lot of wiggle room.

For example, in a G-spectrum E one could alter the G-spaces
EV arbitrarily for small V without changing the weak homotopy
type of E .

CAUTION! Many functors one would like to use are not
homotopical, meaning they do not convert weak equivalances
to weak equivalences. They are not homotopically meaningful.
For example, the functor SG(S−V , ·), which sends E to EV , is
not homotopical. It turns out that fixed points and symmetric
products also fail to be homotopical.

This can lead to a lot of technical
problems!



What is a
G-spectrum?

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment I

Symmetric monoidal
categories

Enrichment II

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra

The spectrum S−V

Naive G-spectra

Change of group

The smash product

Homotopy theory
Quillen model structures

A new model structure on
SG

A counterexample

1.32

Homotopy theory (continued)
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EV arbitrarily for small V
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to weak equivalences. They are not homotopically meaningful.
For example, the functor SG(S−V , ·), which sends E to EV , is
not homotopical. It turns out that fixed points and symmetric
products also fail to be homotopical.

This can lead to a lot of technical
problems!



What is a
G-spectrum?

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment I

Symmetric monoidal
categories

Enrichment II

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra

The spectrum S−V

Naive G-spectra

Change of group

The smash product

Homotopy theory
Quillen model structures

A new model structure on
SG

A counterexample

1.33

Quillen model category structures

Dan Quillen
1940-2011

A way out of this difficulty is to define
a Quillen model category structure on
SG and related categories.

This leads
to two special collections of G-spectra,
the fibrant and cofibrant ones. Each
G-spectrum then comes equipped with
a canonical weak equivalence to (from)
a fibrant (cofibrant) one, called its fi-
brant (cofibrant) replacement.

Then it may happen that the functors one wants to use do
preserve weak equivalences among either fibrant or cofibrant
objects, depending on the nature of the functor.
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1.34

Quillen model category structures (continued)
In the usual model structure on T (pointed spaces),

the
cofibrant objects are the CW-complexes, and all spaces are
fibrant.

In any reasonable model category structure on S or SG, the
fibrant objects are the Ω-spectra. One replaces each space EW
by the homotopy colimit (or mapping telescope) of

ΩV0EW⊕V0 → ΩV1EW⊕V1 → ΩV2EW⊕V2 → · · ·

for an exhaustive sequence {Vn} as before.

This observation (in the
nonequivariant case)
is due to Bousfield-
Friedlander in a 1978
paper.

Pete Bousfield Eric Friedlander
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1.35

The positive complete model category structure on SG

One way to define a model category structure,

once we know
what the weak equivalences are, is to specify a set of
generating cofibrations. For the classical model category
structure on T , it is{

Sn−1 → Dn : n ≥ 0
}

(inclusion of the boundary).

For the positive complete model category structure on SG it is

Acof =

{
G+ ∧

H
S−W ∧ (Sn−1

+ → Dn
+) : n ≥ 0,H ⊆ G

}
.

where W ranges over all representations of all subgroups H of
G with W H 6= 0.
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1.36

The positive complete model category structure on SG
(continued)

In the positive complete model category structure on SG the set
of generating cofibrations is

Acof =

{
G+ ∧

H
S−W ∧ (Sn−1

+ → Dn
+) : n ≥ 0,H ⊆ G

}
.

where W ranges over all representations of all subgroups H of
G with W H 6= 0.

The last requirement is the positivity condition of Jeff Smith. It
is needed because the k th symmetric product functor does not
convert the weak equivalence S−1 ∧ S1 → S−0 into a weak
equivalence. This issue came up around 2000 in the theory of
symmetric spectra. We need a homotopically meaningful
symmetric product functor to handle commutative ring spectra.

The positivity condition means the sphere spectrum S−0 is not
cofibrant! Its cofibrant replacement is S−1 ∧ S1.
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In the positive complete model category structure on SG the set
of generating cofibrations is

Acof =

{
G+ ∧

H
S−W ∧ (Sn−1

+ → Dn
+) : n ≥ 0,H ⊆ G

}
.

where W ranges over all representations of all subgroups H of
G with W H 6= 0.

The last requirement is the positivity condition of Jeff Smith. It
is needed because the k th symmetric product functor does not
convert the weak equivalence S−1 ∧ S1 → S−0 into a weak
equivalence. This issue came up around 2000 in the theory of
symmetric spectra. We need a homotopically meaningful
symmetric product functor to handle commutative ring spectra.

The positivity condition means the sphere spectrum S−0 is not
cofibrant!

Its cofibrant replacement is S−1 ∧ S1.
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(continued)
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The positive complete model category structure on SG
(continued)

In the positive complete model category structure on SG the set
of generating cofibrations is

Acof =

{
G+ ∧

H
S−W ∧ (Sn−1

+ → Dn
+) : n ≥ 0,H ⊆ G

}
.

where W ranges over all representations of all subgroups H of
G with W H 6= 0.

The word “complete” refers to the use of representations of
subgroups H as well as G itself. Completeness is needed to
insure that certain fixed point functors preserve acyclic
cofibrations. It also guarantees that wedges and smash
products indexed by G-sets (such as the norm) of cofibrant
objects are again cofibrant.
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(continued)
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The positive complete model category structure on SG
(continued)
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The word “complete” refers to the use of representations of
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The positive complete model category structure on SG
(continued)
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where W ranges over all representations of all subgroups H of
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}
.

where W ranges over all representations of all subgroups H of
G with W H 6= 0.
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(continued)
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where W ranges over all representations of all subgroups H of
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insure that certain fixed point functors preserve acyclic
cofibrations. It also guarantees that wedges and smash
products indexed by G-sets (such as the norm) of cofibrant
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A counterexample: why we need genuine G-spectra

EXAMPLE. Let G = C2 and let σ be the sign representation.

We will show that there is a map E := S−σ ∧ Sσ → S−0 =: F
which is a weak equivalence in SG but NOT in Snaive

G .

The map f : E → F is defined by
fV = εσ,V : JG(σ,V ) ∧ Sσ → SV , the structure map for S−0.

For G = C2, each V has the form mσ ⊕ n for integers m,n ≥ 0.
We have JG(aσ ⊕ b, cσ ⊕ d)G = O(a, c)+ ∧ J (b,d). In
particular it is a point if a > c or b > d .

Working in Snaive
G , we have En = JG(σ,n) ∧ Sσ, so EG

n = ∗ for
all n, and πG

∗ E = 0. On the other hand, Fn = Sn with trivial
G-action, so πG

∗ F is nontrivial. This means that E and F are
homotopically distinct as naive G-spectra.
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A counterexample: why we need genuine G-spectra

EXAMPLE. Let G = C2 and let σ be the sign representation.
We will show that there is a map E := S−σ ∧ Sσ → S−0 =: F
which is a weak equivalence in SG

but NOT in Snaive
G .

The map f : E → F is defined by
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G-action, so πG

∗ F is nontrivial. This means that E and F are
homotopically distinct as naive G-spectra.
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A counterexample: why we need genuine G-spectra
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which is a weak equivalence in SG but NOT in Snaive
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A counterexample: why we need genuine G-spectra

EXAMPLE. Let G = C2 and let σ be the sign representation.
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which is a weak equivalence in SG but NOT in Snaive
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A counterexample: why we need genuine G-spectra

EXAMPLE. Let G = C2 and let σ be the sign representation.
We will show that there is a map E := S−σ ∧ Sσ → S−0 =: F
which is a weak equivalence in SG but NOT in Snaive

G .

The map f : E → F is defined by
fV = εσ,V : JG(σ,V ) ∧ Sσ → SV , the structure map for S−0.

For G = C2, each V has the form mσ ⊕ n for integers m,n ≥ 0.
We have JG(aσ ⊕ b, cσ ⊕ d)G = O(a, c)+ ∧ J (b,d). In
particular it is a point if a > c or b > d .

Working in Snaive
G ,

we have En = JG(σ,n) ∧ Sσ, so EG
n = ∗ for

all n, and πG
∗ E = 0. On the other hand, Fn = Sn with trivial

G-action, so πG
∗ F is nontrivial. This means that E and F are

homotopically distinct as naive G-spectra.
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A counterexample: why we need genuine G-spectra

EXAMPLE. Let G = C2 and let σ be the sign representation.
We will show that there is a map E := S−σ ∧ Sσ → S−0 =: F
which is a weak equivalence in SG but NOT in Snaive

G .

The map f : E → F is defined by
fV = εσ,V : JG(σ,V ) ∧ Sσ → SV , the structure map for S−0.
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G-action, so πG
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homotopically distinct as naive G-spectra.
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A counterexample: why we need genuine G-spectra

EXAMPLE. Let G = C2 and let σ be the sign representation.
We will show that there is a map E := S−σ ∧ Sσ → S−0 =: F
which is a weak equivalence in SG but NOT in Snaive

G .

The map f : E → F is defined by
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n = ∗ for
all n,

and πG
∗ E = 0. On the other hand, Fn = Sn with trivial

G-action, so πG
∗ F is nontrivial. This means that E and F are

homotopically distinct as naive G-spectra.
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A counterexample: why we need genuine G-spectra

EXAMPLE. Let G = C2 and let σ be the sign representation.
We will show that there is a map E := S−σ ∧ Sσ → S−0 =: F
which is a weak equivalence in SG but NOT in Snaive

G .

The map f : E → F is defined by
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A counterexample: why we need genuine G-spectra
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A counterexample: why we need genuine G-spectra

EXAMPLE. Let G = C2 and let σ be the sign representation.
We will show that there is a map E := S−σ ∧ Sσ → S−0 =: F
which is a weak equivalence in SG but NOT in Snaive

G .

The map f : E → F is defined by
fV = εσ,V : JG(σ,V ) ∧ Sσ → SV , the structure map for S−0.

For G = C2, each V has the form mσ ⊕ n for integers m,n ≥ 0.
We have JG(aσ ⊕ b, cσ ⊕ d)G = O(a, c)+ ∧ J (b,d). In
particular it is a point if a > c or b > d .

Working in Snaive
G , we have En = JG(σ,n) ∧ Sσ, so EG

n = ∗ for
all n, and πG

∗ E = 0. On the other hand, Fn = Sn with trivial
G-action, so πG

∗ F is nontrivial. This means that E and F are
homotopically distinct as naive G-spectra.
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A counterexample: why we need genuine G-spectra
(continued)

EXAMPLE. Let G = C2 and let σ be the sign representation.
We will show that there is a map E := S−σ ∧ Sσ → S−0 =: F
which is a weak equivalence in SG but NOT in Snaive

G .

In SG, we have Emσ⊕n = JG(σ,mσ ⊕ n) ∧ Sσ, so

EG
mσ⊕n = O(1,m)+ ∧ Sn = Sn ∨ Sm+n−1 for m > 0

F G
mσ⊕n = (Smσ⊕n)G = Sn,

and the map f induces an isomorphism in πG
∗ .

The map underlying fmσ⊕n = εσ,mσ⊕n has the form
J (1,m + n) ∧ S1 → Sm+n. Recall that J (1,m + n) is the
tangent Thom space for Sm+n−1, so its suspension is the Thom
space for the trivial Rm+n-bundle over Sm+n−1, which is
equivalent to Sm+n ∨S2(m+n)−1. It follows that f also induces an
isomorphism in π∗ and is therefore a weak equivalence.
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A counterexample: why we need genuine G-spectra
(continued)

EXAMPLE. Let G = C2 and let σ be the sign representation.
We will show that there is a map E := S−σ ∧ Sσ → S−0 =: F
which is a weak equivalence in SG but NOT in Snaive

G .

In SG, we have Emσ⊕n = JG(σ,mσ ⊕ n) ∧ Sσ,

so

EG
mσ⊕n = O(1,m)+ ∧ Sn = Sn ∨ Sm+n−1 for m > 0

F G
mσ⊕n = (Smσ⊕n)G = Sn,

and the map f induces an isomorphism in πG
∗ .

The map underlying fmσ⊕n = εσ,mσ⊕n has the form
J (1,m + n) ∧ S1 → Sm+n. Recall that J (1,m + n) is the
tangent Thom space for Sm+n−1, so its suspension is the Thom
space for the trivial Rm+n-bundle over Sm+n−1, which is
equivalent to Sm+n ∨S2(m+n)−1. It follows that f also induces an
isomorphism in π∗ and is therefore a weak equivalence.
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A counterexample: why we need genuine G-spectra
(continued)

EXAMPLE. Let G = C2 and let σ be the sign representation.
We will show that there is a map E := S−σ ∧ Sσ → S−0 =: F
which is a weak equivalence in SG but NOT in Snaive

G .

In SG, we have Emσ⊕n = JG(σ,mσ ⊕ n) ∧ Sσ, so

EG
mσ⊕n = O(1,m)+ ∧ Sn = Sn ∨ Sm+n−1 for m > 0

F G
mσ⊕n = (Smσ⊕n)G = Sn,

and the map f induces an isomorphism in πG
∗ .

The map underlying fmσ⊕n = εσ,mσ⊕n has the form
J (1,m + n) ∧ S1 → Sm+n. Recall that J (1,m + n) is the
tangent Thom space for Sm+n−1, so its suspension is the Thom
space for the trivial Rm+n-bundle over Sm+n−1, which is
equivalent to Sm+n ∨S2(m+n)−1. It follows that f also induces an
isomorphism in π∗ and is therefore a weak equivalence.
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A counterexample: why we need genuine G-spectra
(continued)

EXAMPLE. Let G = C2 and let σ be the sign representation.
We will show that there is a map E := S−σ ∧ Sσ → S−0 =: F
which is a weak equivalence in SG but NOT in Snaive

G .

In SG, we have Emσ⊕n = JG(σ,mσ ⊕ n) ∧ Sσ, so

EG
mσ⊕n = O(1,m)+ ∧ Sn = Sn ∨ Sm+n−1 for m > 0

F G
mσ⊕n = (Smσ⊕n)G = Sn,

and the map f induces an isomorphism in πG
∗ .

The map underlying fmσ⊕n = εσ,mσ⊕n has the form
J (1,m + n) ∧ S1 → Sm+n. Recall that J (1,m + n) is the
tangent Thom space for Sm+n−1, so its suspension is the Thom
space for the trivial Rm+n-bundle over Sm+n−1, which is
equivalent to Sm+n ∨S2(m+n)−1. It follows that f also induces an
isomorphism in π∗ and is therefore a weak equivalence.
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A counterexample: why we need genuine G-spectra
(continued)

EXAMPLE. Let G = C2 and let σ be the sign representation.
We will show that there is a map E := S−σ ∧ Sσ → S−0 =: F
which is a weak equivalence in SG but NOT in Snaive

G .

In SG, we have Emσ⊕n = JG(σ,mσ ⊕ n) ∧ Sσ, so

EG
mσ⊕n = O(1,m)+ ∧ Sn = Sn ∨ Sm+n−1 for m > 0

F G
mσ⊕n = (Smσ⊕n)G = Sn,

and the map f induces an isomorphism in πG
∗ .

The map underlying fmσ⊕n = εσ,mσ⊕n has the form
J (1,m + n) ∧ S1 → Sm+n.

Recall that J (1,m + n) is the
tangent Thom space for Sm+n−1, so its suspension is the Thom
space for the trivial Rm+n-bundle over Sm+n−1, which is
equivalent to Sm+n ∨S2(m+n)−1. It follows that f also induces an
isomorphism in π∗ and is therefore a weak equivalence.
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A counterexample: why we need genuine G-spectra
(continued)

EXAMPLE. Let G = C2 and let σ be the sign representation.
We will show that there is a map E := S−σ ∧ Sσ → S−0 =: F
which is a weak equivalence in SG but NOT in Snaive

G .

In SG, we have Emσ⊕n = JG(σ,mσ ⊕ n) ∧ Sσ, so

EG
mσ⊕n = O(1,m)+ ∧ Sn = Sn ∨ Sm+n−1 for m > 0

F G
mσ⊕n = (Smσ⊕n)G = Sn,

and the map f induces an isomorphism in πG
∗ .

The map underlying fmσ⊕n = εσ,mσ⊕n has the form
J (1,m + n) ∧ S1 → Sm+n. Recall that J (1,m + n) is the
tangent Thom space for Sm+n−1,

so its suspension is the Thom
space for the trivial Rm+n-bundle over Sm+n−1, which is
equivalent to Sm+n ∨S2(m+n)−1. It follows that f also induces an
isomorphism in π∗ and is therefore a weak equivalence.
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A counterexample: why we need genuine G-spectra
(continued)

EXAMPLE. Let G = C2 and let σ be the sign representation.
We will show that there is a map E := S−σ ∧ Sσ → S−0 =: F
which is a weak equivalence in SG but NOT in Snaive

G .

In SG, we have Emσ⊕n = JG(σ,mσ ⊕ n) ∧ Sσ, so

EG
mσ⊕n = O(1,m)+ ∧ Sn = Sn ∨ Sm+n−1 for m > 0

F G
mσ⊕n = (Smσ⊕n)G = Sn,

and the map f induces an isomorphism in πG
∗ .

The map underlying fmσ⊕n = εσ,mσ⊕n has the form
J (1,m + n) ∧ S1 → Sm+n. Recall that J (1,m + n) is the
tangent Thom space for Sm+n−1, so its suspension is the Thom
space for the trivial Rm+n-bundle over Sm+n−1,

which is
equivalent to Sm+n ∨S2(m+n)−1. It follows that f also induces an
isomorphism in π∗ and is therefore a weak equivalence.
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A counterexample: why we need genuine G-spectra
(continued)

EXAMPLE. Let G = C2 and let σ be the sign representation.
We will show that there is a map E := S−σ ∧ Sσ → S−0 =: F
which is a weak equivalence in SG but NOT in Snaive

G .

In SG, we have Emσ⊕n = JG(σ,mσ ⊕ n) ∧ Sσ, so

EG
mσ⊕n = O(1,m)+ ∧ Sn = Sn ∨ Sm+n−1 for m > 0

F G
mσ⊕n = (Smσ⊕n)G = Sn,

and the map f induces an isomorphism in πG
∗ .

The map underlying fmσ⊕n = εσ,mσ⊕n has the form
J (1,m + n) ∧ S1 → Sm+n. Recall that J (1,m + n) is the
tangent Thom space for Sm+n−1, so its suspension is the Thom
space for the trivial Rm+n-bundle over Sm+n−1, which is
equivalent to Sm+n ∨S2(m+n)−1.

It follows that f also induces an
isomorphism in π∗ and is therefore a weak equivalence.



What is a
G-spectrum?

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment I

Symmetric monoidal
categories

Enrichment II

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra

The spectrum S−V

Naive G-spectra

Change of group

The smash product

Homotopy theory
Quillen model structures

A new model structure on
SG

A counterexample

1.39

A counterexample: why we need genuine G-spectra
(continued)

EXAMPLE. Let G = C2 and let σ be the sign representation.
We will show that there is a map E := S−σ ∧ Sσ → S−0 =: F
which is a weak equivalence in SG but NOT in Snaive

G .

In SG, we have Emσ⊕n = JG(σ,mσ ⊕ n) ∧ Sσ, so

EG
mσ⊕n = O(1,m)+ ∧ Sn = Sn ∨ Sm+n−1 for m > 0

F G
mσ⊕n = (Smσ⊕n)G = Sn,

and the map f induces an isomorphism in πG
∗ .

The map underlying fmσ⊕n = εσ,mσ⊕n has the form
J (1,m + n) ∧ S1 → Sm+n. Recall that J (1,m + n) is the
tangent Thom space for Sm+n−1, so its suspension is the Thom
space for the trivial Rm+n-bundle over Sm+n−1, which is
equivalent to Sm+n ∨S2(m+n)−1. It follows that f also induces an
isomorphism in π∗ and is therefore a weak equivalence.



What is a
G-spectrum?

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment I

Symmetric monoidal
categories

Enrichment II

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra

The spectrum S−V

Naive G-spectra

Change of group

The smash product

Homotopy theory
Quillen model structures

A new model structure on
SG

A counterexample

1.40

Happy Birthday Don!
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