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I. Introduction. 

Let s = c + i t  be a complex variable. For a fixed a, O < ~ < l ,  Hurwitz's 

zeta-function is defined in the half-plane o > l by 

~(s,~) : ~ (n+~) -s, 
n=O 

and except for a simple pole at s = l ,  may be analy t ica l ly  continued throughout 

the complex plane. The resemblance of ~(s,~) to Riemann's zeta-function, {(s), 

is in certain ways superf ic ial .  For besides the two cases ~(s,I/2) = (2S-l)~(s) 

and ~(s, l)  = ~(s), ~(s,~) possesses neither a functional equation nor an Euler 

product. I t  is therefore not surprising that the zeros of these functions are 

distributed d i f ferent ly .  For instance, we note the following: 

I. While ~(s) has no zeros in o > l ,  ~(s,~) has i n f i n i t e l y  many (provided 

~ I/2 or l ) .  In part icular the analogue of the Riemann hypothesis for ~(s,~) is 

false. This was proved by Davenport and Heilbronn [3] when ~ is rational (~ I/2 

or l )  or transcendental, and by Cassels I l l  when ~ is an algebraic i r ra t iona l .  One 

may also prove a quantitative version of this result [2; p. 1780]. Namely, for any 

> O, the number of zeros of ~(s,~) (~ ~ I/2 or l )  in the rectangle l < o < I+6, 

0 < t < T is : T for su f f i c ien t ly  large T. 

2. Let o 1,o 2 be fixed with I/2 < o I < 02 < I. Then ~(s,a) has i n f i n i t e l y  many 

zeros in the str ip o I < o < 02 when ~ is rational (Y �89  l )  or transcendental. 

The rational case is due to S.M. Voronln [8] (see also S.M. Gonek [5] ) ,  the trans- 

cendental case to S.M. Gonek [5]. Here too one can show that the number of zeros 

up to height T is ~ T for a l l  large T. On the other hand, well-known zero-denslty 

estimates imply that ~(s) has at most o(T) zeros in such a rectangle. 
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Pursuing these contrasts f u r t he r ,  one might na tu ra l l y  ask whether the l i ne  

o = I /2  is special  to {(s,m) as i t  is to ~(s). We know that  as T tends to 

i n f i n i t y ,  the number o f  zeros o f  e i t h e r  funct ion in the s t r i p  0 < t < T is 

_ T__ log T. For ~(s),  N. Levinson [7]  showed that  more than I /3  o f  these zeros 2~ 

l i e  on o = I / 2 ;  i t  is wide ly  held that  the correct  propor t ion is I .  In th is  paper, 

our purpose is to show that  fo r  cer ta in  values of  m the propor t ion of  zeros o f  

{(s,m) on o = I /2  is d e f i n i t e l y  less than I .  S p e c i f i c a l l y ,  we shal l  prove the 

fo l l ow ing  resu l t .  

THEOREM. Let s - ~ ,  ~, 1 3 1 4' 4' 6 or  . There is a pos i t i ve  constant c < 1 such 

that  the number o f  zeros o f  ~(s,a) (counted according to t h e i r  m u l t i p l i c i t i e s )  on 

T the segment [ I / 2 ,  I /2  + iT ]  is ~ (c+o(1)) ~ log T as T tends to i n f i n i t y .  

The author would l i k e  to take th is  oppor tun i ty  to thank Professor Hugh L. 

Montgomery fo r  br ing ing th i s  problem to his a t ten t i on  and Professor Patr ick X. 

Gallagher fo r  po in t ing  out an e r ro r  in the o r i g i n a l  manuscript. 

2. An A u x i l i a r y  Lemma. 

To prove our theorem we requi re in format ion about the number of  zeros 

common to two L- funct ions.  This is provided by the lemma below which is e s s e n t i a l l y  

due to A. Fu j i i  [4; Theorem I ] .  

Recall that  two D i r i c b l e t  characters not induced by the same p r im i t i ve  

character are ca l led  inequivalent. We denote by L(s,• the D i r i c h l e t  L- funct ion 

with character • . 

LEMMA. Suppose • and x2 are inequ iva len t  characters. Let Pl = B1 + iYl  denote 

a zero of  L(S,Xl)  wi th  0 < B1 < I ,  and wr i te  mi(P I )  fo r  the m u l t i p l i c i t y  o f  Pl as 

a zero o f  L ( s , x i )  ( i  = 1,2).  Then there ex is ts  a pos i t i ve  constant c < 1 such that  

( I )  Z' m~n mi(P I )  ~ (c+o(1)) ~ l o g  T 
0 ~ Y1 ~ T I~1,2 

as T tends to i n f i n i t y ,  where ~' means the sum is over d i s t i n c t  zeros PI" 
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PROOF. We see from the proof of  Theorem 1 in Fu j i i  [4; w that  fo r  d i s t i n c t  

p r im i t i ve  characters x I ,  x 2 there ex is ts  a pos i t i ve  constant c I < 1 such that  as 

T tends to i n f i n i t y  

(2) 
O < y  1 < T  

ml(P I )  > m2(P I )  

1 > (Cl+O(1)) k log T. 

Indeed, (2) holds even when •  • or both • and x 2 are impr imi t ive as long 

as they are inequiva lent .  To see t h i s ,  note that  i f  • induces • ( i  = 1,2) and 

X l '  x2 are inequ iva lent ,  then • ' x2 are d i s t i n c t  p r im i t i ve  characters.  (Of 

course i f  xi is p r im i t i ve  xi = x i ' )  Therefore (2) is true fo r  the pa i r  L (S,X l ) ,  

L(s ,x~) .  * But L (s , •  and L(s,• i )  have the same zeros in 0 < a < I.  Hence (2) 

is va l id  for  the pa i r  L (S,X l ) ,  L(s,• as we l l .  (In the statement of his theorem, 

Fu j i i  assumes • and • have the same modulus. However, he l a te r  points out ( in 

w that  th is  assumption is unnecessary.) Now 

Z' min mi(Pl) : ~' ml(P I )  + ~' m2(P 1 
0 ~ Y1 ~ T i = 1,2 0 ~ Y1 ~ T 0 ~ Y1 ~ T 

ml(P I )  ~ m2(P I )  ml(P I)  > m2(P I )  

< Z' ml(Pl ) + ~' (m l (P l ) - l )  
0_< ~i _< T 0 _< u _< T 

ml(Pl) -< m2(Pl) ml(Pl) > m2(Pl) 

X' m ~ ( . l )  - Z' 
O < y  I < T  0_<~ 1 < T  

ml(P I)  > m2(# I )  

I .  

The f i r s t  sum on the las t  l ine  is the to ta l  number of zeros of L(s,•  I )  n 

T 0 < o < I ,  0 < t < T, and is therefore equal to ( I+o ( I ) )  ~ log T as T tends to 

i n f i n i t y .  Using th is  and (2) we conclude that  
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~' m~n ml(P I )  ~ ( I - c i + 0 ( I ) }  ~ I o g  T. 
0 ~ Y1 ~ T i = 1,2 

This establishes (1) with c = 1-c I. 

3. Proof of the Theorem. 

For the sake of convenience, we carry out the proof of the Theorem only 

for ~ = I/3 and 2/3. The modifications required to prove the other cases are 

minor and wi l l  be discussed at the end of this section. Throughout we write e(x) 

for e 2~ix. 

We begin with the identity (see Davenport and Heilbronn [3; p. 181]) 

a ,__~ (3) ~(s, ~) = X i (a)L(s ,x) ,  
x 

where 1 < a < q, (a,q) = I ,  and the sum is over a l l  r characters mod q. Take 

q = 3 and assume tha t  a is e i t he r  1 or 2. We are then summing over r = 2 

characters in (3) ,  both of  which are rea l .  Thus 

2 a 
3s ~(s, ~) : L(s ,x0)  + x ( a ) L ( s , x ) ,  

where x 0 and • are the p r i nc ipa l  and nonpr inc ipa l  characters,  respec t i ve l y ,  mod 3. 

Since L(s,x0)  = ( l - 3 - s ) ~ ( s ) ,  the l as t  equation becomes 

2 a (4) ~ ~(s, ~) = ( l - 3 - s )~ ( s )  + x (a )L ( s , x ) .  

REMARK. As w i l l  become apparent, i t  is essent ia l  to our proof  tha t  the sum in 

(3) reduce to two terms. This is  why the reduced f rac t i on  ~ in the Theorem must 

have denominator 3,4 or 6. 

Now wri te 

(5) 

and 

(6) 

~(s) : �89 s(s-l)~-s/2r(~)~Cs) 

s+l 

~(s,x) : (~)'T r(~ZlL(s,x). 
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Using (5) and (6) to replace ~(s) and L(s,x) in (4) by ~(s) and ~(s,x),  and then 

s+l 

mult iplying both sides of (4) by (~)  2 r(_~L) ' we f ind (a f ter  s impl i fy ing) that 

(7) ~ (3~)-s/2r(~Z)~(s 

We w r i t e  t h i s  more b r i e f l y  as 

(a) 

where 

(g) A(s) = / ~  (3~)-s/Zr(~s 

and 

(lO) 

~) = / ~  (3s/z_3_s/2) r(~s 
' ~ s(s-l) r(~) 

A(s)~(s, ~) : B(s)~(s) + x(a)~(s,x), 

B(s) : ~/-i-2 (3s/2-3 -s/2) r ( -~- )  
s(s-l) r(~) 

{(s)+x(a)~(s,x). 

I~ 

I I .  C(I12 + i to) = ~(I12 + i to,x)  : O. 

Writing N(T) for the number of zeros (counting mu l t i p l i c i t i es )  of ~(s, ~) on 

[ I /2 ,  I /2 + iT] (T > 0), NI(T) for  the number of these zeros ar is ing from condition 

I ,  and NIl(T) for the number ar is ing from I I ,  we see that 

( I I )  N(T) = NI(T) + NI l (T).  

We estimate N(T) by combining estimates for NI(T) and NI l (T).  

Since A(s) never vanishes, the zeros of the right-hand side of (8) are precisely 

those of ~(s, ~). Thus, ~(I/2 + i t  O, ~) = 0 i f  and only i f  the terms on the 

right-hand side of (8) cancel or vanish for  s = I /2 + i t  O. Since B(s) # 0 on 

o : I /2 we see that I /2 + i t  0 is a zero of ~(s, ~) i f  and only i f :  

C(I/2 + i to , •  
~(I /2 + i t  O) ~ O, ~(I/2 + i to , •  ~ O, and B(I/2 + i t  O) = -x(a) ~(I/2 + i t  O) ' 
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First consider NI(T). From the relation ~ - ' ~ =  ~(s,x) 

the functional equation 

~(l-s,x) : ~ ~(s,• 

3 
where ~(• : ~ x(n)e(~), one easily finds that C(I/2 + i t ,x )  is real. 

n=l 

Similarly ~(I/2 + i t )  is real. Thus i f  t o satisfies I, B(I/2 + i t  O) is real. 

T ~ T O > 0 and i f  N~(To,T ) denotes the number of solutions of 

arg B(I/2 + i t )  ~ 0 (mod ~) 

(x is real) and 

I f  

with t e [To,T ] , i t  follows that N~(To,T) is an upper bound for the number of 

distinct t o ~ [To,T] that satisfy I. We now prove that there exists a T O such 

that N~(To,T) << T for all T ~ T O , and that I/2 + i t  0 is a simple zero of 

{(s, ~) i f  t o satisfies I and t o ~ T O . These two assertions and the fact that 

~(s, ~) has only f in i te ly  many zeros on [ I /2,  I/2 + iT O] clearly imply that 

(12) NI(T) << T (T ~ TO). 

To estimate N~(To,T) we examine ~---~arg B(I/2 + i t ) .  (The der ivat ive ex is ts  

for a l l  t since B(s) is ana ly t ic  and nonzero in 0 < a < I . )  By (I0) 

arg B(I/2 + i t )  = arg( -I , t  log 3, ) + arg et 4~ 
I/4 

o r  

(13) 

l e(-t 12~3))  
+ a rg ( l -  ~33 

+ arg(F(43-+ i ~)Ir( l14 + i ~)) 

sin(t log 3) 
arg B(II2 + i t )  :~ + + arc t a n ( _  cos(t log 3) 
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where the choice of arguments is immaterial. The sum of the derivatives of the 

f i rs t  three terms on the right-hand side of (13) is equal to 

log 3 

4-2~cos( t  log 3) 

Observing that 

d r' d-~arg r(o+ i t )  = Re ~- (~+ i t )  

and using the formula (see Ingham [6; p. 57]) 

r ' 1 
(s) = log s + o(~--~T ~) 9- 

which is valid in larg s[ < ~-a for any a > O, we find that 

d arg(r(�88 i ~)/?(I/4 + i t ) ) < <  l d-~ t+-TT 

for t > O. Thus 

d arg B(I/2 + i t )  = lo 9 3 + o(tl+-~T ) (t > 0). 
dt 4-2V'3cos(t log 3) - 

From this we see that there exists a T O > 0 such that d~arg B(I/2 + i t )  is 

bounded and greater than zero for t ~ T O . That is, arg B(I/2 + i t )  is an increasing 

function with bounded derivative on [To,| 

N~(To,T) << T 

Now suppose that I/2 + i t  O is a zero of 

Clearly this implies that 

(T ~ TO). 

{(s, ~) arising from condition I and 

that t O ~ T O (T O as above). Differentiating the right-hand side of (8) with 

respect to t and evaluating at s = I/2 + i t  o, we obtain 

(14) ~(I/2 + ito)(~--~)toB(I/2 + i t )  

+ B(I/2 + ito)(d~$-)to ~ ( I / 2 u ~  + it)+x(a)(~)tD~(I/2u~ + i t ,x ) .  
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The second and th i rd  terms are real since • d~ ~(I/2 + i t ) ,  ~-~ C(I/2 + i t , x )  

and B(I/2 + i t  O) are. (Recall that B(I/2 + i t  O) is real whenever t O sat is f ies  I . )  

I f  we write B(I/2 + i t )  : IB(I/2 + i t ) le(  ar9 B(I/2 + i t ) )  the f i rs t  term in (14) 2x 

becomes 

arg B(I/2 + i t  O) 
(15) 6(I /2 + i to)e(  2~ ) { ( ~ ) t o I B ( I / 2  + i t ) l + i ( ~ t ) t o  arg B(I/2 + i t ) } .  

Since t O 
arg B(I/2 + ito) ) 

sat is f ies  I ,  e( 2~ = • and ~(I/2 + i t o ) ,  which is real ,  does 

not equal zero. Also ( ~ ) t o  arg B(I/2 + i t )  > 0 for t O ~ T O (this is how T O was 

chosen), and ~ IB(I/2 + i t )  I is real for al l  t .  I t  follows that (15) and there- 

fore (14) have nonvanishing imaginary parts. Thus I /2 + i t  0 is a simple zero of 

the right-hand side of (8) or, what is the same thing, of ~(s, 8).  This f i na l l y  

establishes (12). 

We now turn to NI l (T).  Let m(z), ml(z), and m2(z) be the mu l t i p l i c i t i e s  of 
a 

the point z as a zero of ~(s, ~),  { (s ) ,  and L(s,x) repsect ively.  By (5), {(s) and 

~(s) have the same zeros in 0 < ~ < I ;  the same is true for L(s,x) and ~(s,x) in 

l igh t  of (6). Thus t O sat is f ies  I I  i f  and only i f  I /2 + i t  0 is a common zero of 

~(s) and L(s,x).  In par t i cu la r ,  �89 i t  0 is a zero of ~(s) on o = I /2 .  Lett ing 

p = 6 + iy denote a typical  zero of ~(s), we then have 

(16) NIl(T) : ~' m(p), 
O < ~ < T  

6 = I /2 

where as usual ~' means the sum is over d is t inc t  zeros p . In order to estimate 

this we need to consider the numbers m(p). From (8) and the fact  that B(s) ~ 0 

on o = I /2 ,  i t  immediately follows that 

I i  min mi(I /2 + iy) i f  ml(I /2 + iy) ~ m2(I/2 + iy) 
i=l ,2 

m(I/2 + iy) 

ml(I/2 + iy) i f  ml(I/2 + iy) = m2(I/2 + iy). 
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However, the lower bound this provides for m(I/2 + iy) in the case ml(I/2 + iy) = 

m2(I/2 + iy) is of no use to us since we seek an upper bound for NIl(T). We remedy 

this by proving that, except for f i n i t e l y  many y, i f  ml(l l2 + iy) = m2(I/2 + iy) 

then m(I/2 + iy) = ml(I/2 + iy) or ml(I/2 + iy) + l ,  with the lat ter  holding at 

most O(T) times for y e [O,T]. 

To show this set ml(I/2 + iy) = m2(I/2 + iy) = k ~ I. Then the k th derivative 

of the right-hand side of (8) with respect to t evaluated at s = I/2 + iy is 

Since the zeros of B(s){(s) + x(a)~(s, X) are those of {(s, ~), we see that 

m(I/2 + iy) > k i f  and only i f  (17) vanishes. By the definit ion of k, the k th 

derivatives of the two ~-functions are nonzero at I/2 + iy . Hence (17) vanishes 

only i f  i ts  terms cancel. Since x(a), (~t)k ~(I/2 + i t ) ,  and (~-~)kc(I/2 + i t , x )  

are real, this occurs only i f  B(I/2 + iy) is real. But we have already seen that 

B(I/2 + i t )  is real at most O(T) times on [O,T]. Thus ml(I/2 + iy) = m2(I/2 + iy) 

implies that m(I/2 + iy) = ml(I/2 + iy) ( = k) except for possibly O(T) values of 

y e [O,T]. Suppose now that (17) does vanish at I/2 + iy (so that B(I/2 + iy) 

is real). Taking the k+l st derivative of the right-hand side of (8) with respect 

to t and evaluating at s = I/2 + iy , we obtain 

d• (d)k+l (18) (k+l)[( ) C(I/2 + i t ) ] [ ( ~ ) yB ( I / 2  + i t ) ]  + B(I/2 + iy) ~ ~ ~(I12 + i t )  

+ x(a)(d~)~+l{(I/2 + i t , x ) .  

As in our analysis of (14), we find that the second and third terms are real and 

that the f i r s t  has nonvanishing imaginary part when y is large. Thus (18) is 

nonzero and m(1/2 + iy) = k+l = ml(I/2 + iy) + l (for large y). 

To summarize: there exists a T O > 0 such that i f  I/2 + iy is a zero of 

~(s) with y > T O , then 

m(I/2 + iy) = min mi(I/2 + iy) or min mi(I/2 + iy) + I ;  
i=1,2 i : I , 2  
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the second case occurs at most O(T) times on [To,T].  

We can now bound NI l (T ) .  Wri t ing (16) as 

NI l (T)  = ~' m(p) + 0 ( I )  
T O _ < Y < T  

6 = I /2  

and using the previous resu l t ,  we have 

NI l (T)  = Z' min 
TO _< y <_ T i = 1,2 

B = I /2  

mi(P) + O(T) 

Z' min mi(P) + O(T) 
O < y < T  i = 1 , 2  

6 : I /2  

~' min mi(P) + O(T), 
O < ~ < T  i = 1 , 2  

where the f i na l  sum is over the d i s t i n c t  zeros p of  ~(s) wi th 0 < 6 < I ,  

0 < ~ < T. Applying the Lemma to the las t  sum (note that  ~(s) is an L- funct ion)  

we see that  as T tends to i n f i n i t y  

(19) NI l (T)  ~ (c+o(1)) ~--~-log T, 

where c is a pos i t i ve  constant < I .  

The proof o f  the Theorem fo r  ~ = I /3  and 2/3 now fo l lows from ( I I ) ,  (12), 

and (19). 

Our proof car r ies  over to the cases ~ = I / 4 ,  3/4. I / 6 ,  and 5/6 wi th  only 

s l i g h t  changes in the formulae. For instance, i f  ~ = a/4,  a = 1 or 3, then 

corresponding to (8),  (9),  and ( I0) we have 

a 
A(s)~(s,  ~) = B(s)~(s) + x (a )~ (s , x ) ,  

: 4__ (4~ ) - s /2 r ( s+ l ) ,  A(s) z 

and 
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where x is the nonpr inc ipal  character mod 4. 

a 
When ~ = ~ , a = 1 or 5, the s i t ua t i on  is only s l i g h t l y  more complicated. 

The nonprincipal  cha rac te r  x mod 6 is  induced by the p r imi t ive  charac te r  x mod 3. 

Also, for  the p r inc ipa l  charac te r  Xo mod 6 we have L(S,• = ( 1 - 2 - s ) ( 1 - 3 - s ) ~ ( s ) .  

Thus, in place o f  (4) we obta in 

2 a * 6~ ~(s, ~) : ( l - 2 - S ) ( l - 3 - s ) ~ ( s ) + x * ( a ) ( l + 2 - S ) L ( s , x ) ,  

and instead of  (8),  (9),  ( I0) we have 

a * * 

A(S)~(S, ~-) : B(s)c(s) + X (a)c(s,• 

A(s) : ~ 2  (l,2x) -s/2 r(_~]_), 
( l+2-s)  

and 
B(s) : (3s/z-3-s/2)II-z-S) 

s(s-l)(l+2 -s) r(~)  

1 
In e i t he r  case A(s) ~ 0 fo r  0 < o < 1 and ~ a r g  B(~ + i t ) i s  bounded and > 0 

for  a l l  large t .  

4. A Conjecture. 

We expect the Lemma, and therefore  the Theorem, to be far  from best possib le.  

Indeed, i t  is genera l ly  held that  no two L- funct ions with inequ iva len t  characters 

have common zeros in 0 < ~ < I .  On th i s  assumption we would have NI l (T)  << T 

instead of  (19) and th is  along wi th ( I I )  and (12) impl ies that  N(T) << T. I t  is 

p laus ib le  to suppose that  these bounds are va l i d  fo r  o ther  ra t i ona l  values o f  

so we make the fo l l ow ing  

CONJECTURE. I f  e is r a t i o n a l ,  0 < ~ < I ,  and ~ ~ I / 2 ,  then ~(s,~) has << T 

zeros on [ I / 2 ,  I /2  + iT ] .  
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