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Introduction

The purpose of this talk is to introduce the use of Quillen model
categories

in stable homotopy theory and (time permitting) in
equivariant stable homotopy theory.

A spectrum X was originally defined to be a sequence of
pointed spaces or simplicial sets {X0,X1,X2, . . . } with structure
maps εX

n : ΣXn → Xn+1. A map of spectra f : X → Y is a
collection of pointed maps fn : Xn → Yn compatible with the
structure maps.

There are two different notions of weak equivalence in the
category of spectra Sp:

• f : X → Y is a strict equivalence if each map fn is a weak
equivalence.

• f : X → Y is a stable equivalence if . . .
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Introduction (continued)
There are two different notions of weak equivalence in the
category of spectra Sp:

• f : X → Y is a strict equivalence if each map fn is a weak
equivalence.

• f : X → Y is a stable equivalence if . . .

There are at least two different ways to finish the definition of
stable equivalence:

(i) Define stable homotopy groups of spectra and require π∗f
to be an isomorphism.

(ii) Define a functor Λ : Sp → Sp where (ΛX )n is the
homotopy colimit (meaning the mapping telescope) of

Xn → ΩXn+1 → Ω2Xn+2 → . . .

and then require Λf to be a strict equivalence.

Classically these two definitions are equivalent, but in certain
variants of the definition of spectra themselves, they are
different. They differ in the category SpΣ of symmetric spectra
of Hovey-Shipley-Smith, which we will introduce below.
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Iintroduction (continued)

Dan Quillen Dan Kan Pete Max Kelly
1940-2011 1928-2013 Bousfield 1930-2007

In order to understand this better we need to discuss

• Quillen model categories
• Fibrant and cofibrant replacement
• Cofibrant generation
• Bousfield localization
• Enriched category theory

We will see that the passage from strict equivalence to stable
equivalence is a form of Bousfield localization.
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equivalence is a form of Bousfield localization.
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Quillen model categories

Definition

A Quillen model category M is a category equipped with
three classes of morphisms: weak equivalences, fibrations and
cofibrations,

each of which includes all isomorphisms,
satisfying the following five axioms:

MC1 Bicompleteness axiom. M has all small limits and
colimits. These include products, coproducts, pullbacks
and pushouts. This implies that M has initial and terminal
objects, denoted by ∅ and ∗.

MC2 2-out-of-3 axiom. Let X f−→ Y
g−→ Z be morphisms in M.

Then if any two of f , g and gf are weak equivalences, so is
the third.

MC3 Retract axiom. A retract of a weak equivalence, fibration
or cofibration is again a weak equivalence, fibration or
cofibration.

We say that a fibration or cofibration is trivial (or acyclic) if it is
also a weak equivalence.
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1.6

Quillen model categories (continued)

Definition

MC4 Lifting axiom. Given a commutative diagram

MC5 Factorization axiom. Any morphism f : X → Y can be
functorially factored in two ways as
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X
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B g
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Definition

MC4 Lifting axiom. Given a commutative diagram

A f //
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X
p trivial fibration��

B g
//

h
77

Y ,

a morphism h (called a lifting) exists for i and p as
indicated.

MC5 Factorization axiom. Any morphism f : X → Y can be
functorially factored in two ways as
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Quillen model categories (continued)

Definition

MC4 Lifting axiom. Given a commutative diagram
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X
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Y ,

a morphism h (called a lifting) exists for i and p as
indicated.

MC5 Factorization axiom. Any morphism f : X → Y can be
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This last axiom is the hardest one to verify in practice.
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1.7

Two classical examples

Let T op denote the category of (compactly generated weak
Hausdorff) topological spaces.

Weak equivalences are maps
inducing isomorphisms of homotopy groups. Fibrations are
Serre fibrations, that is maps p : X → Y with the right lifting
property

In f //

jn ��

X
p
��

In+1
g

//

h
66

Y ,

for each n ≥ 0.

Cofibrations are maps (such as in : Sn−1 → Dn for n ≥ 0)
having the left lifting property with respect to all trivial Serre
fibrations.

Similar definitions can be made for T , the category of pointed
topological spaces and basepoint preserving maps.
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1.8

Some definitions

Recall that we denote the initial and terminal objects of M by
∅ and ∗. When they are the same, we say that M is pointed.

Definition

An object X is cofibrant if the unique map ∅ → X is a
cofibration. It X is fibrant if the unique map X → ∗ is a fibration.

All objects in T and T op are fibrant. The cofibrant objects are
the CW-complexes.

By MC5, for any object X , the unique maps ∅ → X and X → ∗
have factorizations

∅ → QX → X and X → RX → ∗

where QX is a cofibrant object weakly equivalent to X ,
and RX is a fibrant object weakly equivalent to X .
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Some definitions (continued)

By MC5, for any object X , the unique maps ∅ → X and X → ∗
have factorizations

∅ → QX → X and X → RX → ∗

where QX is a cofibrant object weakly equivalent to X ,
and RX is a fibrant object weakly equivalent to X .

These maps to and from X are called cofibrant and fibrant
approximations. The objects QX and RX are called cofibrant
and fibrant replacements of X .
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1.10

Cofibrant generation

Example

In T op, let

I =
{

in : Sn−1 → Dn,n ≥ 0
}

and J =
{

jn : In → In+1,n ≥ 0
}
.

It is known that every (trivial) cofibration in T op can be derived
from the ones in (J ) I by iterating certain elementary
constructions. A map is a (trivial) fibration iff it has the right
lifting property with respect to each map in (I) J . This
condition is easier to verify than the previous one.

Similarly in T (the category of pointed spaces), let

I+ =
{

in+ : Sn−1
+ → Dn

+,n ≥ 0
}

and
J+ =

{
jn+ : In

+ → In+1
+ ,n ≥ 0

}
,

where X+ denotes the space X with a disjoint base point.
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1.11

Cofibrant generation (continued)

Definition

A cofibrantly generated model category M is one with
morphism sets I and J having similar properties to the ones in
T op. I (J ) is a generating set of (trivial) cofibrations.

In practice, specifying the generating sets I and J , and
defining weak equivalences is the most convenient way to
describe a model category.

The Kan Recognition Theorem gives four necessary and
sufficient conditions for morphism sets I and J to be
generating sets as above, assuming that weak equivalences
have already been defined. They are too technical for this talk.
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1.12

Bousfield localization

Around 1975 Pete Bousfield had a brilliant idea.

Suppose we have a model category M, and we wish to
change the model structure (without altering the underlying
category) as follows.

• Enlarge the class of weak equivalences in some way.
• Keep the same class of cofibrations as before.
• Define fibrations in terms of right lifting properties with

respect to the newly defined trivial cofibrations. The class
of trivial fibrations remains unaltered.

Since there are more weak equivalences, there are more trivial
cofibrations. Hence there are fewer fibrations and fewer fibrant
objects. This could make the fibrant replacement functor much
more interesting.

The hardest part of this is showing that the new classes of
weak equivalences and fibrations, along with the original class
of cofibrations, satisfy the second Factorization Axiom MC5.
The proof involves some delicate set theory.
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1.13

Three examples of Bousfield localization

Let T op be the category of topological spaces with its usual
model structure.

1 Choose an integer n > 0. Define a map f to be a weak
equivalence if πk f is an isomorphism for k ≤ n. Then the
fibrant objects are the spaces with no homotopy above
dimension n. The fibrant replacement functor is the nth
Postnikov section. It was originally constructed by
attaching cells to kill all homotopy above dimension n.

2 Choose a prime p. Define a map to be a weak
equivalence if it induces an isomorphism in mod p
homology. On simply connected spaces, the fibrant
replacement functor is p-adic completion.

3 Choose a generalized homology theory h∗. Define a map f
to be a weak equivalence if h∗f is an isomorphism. The
resulting fibrant replacement functor is Bousfield
localization with respect to h∗. One can do the same with
the category of spectra, once we have the right model
structure on it.
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equivalence if it induces an isomorphism in mod p
homology. On simply connected spaces, the fibrant
replacement functor is p-adic completion.

3 Choose a generalized homology theory h∗. Define a map f
to be a weak equivalence if h∗f is an isomorphism. The
resulting fibrant replacement functor is Bousfield
localization with respect to h∗. One can do the same with
the category of spectra, once we have the right model
structure on it.
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1.14

Enriched category theory

A symmetric monoidal structure on a category V0 is a functor

V0 × V0
⊗−→ V0

sending a pair of objects (X ,Y ) to a third object X ⊗ Y . It is
required to have suitable properties including

• a natural isomorphism t : X ⊗ Y → Y ⊗ X and
• a unit object 1 such that 1⊗X is naturally isomorphic to X .

We denote this by V = (V0,⊗,1).

Familiar examples include (Set ,×, ∗), (T op,×, ∗), (T ,∧,S0),
where T is the category of pointed topological spaces, and
(Set∆,×, ∗), where Set∆ is the category of simplicial sets.
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1.15

Enriched category theory (continued)

Let V = (V0,⊗,1) be a symmetric monoidal category as above.

Definition

A V-category (or a category enriched over V) C consists of

• a collection of objects,
• for each pair of objects (X ,Y ), a morphism object C(X ,Y )

in V0 (instead of a set of morphisms X → Y),
• for each triple of objects (X ,Y ,Z ), a composition

morphism in V0

cX ,Y ,Z : C(Y ,Z )⊗ C(X ,Y ) → C(X ,Z )

(replacing the usual composition) and
• for each object X , an identity morphism in V0 1 → C(X ,X ),

replacing the usual identity morphism X → X.

There is an underlying ordinary category C0 with the same
objects as C and morphism sets

C0(X ,Y ) = V0(1, C(X ,Y )).
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A V-category (or a category enriched over V) C consists of

• a collection of objects,
• for each pair of objects (X ,Y ), a morphism object C(X ,Y )

in V0 (instead of a set of morphisms X → Y),
• for each triple of objects (X ,Y ,Z ), a composition

morphism in V0

cX ,Y ,Z : C(Y ,Z )⊗ C(X ,Y ) → C(X ,Z )

(replacing the usual composition) and
• for each object X , an identity morphism in V0 1 → C(X ,X ),

replacing the usual identity morphism X → X.

There is an underlying ordinary category C0 with the same
objects as C and morphism sets

C0(X ,Y ) = V0(1, C(X ,Y )).
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Enriched category theory (continued)
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Enriched category theory (continued)
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Enriched category theory (continued)
Let V = (V0,⊗,1) be a symmetric monoidal category as above.
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1.16

Enriched category theory (continued)

One can define enriched functors (V-functors) between
V-categories and enriched natural transformations (V-natural
transformations) between them.

In this language, an ordinary category is enriched over Set .

A topological category is one that is enriched over T op.

A simplicial category is one that is enriched over Set∆, the
category of simplicial sets.

A symmetric monoidal category V0 is closed if it enriched over
itself. This means that for each pair of objects (X ,Y ) there is
an internal Hom object V(X ,Y ) with natural isomorphisms

V0(X ⊗ Y ,Z ) ∼= V0(X ,V(Y ,Z )).

The symmetric monoidal categories Set , T op, T and Set∆ are
each closed.



Model categories
and stable homotopy

theory

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Quillen model
categories

Cofibrant generation

Bousfield localization

Enriched category
theory

Spectra as enriched
functors

Defining the smash
product of spectra

Generalizations

1.16

Enriched category theory (continued)
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Enriched category theory (continued)
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Enriched category theory (continued)

One can define enriched functors (V-functors) between
V-categories and enriched natural transformations (V-natural
transformations) between them.

In this language, an ordinary category is enriched over Set .

A topological category is one that is enriched over T op.

A simplicial category is one that is enriched over Set∆, the
category of simplicial sets.

A symmetric monoidal category V0 is closed if it enriched over
itself.

This means that for each pair of objects (X ,Y ) there is
an internal Hom object V(X ,Y ) with natural isomorphisms

V0(X ⊗ Y ,Z ) ∼= V0(X ,V(Y ,Z )).

The symmetric monoidal categories Set , T op, T and Set∆ are
each closed.
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Enriched category theory (continued)

One can define enriched functors (V-functors) between
V-categories and enriched natural transformations (V-natural
transformations) between them.

In this language, an ordinary category is enriched over Set .

A topological category is one that is enriched over T op.

A simplicial category is one that is enriched over Set∆, the
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A symmetric monoidal category V0 is closed if it enriched over
itself. This means that for each pair of objects (X ,Y )
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Enriched category theory (continued)
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Enriched category theory (continued)
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A simplicial category is one that is enriched over Set∆, the
category of simplicial sets.

A symmetric monoidal category V0 is closed if it enriched over
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V0(X ⊗ Y ,Z ) ∼= V0(X ,V(Y ,Z )).

The symmetric monoidal categories Set , T op, T and Set∆ are
each closed.



Model categories
and stable homotopy

theory

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Quillen model
categories

Cofibrant generation

Bousfield localization

Enriched category
theory

Spectra as enriched
functors

Defining the smash
product of spectra

Generalizations

1.17

Spectra as enriched functors

Recall that a spectrum X was originally defined to be a
sequence of pointed spaces {Xn}

with structure maps
ΣXn → Xn+1. We will redefine it to be an enriched T -valued
functor on a small T -category J N. This will make the structure
maps built in to the functor. Maps between spectra will be
enriched natural transformations.

Definition

The indexing category J N has natural numbers n ≥ 0 as
objects with

J N(m,n) =
{

Sn−m for n ≥ m
∗ otherwise.

For m ≤ n ≤ p, the composition morphism

jm,n,p : Sp−n ∧ Sn−m → Sp−m

is the standard homeomorphism.
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1.18

Spectra as enriched functors (continued)

We can define a spectrum X to be an enriched functor
X : J N → T .

We denote its value at n by Xn. Functoriality
means that for each m,n ≥ 0 there is a continuous structure
map

εX
m,n : J N(m,n) ∧ Xm → Xn.

Since

J N(m,n) =
{

Sn−m for n ≥ m
∗ otherwise,

for m ≤ n we get the expected map Σn−mXm → Xn.

Definition

For m ≥ 0, the Yoneda spectrumH
m
= S−m is given by

(S−m)n = J N(m,n) =
{

Sn−m for n ≥ m
∗ otherwise.

In particular, S−0 is the sphere spectrum, and S−m is its formal
mth desuspension.
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Spectra as enriched functors (continued)

We can define a spectrum X to be an enriched functor
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Spectra as enriched functors (continued)

We can define a spectrum X to be an enriched functor
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Spectra as enriched functors (continued)
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Spectra as enriched functors (continued)
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Spectra as enriched functors (continued)

We can define a spectrum X to be an enriched functor
X : J N → T . We denote its value at n by Xn. Functoriality
means that for each m,n ≥ 0 there is a continuous structure
map

εX
m,n : J N(m,n) ∧ Xm → Xn.

Since

J N(m,n) =
{

Sn−m for n ≥ m
∗ otherwise,

for m ≤ n we get the expected map Σn−mXm → Xn.

Definition

For m ≥ 0,

the Yoneda spectrumH
m
= S−m is given by

(S−m)n = J N(m,n) =
{

Sn−m for n ≥ m
∗ otherwise.

In particular, S−0 is the sphere spectrum, and S−m is its formal
mth desuspension.
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Spectra as enriched functors (continued)
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Spectra as enriched functors (continued)

We can define a spectrum X to be an enriched functor
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Spectra as enriched functors (continued)

We can define a spectrum X to be an enriched functor
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Spectra as enriched functors (continued)

Warning The catgeory J N is monoidal (under addition) but
not symmetric monoidal. It admits an embedding functor into

T , namely the Yoneda functorH
0

given by

n 7→ J N(0,n) = Sn

T is symmetric monoidal, and there is a twist isomorphism

t : Sm ∧ Sn → Sn ∧ Sm.

However this morphism is not in the image of the functorH
0
.

There is no twist isomorphism in J N, so its monoidal structure
is not symmetric.

This is the reason that the category of spectra Sp defined in
this way does not have a convenient smash product. This was
a headache in the subject for decades!
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Spectra as enriched functors (continued)

Warning The catgeory J N is monoidal (under addition) but
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Spectra as enriched functors (continued)

Warning The catgeory J N is monoidal (under addition) but
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Spectra as enriched functors (continued)

Warning The catgeory J N is monoidal (under addition) but
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Spectra as enriched functors (continued)

Warning The catgeory J N is monoidal (under addition) but
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Spectra as enriched functors (continued)

Warning The catgeory J N is monoidal (under addition) but
not symmetric monoidal. It admits an embedding functor into

T , namely the Yoneda functorH
0

given by

n 7→ J N(0,n) = Sn

T is symmetric monoidal,

and there is a twist isomorphism
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.

There is no twist isomorphism in J N, so its monoidal structure
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This is the reason that the category of spectra Sp defined in
this way does not have a convenient smash product. This was
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Spectra as enriched functors (continued)

Warning The catgeory J N is monoidal (under addition) but
not symmetric monoidal. It admits an embedding functor into

T , namely the Yoneda functorH
0

given by

n 7→ J N(0,n) = Sn

T is symmetric monoidal, and there is a twist isomorphism

t : Sm ∧ Sn → Sn ∧ Sm.

However this morphism is not in the image of the functorH
0
.

There is no twist isomorphism in J N, so its monoidal structure
is not symmetric.

This is the reason that the category of spectra Sp defined in
this way does not have a convenient smash product. This was
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Spectra as enriched functors (continued)
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T is symmetric monoidal, and there is a twist isomorphism
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However this morphism is not in the image of the functorH
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There is no twist isomorphism in J N, so its monoidal structure
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Spectra as enriched functors (continued)

Warning The catgeory J N is monoidal (under addition) but
not symmetric monoidal. It admits an embedding functor into

T , namely the Yoneda functorH
0

given by

n 7→ J N(0,n) = Sn

T is symmetric monoidal, and there is a twist isomorphism

t : Sm ∧ Sn → Sn ∧ Sm.

However this morphism is not in the image of the functorH
0
.

There is no twist isomorphism in J N,

so its monoidal structure
is not symmetric.

This is the reason that the category of spectra Sp defined in
this way does not have a convenient smash product. This was
a headache in the subject for decades!
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Spectra as enriched functors (continued)

Warning The catgeory J N is monoidal (under addition) but
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T is symmetric monoidal, and there is a twist isomorphism
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However this morphism is not in the image of the functorH
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Spectra as enriched functors (continued)

Warning The catgeory J N is monoidal (under addition) but
not symmetric monoidal. It admits an embedding functor into

T , namely the Yoneda functorH
0

given by

n 7→ J N(0,n) = Sn

T is symmetric monoidal, and there is a twist isomorphism

t : Sm ∧ Sn → Sn ∧ Sm.

However this morphism is not in the image of the functorH
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Spectra as enriched functors (continued)

Warning The catgeory J N is monoidal (under addition) but
not symmetric monoidal. It admits an embedding functor into

T , namely the Yoneda functorH
0

given by

n 7→ J N(0,n) = Sn

T is symmetric monoidal, and there is a twist isomorphism

t : Sm ∧ Sn → Sn ∧ Sm.

However this morphism is not in the image of the functorH
0
.

There is no twist isomorphism in J N, so its monoidal structure
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Spectra as enriched functors (continued)

Warning The catgeory J N is monoidal (under addition) but
not symmetric monoidal. It admits an embedding functor into

T , namely the Yoneda functorH
0

given by
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T is symmetric monoidal, and there is a twist isomorphism

t : Sm ∧ Sn → Sn ∧ Sm.

However this morphism is not in the image of the functorH
0
.

There is no twist isomorphism in J N, so its monoidal structure
is not symmetric.

This is the reason that the category of spectra Sp defined in
this way does not have a convenient smash product. This was
a headache in the subject for decades!
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1.20

Defining the smash product of spectra

To repeat, spectra as originally defined do not have a
convenient smash product. A way around this was first
discovered in 1993.

Tony Igor Mike Peter
Elmendorf Kriz Mandell May

An easier way was found a few years later.

Mark Brooke Jeff
Hovey Shipley Smith
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1.21

Defining the smash product of spectra (continued)
The Hovey-Shipley-Smith approach was to enlarge the
indexing category J N to make it into a symmetric monoidal
category J Σ.

Its objects are the natural numbers as before,
but it has bigger morphism objects.

For m ≤ n we have

J Σ(m,n) := Σn+ ∧
Σn−m

Sn−m.

This is the wedge of copies of Sn−m indexed by inclusions

[m] ↪→ [n]

of the set of m elements into that of n elements. The symmetric
group Σn−m acts on Sn−m = (S1)∧(n−m) by permuting its
smash factors.

This means we have the symmetry morphism

Sm ∧ Sn → Sn ∧ Sm

that we were missing before, so J Σ is symmetric monoidal.
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Defining the smash product of spectra (continued)
The Hovey-Shipley-Smith approach was to enlarge the
indexing category J N to make it into a symmetric monoidal
category J Σ. Its objects are the natural numbers as before,
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Defining the smash product of spectra (continued)
The Hovey-Shipley-Smith approach was to enlarge the
indexing category J N to make it into a symmetric monoidal
category J Σ. Its objects are the natural numbers as before,
but it has bigger morphism objects.

For m ≤ n we have
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Σn−m

Sn−m.

This is the wedge of copies of Sn−m indexed by inclusions
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Defining the smash product of spectra (continued)
The Hovey-Shipley-Smith approach was to enlarge the
indexing category J N to make it into a symmetric monoidal
category J Σ. Its objects are the natural numbers as before,
but it has bigger morphism objects.

For m ≤ n we have

J Σ(m,n) := Σn+ ∧
Σn−m

Sn−m.

This is the wedge of copies of Sn−m indexed by inclusions

[m] ↪→ [n]

of the set of m elements into that of n elements. The symmetric
group Σn−m acts on Sn−m = (S1)∧(n−m) by permuting its
smash factors.
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that we were missing before, so J Σ is symmetric monoidal.
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Defining the smash product of spectra (continued)
The Hovey-Shipley-Smith approach was to enlarge the
indexing category J N to make it into a symmetric monoidal
category J Σ. Its objects are the natural numbers as before,
but it has bigger morphism objects.

For m ≤ n we have

J Σ(m,n) := Σn+ ∧
Σn−m

Sn−m.

This is the wedge of copies of Sn−m indexed by inclusions
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of the set of m elements into that of n elements.

The symmetric
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Defining the smash product of spectra (continued)
The Hovey-Shipley-Smith approach was to enlarge the
indexing category J N to make it into a symmetric monoidal
category J Σ. Its objects are the natural numbers as before,
but it has bigger morphism objects.

For m ≤ n we have

J Σ(m,n) := Σn+ ∧
Σn−m
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This is the wedge of copies of Sn−m indexed by inclusions
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Defining the smash product of spectra (continued)
The Hovey-Shipley-Smith approach was to enlarge the
indexing category J N to make it into a symmetric monoidal
category J Σ. Its objects are the natural numbers as before,
but it has bigger morphism objects.

For m ≤ n we have

J Σ(m,n) := Σn+ ∧
Σn−m

Sn−m.

This is the wedge of copies of Sn−m indexed by inclusions
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Defining the smash product of spectra (continued)
The Hovey-Shipley-Smith approach was to enlarge the
indexing category J N to make it into a symmetric monoidal
category J Σ. Its objects are the natural numbers as before,
but it has bigger morphism objects.

For m ≤ n we have

J Σ(m,n) := Σn+ ∧
Σn−m

Sn−m.

This is the wedge of copies of Sn−m indexed by inclusions

[m] ↪→ [n]

of the set of m elements into that of n elements. The symmetric
group Σn−m acts on Sn−m = (S1)∧(n−m) by permuting its
smash factors.

This means we have the symmetry morphism

Sm ∧ Sn → Sn ∧ Sm

that we were missing before,

so J Σ is symmetric monoidal.
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Defining the smash product of spectra (continued)
The Hovey-Shipley-Smith approach was to enlarge the
indexing category J N to make it into a symmetric monoidal
category J Σ. Its objects are the natural numbers as before,
but it has bigger morphism objects.

For m ≤ n we have

J Σ(m,n) := Σn+ ∧
Σn−m

Sn−m.

This is the wedge of copies of Sn−m indexed by inclusions

[m] ↪→ [n]

of the set of m elements into that of n elements. The symmetric
group Σn−m acts on Sn−m = (S1)∧(n−m) by permuting its
smash factors.

This means we have the symmetry morphism

Sm ∧ Sn → Sn ∧ Sm

that we were missing before, so J Σ is symmetric monoidal.
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Defining the smash product of spectra (continued)

A symmetric spectrum is an T -enriched functor J Σ → T .
Note that

• the category of pointed topological spaces T is closed
symmetric monoidal, and

• the indexing category J Σ is symmetric monoidal and
enriched over T .

Now for some categorical magic!

Day Convolution Theorem (1970)

Let V be a closed symmetric monoidal category, and let J be
a symmetric monoidal V-category. Then the category of
functors from J to V is also closed symmetric monoidal.
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Defining the smash product of spectra (continued)

A symmetric spectrum is an T -enriched functor J Σ → T .
Note that

• the category of pointed topological spaces T is closed
symmetric monoidal, and

• the indexing category J Σ is symmetric monoidal and
enriched over T .

Now for some categorical magic!

Day Convolution Theorem (1970)

Let V be a closed symmetric monoidal category, and let J be
a symmetric monoidal V-category. Then the category of
functors from J to V is also closed symmetric monoidal.
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Defining the smash product of spectra (continued)

A symmetric spectrum is an T -enriched functor J Σ → T .
Note that

• the category of pointed topological spaces T is closed
symmetric monoidal, and

• the indexing category J Σ is symmetric monoidal and
enriched over T .

Now for some categorical magic!

Day Convolution Theorem (1970)

Let V be a closed symmetric monoidal category, and let J be
a symmetric monoidal V-category. Then the category of
functors from J to V is also closed symmetric monoidal.
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Defining the smash product of spectra (continued)

A symmetric spectrum is an T -enriched functor J Σ → T .
Note that

• the category of pointed topological spaces T is closed
symmetric monoidal, and

• the indexing category J Σ is symmetric monoidal and
enriched over T .

Now for some categorical magic!

Day Convolution Theorem (1970)

Let V be a closed symmetric monoidal category, and let J be
a symmetric monoidal V-category. Then the category of
functors from J to V is also closed symmetric monoidal.
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Defining the smash product of spectra (continued)

A symmetric spectrum is an T -enriched functor J Σ → T .
Note that

• the category of pointed topological spaces T is closed
symmetric monoidal, and

• the indexing category J Σ is symmetric monoidal and
enriched over T .

Now for some categorical magic!

Day Convolution Theorem (1970)

Let V be a closed symmetric monoidal category,

and let J be
a symmetric monoidal V-category. Then the category of
functors from J to V is also closed symmetric monoidal.
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Defining the smash product of spectra (continued)

A symmetric spectrum is an T -enriched functor J Σ → T .
Note that

• the category of pointed topological spaces T is closed
symmetric monoidal, and

• the indexing category J Σ is symmetric monoidal and
enriched over T .

Now for some categorical magic!

Day Convolution Theorem (1970)

Let V be a closed symmetric monoidal category, and let J be
a symmetric monoidal V-category.

Then the category of
functors from J to V is also closed symmetric monoidal.
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Defining the smash product of spectra (continued)

A symmetric spectrum is an T -enriched functor J Σ → T .
Note that

• the category of pointed topological spaces T is closed
symmetric monoidal, and

• the indexing category J Σ is symmetric monoidal and
enriched over T .

Now for some categorical magic!

Day Convolution Theorem (1970)

Let V be a closed symmetric monoidal category, and let J be
a symmetric monoidal V-category. Then the category of
functors from J to V is also closed symmetric monoidal.
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1.23

Defining the smash product of spectra (continued)

Day Convolution Theorem (1970)

Let V be a closed symmetric monoidal category, and let J be
a symmetric monoidal V-category. Then the category of
functors from J to V is also also symmetric monoidal.

How does this work? Let X and Y be symmetric spectra. Then
we have
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Defining the smash product of spectra (continued)

Day Convolution Theorem (1970)

Let V be a closed symmetric monoidal category, and let J be
a symmetric monoidal V-category. Then the category of
functors from J to V is also also symmetric monoidal.

How does this work?

Let X and Y be symmetric spectra. Then
we have



Model categories
and stable homotopy

theory

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Quillen model
categories

Cofibrant generation

Bousfield localization

Enriched category
theory

Spectra as enriched
functors

Defining the smash
product of spectra

Generalizations

1.23

Defining the smash product of spectra (continued)

Day Convolution Theorem (1970)

Let V be a closed symmetric monoidal category, and let J be
a symmetric monoidal V-category. Then the category of
functors from J to V is also also symmetric monoidal.

How does this work? Let X and Y be symmetric spectra.

Then
we have
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Defining the smash product of spectra (continued)

Day Convolution Theorem (1970)

Let V be a closed symmetric monoidal category, and let J be
a symmetric monoidal V-category. Then the category of
functors from J to V is also also symmetric monoidal.

How does this work? Let X and Y be symmetric spectra. Then
we have
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Defining the smash product of spectra (continued)

Day Convolution Theorem (1970)

Let V be a closed symmetric monoidal category, and let J be
a symmetric monoidal V-category. Then the category of
functors from J to V is also also symmetric monoidal.

How does this work? Let X and Y be symmetric spectra. Then
we have

J Σ × J Σ X×Y // T × T
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Defining the smash product of spectra (continued)

Day Convolution Theorem (1970)

Let V be a closed symmetric monoidal category, and let J be
a symmetric monoidal V-category. Then the category of
functors from J to V is also also symmetric monoidal.

How does this work? Let X and Y be symmetric spectra. Then
we have

J Σ × J Σ X×Y // T × T ∧ // T
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Defining the smash product of spectra (continued)

Day Convolution Theorem (1970)

Let V be a closed symmetric monoidal category, and let J be
a symmetric monoidal V-category. Then the category of
functors from J to V is also also symmetric monoidal.

How does this work? Let X and Y be symmetric spectra. Then
we have

(A,B) � // A ∧ B

J Σ × J Σ X×Y // T × T ∧ // T
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Defining the smash product of spectra (continued)

Day Convolution Theorem (1970)

Let V be a closed symmetric monoidal category, and let J be
a symmetric monoidal V-category. Then the category of
functors from J to V is also also symmetric monoidal.

How does this work? Let X and Y be symmetric spectra. Then
we have

(A,B) � // A ∧ B

J Σ × J Σ X×Y //

+ **

T × T ∧ // T

J Σ
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Defining the smash product of spectra (continued)

Day Convolution Theorem (1970)

Let V be a closed symmetric monoidal category, and let J be
a symmetric monoidal V-category. Then the category of
functors from J to V is also also symmetric monoidal.

How does this work? Let X and Y be symmetric spectra. Then
we have

(A,B) � // A ∧ B

J Σ × J Σ X×Y //

+ ))

T × T ∧ // T

(m,n)
�

))
J Σ

m + n
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Defining the smash product of spectra (continued)

Day Convolution Theorem (1970)

Let V be a closed symmetric monoidal category, and let J be
a symmetric monoidal V-category. Then the category of
functors from J to V is also also symmetric monoidal.

How does this work? Let X and Y be symmetric spectra. Then
we have

(A,B) � // A ∧ B

J Σ × J Σ X×Y //

+ ))

T × T ∧ // T

(m,n)
�

))
J Σ

X∧Y

66

m + n
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Defining the smash product of spectra (continued)

Day Convolution Theorem (1970)

Let V be a closed symmetric monoidal category, and let J be
a symmetric monoidal V-category. Then the category of
functors from J to V is also also symmetric monoidal.

How does this work? Let X and Y be symmetric spectra. Then
we have

(A,B) � // A ∧ B

J Σ × J Σ X×Y //

+ ))

T × T ∧ // T

(m,n)
�

))
J Σ

X∧Y

66

m + n

The red arrow is a left Kan extension,
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1.23

Defining the smash product of spectra (continued)

Day Convolution Theorem (1970)

Let V be a closed symmetric monoidal category, and let J be
a symmetric monoidal V-category. Then the category of
functors from J to V is also also symmetric monoidal.

How does this work? Let X and Y be symmetric spectra. Then
we have

(A,B) � // A ∧ B

J Σ × J Σ X×Y //

+ ))

T × T ∧ // T

(m,n)
�

))
J Σ

X∧Y

66

m + n

The red arrow is a left Kan extension, a categorical
construction known to exist
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Defining the smash product of spectra (continued)

Day Convolution Theorem (1970)

Let V be a closed symmetric monoidal category, and let J be
a symmetric monoidal V-category. Then the category of
functors from J to V is also also symmetric monoidal.

How does this work? Let X and Y be symmetric spectra. Then
we have

(A,B) � // A ∧ B

J Σ × J Σ X×Y //

+ ))

T × T ∧ // T

(m,n)
�

))
J Σ

X∧Y

66

m + n

The red arrow is a left Kan extension, a categorical
construction known to exist when the source category J Σ is
small
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Defining the smash product of spectra (continued)

Day Convolution Theorem (1970)

Let V be a closed symmetric monoidal category, and let J be
a symmetric monoidal V-category. Then the category of
functors from J to V is also also symmetric monoidal.

How does this work? Let X and Y be symmetric spectra. Then
we have

(A,B) � // A ∧ B

J Σ × J Σ X×Y //

+ ))

T × T ∧ // T

(m,n)
�

))
J Σ

X∧Y

66

m + n

The red arrow is a left Kan extension, a categorical
construction known to exist when the source category J Σ is
small and the target category T is cocomplete.
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1.24

Generalizations

The construction of symmetric spectra as functors

from the
symmetric monoidal T -category J Σ to the closed symmetric
monoidal category T can be generalized in three different
ways.

Generalizing the target category

For each finite group G, we can replace the category T of
pointed topological spaces with T G, the category of pointed
G-spaces and equivariant maps.

It is enriched over T . It has a model structure in which
fibrations and weak equivalences are equivariant maps X → Y
inducing ordinary fibrations and weak equivalences of fixed
point sets X H → Y H for each subgroup H ⊆ G. Its cofibrant
generating sets are

IG =
⋃

H⊆G

(G/H)+ ∧ I+ and J G =
⋃

H⊆G

(G/H)+ ∧ J+.
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monoidal category T
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The construction of symmetric spectra as functors from the
symmetric monoidal T -category J Σ to the closed symmetric
monoidal category T can be generalized in three different
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Generalizing the target category
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G-spaces and equivariant maps.
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Generalizing the indexing category

We can replace J Σ by an orthogonal analog J O, the
Mandell-May category.

Here the objects are still natural
numbers, and J O(m,n) is a point for m > n. For m ≤ n,
J O(m,n) is a wedge of copies of Sn−m parametrized by
orthogonal embeddings of Rm into Rn. T -valued functors on it
are called orthogonal spectra.

For a finite group G we can define a similar category J G in
which the objects are finite dimensional orthogonal real
representations V of G. It is enriched over T G. T G-valued
functors on it are called orthogonal G-spectra.

In each case one has a smash product of spectra defined
using the Day Convolution as before.
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Generalizing the model structure

We have now seen four categories of spectra, each defined as
the category of enriched functors from an enriched indexing
category J to a pointed topological model category M. We
denote such a functor category by [J ,M]. Given a spectrum
X and an object V in J , we denote the value of X on V by XV .

Our categories are
• Sp = [J N, T ], the original category of spectra,
• SpΣ = [J Σ, T ], the category of symmetric spectra of

Hovey-Shipley-Smith,
• SpO = [J O, T ], the category of orthogonal spectra of

Mandell-May, and
• SpG = [J G, T G], the category of orthogonal G-spectra for

a finite group G, also introduced by Mandell and May.

We will refer to an object in any but the first of these as a
structured spectrum. Each category of structured spectra has
a closed symmetric monoidal smash product defined using the
Day Convolution.
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1.26

Generalizing the model structure
We have now seen four categories of spectra, each defined as
the category of enriched functors from an enriched indexing
category J to a pointed topological model category M. We
denote such a functor category by [J ,M]. Given a spectrum
X and an object V in J , we denote the value of X on V by XV .

Our categories are
• Sp = [J N, T ], the original category of spectra,
• SpΣ = [J Σ, T ], the category of symmetric spectra of

Hovey-Shipley-Smith,
• SpO = [J O, T ], the category of orthogonal spectra of

Mandell-May, and
• SpG = [J G, T G], the category of orthogonal G-spectra for

a finite group G, also introduced by Mandell and May.

We will refer to an object in any but the first of these as a
structured spectrum. Each category of structured spectra has
a closed symmetric monoidal smash product defined using the
Day Convolution.
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X and an object V in J , we denote the value of X on V by XV .
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• SpG = [J G, T G], the category of orthogonal G-spectra for
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Generalizing the indexing category (continued)

For each object V in the indexing category J , we define the

Yoneda spectrum S−V =H
V

by

(S−V )W := J (V ,W ).

In the structured cases one can show that for objects V ′ and
V ′′ in J ,

S−(V ′+V ′′) ∼= S−V ′
∧ S−V ′′

.

Definition

Let I and J be cofibrant generating sets for M. In the
projective model structure on the category of spectra [J ,M],
the cofibrant generating sets are

Ĩ =
⋃

V∈J

S−V ∧ I and J̃ =
⋃

V∈J

S−V ∧ J .

A map f : X → Y is a projective (or strict) weak equivalence if
fV is a weak equivalence in M for each V .



Model categories
and stable homotopy

theory

Mike Hill
Mike Hopkins
Doug Ravenel

Introduction

Quillen model
categories

Cofibrant generation

Bousfield localization

Enriched category
theory

Spectra as enriched
functors

Defining the smash
product of spectra

Generalizations

1.27

Generalizing the indexing category (continued)
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Generalizing the indexing category (continued)
For each object V in the indexing category J , we define the
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Generalizing the indexing category (continued)
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Generalizing the indexing category (continued)
For each object V in the indexing category J , we define the
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Generalizing the indexing category (continued)
For each object V in the indexing category J , we define the
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by
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Generalizing the indexing category (continued)
For each object V in the indexing category J , we define the
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by
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Generalizing the indexing category (continued)
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Yoneda spectrum S−V =H
V

by

(S−V )W := J (V ,W ).

In the structured cases one can show that for objects V ′ and
V ′′ in J ,

S−(V ′+V ′′) ∼= S−V ′
∧ S−V ′′

.

Definition

Let I and J be cofibrant generating sets for M. In the
projective model structure on the category of spectra [J ,M],

the cofibrant generating sets are
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Generalizing the indexing category (continued)
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Generalizing the indexing category (continued)
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Generalizing the indexing category (continued)
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Generalizing the indexing category (continued)
For each object V in the indexing category J , we define the
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by
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Generalizing the indexing category (continued)

Ĩ =
⋃

V∈J

S−V ∧ I and J̃ =
⋃

V∈J

S−V ∧ J .

We can obtain the stable model structure on the category of
spectra [J ,M] from the projective one by Bousfield
localization. We expand the class of weak equivalences by
including certain maps

sV : S−V ∧ SV → S−0 for each V ∈ J .

Here SV denotes the sphere object J (0,V ) in M, and S−0 is
the sphere spectrum defined by

(S−0)W := SW = J (0,W ).

The W th component of the map sV is

j0,V ,W : J (V ,W ) ∧ J (0,V ) → J (0,W ),

a composition morphism in J .
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Generalizing the indexing category (continued)

Ĩ =
⋃
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V∈J

S−V ∧ J .

We can obtain the stable model structure on the category of
spectra [J ,M] from the projective one by Bousfield
localization.

We expand the class of weak equivalences by
including certain maps
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Here SV denotes the sphere object J (0,V ) in M, and S−0 is
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(S−0)W := SW = J (0,W ).

The W th component of the map sV is

j0,V ,W : J (V ,W ) ∧ J (0,V ) → J (0,W ),

a composition morphism in J .
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Generalizing the indexing category (continued)

Ĩ =
⋃
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S−V ∧ I and J̃ =
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V∈J

S−V ∧ J .

We can obtain the stable model structure on the category of
spectra [J ,M] from the projective one by Bousfield
localization. We expand the class of weak equivalences by
including certain maps

sV : S−V ∧ SV → S−0 for each V ∈ J .

Here SV denotes the sphere object J (0,V ) in M, and S−0 is
the sphere spectrum defined by
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Generalizing the indexing category (continued)

Ĩ =
⋃

V∈J

S−V ∧ I and J̃ =
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V∈J

S−V ∧ J .

We can obtain the stable model structure on the category of
spectra [J ,M] from the projective one by Bousfield
localization. We expand the class of weak equivalences by
including certain maps

sV : S−V ∧ SV → S−0 for each V ∈ J .

Here SV denotes the sphere object J (0,V ) in M, and S−0 is
the sphere spectrum defined by

(S−0)W := SW = J (0,W ).

The W th component of the map sV is

j0,V ,W : J (V ,W ) ∧ J (0,V ) → J (0,W ),
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Generalizing the indexing category (continued)

Ĩ =
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V∈J

S−V ∧ I and J̃ =
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S−V ∧ J .

We can obtain the stable model structure on the category of
spectra [J ,M] from the projective one by Bousfield
localization. We expand the class of weak equivalences by
including certain maps

sV : S−V ∧ SV → S−0 for each V ∈ J .

Here SV denotes the sphere object J (0,V ) in M,

and S−0 is
the sphere spectrum defined by

(S−0)W := SW = J (0,W ).

The W th component of the map sV is

j0,V ,W : J (V ,W ) ∧ J (0,V ) → J (0,W ),
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Generalizing the indexing category (continued)

Ĩ =
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We can obtain the stable model structure on the category of
spectra [J ,M] from the projective one by Bousfield
localization. We expand the class of weak equivalences by
including certain maps

sV : S−V ∧ SV → S−0 for each V ∈ J .

Here SV denotes the sphere object J (0,V ) in M, and S−0 is
the sphere spectrum defined by

(S−0)W := SW = J (0,W ).

The W th component of the map sV is
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Generalizing the indexing category (continued)
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Here SV denotes the sphere object J (0,V ) in M, and S−0 is
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