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Algebraic topologists have been studying spectra for over 50
years and G-spectra for over 30 years.

The basic definitions have changed several times, yet our
intuition about spectra has not.

We have made extensive calculations with them from the very
beginning. None of these have been affected in the least by the
changing foundations of the subject.
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Spectra were first defined in a 1959 pa-
per of Lima, who is now a very promi-
nent mathematician in Brazil. He was
a student of Spanier at the University
of Chicago.

Ed Spanier
1921-1996
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GENERALIZED HOMOLOGY THEORIES(")

BY
GEORGE W. WHITEHEAD

George Whitehead
1918-2004

Here is the original definition in a 1962 paper by Whitehead,

the earliest online reference | could find.

4. Spectra(®). A spectrum E is a sequence(’) { E.|n€Z} of spaces together
with a sequence of maps

€ni SE, — Eptr.
If E, E’ are spectra, a map f: E-E’ is a sequence of maps
St En > E{
such that the diagrams
SEy S B
Shi o, L

o

SEp = Enyy

(%) By a sequence we shall always mean a function on all the integers.
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This definition was adequate for many calculations over the
next 20 years.

It was used by [EES

Adams in his “blue RIS

book” of 1974.

Frank Adamé
1930-1989

The definition led to a lot of technical problems especially in
connection with smash products. The definition we use today is
more categorical.
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Some words you will not hear again in this talk:

up to homotopy
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operad

universe
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In a (locally small) category C, for each pair of object X and Y,
one has a set of morphisms C(X, Y). It sometimes happens
that this set has a richer structure. Here are two examples.

(i) Let .Ab be the category of abelian groups. Then for
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In a (locally small) category C, for each pair of object X and Y,
one has a set of morphisms C(X, Y). It sometimes happens
that this set has a richer structure. Here are two examples.

(i) Let .Ab be the category of abelian groups. Then for
abelian groups A and B, the set Ab(A, B) of
homomorphisms A — B, is itself an abelian group.
Composition of morphisms A — B — C induces a map
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In a (locally small) category C, for each pair of object X and Y,
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that this set has a richer structure. Here are two examples.
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(i) Let T be the category of pointed compactly generated
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In a (locally small) category C, for each pair of object X and Y,
one has a set of morphisms C(X, Y). It sometimes happens
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(i) Let .Ab be the category of abelian groups. Then for
abelian groups A and B, the set Ab(A, B) of
homomorphisms A — B, is itself an abelian group.
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weak Hausdorff spaces. Then for such spaces X and Y,
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In a (locally small) category C, for each pair of object X and Y,

one has a set of morphisms C(X, Y). It sometimes happens
that this set has a richer structure. Here are two examples.

(i) Let .Ab be the category of abelian groups. Then for

abelian groups A and B, the set Ab(A, B) of
homomorphisms A — B, is itself an abelian group.
Composition of morphisms A — B — C induces a map
Ab(B, C) ® Ab(A, B) — Ab(A, C).

Let 7 be the category of pointed compactly generated
weak Hausdorff spaces. Then for such spaces X and Y,
the set 7 (X, Y) of pointed continuous maps X — VY, is
itself a pointed space under the compact open topology,
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Some categorical notions: Enrichment, |

In a (locally small) category C, for each pair of object X and Y,

one has a set of morphisms C(X, Y). It sometimes happens
that this set has a richer structure. Here are two examples.

(i) Let .Ab be the category of abelian groups. Then for

(ii)

abelian groups A and B, the set Ab(A, B) of
homomorphisms A — B, is itself an abelian group.
Composition of morphisms A — B — C induces a map
Ab(B, C) ® Ab(A, B) — Ab(A, C).

Let 7 be the category of pointed compactly generated
weak Hausdorff spaces. Then for such spaces X and Y,
the set 7 (X, Y) of pointed continuous maps X — VY, is
itself a pointed space under the compact open topology,
the base point being the constant map.
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Some categorical notions: Enrichment, |

In a (locally small) category C, for each pair of object X and Y,

one has a set of morphisms C(X, Y). It sometimes happens
that this set has a richer structure. Here are two examples.

(i) Let .Ab be the category of abelian groups. Then for

(ii)

abelian groups A and B, the set Ab(A, B) of
homomorphisms A — B, is itself an abelian group.
Composition of morphisms A — B — C induces a map
Ab(B, C) ® Ab(A, B) — Ab(A, C).

Let 7 be the category of pointed compactly generated
weak Hausdorff spaces. Then for such spaces X and Y,
the set 7 (X, Y) of pointed continuous maps X — VY, is
itself a pointed space under the compact open topology,
the base point being the constant map. Here composition
leads to amap 7(X, Y)AT(W,X) — T(W,Y).
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Some categorical notions: Enrichment, |

In a (locally small) category C, for each pair of object X and Y,

one has a set of morphisms C(X, Y). It sometimes happens
that this set has a richer structure. Here are two examples.

(i) Let .Ab be the category of abelian groups. Then for

(ii)

abelian groups A and B, the set Ab(A, B) of
homomorphisms A — B, is itself an abelian group.
Composition of morphisms A — B — C induces a map
Ab(B, C) ® Ab(A, B) — Ab(A, C).

Let 7 be the category of pointed compactly generated
weak Hausdorff spaces. Then for such spaces X and Y,
the set 7 (X, Y) of pointed continuous maps X — VY, is
itself a pointed space under the compact open topology,
the base point being the constant map. Here composition
leads to amap 7(X, Y)AT(W,X) = T(W,Y). (From
now on, all topological spaces will be assumed to be
compactly generated weak Hausdorff.)
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Some categorical notions: Enrichment, |

In a (locally small) category C, for each pair of object X and Y,

one has a set of morphisms C(X, Y). It sometimes happens
that this set has a richer structure. Here are two examples.

(i) Let .Ab be the category of abelian groups. Then for

(ii)

abelian groups A and B, the set Ab(A, B) of
homomorphisms A — B, is itself an abelian group.
Composition of morphisms A — B — C induces a map
Ab(B, C) ® Ab(A, B) — Ab(A, C).

Let 7 be the category of pointed compactly generated
weak Hausdorff spaces. Then for such spaces X and Y,
the set 7 (X, Y) of pointed continuous maps X — VY, is
itself a pointed space under the compact open topology,
the base point being the constant map. Here composition
leads to amap 7(X, Y)AT(W,X) = T(W,Y). (From
now on, all topological spaces will be assumed to be
compactly generated weak Hausdorff.)

We say that both of these categories are enriched over
themselves.
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Some categorical notions: Enrichment, | (continued)

Let G be a finite group. There are two categories whose
objects are pointed G-spaces,
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Some categorical notions: Enrichment, | (continued)

Let G be a finite group. There are two categories whose
objects are pointed G-spaces, where the base point is always

fixed by G,
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Some categorical notions: Enrichment, | (continued)

Let G be a finite group. There are two categories whose
objects are pointed G-spaces, where the base point is always
fixed by G, because there are two types of morphisms to

consider.
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Some categorical notions: Enrichment, | (continued)

Let G be a finite group. There are two categories whose
objects are pointed G-spaces, where the base point is always

fixed by G, because there are two types of morphisms to
consider.

(i) Let TC denote the category of pointed G-spaces and
equivariant continuous pointed maps.

What is a
G-spectrum?

iy

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions

Symmetric monoidal
categories

Enrichment I

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra
The spectrum S~ ¥/
Naive G-spectra
Change of group

The smash product

Homotopy theory
Quillen model structures
A new model structure on

]
A counterexample



Some categorical notions: Enrichment, | (continued)

Let G be a finite group. There are two categories whose
objects are pointed G-spaces, where the base point is always

fixed by G, because there are two types of morphisms to
consider.

(i) Let TC denote the category of pointed G-spaces and
equivariant continuous pointed maps. Then 7¢(X, Y) is a
pointed topological space,
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Some categorical notions: Enrichment, | (continued)

Let G be a finite group. There are two categories whose
objects are pointed G-spaces, where the base point is always

fixed by G, because there are two types of morphisms to
consider.

(i) Let TC denote the category of pointed G-spaces and
equivariant continuous pointed maps. Then 7¢(X, Y) is a
pointed topological space, so 7 ¢ is enriched over 7.
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Some categorical notions: Enrichment, | (continued)

Let G be a finite group. There are two categories whose
objects are pointed G-spaces, where the base point is always
fixed by G, because there are two types of morphisms to
consider.

(i) Let TC denote the category of pointed G-spaces and
equivariant continuous pointed maps. Then 7¢(X, Y) is a
pointed topological space, so 7 ¢ is enriched over 7.

(i) Let Tg denote the category of pointed G-spaces and all
(not necessarily equivariant) continuous pointed maps.
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Some categorical notions: Enrichment, | (continued)

Let G be a finite group. There are two categories whose
objects are pointed G-spaces, where the base point is always
fixed by G, because there are two types of morphisms to
consider.

(i) Let TC denote the category of pointed G-spaces and
equivariant continuous pointed maps. Then 7¢(X, Y) is a
pointed topological space, so 7 ¢ is enriched over 7.

(i) Let Tg denote the category of pointed G-spaces and all
(not necessarily equivariant) continuous pointed maps.
Then Tg(X, Y) is a pointed G-space.
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Some categorical notions: Enrichment, | (continued)

Let G be a finite group. There are two categories whose
objects are pointed G-spaces, where the base point is always
fixed by G, because there are two types of morphisms to
consider.

(i) Let TC denote the category of pointed G-spaces and
equivariant continuous pointed maps. Then 7¢(X, Y) is a
pointed topological space, so 7 ¢ is enriched over 7.

(i) Let Tg denote the category of pointed G-spaces and all
(not necessarily equivariant) continuous pointed maps.
Then Tg(X, Y) is a pointed G-space. For f: X — Y and
~v e G,
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Some categorical notions: Enrichment, | (continued)

Let G be a finite group. There are two categories whose
objects are pointed G-spaces, where the base point is always
fixed by G, because there are two types of morphisms to
consider.

(i) Let TC denote the category of pointed G-spaces and
equivariant continuous pointed maps. Then 7¢(X, Y) is a
pointed topological space, so 7 ¢ is enriched over 7.

(i) Let Tg denote the category of pointed G-spaces and all
(not necessarily equivariant) continuous pointed maps.
Then Tg(X, Y) is a pointed G-space. For f: X — Y and
v € G, we define y(f) = vfy~1,
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Some categorical notions: Enrichment, | (continued)

Let G be a finite group. There are two categories whose
objects are pointed G-spaces, where the base point is always
fixed by G, because there are two types of morphisms to
consider.

(i) Let TC denote the category of pointed G-spaces and
equivariant continuous pointed maps. Then 7¢(X, Y) is a
pointed topological space, so 7 ¢ is enriched over 7.

(i) Let Tg denote the category of pointed G-spaces and all
(not necessarily equivariant) continuous pointed maps.
Then Tg(X, Y) is a pointed G-space. For f: X — Y and
v € G, we define y(f) = vfy~1, the lower composite map
in the noncommutative diagram
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Some categorical notions: Enrichment, | (continued)

Let G be a finite group. There are two categories whose
objects are pointed G-spaces, where the base point is always
fixed by G, because there are two types of morphisms to
consider.

(i) Let 7¢ denote the category of pointed G-spaces and
equivariant continuous pointed maps. Then 7¢(X, Y) is a
pointed topological space, so 7 ¢ is enriched over 7.

(i) Let Tg denote the category of pointed G-spaces and all
(not necessarily equivariant) continuous pointed maps.
Then Tg(X, Y) is a pointed G-space. For f: X — Y and
v € G, we define y(f) = vfy~1, the lower composite map
in the noncommutative diagram

f

Y
f v

—Y.

Q\
> <X
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Some categorical notions: Enrichment, | (continued)

Let G be a finite group. There are two categories whose
objects are pointed G-spaces, where the base point is always
fixed by G, because there are two types of morphisms to
consider.

(i) Let TC denote the category of pointed G-spaces and
equivariant continuous pointed maps. Then 7¢(X, Y) is a
pointed topological space, so 7 ¢ is enriched over 7.

(i) Let Tg denote the category of pointed G-spaces and all
(not necessarily equivariant) continuous pointed maps.
Then Tg(X, Y) is a pointed G-space. For f: X — Y and
v € G, we define y(f) = vfy~1, the lower composite map
in the noncommutative diagram

X f Y
! ﬁ’Y
X—' vy,

Tg is enriched 7 ¢ and hence over itself.
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Some categorical notions: Enrichment, | (continued)

Let G be a finite group. There are two categories whose
objects are pointed G-spaces, where the base point is always
fixed by G, because there are two types of morphisms to
consider.

(i) Let TC denote the category of pointed G-spaces and
equivariant continuous pointed maps. Then 7¢(X, Y) is a
pointed topological space, so 7 ¢ is enriched over 7.

(i) Let Tg denote the category of pointed G-spaces and all
(not necessarily equivariant) continuous pointed maps.
Then Tg(X, Y) is a pointed G-space. For f: X — Y and
v € G, we define y(f) = vfy~1, the lower composite map
in the noncommutative diagram

X f Y
! ﬁ’Y
X—' vy,

Tg is enriched 7 ¢ and hence over itself.
TG(X7 Y)G
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Some categorical notions: Enrichment, | (continued)

Let G be a finite group. There are two categories whose
objects are pointed G-spaces, where the base point is always
fixed by G, because there are two types of morphisms to
consider.

(i) Let TC denote the category of pointed G-spaces and
equivariant continuous pointed maps. Then 7¢(X, Y) is a
pointed topological space, so 7 ¢ is enriched over 7.

(i) Let Tg denote the category of pointed G-spaces and all
(not necessarily equivariant) continuous pointed maps.
Then Tg(X, Y) is a pointed G-space. For f: X — Y and
v € G, we define y(f) = vfy~1, the lower composite map
in the noncommutative diagram

X f Y
! ﬁ’Y
X—' vy,

Tg is enriched 7 ¢ and hence over itself.
Ta(X, V)8 =TE(X,Y).
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Symmetric monoidal categories

A symmetric monoidal category is a category V equipped with
amap®:VxyV-=YVY
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Symmetric monoidal categories

A symmetric monoidal category is a category V equipped with
amap ® : V x V — V with natural associativity isomorphisms
XeY)eZ—-Xe(YoZ),
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Symmetric monoidal categories

A symmetric monoidal category is a category V equipped with
amap ® : V x V — V with natural associativity isomorphisms

X®Y)®Z— X (Y ®Z), natural symmetry isomorphisms
XY -=>YeX
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Symmetric monoidal categories

A symmetric monoidal category is a category V equipped with
amap ® : V x V — V with natural associativity isomorphisms
X®Y)®Z— X (Y ®Z), natural symmetry isomorphisms
X®Y — Y ® X and a unit object 1 with unit isomorphisms

x 10X — X.
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Symmetric monoidal categories

A symmetric monoidal category is a category V equipped with
amap ® : V x V — V with natural associativity isomorphisms
(X®Y)®Z— X® (Y ®Z),natural symmetry isomorphisms
X®Y — Y® X and a unit object 1 with unit isomorphisms

tx : 1® X — X. We will denote this structure by (V, ®, 1),
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Symmetric monoidal categories

A symmetric monoidal category is a category V equipped with
amap ® : V x V — V with natural associativity isomorphisms
X®Y)®Z— X (Y ®Z), natural symmetry isomorphisms
X®Y — Y ® X and a unit object 1 with unit isomorphisms

tx : 1® X — X. We will denote this structure by (V, ®, 1),
surpressing the required isomorphisms from the notation.
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amap ® : V x V — V with natural associativity isomorphisms Catogorical notions
X®Y)®Z— X (Y ®Z), natural symmetry isomorphisms Bt
X®Y — Y ® X and a unit object 1 with unit isomorphisms
tx : 1® X — X. We will denote this structure by (V, ®, 1), P
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Here are some familiar examples: MUM “

(i) (Sets, x,x*),
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Symmetric monoidal categories (continued)

Here are some familiar examples:

(i) (Sets, x,x), the category of sets under Cartesian product,
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Symmetric monoidal categories (continued)

Here are some familiar examples:

(i) (Sets, x,x), the category of sets under Cartesian product,
where the unit is a set « with one element.
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Symmetric monoidal categories (continued)

Here are some familiar examples:

(i) (Sets, x,x), the category of sets under Cartesian product,
where the unit is a set « with one element.

(i) (Ab,®,Z),
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Symmetric monoidal categories (continued) et

G-spectrum?

Here are some familiar examples: MLM “

(i) (Sets, x,x), the category of sets under Cartesian product, i e
where the unit is a set * with one element. DouglRaverst
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(i) (Ab,®,2Z), the category of abelian groups under tensor
product, with the integers Z as unit.
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A functor F : C — D between V-categories consists of a
function F : ob(C) — ob(D), and for each pair of objects X and
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A V-category C is underlain by an ordinary category Cy having
the same objects as C and morphism sets
CO(X7 Y) = V0(17C(Xa Y))

A functor F : C — D between V-categories consists of a
function F : ob(C) — ob(D), and for each pair of objects X and
Y in C, a morphism C(X, Y) — D(FX, FY) in V, satisfying
suitable naturality conditions.

A symmetric monoidal category is closed iff it is enriched over
itself.

When V = (T, A, %), we say, C is a topological category.
When V = (T¢ A, S°), we say, C is a topological G-category. It

is also enriched over 7g, since 75 has the same objects as 7,
and more morphisms.
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The definition of a G-spectrum
We will define spectra as functors to 7 from a certain indexing
category #. Both are topological G-categories.
Definition

The indexing category 7 is the topological G-category whose

objects are finite dimensional real orthogonal representations
V of G.
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The definition of a G-spectrum

We will define spectra as functors to 7 from a certain indexing
category #. Both are topological G-categories.

Definition

The indexing category 7 is the topological G-category whose
objects are finite dimensional real orthogonal representations
V of G. Let O(V, W) denote the Stiefel manifold of (possibly
nonequivariant) orthogonal embeddings V. — W.
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The definition of a G-spectrum

We will define spectra as functors to 7 from a certain indexing
category #. Both are topological G-categories.

Definition

The indexing category 7 is the topological G-category whose
objects are finite dimensional real orthogonal representations
V of G. Let O(V, W) denote the Stiefel manifold of (possibly
nonequivariant) orthogonal embeddings V. — W. For each
such embedding we have an orthogonal complement W — V,
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The definition of a G-spectrum

We will define spectra as functors to 7 from a certain indexing
category #. Both are topological G-categories.

Definition

The indexing category 7 is the topological G-category whose
objects are finite dimensional real orthogonal representations
V of G. Let O(V, W) denote the Stiefel manifold of (possibly
nonequivariant) orthogonal embeddings V. — W. For each
such embedding we have an orthogonal complement W — V,
giving us a vector bundle over O(V, W).
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The definition of a G-spectrum

We will define spectra as functors to 7 from a certain indexing
category #. Both are topological G-categories.

Definition

The indexing category 7 is the topological G-category whose
objects are finite dimensional real orthogonal representations
V of G. Let O(V, W) denote the Stiefel manifold of (possibly
nonequivariant) orthogonal embeddings V. — W. For each
such embedding we have an orthogonal complement W — V,
giving us a vector bundle over O(V, W). The morphism object
Fa(V, W) is its Thom space,
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We will define spectra as functors to 7 from a certain indexing
category #. Both are topological G-categories.
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The indexing category 7 is the topological G-category whose
objects are finite dimensional real orthogonal representations
V of G. Let O(V, W) denote the Stiefel manifold of (possibly
nonequivariant) orthogonal embeddings V. — W. For each
such embedding we have an orthogonal complement W — V,
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Fa(V, W) is its Thom space, which is a pointed G-space.
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Main Definition

An orthogonal G-spectrum E is a functor Zg — Tg. We will
denote its value on V by Ey,.
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An orthogonal G-spectrum E is a functor 7¢ — Ta. We will
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Main Definition

An orthogonal G-spectrum E is a functor 7¢ — Ta. We will
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Main Definition
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Main Definition

An orthogonal G-spectrum E is a functor 7¢ — Ta. We will
denote its value on V by Ey,.
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Main Definition

An orthogonal G-spectrum E is a functor 7¢ — Ta. We will
denote its value on V by Ey,.
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Main Definition
An orthogonal G-spectrum E is a functor 7¢ — Ta. We will
denote its value on V by Ey,.

This definition requires some unpacking!

First we examine the indexing spaces #g(V, W).

e When dim(V) > dim(W), the embedding space O(V, W)
is empty, so _Zg(V, W) = x.
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Main Definition

An orthogonal G-spectrum E is a functor 7¢ — Ta. We will
denote its value on V by Ey,.

This definition requires some unpacking!
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An orthogonal G-spectrum E is a functor 7¢ — Ta. We will
denote its value on V by Ey,.

This definition requires some unpacking!

First we examine the indexing spaces #g(V, W).

e When dim(V) > dim(W), the embedding space O(V, W)
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Main Definition

An orthogonal G-spectrum E is a functor 7¢ — Ta. We will
denote its value on V by Ey,.
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First we examine the indexing spaces #g(V, W).
e When dim(V) > dim(W), the embedding space O(V, W)
is empty, so _Zg(V, W) = x.
e When dim(V) = dim(W), the vector bundle is

0-dimensional, so _Zg(V, W) = O(V, W), the orthogonal
group (equipped with a G-action)

What is a
G-spectrum?

iy

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment |

Symmetric monoidal
categories

Enrichment I

 The main definiion
Comparison with the
original definition
Simple examples
Spaces and spectra
The spectrum S~ ¥/
Naive G-spectra
Change of group

The smash product

Homotopy theory
Quillen model structures
A new model structure on

]
A counterexample



The definition of a G-spectrum (continued)

Main Definition

An orthogonal G-spectrum E is a functor 7¢ — Ta. We will
denote its value on V by Ey,.

This definition requires some unpacking!

First we examine the indexing spaces #g(V, W).

e When dim(V) > dim(W), the embedding space O(V, W)
is empty, so _Zg(V, W) = x.

e When dim(V) = dim(W), the vector bundle is
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Main Definition

An orthogonal G-spectrum E is a functor 7¢ — Ta. We will
denote its value on V by Ey,.

This definition requires some unpacking!

First we examine the indexing spaces #g(V, W).

e When dim(V) > dim(W), the embedding space O(V, W)
is empty, so _Zg(V, W) = x.

e When dim(V) = dim(W), the vector bundle is
0-dimensional, so _Zg(V, W) = O(V, W), the orthogonal

group (equipped with a G-action) with a disjoint base point.
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@: Jo(V.W)N gV, W) = Za(Va VI, Wae W)
and EV.W : /G( V, W) ANEy — Ew.

In particular, #Z(U, V) and Ey each have a base point
preserving left action of the orthogonal group O(V) = O(V, V),
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In particular, #Z(U, V) and Ey each have a base point
preserving left action of the orthogonal group O(V) = O(V, V),
and _#Zg(V, W) has aright O(V)-action.

The structure map ey, factors through the orbit space
Ja(V, W) O(AV) Ey. When dim(V) = dim(W), this space

equivariantly homeomorphic to Ey .
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and EV.W : /G( V, W) ANEy — Ew.

In particular, #Z(U, V) and Ey each have a base point
preserving left action of the orthogonal group O(V) = O(V, V),
and _#Zg(V, W) has aright O(V)-action.

The structure map ey, factors through the orbit space
Ja(V, W) O(AV) Ey. When dim(V) = dim(W), this space

equivariantly homeomorphic to Ey,. This means that a
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Main Definition

An orthogonal G-spectrum E is a functor #g — Tg. We will
denote its value on V by Ey.

There are equivariant structure maps

(V. W)A _76(U, V) = Za(U, W) (composition in _#)
@: Jo(V.W)N gV, W) = Za(Va VI, Wae W)
and EV.W : /G( V, W) ANEy — Ew.

In particular, #Z(U, V) and Ey each have a base point
preserving left action of the orthogonal group O(V) = O(V, V),
and _#Zg(V, W) has aright O(V)-action.

The structure map ey, factors through the orbit space
Ja(V, W) O(AV) Ey. When dim(V) = dim(W), this space

equivariantly homeomorphic to Ey,. This means that a
G-spectrum E is determined by its values on vector spaces V
with trivial G-action. We will come back to this later.
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topological category of finite dimensional orthogonal vector
spaces with morphism spaces as before.

Such vector spaces are determined by their dimensions, so we

study the structure map e, ni1 : Z(n,n+1) A E; — Epiy,

which factors through _#(n,n+1) o/(\) E,. We want to compare
n

this with Whitehead's structure map e, : S' A E, — Epy4.

The latter is based on a previously chosen orthogonal
embedding R” — R™'. Mandell-May’s ¢, , 1 amounts to a
family of maps S' A E, — E,,1 parameterized by all such
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Comparison with the original definition

Main Definition

An orthogonal G-spectrum E is a functor Zg — Tg. We will
denote its value on V by Ey,.

For trivial G we have a functor _# — 7T, where 7 is the
topological category of finite dimensional orthogonal vector
spaces with morphism spaces as before.

Such vector spaces are determined by their dimensions, so we

study the structure map e, ni1 : Z(n,n+1) A E; — Epiy,

which factors through _#(n,n+1) o/(\) E,. We want to compare
n

this with Whitehead's structure map e, : S' A E, — Epy4.

The latter is based on a previously chosen orthogonal
embedding R” — R™'. Mandell-May’s ¢, , 1 amounts to a
family of maps S' A E, — E,,1 parameterized by all such
embeddings. This coordinate free approach is technically
convenient.
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Given a G-spectrum E and a pointed G-space X, we can
define a spectrum E A X by (E A X)y = Ey A X. We will define
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Smash products with spaces and the sphere spectrum

Given a G-spectrum E and a pointed G-space X, we can
define a spectrum E A X by (E A X)y = Ey A X. We will define
the smash product of two spectra shortly. We can also define a
spectrum Fg(X, E) by Fg(X, E)y = Ta(X, Ey). For X = SW,
these spectra also denoted by YWE and QWE.

We can also define limits and colimits object wise,
(|I£’l E¥)y = I@(EV) and (I£n Ev)y = I@(Ev).

We will denote the sphere spectrum by S~ to avoid confusion
with the space S°.
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Smash products with spaces and the sphere spectrum

Given a G-spectrum E and a pointed G-space X, we can
define a spectrum E A X by (E A X)y = Ey A X. We will define
the smash product of two spectra shortly. We can also define a
spectrum Fg(X, E) by Fg(X, E)y = Ta(X, Ey). For X = SW,
these spectra also denoted by YWE and QWE.

We can also define limits and colimits object wise,
(|I£’l E¥)y = I@(EV) and (I£n Ev)y = I@(Ev).

We will denote the sphere spectrum by S~ to avoid confusion
with the space S°. It is defined by (S7%), = SV
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Smash products with spaces and the sphere spectrum

Given a G-spectrum E and a pointed G-space X, we can
define a spectrum E A X by (E A X)y = Ey A X. We will define
the smash product of two spectra shortly. We can also define a
spectrum Fg(X, E) by Fg(X, E)y = Ta(X, Ey). For X = SW,
these spectra also denoted by YWE and QWE.

We can also define limits and colimits object wise,

(lm E%)y = im(Eg) and  (Iim £%)y = lim(Ep).

We will denote the sphere spectrum by S~ to avoid confusion
with the space S°. It is defined by (S~%)y = SV with structure
map induced by composition in _Zg

Ie(V.WASY = 76(V,W)A _#5(0,V) — #5(0, W) = SW.
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Smash products with spaces and the sphere spectrum

Given a G-spectrum E and a pointed G-space X, we can
define a spectrum E A X by (E A X)y = Ey A X. We will define
the smash product of two spectra shortly. We can also define a
spectrum Fg(X, E) by Fg(X, E)y = Ta(X, Ey). For X = SW,
these spectra also denoted by YWE and QWE.

We can also define limits and colimits object wise,

(I@ E¥)y = I@(EV) and (I£n Ev)y = I@(Ev).
We will denote the sphere spectrum by S~ to avoid confusion
with the space S°. It is defined by (S~%)y = SV with structure

map induced by composition in _Zg

Ie(V.WASY = 76(V,W)A _#5(0,V) — #5(0, W) = SW.

For a pointed G-space X,
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Smash products with spaces and the sphere spectrum

Given a G-spectrum E and a pointed G-space X, we can
define a spectrum E A X by (E A X)y = Ey A X. We will define
the smash product of two spectra shortly. We can also define a
spectrum Fg(X, E) by Fg(X, E)y = Ta(X, Ey). For X = SW,
these spectra also denoted by YWE and QWE.

We can also define limits and colimits object wise,

(I@ E¥)y = I@(Ev) and (I£n Ev)y = I@(Ev).
We will denote the sphere spectrum by S~ to avoid confusion
with the space S°. It is defined by (S~%)y = SV with structure
map induced by composition in _Zg
Ie(V.WASY = 76(V,W)A _#5(0,V) — #5(0, W) = SW.

For a pointed G-space X, the suspension spectrum XX is
SOAX.
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The spectrum S~V Whatis a

G-spectrum?

We define the spectrum S~V by (S~V)w = _#a(V, W). MM
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The spectrum S~V Whatis a

G-spectrum?

We define the spectrum SV by (S~V)w = _Zg(V, W). We MW
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The spectrum S~V

We define the spectrum SV by (S~V)w = _Zg(V, W). We
have structure maps jy.w : S™W A _Zg(V, W) — S~V induced
by composition in _#g.

Let S denote the category of orthogonal G-spectra. Since its
objects are functors _Zg — Tg, its morphisms are natural
transformations between such functors. It is a topological
G-category.

One can use the enriched Yoneda lemma to show that
Sa(S~Y, E) = Ey. In particular,

S6(87° E) = Eo = Ta(S°, Bo) = Ta(S°, Q7 E),

where the 0th space functor Q> sends a spectrum E to the
space Ey.
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The spectrum S~V

We define the spectrum SV by (S~V)w = _Zg(V, W). We
have structure maps jy.w : S™W A _Zg(V, W) — S~V induced
by composition in _#g.

Let S denote the category of orthogonal G-spectra. Since its
objects are functors _Zg — Tg, its morphisms are natural
transformations between such functors. It is a topological
G-category.

One can use the enriched Yoneda lemma to show that
Sa(S~Y, E) = Ey. In particular,

S6(87° E) = Eo = Ta(S°, Bo) = Ta(S°, Q7 E),

where the 0th space functor Q> sends a spectrum E to the
space Ey. For a pointed G-space X we have
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The spectrum S~V

We define the spectrum SV by (S~V)w = _Zg(V, W). We
have structure maps jy.w : S™W A _Zg(V, W) — S~V induced
by composition in _#g.

Let S denote the category of orthogonal G-spectra. Since its
objects are functors _Zg — Tg, its morphisms are natural
transformations between such functors. It is a topological
G-category.

One can use the enriched Yoneda lemma to show that
Sa(S~Y, E) = Ey. In particular,

S6(87° E) = Eo = Ta(S°, Bo) = Ta(S°, Q7 E),

where the 0th space functor Q> sends a spectrum E to the
space Ey. For a pointed G-space X we have

SG(X®X,E) = Sa(S™° A X, E) = Ta(X,Q7E),
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The spectrum S~V

We define the spectrum SV by (S~V)w = _Zg(V, W). We
have structure maps jy.w : S™W A _Zg(V, W) — S~V induced
by composition in _#g.

Let S denote the category of orthogonal G-spectra. Since its
objects are functors _Zg — Tg, its morphisms are natural
transformations between such functors. It is a topological
G-category.

One can use the enriched Yoneda lemma to show that
Sa(S~Y, E) = Ey. In particular,

S6(87° E) = Eo = Ta(S°, Bo) = Ta(S°, Q7 E),

where the 0th space functor Q> sends a spectrum E to the
space Ey. For a pointed G-space X we have

SG(X®X,E) = Sa(S™° A X, E) = Ta(X,Q7E),

so the functors ¥ : 75 — Sg and Q% : Sg — Tg are adjoint.
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Naive G-spectra

An ordinary orthogonal spectrum is a functor ¢ — 7.
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Naive G-spectra

An ordinary orthogonal spectrum is a functor _# — 7. Since
¥ is a full subcategory of #g,
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Naive G-spectra

An ordinary orthogonal spectrum is a functor _# — 7. Since

¥ is a full subcategory of ¢#g, an orthogonal G-spectrum
induces a functor ¢ — 7.
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Naive G-spectra

An ordinary orthogonal spectrum is a functor _# — 7. Since
¥ is a full subcategory of ¢#g, an orthogonal G-spectrum
induces a functor _# — 7g. This amounts to an ordinary

spectrum equipped with a G-action, and is called a naive
G-spectrum.
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Naive G-spectra

An ordinary orthogonal spectrum is a functor _# — 7. Since
¥ is a full subcategory of ¢#g, an orthogonal G-spectrum
induces a functor _# — 7g. This amounts to an ordinary
spectrum equipped with a G-action, and is called a naive

G-spectrum. We denote the corresponding category by SZave.
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An ordinary orthogonal spectrum is a functor _# — 7. Since

7 is afull subcategory of g, an orthogonal G-spectrum e e
induces a functor _# — 7g. This amounts to an ordinary B v
spectrum equipped with a G-action, and is called a naive Introduction
G-spectrum. We denote the corresponding category by SZave. Categorica notons
A functor on 7 is sometimes called a genuine G-spectrum. St
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Naive G-spectra

An ordinary orthogonal spectrum is a functor _# — 7. Since
¥ is a full subcategory of ¢#g, an orthogonal G-spectrum
induces a functor _# — 7g. This amounts to an ordinary
spectrum equipped with a G-action, and is called a naive
G-spectrum. We denote the corresponding category by SZave.
A functor on 7 is sometimes called a genuine G-spectrum.

As noted above, a functor on _#g is determined by its value on
# . It can be shown that the categories of naive and genuine
G-spectra are equivalent. However their homotopy theories are
different. The category Sg has more weak equivalences than
Sga/ve_
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Naive G-spectra

An ordinary orthogonal spectrum is a functor _# — 7. Since
¥ is a full subcategory of ¢#g, an orthogonal G-spectrum
induces a functor _# — 7g. This amounts to an ordinary
spectrum equipped with a G-action, and is called a naive
G-spectrum. We denote the corresponding category by SZave.
A functor on 7 is sometimes called a genuine G-spectrum.

As noted above, a functor on _#g is determined by its value on
# . It can be shown that the categories of naive and genuine
G-spectra are equivalent. However their homotopy theories are
different. The category Sg has more weak equivalences than
Sgave We will give an explicit example of this below
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Naive G-spectra

An ordinary orthogonal spectrum is a functor _# — 7. Since
¥ is a full subcategory of ¢#g, an orthogonal G-spectrum
induces a functor _# — 7g. This amounts to an ordinary
spectrum equipped with a G-action, and is called a naive
G-spectrum. We denote the corresponding category by SZave.
A functor on 7 is sometimes called a genuine G-spectrum.

As noted above, a functor on _#g is determined by its value on
# . It can be shown that the categories of naive and genuine
G-spectra are equivalent. However their homotopy theories are
different. The category Sg has more weak equivalences than
Sgave \We will give an explicit example of this below if time
permits.
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Naive G-spectra

An ordinary orthogonal spectrum is a functor _# — 7. Since
¥ is a full subcategory of ¢#g, an orthogonal G-spectrum
induces a functor _# — 7g. This amounts to an ordinary
spectrum equipped with a G-action, and is called a naive
G-spectrum. We denote the corresponding category by SZave.
A functor on 7 is sometimes called a genuine G-spectrum.

As noted above, a functor on _#g is determined by its value on
# . It can be shown that the categories of naive and genuine
G-spectra are equivalent. However their homotopy theories are
different. The category Sg has more weak equivalences than
Sgave \We will give an explicit example of this below if time
permits.

Nevertheless, the categorical equivalence is useful for certain
definitions.
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Fixed point spectra and change of group

The fixed point spectrum E¢ of G-spectrum E
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Fixed point spectra and change of group

The fixed point spectrum E¢ of G-spectrum E is the ordinary
spectrum (functor on _#) E€ defined by (E€), = (E,)C.
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The tautological presentation and smash product (continued)

We want to say that the smash product as defined above
makes Sg into a closed symmetric monoidal category with unit
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stable homotopy theory!

What is a
G-spectrum?

e

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment |

Symmetric monoidal
categories

Enrichment I

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra
The spectrum S~ ¥/
Naive G-spectra
Change of group

Homotopy theory
Quillen model structures

A new model structure on
®
A counterexample



The tautological presentation and smash product (continued)

We want to say that the smash product as defined above
makes Sg into a closed symmetric monoidal category with unit
S~0. This would mean that it is strictly associative and

commutative, thereby solving decades of technical problems in
stable homotopy theory!

It turns out that this is purely formal.

What is a
G-spectrum?

e

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment |

Symmetric monoidal
categories

Enrichment I

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra
The spectrum S~ ¥/
Naive G-spectra
Change of group

Homotopy theory
Quillen model structures

A new model structure on
®
A counterexample



The tautological presentation and smash product (continued) et

G-spectrum?

iy

Mike Hill
We want to say that the smash product as defined above Do Ravene
makes Sg into a closed symmetric monoidal category with unit Introduction
S~0. This would mean that it is strictly associative and Categorical notions
commutative, thereby solving decades of technical problems in - g s
stable homotopy theory! exicment
The main definition
It turns out that this is purely formal. We are looking at the orinlceilion
category of functors from the (skeletally) small symmetric Sirplsearrles
monoidal category (_Zg, ®,0) Trospoctum 5

Naive G-spectra
Change of group

Homotopy theory
Quillen model structures
A new model structure on

]
A counterexample



The tautological presentation and smash product (continued) et

G-spectrum?

iy

Mike Hill
We want to say that the smash product as defined above Doug Ravene!
makes Sg into a closed symmetric monoidal category with unit
S~0. This would mean that it is strictly associative and Categorical notions

commutative, thereby solving decades of technical problems in Grenment!

Symmetric monoidal

Introduction

stable homotopy theory! Excment
The main definition
It turns out that this is purely formal. We are looking at the orinlceilion
category of functors from the (skeletally) small symmetric Simple examples
monoidal category (_7g, ®,0) to the cocomplete closed ey
symmetric monoidal category (7g, A, S°). S
| The smash product

Homotopy theory
Quillen model structures
A new model structure on

]
A counterexample



The tautological presentation and smash product (continued) et

G-spectrum?

iy

Mike Hill

We want to say that the smash product as defined above Do Ravene
makes Sg into a closed symmetric monoidal category with unit Introduction
S~0. This would mean that it is strictly associative and Categorical notions
commutative, thereby solving decades of technical problems i qrmemeros
stable homotopy theory! Excment

The main definition
It turns out that this is purely formal. We are looking at the orinlceilion
category of functors from the (skeletally) small symmetric Simple examples
monoidal category (_7g, ®,0) to the cocomplete closed ey
symmetric monoidal category (7, A, S°). Both are topological S

G-categories The smash product
Homotopy theory
Quillen model structures
A new model structure on
]
A counterexample



The tautological presentation and smash product (continued) et

G-spectrum?

iy

Mike Hill

We want to say that the smash product as defined above Do Ravene
makes Sg into a closed symmetric monoidal category with unit Introduction
S~0. This would mean that it is strictly associative and Categorical notions
commutative, thereby solving decades of technical problems i qrmemeros
stable homotopy theory! Excment

The main definition
It turns out that this is purely formal. We are looking at the orinlceilion
category of functors from the (skeletally) small symmetric Simple examples
monoidal category (_7g, ®,0) to the cocomplete closed ey
symmetric monoidal category (7, A, S°). Both are topological S

G-categories and hence enriched over the target category 7. [ The smash product

Homotopy theory
Quillen model structures
A new model structure on

]
A counterexample



The tautological presentation and smash product (continued)

In 1970 the Australian category theorist Brian Day
(1945-2012), a student of Max Kelly,

What is a
G-spectrum?

e

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment |

Symmetric monoidal
categories

Enrichment I

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra
The spectrum SV
Naive G-spectra
Change of group

Homotopy theory
Quillen model structures
A new model structure on

®

A counterexample



The tautological presentation and smash product (continued) et

G-spectrum?

In 1970 the Australian category theorist Brian Day MW
(1945-2012), a student of Max Kelly, studied this very problem.

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment |

Symmetric monoidal
categories

Enrichment I

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra
The spectrum S~ ¥/
Naive G-spectra
Change of group

Homotopy theory
Quillen model structures

A new model structure on
®
A counterexample



The tautological presentation and smash product (continued) et

G-spectrum?

In 1970 the Australian category theorist Brian Day

(1945-2012), a student of Max Kelly, studied this very problem. MW

He defined a symmetric monoidal structure on the category of
functors (Sg in our case)

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment |

Symmetric monoidal
categories

Enrichment I

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra
The spectrum S~ ¥/
Naive G-spectra
Change of group

Homotopy theory
Quillen model structures

A new model structure on
®
A counterexample



The tautological presentation and smash product (continued) et

G-spectrum?
In 1970 the Australian category theorist Brian Day M W
(1945-2012), a student of Max Kelly, studied this very problem. i
He defined a symmetric monoidal structure on the category of

Mike Hill
functors (Sg in our case) between two symmetric monoidal ey
categories as above.

Introduction

Categorical notions
Enrichment |

Symmetric monoidal
categories

Enrichment I

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra
The spectrum S~ ¥/
Naive G-spectra
Change of group

Homotopy theory
Quillen model structures
A new model structure on

]
A counterexample



The tautological presentation and smash product (continued) et

G-spectrum?

In 1970 the Australian category theorist Brian Day M W
(1945-2012), a student of Max Kelly, studied this very problem. ;

He defined a symmetric monoidal structure on the category of Wike Hill
functors (Sg in our case) between two symmetric monoidal P
categories as above. |t is called the Day convolution.

Introduction

Categorical notions
Enrichment |

Symmetric monoidal
categories

Enrichment I

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra
The spectrum S~ ¥/
Naive G-spectra
Change of group

Homotopy theory
Quillen model structures
A new model structure on

]
A counterexample



The tautological presentation and smash product (continued) et

G-spectrum?
In 1970 the Australian category theorist Brian Day M W
(1945-2012), a student of Max Kelly, studied this very problem. ;
He defined a symmetric monoidal structure on the category of

Mike Hill
functors (Sg in our case) between two symmetric monoidal P
categories as above. It is called the Day convolution. It can be .
. . ntroduction
described as a left Kan extension. _—
Categorical notions
Enrichment |

Symmetric monoidal
categories

Enrichment I

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra
The spectrum S~ ¥/
Naive G-spectra
Change of group

Homotopy theory
Quillen model structures

A new model structure on
®
A counterexample



The tautological presentation and smash product (continued) et

G-spectrum?
In 1970 the Australian category theorist Brian Day ML,»MM
(1945-2012), a student of Max Kelly, studied this very problem.
He defined a symmetric monoidal structure on the category of

Mike Hill
functors (Sg in our case) between two symmetric monoidal P
categories as above. It is called the Day convolution. It can be
. . Introduction
described as a left Kan extension.

Categorical notions
Enrichment |

Symmetric monoidal
categories

Enrichment I

The main definition

Comparison with the
original definition

Its relevance to spectra was first e oxampes
noticed by Jeff Smith in the e specn S
1990s. e —

| The smash product

Jeff sm Ith Homotopy theory

Quillen model structures

A new model structure on
®

A counterexample



The tautological presentation and smash product (continued) et

G-spectrum?
In 1970 the Australian category theorist Brian Day M W

(1945-2012), a student of Max Kelly, studied this very problem.
He defined a symmetric monoidal structure on the category of

Mike Hill
functors (Sg in our case) between two symmetric monoidal P
categories as above. It is called the Day convolution. It can be
. . Introduction
described as a left Kan extension.

Categorical notions
Enrichment |

Symmetric monoidal
categories

Enrichment I

The main definition

Comparison with the
original definition

lts relevance to spectra was first S erampes
noticed by Jeff Smith in the mespectin o™
1990s. e ——
Jeff Smith i
:isr;ew model structure on
(The symmetric monoidal structure on the category of spectra Acounterexample

first discovered by Elmendorf, Kriz, Mandell and May (1997)



The tautological presentation and smash product (continued)

In 1970 the Australian category theorist Brian Day
(1945-2012), a student of Max Kelly, studied this very problem.
He defined a symmetric monoidal structure on the category of
functors (Sg in our case) between two symmetric monoidal
categories as above. It is called the Day convolution. It can be
described as a left Kan extension.

Its relevance to spectra was first
noticed by Jeff Smith in the
1990s.

Jeff Smith

(The symmetric monoidal structure on the category of spectra

first discovered by Elmendorf, Kriz, Mandell and May (1997) is
not of this type.)
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Jean Dieudonné, Imogene Kelly, Max Kelly, Odette Dieudonné,
Brian Day, Margery Street and Ross Street
at a restaurant in Sydney in 1972
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To do homotopy theory in Sg, we need to define a weak
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Homotopy theory of G-spectra

To do homotopy theory in Sg, we need to define a weak
equivalence of G-spectra. First we need to know how to

recognize an equivariant homotopy equivalence of G-spaces.

A theorem of Bredon (1967) states that
a map of G-CW-complexes f: X — Y

Glen Bredon
1932-2000

What is a
G-spectrum?

Ly

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Categorical notions
Enrichment |

Symmetric monoidal
categories

Enrichment I

The main definition
Comparison with the
original definition

Simple examples
Spaces and spectra
The spectrum SV
Naive G-spectra
Change of group

The smash product

Quillen model structures

A new model structure on
®

A counterexample



Homotopy theory of G-spectra

To do homotopy theory in Sg, we need to define a weak
equivalence of G-spectra. First we need to know how to

recognize an equivariant homotopy equivalence of G-spaces.

A theorem of Bredon (1967) states that
a map of G-CW-complexes f: X — Y

is an equivariant homotopy equiva-
lence

Glen Bredor;
1932-2000
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Homotopy theory of G-spectra

To do homotopy theory in Sg, we need to define a weak
equivalence of G-spectra. First we need to know how to

recognize an equivariant homotopy equivalence of G-spaces.

Glen Bredor;
1932-2000

A theorem of Bredon (1967) states that
a map of G-CW-complexes f: X — Y
is an equivariant homotopy equiva-
lence (meaning an equivalence for
which the homotopies are equivariant)
iff the induced maps X" — Y of
fixed point sets are ordinary homotopy
equivalences for all subgroups H C G.
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Homotopy theory of G-spectra

To do homotopy theory in Sg, we need to define a weak
equivalence of G-spectra. First we need to know how to

recognize an equivariant homotopy equivalence of G-spaces.

Glen Bredor;
1932-2000

A theorem of Bredon (1967) states that
a map of G-CW-complexes f: X — Y
is an equivariant homotopy equiva-
lence (meaning an equivalence for
which the homotopies are equivariant)
iff the induced maps X" — Y of
fixed point sets are ordinary homotopy
equivalences for all subgroups H C G.
Fixed point maps tell all!
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Homotopy theory of G-spectra (continued)

For a pointed G-space X, let 7/ X = ., X".
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For a pointed G-space X, let 7/ X = =, X". Bredon’s theorem
leads us to define a weak equivalence of G-spaces to be an

equivariant map f : X — Y inducing an isomorphism
X — nH X for all H.
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Homotopy theory of G-spectra (continued)

For a pointed G-space X, let 7/ X = =, X". Bredon’s theorem
leads us to define a weak equivalence of G-spaces to be an

equivariant map f : X — Y inducing an isomorphism
X — nH X for all H.

What about weak equivalences of spectra?
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leads us to define a weak equivalence of G-spaces to be an Poug Ravens!
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In the nonequivariant case we define mE to be lim_, 7, «Ep,
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In the nonequivariant case we define mE to be lim_, 7, «Ep,
where the limit is over all n > —k, and define a weak

equivalence f : E — E’ to be a map inducing an isomorphism
in these homotopy groups.

In the equivariant case we will replace the colimit above by one
indexed by a family of orthogonal inclusions

VWow—=Vio Voo Vg— -

which is exhaustive, meaning that each V is contained in some
V.

We define m/E to be lim_, 7, , Ey,, and define a weak
equivalence of G-spectra to be amap f: E — E’ inducing an
isomorphism in 7} for all subgroups H C G and all integers k.
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This definition of weak equivalence leaves a lot of wiggle room.

For example, in a G-spectrum E one could alter the G-spaces

Ey arbitrarily for small V without changing the weak homotopy
type of E.

CAUTION! Many functors one would like to use are not
homotopical, meaning they do not convert weak equivalances
to weak equivalences. They are not homotopically meaningful.

For example, the functor Sg(S~Y, -), which sends E to Ey, is
not homotopical.
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G-spectrum?

This definition of weak equivalence leaves a lot of wiggle room. M '
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In the usual model structure on 7 (pointed spaces), the

cofibrant objects are the CW-complexes, and all spaces are
fibrant.
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fibrant objects are the Q-spectra. One replaces each space Ey
by the homotopy colimit (or mapping telescope) of
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This observation (in the
nonequivariant case)
is due to Bousfield-
Friedlander in a 1978

paper.
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