## Doug Haessig

*Assistant Professor of Mathematics*

PhD, University of California, Irvine, 2005

813 Hylan Hall

(585) 275-9428

c.d.haessig@rochester.edu

Office Hours: By appointment

*Assistant Professor of Mathematics*

PhD, University of California, Irvine, 2005

813 Hylan Hall

(585) 275-9428

c.d.haessig@rochester.edu

Office Hours: By appointment

A large part of my research consists of studying families of exponential sums over finite fields. My approach mostly uses techniuqes of p-adic analysis, pioneered by Bernard Dwork in the 1960s.

- Haessig. p-adic unit roots of L-functions over finite fields
- Haessig. Meromorphy of the rank one unit root L-function revisited, Finite Fields Appl. 30 (2014), 191–202.
- Haessig and Sperber. Families of generalized Kloosterman sums
- Haessig and Sperber. L-functions associated with families of toric exponential sums, J. Number Theory 144 (2014), 422–473.
- Haessig and Rojas-Leon. L-functions of symmetric powers of the generalized Airy family of exponential sums: ell-adic and p-adic methods., Int. J. Number Theory 7 (2011), no. 8, 2019–2064.
- Haessig, On the zeta function of divisors of projective varieties with large rank divisor class group, J. Number Theory. Vol 129, Issue 5, May 2009, Pages 1161-1177
- Haessig, L-functions of symmetric powers of cubic exponential sums. J. Reine Angew. Vol 2009, Issue 631, Pages 1 - 57
- Haessig. On the p-adic meromorphy of the function field height zeta function. J. Number Theory (2007) Vol 128/7, pp. 2063-2069.
- Haessig. Equalities, congruences, and quotients of zeta functions in Arithmetic Mirror Symmetry. Appendix to D. Wan's Mirror symmetry for zeta functions. Mirror Symmetry V, AMS/IP Studies in Advanced Mathematics, Vol. 38, (2007) 159-184.
- D. Wan and C. D. Haessig. On the p-adic Riemann hypothesis for the zeta function of divisors. J. Number Theory. 104 (2004) 335-352.