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1.1

1 Introduction

Introduction
This expository talk is a self contained variant of the one I gave in Shenzhen. Its purpose is to

introduce the use of Quillen model categories in stable homotopy theory.

A spectrum X was originally defined to be a sequence of pointed spaces or simplicial sets
tX0,X1,X2, . . .u with structure maps εX

n : ΣXn Ñ Xn�1. A map of spectra f : X Ñ Y is a collection of
pointed maps fn : Xn Ñ Yn compatible with the structure maps.

There are two different notions of weak equivalence in the category of spectra S p:


 f : X Ñ Y is a strict equivalence if each map fn is a weak equivalence.

 f : X Ñ Y is a stable equivalence if . . .

1.2

Introduction (continued)
There are two different notions of weak equivalence in the category of spectra S p:


 f : X Ñ Y is a strict equivalence if each map fn is a weak equivalence.

 f : X Ñ Y is a stable equivalence if . . .

There are at least two different ways to finish the definition of stable equivalence:

(i) Define stable homotopy groups of spectra and require π� f to be an isomorphism.
(ii) Define a functor Λ : S pÑS p where pΛXqn is the homotopy colimit (meaning the mapping

telescope) of
Xn ÑΩXn�1 ÑΩ

2Xn�2 Ñ . . .

and then require Λ f to be a strict equivalence.

These two definitions are known to be equivalent. 1.3
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Iintroduction (continued)

Dan Quillen Dan Kan Pete
1940-2011 1928-2013 Bousfield

In order to understand this better we need to discuss


 Quillen model categories

 Fibrant and cofibrant replacement

 Cofibrant generation

 Bousfield localization

We will see that the passage from strict equivalence to stable equivalence is a form of Bousfield
localization. 1.4

2 Quillen model categories

Quillen model categories

Definition. A Quillen model category M is a category equipped with three classes of morphisms:
weak equivalences, fibrations and cofibrations, each of which includes all isomorphisms, satisfying
the following five axioms:

MC1 Bicompleteness axiom. M has all small limits and colimits. These include products, coprod-
ucts, pullbacks and pushouts. This implies that M has initial and terminal objects, denoted by
H and �.

MC2 2-out-of-3 axiom. Let X
f
ÝÑ Y

g
ÝÑ Z be morphisms in M . Then if any two of f , g and g f are

weak equivalences, so is the third.
MC3 Retract axiom. A retract of a weak equivalence, fibration or cofibration is again a weak

equivalence, fibration or cofibration.

We say that a fibration or cofibration is trivial (or acyclic) if it is also a weak equivalence. 1.5

Quillen model categories (continued)

Definition. MC4 Lifting axiom. Given a commutative diagram

A
f //

i ��

X
p��

B g
// Y,

A
f //

cofibration i ��

X
p trivial fibration��

B g
//

h
77

Y,

A
f //

trivial cofibration i ��

X
p fibration��

B g
//

h
77

Y,
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A
f //

cofibration
trivial cofibration

i
��

X
p trivial fibration

fibration��
B g

//

h
77

Y,

a morphism h (called a lifting) exists for i and p as indicated.
MC5 Factorization axiom. Any morphism f : X Ñ Y can be functorially factored in two ways as

X
f // Y

?
βp f q � trivial fibration

((X

cofibration � αp f q
66

f // Y

?
βp f q � trivial fibration

((X

cofibration � αp f q
66

trivial cofibration � γp f q ((

f // Y

?
δp f q � fibration

66

This last axiom is the hardest one to verify in practice.
1.6

Two classical examples
Let T op denote the category of (compactly generated weak Hausdorff) topological spaces. Weak

equivalences are maps inducing isomorphisms of homotopy groups. Fibrations are Serre fibrations,
that is is maps p : X Ñ Y with the right lifting property

In f //

jn ��

X
p
��

In�1
g

//

h
77

Y,

for each n¥ 0, where
In is the unit n-cube.

Cofibrations are maps (such as in : Sn�1 Ñ Dn for n ¥ 0) having the left lifting property with
respect to all trivial Serre fibrations.

Similar definitions can be made for T , the category of pointed topological spaces and basepoint
preserving maps. 1.7

Some definitions
Recall that we denote the initial and terminal objects of M byH and �. When they are the same,

we say that M is pointed.

Definition. An object X is cofibrant if the unique map HÑ X is a cofibration. It X is fibrant if the
unique map X Ñ� is a fibration.

All objects in T and T op are fibrant. The cofibrant objects are the CW-complexes.

By MC5, for any object X , the unique maps HÑ X and X Ñ� have factorizations

HÑ QX Ñ X and X Ñ RX Ñ�

where QX is a cofibrant object weakly equivalent to X ,
and RX is a fibrant object weakly equivalent to X . 1.8
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Some definitions (continued)
By MC5, for any object X , the unique maps HÑ X and X Ñ� have factorizations

HÑ QX Ñ X and X Ñ RX Ñ�

where QX is a cofibrant object weakly equivalent to X ,
and RX is a fibrant object weakly equivalent to X .

These maps to and from X are called cofibrant and fibrant approximations. The objects QX and
RX are called cofibrant and fibrant replacements of X . 1.9

3 Cofibrant generation

Cofibrant generation
In T op, let

I �
 

in : Sn�1 Ñ Dn,n¥ 0
(

and J �
 

jn : In Ñ In�1,n¥ 0
(
.

It is known that every (trivial) cofibration in T op can be derived from the ones in (J ) I by
iterating certain elementary constructions. A map is a (trivial) fibration iff it has the right lifting
property with respect to each map in (I ) J . This condition is easier to verify than the previous one.

In T , the category of pointed topological spaces, one can define similar sets I� and J�, by
adding disjoint basepoints to the above. 1.10

Cofibrant generation (continued)

Definition. A cofibrantly generated model category M is one with morphism sets I and J having
similar properties to the ones in T op. I (J ) is a generating set of (trivial) cofibrations.

In practice, specifying the generating sets I and J , and defining weak equivalences is the most
convenient way to describe a model category. 1.11

4 Bousfield localization

Bousfield localization

Around 1975 Pete Bousfield had a brilliant idea.

Suppose we have a model category M , and we wish to change the model structure (without
altering the underlying category) as follows.


 Enlarge the class of weak equivalences in some way.

 Keep the same class of cofibrations as before.

 Define fibrations in terms of right lifting properties with respect to the newly defined trivial

cofibrations. The class of trivial fibrations remains unaltered.

Since there are more weak equivalences, there are more trivial cofibrations. Hence there are
fewer fibrations and fewer fibrant objects. This could make the fibrant replacement functor much
more interesting.

The hardest part of this is showing that the new classes of weak equivalences and fibrations,
along with the original class of cofibrations, satisfy the second Factorization Axiom MC5. The proof
involves some delicate set theory. 1.12
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An elementary examples of Bousfield localization
Let T op be the category of topological spaces with its usual model structure.

Choose an integer n ¡ 0. Define a map f to be a weak equivalence if πk f is an isomorphism
for k ¤ n. Then the fibrant objects are the spaces with no homotopy above dimension n. The fibrant
replacement functor is the nth Postnikov section. It was originally constructed by attaching cells to
kill all homotopy above dimension n. 1.13

5 The strict model structure on the category of spectra

The strict model structure on the category of spectra
Recall that a spectrum X is a sequence of pointed spaces tX0,X1,X2, . . .u with structure maps

εX
n : ΣXn Ñ Xn�1. A map of spectra f : X ÑY is a collection of pointed maps fn : Xn ÑYn compatible

with the structure maps. We will denote the category of spectra by S p.

Definition. The mth Yoneda spectrum S�m is given by

pS�mqn �

"
� for n  m
Sn�m otherwise,

with the evident structure maps.

In particular, S�0 is the sphere spectrum. 1.14

The strict model structure on the category of spectra (continued)

Definition. The strict or projective model structure on S p. A map of spectra f : X ÑY is a weak
equivalence or a fibration if fn is one for each n ¥ 0. A map is a cofibration if it has the left lifting
property with respect to all trivial fibrations.

This model structure is known to be cofibrantly generated. Recall that T , the category of pointed
topological spaces, has generating sets I� and J�. The ones for S p are

�I �
¤

m¥0

S�m^I� and �J �
¤

m¥0

S�m^J�.

Note that here we are smashing a spectrum X with a map of pointed spaces g : A Ñ B. The nth
component of X ^ g is the map Xn ^A Ñ Xn ^B. The categorical term for being able to smash a
spectrum with a spaces is to say that S p is tensored over T . 1.15

6 The stable model structure

The stable model structure

Definition. The strict or projective model structure on S p. A map of spectra f : X ÑY is a weak
equivalence or a fibration if fn is one for each n ¥ 0. A map is a cofibration if it has the left lifting
property with respect to all trivial fibrations.

Experience has taught us that to do stable homotopy theory, we need a looser notion of weak
equivalence, one which involves stable homotopy groups. To define them, recall our functor Λ :
S pÑS p where pΛXqn is the homotopy colimit (meaning the mapping telescope) of

Xn ÑΩXn�1 ÑΩ
2Xn�2 Ñ . . .

Each space pΛXqn is an infinite loop space, and the adjoint structure map

η
ΛX
n : pΛXqn ÑΩpΛXqn�1

is a weak equivalence for all n, so ΛX is an Ω-spectrum. 1.16
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The stable model structure (continued)
Again, pΛXqn is the homotopy colimit (meaning the mapping telescope) of

Xn ÑΩXn�1 ÑΩ
2Xn�2 Ñ . . .

We can use it to define the stable homotopy groups of X by

πkX :� πn�kpΛXqn,

which is independent of n. We say a map f : X ÑY is a stable equivalence if π� f is an isomorphism.
This is equivalent to Λ f being a strict equivalence.

Thus we have expanded the class of weak equivalences, so we can use Bousfield localization to
construct the stable model structure. It turns out that the fibrant objects are precisely the Ω-spectra
and that our functor Λ is fibrant replacement! 1.17

7 Cofibrant generation for spectra

Cofibrant generation
We will now describe cofibrant generating sets for the stable model structure on the category of

spectra S p. Recall that the strict model structure has generating sets

I strict �
¤

m¥0

S�m^I� and J strict �
¤

m¥0

S�m^J�.

The stable model structure has the same cofibrations, but more trivial cofibrations. This means
we need to enlarge J strict .

In order to do so, we need another construction, the pushout product or corner map. 1.18

Cofibrant generation (continued)
Suppose f : AÑ B and g : C Ñ D are maps of pointed spaces. Consider the diagram

A^C
f^C //

A^g
��

B^C

B^g

��

A^D

f^D
++
B^D

A^C
f^C //

A^g
��

B^C

�� B^g

��

A^D //

f^D
++

P

B^D

A^C
f^C //

A^g
��

B^C

�� B^g

��

A^D //

f^D
++

P
f lg

''
B^D
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Here P is the pushout of the two maps from A^C. Since the outer diagram commutes, there is a
unique map from it to B^D which we denote by f lg. This is the pushout product or corner map of
f and g.

This construction also makes sense if f : AÑ B is a map of spectra, with g : C Ñ D still being a
map of spaces. 1.19

Cofibrant generation (continued)
Recall that we need to enlarge the generating set of trivial cofibrations,

J strict �
¤

m¥0

S�m^J�.

We will do so by defining a set S of stable equivalences of spectra and adjoining the set S lI�

to J strict .

Recall the Yoneda spectrum S�k given by

pS�kqn �

"
� for n  k
Sn�k otherwise.

It follows that S�k^Sk given by

pS�k^Skqn �

"
� for n  k
Sn otherwise.

This is the same as the sphere spectrum S�0 for n ¥ k. Hence there is a stable equivalence
sk : S�k^Sk Ñ S�0 whose nth component is the identity map for n¥ k. 1.20

Cofibrant generation (continued)
Recall that the strict model structure on the category of spectra S p is cofibrantly generated by

the sets

I strict �
¤

m¥0

S�m^I� and J strict �
¤

m¥0

S�m^J�.

The stable model structure has the same cofibrations, but more trivial cofibrations. This means
we need to enlarge J strict .

The stable model structure is cofibrantly generated by the sets

I stable �I strict

and J stable �J strict Y
¤
k¥0

sklI�,

where sk : S�k^Sk Ñ S�0 is the stable equivalence defined above. 1.21
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