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1 Introduction
Introduction

We have seen that the Adams-Novikov E2-term can be filtered in such a way that the hth subquo-
tient displays vh-periodic families, which is related to formal group laws of height h.

This raised the question of whether this is an algebraic artifice or the reflection of a similar
filtration of the stable homotopy category itself.

Recall the chromatic short exact sequence for each h ≥ 0

0 // Nh // Mh // Nh+1 // 0

BP∗/(p∞, . . . ,v∞
h−1) v−1

h Nh BP∗/(p∞, . . . ,v∞
h ).

If there were a cofiber sequence of spectra having these comodules as their BP-homology, we
would be in business.

Intrroduction (continued)
0 // Nh // Mh // Nh+1 // 0

BP∗/(p∞, . . . ,v∞
h−1) v−1

h Nh BP∗/(p∞, . . . ,v∞
h ).

We are looking for spectra Nh with BP∗Nh = Nh, Mh with BP∗Mh = Mh, and a map Nh → Mh
inducing the homomorphism Nh → Mh, for all h ≥ 0. We will construct them by induction on h.

We start with N0 = S and M0 = SQ, the rationalization of S. This gives N1 = SQ/Z(p), the Q/Z(p)
Moore spectrum.
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The functor we need to get from Nh to Mh for h > 0 is Bousfield localization.
Pete Bousfield constructed it for the categories of spaces and spectra in 1975
and 1978, using model category methods, just in time for us!

2 Bousfield localization
Bousfield localization

Suppose we have a model category C , such as that of spaces or spectra. We want to alter the
model structure in the following way.

• Enlarge the collection of weak equivalences in some way, and keep the same collection of
cofibrations.

• Since more of the cofibrations are trivial (meaning they are weak equivalences), there are
fewer fibrations, since they must satisfy the right lifting property with respect to any trivial
cofibration, of which there are more now than there were before.

• This could lead to a new fibrant replacement functor L. It assigns to each object X in C a
fibrant object LX , its localization.

Bousfield localization (continued)

It is not obvious that this new “model structure” satisfies all of Quillen’s axiom. The sticking
point is the requirement that each map can be factored as a (redefined) trivial cofibration followed
by a (redefined) fibration. Bousfield needed some delicate set theoretic arguments to prove it for the
categories of spaces and of spectra.

A 2003 theorem of Phil Hirschhorn says that it can be done for any model
category satisfying certain mild technical conditions, which are met by
the categories of spaces and of spectra.

Bousfield localization (continued)

One way to enlarge the collection of weak equivalences in the category of spaces or of spectra
is to require they they induce isomorphisms of homotopy groups only up to dimension n. Then the
fibrant objects are those spaces or spectra with no homotopy above dimension n, and the fibrant
replacement functor is the nth Postnikov section.

Another to way to enlarge the collection of weak equivalences in the category of spaces or of
spectra is to require they they induce isomorphisms in some generalized homology theory represented
by a spectrum E. In that case we denote the fibrant replace functor by LE , and we refer to fibrant
objects as E-local spectra.

Bousfield localization (continued)

In the category of spectra
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• A spectrum Y is E-local iff for each X with E∗X = 0 (meaning that E ⊗X is contractible),
the function spectrum F(X ,Y ) is contractible. Since the functor F(X ,−) preserves limits, this
means that any limit of E-local spectra is E-local. It does not mean that LE preverves limits, as
we will see below.

• Any map from X to an E-local spectrum Y factors uniquely (up to homotopy) through LEX .

• The map X → LEX extends uniquely through any E∗-equivalance X → X ′.

Bousfield localization (continued)

Two examples :

• Let E = SQ=HQ, the rational sphere spectrum, which is also the rational Eilenberg-Mac Lane
spectrum. The functor LE is rationalization, LEX = X ⊗HQ, which preserves homotopy col-
imits. The spectrum

holim
j

HZ/p j ∼= HZp

is not rationally acyclic even though each HZ/p j is. Hence the limit of rationally acyclic
spectra need not be rationally acyclic, so LE is not homotopy limit preserving.

• Let E = S/p, the mod p Moore spectrum. Then LE is p-adic completion,

LEX = X̂p := holim
j

X/p j.

It preserves homotopy limits but not homotopy colimits.

3 Finite localization
Finite localization

In the early 70’s Adams suggested (in a lecture at the University of Chicago) defining LEX as
the cofiber of the map CEX → X , where CEX is the colimit of all E∗-acyclic spectra mapping to X .
Bousfield observed (in real time) that this colimit is not defined because the collection of such spectra
need not be a set.

Bousfield later proved that it is enough to define CEX to be the colimit of all E∗-acyclic CW
spectra with cardinality bounded by that of π∗E mapping to X . This collection of spectra is a set, so
the problem is solved.

In any case one could also consider the colimit Cfin
E X of all finite E∗-acyclic CW spectra mapping

to X , and define Lfin
E X to be the cofiber of the map Cfin

E X → X . This is the finite E-localization of X .
Such functors are studied by Miller in [Mil92] and by Bousfield in [Bou01].

Finite localization (continued)

In any case one could also consider the colimit Cfin
E X of all finite E∗-acyclic CW spectra mapping

to X , and define Lfin
E X to be the cofiber of the map Cfin

E X → X . This is the finite E-localization of X .
Such functors are studied by Miller in [Mil92] and by Bousfield in [Bou01].

The functor Lfin
E has formal properties similar to those of LE , to which it admits a natural trans-

formation induced by that from Cfin
E to CE as defined by Bousfield.

• We say a spectrum Y is finitely E-local iff for each finite X with E∗X = 0, the function spectrum
F(X ,Y ) is contractible. Since the functor F(X ,−) preserves limits, this means that any limit
of finitely E-local spectra is finitely E-local.

3



• Any map from X to a finitely E-local spectrum Y factors uniquely (up to homotopy) through
Lfin

E X .

• The map X → Lfin
E X extends uniquely through any E∗-equivalance X → X ′.

4 Lurie’s analog of Bousfield localization
Lurie’s analog of Bousfield localization

[Lur09, Proposition 5.5.4.15] is statement about an ∞-categorical analog of
Bousfield localization. The input is a presentable ∞-category C with a set of
morphisms S that are meant to be made into weak equivalences.

Presentable means that C has small colimits and every object is a colimit of small objects. An
object is small if the mapping space from it to each filtered colimit is equivalent to the colimit of the
mapping spaces.

In [Lur09, Definition 5.5.4.1] an object Z is said to be S-local if each morphism s : X → Y in S
induces a weak equivalence C (Y,Z) → C (X ,Z). A morphism f : A → B is an S-equivalence if it
induces a weak equivalence C (B,Z)→ C (A,Z) for each S-local object Z.

Lurie’s analog of Bousfield localization (continued)

Let S be the set of all S-equivalences. It can be explicitly constructed from S. Let C ′ be the full
subcategory of S-local objects. Then

(i) For each object X ∈ C , there exists an S-equivalence s : X → X ′ where X ′ is S-local.

(ii) The ∞-category C ′ is presentable.

(iii) The inclusion functor I : C ′ → C has a left adjoint L. The composition IL (which need not be
either a left or right adjoint) is the analog of Bousfield’s fibrant replacement functor in model
category theory.

5 Bousfield equivalence
Bousfield equivalence

The following language of Bousfield is convenient for us. Two spectra E and E ′ are Bousfield
equivalent, which we denote by E ∼ E ′, if their localization functors LE and LE ′ are the same. Equiv-
alently E ∼ E ′ means that E ⊗X = ∗ iff E ′⊗X = ∗.

We denote the equivalence class of E by ⟨E⟩. The wedge and smash product operations ⊕ and ⊗
of spectra induce corresponding operations on Bousfield classes.

These classes are partially ordered by saying ⟨E⟩ ≥ ⟨E ′⟩ if E ⊗X = ∗ implies E ′⊗X = ∗. This
means the maximal equivalence class is that of the sphere spectrum S, and the minimal one is that of
a point ∗.

The complement of a class ⟨E⟩ is a class ⟨E⟩c such that ⟨E⟩⊕⟨E⟩c = ⟨S⟩ and ⟨E⟩⊗⟨E⟩c = ⟨∗⟩.
Most classes do not have complements.
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Bousfield equivalence (continued)

The following was proved in [Rav84, Lemma 1.34].

Proposition. For a self-map v : ΣdX → X, let Cv denotes its cofiber, and v−1X the telescope (meaning
homotopy colimit) obtained by iterating v. Then

⟨v−1X⟩⊕⟨Cv⟩= ⟨X⟩ and ⟨v−1X⟩⊗⟨Cv⟩= ⟨∗⟩.

6 The structure of ⟨BP⟩
The structure of ⟨BP⟩

For each h ≥ 0, there are BP-module spectra, the circus animals,

BP⟨h⟩ with π∗BP⟨h⟩= BP∗/(vh+1,vh+2, . . .),

P(h) with π∗P(h) = BP∗/(p,v1, . . .vh−1),

and k(h) with π∗k(h) = BP∗/(p,v1, . . .vh−1,vh+1,vh+2, . . .).

In particular, P(0) = BP, and k(0) = BP⟨0⟩ = H(p), the Eilenberg-Mac Lane spectrum for Z(p).
H/p will denote the mod p Eilenberg-Mac Lane spectrum.

Each of these three admits a self map inducing multiplication by vh in homotopy. In each case
we can iterate the map to form a telescope, and we denote

E(h) := v−1
h BP⟨h⟩, B(h) := v−1

h P(h), and K(h) := v−1
h k(h).

The same goes for BP itself, the telescope being v−1
h BP.

The structure of ⟨BP⟩ (continued)

E(h) := v−1
h BP⟨h⟩ B(h) := v−1

h P(h) K(h) := v−1
h k(h)

The last of these is Morava K-theory. E(0) = K(0) = HQ, the rational Eilenberg-Mac Lane
spectrum. BP⟨1⟩ and E(1), are the Adams summands of connective and periodic complex K-theory
localized at p.

E(h) is the Johnson-Wilson spectrum, not to be confused with the Morava spectrum Eh, which
has the same Bousfield class. While π∗E(h)∼= Z(p)[v1, . . .vh−1,v±1

h ],

π∗Eh ∼=W (Fph)u1, . . .uh−1[u±1] with |u|=−2 and |ui|= 0,

where vh 7→ u1−ph
and vi 7→ uiu1−pi

under a map E(h)→ Eh.

Eh is an E∞-ring spectrum by a theorem of
Goerss, Hopkins and Miller.

The structure of ⟨BP⟩ (continued)

The following was proved in [Rav84, Theorem 2.1].

⟨BP⟩ Structure Theorem. 1. ⟨B(h)⟩= ⟨K(h)⟩.

2. ⟨v−1
h BP⟩= ⟨E(h)⟩.

3. ⟨P(h)⟩= ⟨K(h)⟩⊕⟨P(h+1)⟩.
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4. ⟨E(h)⟩=
⊕

0≤i≤h

K(i).

5. ⟨BP⟨h⟩⟩= ⟨E(h)⟩⊕⟨H/p⟩.

6. ⟨K(m)⟩⊗⟨K(n)⟩= ⟨∗⟩ for m ̸= n.

7. ⟨K(h)⟩⊗⟨H/p⟩= ⟨∗⟩.

You might wonder (as I did) if ⟨BP⟩ = ⟨S(p)⟩. This is far from the case. There is a countable
sequence of proper Bousfield inqualities between the two, as explained in [Rav84, §3].

The structure of ⟨BP⟩ (continued)

We say a spectrum E has height h if K(n)∗E = 0 iff n > h. Thus BP⟨h⟩ and E(h) each have height
h. The red shift conjecture of Christian Ausoni and John Rognes (2006) says that if a ring spectrum R
has height h, then its algebraic K-theory K(R) has height h+1. They proved this for BP⟨1⟩ in 2002,
and Steve Mitchell had proved it in 1990 for HA for any discrete ring A. In 2022 Jeremy Hahn and
Dylan Wilson proved this for R = BP⟨h⟩, the first known example for all heights.

Mitchell Ausoni Rognes Hahn Wilson

7 The chromatic filtration
The chromatic filtration

The two most widely studied localization functors are LK(h) and Lh := LE(h). Since ⟨E(h)⟩ >
⟨E(h−1)⟩, there is a natural transformation Lh → Lh−1, leading to the chromatic tower

X // · · · // L3X // L2X // L1X // L0X .

The chromatic filtration of π∗X is given by the kernels of the maps to π∗LhX .

The tower is known to converge, meaning that X is the homotopy limit of the diagram, if

• X is a p-local finite spectrum, by a 1992 theorem of Mike Hopkins and myself.

• X is connective and p-local, and BP∗X has finite homological di-
mension as a BP∗-module, by a 2016 theorem of Toby Barthel.

The chromatic filtration (continued)

We know how to compute BP∗LhX in terms of BP∗X . In particular when v−1
h−1BP∗X = 0, we know

that
BP∗LhX = v−1

h BP∗X .

This condition is met for X = Nh, the inductively constructed spectrum with

BP∗Nh = Nh = BP∗/(p∞, . . . ,v∞
h−1).

This means we can define Mh to be LhNh, so we have the desired geometric realization of the
chromatic resolution.
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8 The smash product theorem
The smash product theorem

A smashing localization functor preserves
homotopy colimits. A 1992 theorem of
Hopkins and myself says that each Lh is
smashing. This is not true of LK(h). Miller
showed that Lfin

h is also smashing.
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