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Our investigations focus on two aspects of the behavior
of zeta and L-functions in the critical strip of the complex
plane; that is, the region defined by 0 < Re s < 1

In 1926 A. Ingham proved that as T » =

14

T
(1) J lg(V)(% +it) |23t v —2— T(log T)2VTL |
1 2v+1
where C(O)(s) = Z(s) (Riemann's zeta-function) and for

Vo= l,2,...,c(v)(s) is the vEh derivative of ¢z(s) . In

the first part of this dissertation we obtain new types of
mean-value analogues of (l1). For example, we prove uncondi-

tionally that if v > 1 , then

V v T
I 0™ (a-p) v a T (log T2V
1<y<T -
as T > » , where o = f+iy 1s the generic zero of ¢ (s)
and A,, 1is a computable positive constant. If we assume
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the Riemann hypothesis, this takes the form

(2) E Ic(“)(% + iY)]2 N Avg—(log T)2v+2
1<y<T | 2T
as T > < ., Tt turns out that Al = %5 . Therefore, on div-

iding both sides of (1) by T and both sides of (2) by

gﬁ log T (the asymptotic number of zeros with 1 <y <T),
we find that the mean-value of [C'(% +ivy) |2 for

Y € [1,T] 1is one-fourth the mean-value of '}Q'(% + it)|? in
[1,T] . wWe also prove a discrete analogue of (1) corres-
ponding to the case v = o .

The point of departure for our second investigation is
the remarkable extension by S.M. Voronin of H. Bohr's work on
the value distribution of £(s) 1in the critical strip. Let
D be a closed disc of radius < % centered at s = % , and
suppose f(s) 1is continuous and non-vanishing on D and is

analytic on the interior of [ - Voronin recently showed

that if ¢ > ¢ + there is a real number =t such that

max|z (s+it) - £(s)] < e .

seC
Thus, on the interior of D the translates of Z(s) mimic
€very non-vanishing analytic function. By methods which are
somewhat different from those used by Voronin, we prove re-
sults of this type for other zeta and L-functions and for
more general sets than D .

Let C be a simply connected compact set in the strip



% < Re s <1 and suppose that f(s) is continuous and non-

vanishing on C and analytic in the interior of C . If
K 1s an abelian extension of the rationals and CK(S) is
the Dedekind zeta-function of X , then for any € >0

r

there exists a T such that

max|Lp(s+it) - £(s)| < ¢ .

seC
This result also holds with the Hurwitz zeta—fﬁnction,
z(s,a) , in place of tx(s) , where 0 < a < 1,a # % , and
o is either rational or transcendental. Moreover, the con-
dition that £(s) not vanish on C may be removed. Conse-
quently, the real parts of the zeros of Z(s,a) are dense
in [%,l] . Previously, H. Davenport, H. Heilbronn, and
J. Cassels showed that (s,a) has zeros in the half-plane
Re s >1 for 0 <a <1, ais# % . |

We prove two results for Dirichlet's L-fuﬁctions,

L(s,Xx) . One concerns simultaneous approximation by the
set of all L-functions (mod g). The other is the following
g-analogue. Let C , f(s) , and € be as above. Then for

all large q , there exists a character Y (mod g) such that

max|L(s,x) - £(s)]| < e .
seC
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PREFACE

In this thesis our investigations focus on two differ-
ent aspects of the behavior of zeta and L-functions in the
critical strip of the complex plane; that is, the region de-

fined by 0 < Re s < 1

In 1926 A. Ingham [8] proved that as T > «

-~ H

rT

(1) J | ™) (% +it)]2 at v L— T(log T2V
1 2v+1
where c(o)(s) = g (s) (Riemann's zeta-function) and for
v =1,2,... , C(V)(s) is the iste derivative of C(s) . 1In

Chapter I we obtain new types of mean-value theorems which

are, when the Riemann hypothesis is assumed, discrete ana-

logues of (1). For example, we prove unconditionally that

if v>1, thenas T » = ,

T 2
I e 0™ a-p) v A, (log m2V*2
1<y<T T
where p = B+iy 1is the generic zero of <z (s) and Av is a

computable constant. On the Riemann hypothesis this takes

the form

(2) | 123+ i) ]2 v a T(1og T)2VF2
1<§<T ~ 2 voem

A rather surprising consequence of (1) and (2) in the case
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v = 1 1is that the average size of [C'(%+iy)lz for

y € [1,T] 1is one-fourth the average size of [C'(%+it)]2
for arbitrary t € [1,T] . We also prove a discrete analogue
of (1) corresponding to the case Vv = (0 .

The point. of departure for our second investigation is

a2 remarkable extension by S.M. Voronin of H. Bohr's work on

the value distribution of Z(s) in the critical strip. Let
D be a closed disc of radius < % centered at s = % , and
suppose that £f(s) is continuous and non-vanishing on D and

is analytic on the interior of D . Voronin (211 has shown

that if € > 0 , there exists a real number T such that

max|z (s+itT) - f(s)] < e .

seD
This is a universality theorem for z(s) in that it asserts
that the translates of Z(s) approximate all the functions
of some large class of functions. Our object in the second
part of this thesis is to prove universality theorems for
other zeta and L-functions and for more general sets than
D . 1In Chapter II we establish a fundamental lemma upon
which we base the proofs of all our universality theorems.
In Chapter III we prove a "simultaneous" universality theorem
for the Dirichlet L-functions to a given modulus. From this
we deduce that the Dedekind zeta-function of any abelian
extension of the rational number field is universal. In
Chapter IV we show that certain of Hurwitz's zeta-functions
are universal and that such functions posses zeros in the

v




right half of the critical strip. Finally, in Chapter V, we

prove a g-analogue of the universality of 1z (s)

Chapter I is completely independent-of Chapters II-V,

and conversely.
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NOTATION

"

The notations "~", "O", "o", "<<", ">>" have their

usual meanings.
The symbol [x] denotes the greatest integer < x , and
X denotes the distance from x +to the nearest integer,

“hus

X = min|x-n| .
nek
We sometimes write exp (x) for e* .

The letter s = g+it represents a complex variable.
Unless otherwise stated, p = B+iy denotes a non-trivial zero
of an L-function or of 1z(s) .

We let p stand for a prime and g for a general
modulus. The letter x denotes a Dirichlet character ex-
cept in Chapter I, where its alternate usage is explained.
We write the arithmetic functions of Euler and von Mangoldt
as usual; we write d(n) for the divisor function. As is
customary, w(x) 1is the counting function of the primes and

P (x) 1is Chebychev's counting function,

P(x) = ] An) .
n<x
The symbol zz represents summation over all characters

¥ (mod q)
vii




to the modulus g , and ?* is shorthand for 2 .
a=1 a=1
(a,q)=1

In several places we have used similar notation for
different things. For example, in Chapter I, ¥(x) is
Chebychev's function but ¢(s) is the digamma function. In

such instances the text makes clear which function is meant.
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CHAPTER I

MEAN-VALUES OF THE RIEMANN ZETA-FUNCTION

AND ITS DERIVATIVES

§1l. Statement of Results

In 1918 Hardy and Littlewood [7] proved that as T + =

T 1 2
(1) f l2(3 + it)[© dt ~ T log T .
1

In 1926 Ingham [8] proved corresponding formulae for the der-

ivativesof g(s) . For example, he showed that as T -
2) T | (v)(i + it)|2 at —JE—-(lo T)2\)+1
L ¢ 2 ¥ ZvFL g ’

where v 1is any non-negative integer, c(v)(s) is the vth

derivative of z(s) , and C(O)(s) = ¢(s) . Our object in
this chapter is to prove some new types of mean-value theor-
ems which are, when the Riemann hypothesis is assumed, dis-
Crete analogues of (1) and (2).

Our first result is

Theorem 1.1. Let p = B + iy be the generic non-

trivial zero of z(s) . If T is sufficiently large and c

is any real number satisfying |c| < f%-log %% , we have



2Tic 2Tic
(3) ) tlp + —==S)r(1 - p - —2IiC
1<y<T log T/2m log T/2m

- 1 _(sin ﬂc)2

T 2
= r— ) z;(log T)7 + O(T log T) .

If the Riemann hypothesis is true, then

1 . 27ic 2
(4) Lo loz + iy + =212y
1<y<T 2 log T/27

= (1 - (8in Tc 2, T

2
oy ) )j?(log T)” + O(T log T)

The error terms are independent of c .

For a fixed ¢ # 0 (if c = 0 both (3) and (4) are
trivial), (4) is a discrete analogue of (l1). Since there
are ’vg% log T° zeros with vy e [1,T] , it follows from (4)

that the mean-square size of C(% + iy + loéW;CZN) over

sin mc. 2

the zeros with Yy € [L,T] dis ~ (1 - ¢ ) )log T
TC

On the other hand the mean-square size of C(% + 1it) over
the entire interval [1,T] is vlog T by (1). The two
means are equal if c¢ 1is a non-zero integer. Otherwise the

former mean is less than the latter.
We will also prove
Theorem 1.2. Let p be the generic non-trivial zero

of z(s) and let u,v be positive integers. If T is suf-

ficiently large, we have



5) 7 WMoy ™ (1-p)

liYiT
= A(,v)5=(log T)*™*2 4 o(1(10g TV,
where
) K
= u+v (-1) 1 1
Alwyv) = (-1)7 “uivi KEO D T T 3 ™ 1Fes2)
+ % (-1)° (£ - _;L__)
k=0 (VH+1) ! (u-x)! 2 v+K+2 !

and implicit constants may depend on u and Vv

If the Riemann hypothesis is true and © = v , then

. 2
(6) ) Ic(V)(% + iy) |
l<y<T
= A Ig=(log T P* 4 o(r(log ) 2V
Since the sum in (6) is over 'vé%-log'T ‘'zeros and
A(l,l) = f% , a comparison'of (2) with (6) vyields

Corollary 1.1. Assume the Riemann hypothesis. Then
the mean-square size of c'(% + iy) over the vy e [1,T] 1is
one-fourth the mean-square size of ;'(% + it) over all

t e [1,T7] .

Of course, a simple way to account for the curious be-
havior of ¢'(s) described in the corollary is by assuming

the existence of a positive density of multiple zerosof <z (s) .



However, one expects that all the zeros are simple.

We remark that we could replace the right-hand side of
(6) by an expression of the form

B
A(v,v) g%P2V+2(logT) +  o(T") ,

“here P2v+2(log T) 1is a monic polynomial of degree 2v+2
in log %% and 6 <1 . Nevertheless we are content to prove

{6) as it stands.

2. Some Formulae and Estimates

Before we develop the basic ideas of the proofs of
Theorems 1.1 and 1.2, it will be useful to set down certain
formulae and estimates.

Let

TT1/2—,5

(7) x(1-s) = T /rES)

I'(s) being the gamma-function. Using the well-known formu-
lae (for example, see Whittaker and Watson [26 ; Chaps. 12,

13]), we see that

r /1352 = 772 2175 cos SLors)
and
r(s)r(l-s) = s_fﬁﬂ—ﬁ'g ;

we also find that
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21—5 Trl—s

(8) x(1=8) = sy TS -

We write Stirling's asymptotic formula for T(s) in the

simple form

1 1 1 1,
(9) log I'(s) = (s —E)log S - S+:2—-log 27T+O(T—S—r) (ISI Z z—) .
This is valid for =-m+d < arg s < m-§ for any fixed 6 > 0
(see Whittaker and Watson [26; Chaps. 12, 13]). 1If

-m+8 < arg l-s < -8 , we may substitute 1l-s for s in

(9) and combine the result with (8) to obtain

_ 21 1/2-5 e ® 1 1
(10) X(l—S) = (‘_"g) m (1 +O(-I—]-_¥T)) (|l—S| _>_§-) .

For fixed o¢ +this takes the form

(11) y(l-s) = e "i/4 (£ o-1/2

T expl[it log 5%51 (1 + O(T%T))

(t > 1) .

With (1-s) as above, the unsymmetric form of the

functional equation of ¢ (s) is
(12) z(l-s) = x(1-s) z(s)

We also require the symmetric form of the functional equa-

tion. Set

(13) E(s) = £ s(s-1) 7 %2 1(8) c(s)

NI
N



Then we have

(14) E(s) = g£(1-s) .

The function &(s) 1is entire of order one and its only zeros

are the non-trivial zeros of z(s) .

Buler's psi-function is defined by

(15) v(s) = T'(s)/T(s) .

When -m+6 < arg s < -8 and |s| > % , we have
1

(16) v(s) = log s + O(TETJ .

This may be derived from (9) by means of Cauchy's inequality

for analytic functions.

Consider the set of intervals defined by Hg%[lz 1%0 ’
t >0 ; that is, the intervals of the form
_ 2T 27 -
In = [ZTTI]. + m, 2Tn + 99 TO—C—)-] (n—O,l, ...) .

r Say, there are «log n ordinates of zeros of

t(s) in I_ . Among these there must be a gap of length
1

> E s 5 .
>log 5 Therefore we can choose a number T in In such
that for each ordinate Y of a zero in I,
1
T - Y|X>15§—f .
Having selected one T 1in each I, (n=2,3, ...), we obtain




R AR AR L OO AR

a sequence tending to *« whose consecutive terms are <1

apart. We denote this sequence by § . Recall that if T
is large and does not coincide with the ordinate of any zero
of Z(s) , then

C'

= O(lOg T)
|y-t]<1 S7F

uniformly for -1 < o < 2 (see Davenport [4; p.103]). If
T € § , each term in the sum is <log T . As there are

«log T terms we find
: ! . 2
(17) 7;(0 + iT) < (log T)

for large T ¢ § and uniformly for -1 <o <2 . By logar-
ithmic differentiation of (13) we have

-1

! _z s 1 2s
(18) —g—(S) = —C—(S) + I,U('z—) - 5 lOg ™ + S(TI—)— (s #l) .

NJ =

We deduce from this, (16), and (17) that

(19) E}(o + iT) < (log T)2

for large T € § and uniformly for -1 < g <2

Similarly, we may combine the estimate
1
(0 +it) < log 2]t
A

valid for o > 1 - Tog aTe] 2nd |t] > 1 , where A is a

Positive absolute constant (see Titchmarsh [19; p.53]), with



(16) and (18) to obtain

(20) %'(c + it) < log 2|t]

A

for o > 1 -~ IBE—ETET ’ ‘tl bd 1.

Finally, we need the estimates

[ -
|tll/2 g+€ if g i 0
21) ™M (o + i) < { |¢| /2 (1-0)+e if 0<o0 <1
|| if o > 1

| =z ’

where € > 0 is arbitrary, |t| > % , and Vv > 0 is an it-

teger. These may be deduced from the classical estimates

( -
Itll/2 og+¢e if o i 0

T(o + it) < j|t|l/2(l'g)+E if 0 <o <1

€] ® if o >1 ,

\

where |t| > % (see Titchmarsh [19; pp.81l-82]1) byapplying

Cauchy's inequality for analytic functions to ¢(s) in a

small disc centered at s = 0o + it .

§3. Beginning of the Proofs

We can now begin the proofs of Theorems 1.1 and 1.2, al-

though we shall re@uire a section of lemmas (§4 below) in



order to complete them.

Let a be a real number with 1 < a < 2 and let D
be the closed rectangle in the complex plane with vertices at

ati , a+iT , l-a+iT , l-a+i , where T is large. We define

{ 1
(22) T = T(u,v,i8) = oo ~%;(s):‘“’<s+i§);‘v>(1—s—ia)ds

’

where oD 1is the boundary of D and the integral is taken

in the counterclockwise sense. We also assume that & is

real and |[§] < % . By the theory of residues it is clear

that
(23) I(0,0,i8) = }  z(p+i8)z(l-p-is)
1<y<T
and
(24) Tu,v,0 = [ MM,
1<Y<T
provided no zero p lies on 9D . Since the ordinate of the

first non-trivial zero of <¢(s) lyving above the real axis
is >14 and no zeros lie on the vertical edges of D , we
need only insure that T is not the ordinate of any zero.
This is the case if T e § , the set constructed in §2. From
now on we therefore assume T e § . At the end of the proofs

of Theorems 1.1 and 1.2 we will show that this entails no

loss of generality.




To prove Theorems 1.1 and 1.2 we must estimate

I(4,v,0) and 1I(0,0,i8) . Some of the analysis can be done
in common by working with the quantity I(u,v,ié) . It is
this analysis which we describe now.

We split the integral I(u,v,i8) into four integrals

corresponding to the four sides of D . We write

. 4
I(u,v,18) = Z I.(u,v,18) 7
j=1 )
where Il is the integral over [a+i, a+iT) ’ I2 is over
fa+iT, l-a+iT) , I3 is over [l-a+iT, l-a+i) , and 14 is
over [l-a+i, a+i) . Since we are assuming that 8] < % '
we have
I4 < 1 .

For 12 we find

() (v)

I, <« max Igl(o+iT)C

(o+iT+1i8) ¢
2 l-a<o<a 2

(l-g-iT=i6)]

< (log T)2 max |§(u)(0+iT+i6)C(v)

l-a<o<a

(l-g-iT=-1i8§)

by virtue of (19). The last line is




C(u)

< (log T)2( max

l-a<o<0

C(u) (v)

+ max
0<o<1

(o+iT+id) ¢ (1-0-iT-14§)

+ max |gM) (oritris) e M) (1-g-iT-18)
l<cr_<_a

By (21) we see that

C(u) (v)

max
l-a50<0

(o+iT+id) g (l-0=-iT=-1id)

a-Y4+2e

17 P
p/270FE T )

<« 7% max
l-a§0<0

Also
max IC(U)(G+iT+i5)C(v)(l—O—iT—iS)
Oioil
1 1 1/ -
« max p/72(1-0)+e o 20t _ o Z2F2€

Oicil

Similarly, we find that the maximum over (1,a] is

1
« T S +2¢€ 1

small, we obtain

1
Iz « Ta—,@+e .

This and the estimate for Il lead to

1
(25)  T(u,v,i6) = I,(u,v,18) + I (u,v,18) + o(r3” 2FE

We now treat

(o+iT+i6)c(”)(1-o-iT-ia)|

).

Since a—% > 5 and € > 0 1is arbitrarily



l-a+i
| [ (w) : (V) (4 s
I3(u,v,16) = 50T J E(s)c | (s+1i8) ¢ (1-s-id)ds
1-a+iT
The logarithmic derivative of (l14) is
] 1
%—(S) = - T(l—s) .
v
Using this and the fact that both C(v)(s) and 7;(5) sat-
isfy the reflection principle, we get
l-a+i .
I (M,v,18) = - i J %(1-;;);“” (s+i8)z V) (1-s-18) ds
’ l-a+iT
1 [T (W) (v) .
= 577 [ Z—-(a-it) ¢ (L-a+it+id) ¢ (a=it-id8)idt
mTi 1 &
1 (T (1) (V) .
= == Z—(a+it)z (l-a-it-if)z (a+it+id)idt
2Tl 1 3
a+iT .,
- ZlT_l f | %(s)c(“) (1-s-18)z ) (s+i8)ds
a+i.
= Il(v,u,ié) .
This and (25) yield
. . — a-‘4+e
(26) I(u,v,1i8) = Il(u,v,ld) + Il(v,u,ld) + O(T ) .
Our problem is now reduced to estimating Il(u,v,iﬁ) for
arbitrary u,v when 6 = 0 , and for u = v = 0 when
§ # 0 . In the next section we prove the lemmas necessary

for doing this.



4, Lemmas

Our first two lemmas are essentially due to N. Levinson

[9; Lemmas 3.2-3].

Lemma l1l.l1. There is a small ¢ > 0 such that

r(l+c) a-l/
( explit log t/er] (t/2m) 2 4t
r(l-c)

—-— —' 3 _1
(2ﬂ)l a _a o ir+mi/4 + O(ra ,é)

for large r and a arbitrary but fixed.

Proof: Let t = r(l+x) so that

1 . 1
_ /o-a _ir _a+ /s
IO = (2m) e r Il ’
where
c a-l/
I, = { explir(l+x)log(l+x) - irx] (1+x) 2 dx .
-C
Let
o)
12 = J exp[ir(1+x)log(l+x) - irx] dx .
-C
Then
I, - I, =
o exp[(a—%)log(l+x)]-l
[ explir(l+x)log (l+x)-irx]log(l+x)< — Tog (15 dx.
-C

An integration by parts shows that




Zxpanding log(l+z) 1in a power series shows

(14z)log(l+z) - z = % 22[1 + zg(z)] ,
7here g(z) 1is analytic for |z| < 1 . 1If
/
w=2z[1l+ zg(z)}l’2

7here the square root is 1 for z = 0 , then there is a

: > 0 such that for |z| < ¢
2
Z =W+ W gl(w) ’

where gl(w) is real for real w and is analytic. Let

/% c, = c[l + cg(c)ﬁ/zJ

-c, = =c[1 - cg(—c)]l 5

1

Then if g, (W) = 2g,(w) + wgi(w) /

c2 . 2
12 = [ elrll/z(l + ugz(u))du
_cl
fC2 ir @/2 Cz ir u%2 u?
-] e am+ | e g, (0 a3
-C1 =C1

Integrating the second term by parts gives O(%) . Hence

xQ . 2
_ iru¥/2 1
I = [—oo e du + Jl + JZ + O (E') ’

where



2

and similarly for J2 . Hence

[ iru¥2 1
Il = J—m e du + O(E_')

1

2ut an elementary change of contour allows the evaluation of

the integral to give

_ 2m,1/2 _mi/4 1
S ( r) € * r

shich completes the proof. [ ]
Lemma 1.2. For large A and A < r < B < 2A

B
(27) J exp it log r—e1(m a="%h 3¢
A

_ (zﬂ)l-a 2 e—1r+W1/4 + E(r,A,B) ,

where a is fixed and where

1 : a+ a+l/
(28) E(r,A,B) = 0(a%" /%) + o(—2 _21,) + o(—2= 21/)
|a-r| + A"? |B-r| + B’?
For r <A or r >B,
B N /
J explit log EEJ( =87 %2 4t = E(r,a,B,)

A

Proof: Let F(t,r) = explit log t/re] . Let A + Al/2
r <B - Bl/2 Then

B 1 r(l+c) 1

J F(t,r) (Z'E-)a fat = J F(t,r) (5027 2dt + 3, + 3
2 ™ 2TT

r{l-c) L 2!

and J is similar. Integration by parts shows J, = O(%

<




rA

1
where J, = F(t,r)(%ﬁ? /2 dt and J is the inte-

1

Jr(l—c)

gral over (B, r(l+c)) . Since

tegration by parts gives

A

a-ﬂé
(2m) J r(l-c)

1
L= P, %2/ (log B

1 A
+ 0(a?" /Z)J dt/ (t log” L
r{(l-c)

)

1
+ 0(a%" %/ (log L

A
P e
r{(l-c)

1
= 0(a% %2/ (1log 5 .

f_%r;A'l'l;/r
8A’2

so J, = E(r,A,B) and similarly J, = E(r,A,B) . By the

1 2
previous lemma, for A+Al/2 < r < B—Bl/2 we have

—-' 1 —Il
a elr+ﬂ1/4_+0(ra ,é).

r(l+c) 1
J P(t,r) (t/2m3 2 at = (2m17@ ¢

r(l-c)

The error term is 0(A%®” /2) = E(r,A,B) . Thus (27) holds.

1 1
If A—A/2 < r < A+A/2 then

L, F(t, 1) (t/2Tr)a—1/2dt

1
A+2A /2 B
- |
A+2A72

B Y
{ F(t,r) (t/27) Zdt_=[
A A

B
= 0(a%) +J ., Flt,x) (t/zma'%dt
A+2A72




{where the second term does not appear if B < A+2Al/2). The

integral on the right is integrated by parts to give

: . A
o(a%) + O(Aa-’é/log(A + 22 2)) = O(Aa)

B 1
J F(t,1) ()27 at = 0(a%) = E(r,A,B)

A

r , E(r,A,B) = 0(A%) . Again

‘or in the present range of
‘ne lemma is valid. The case B—Bl/2 <r< B+Bl/2 is

-reated similarly.

If r < A—Al/2 , one integration by parts establishes

the lemma directly where r 1is considered first in the

r < %% and then %? < r < A—Al/2 . The case

1/2 is treated similarly. [_|

range

r > B+B

Lemma 1.3. For m= 1,2, ... , A large,and A< r<B<237 ,

B _1
| explit log 5121577 (log 5™ ac
A

a e-1r+ﬂl/4 Ji)m-+E(r,A,B)(L39AJ

_ 1-a
= (2m) r (log 5

while for r <A or r >B,
m
)

explit log el (57 (log 7

B _1
J E1? % )M gt = E(r,A,B) (log A

A

where E(r,A,B) 1is (28).

m
T

r




?roof: Using F(t,r) as before, if A—Al/z < r <

(B _1
29) | Fem) ()2 % (10g )™ 4t
A

. B 1
m r.j t,a-/
(]) (log i?) J F(t,r) ('—2,”) z (log

j=0 A

.k

_1
F(t,xr) (%)a /z(log ;) dt for k > 1 . Then

1
- [B ta—/z(log t/r)k

A i log t/x dr (t,x)

—1 —
-iF (¢, 0)£27 2 (log %)k l]i

B 3
+ i J F(t,r)ta— /2 ((a—%) (log %)k_l

A

+(k-1) (log %)k'2> at
1
= 0(a% %y .

(Note that for the above range of r , max | (log -E—)kl
te [A,B]

o(1). The right-hand side of (29) is therefore

B 1 1 |
(30) (log =)™ J Flt, 1) (5227 23t + 0(a® % (log a)™ 1) -
A




‘or A < r < B this is, by the previous lemma,

(log Ziﬂ)mozﬂ)l—a £ gmir+mi/4 E(r,A,B))

+ (lOg A}m_l E(rIAIB)

< A or B<r<B+Bl/2

, we obtain from the

revious lemma that (30) is
r,m a- m-1
(log —2—7?) E(r,A,B) + 0O(A (Log A) )
= E(r,A,B) (log &)™

’his proves the lemma for A—Al/2 < r < B+Bl/:2 . Now suppose

o< A—Al/z . We have

B 1
£2 /Z(log _1_:_)m dr(t,r)

B a_l/ +.m —_—l
J' F(t,r)t ’(log 5=) 4t = 4( 21 i log t/r

A am A

s e

1 3
_F(t,0)t2 2 (log t/2ﬂ)m}B o JB F(t,0) £ 2 (log t/2m™ .

T Tog £/% A N (log t/z)°

B =3 — &
+ i J F(t,r)ta /2{(a——21—) (log _2_1:?)m + m{log it?)m l} 1-5-(;1—1_;_/?

A

a-14 m A a-14 m, (° dt
=0 (A 2(log A) /(log -—)) + 0(Aa 2(log A) ) f 2

r A t(log t/r)
+ 0(a*" 2 (log 2)%/(1og 2)) [ =
A

_1
O(Aa /2(log A)m/(log %)) = E(r,A,B) (lOg A)m .



The case r > s+8Y/% s treated similarly. [ ]

~emma l1l.4. Let E(r,A,B) be as in (28), where A is large
and A < B <2a . Assume {bn}z=l is a sequence of
complex numbers such that bn < n* for any ¢ > 0 . Then

£ oa > 1,

bn a-l/
— E(2m,A,B) < A 2,

n=1

‘roof: Choose € so that 0 < e < a-1 . By (28)

© b o
. —& E(m,a,B) < § n"*¢ g(2m,a,B)
n=l n n=1

a+' s 1
n=1 n®7% (|a-2m]| +a

+ A

1/2)

1

n=1 na—E(IB—2wn] + B

1/2)

Since n"qE « 1, it evidently suffices to show that
n=1

for large C

1 -1
< C
n=1 n° ®(lc-2wn| + cl/2)

We write this sum as

where Sl is over [l,i) ; S. isover [«—%, (C—Cl/z)/Zﬂ) ’



53 1is over [(C - Cl/z)/2"rr, (C + Cl/z)/ZTr) , S4 is over

{C + Cl'/z)/ZTT, c/m) , and S5 is over [C/m, ©) . We

rasily find that

-1
n

1
C /2 <n<C/2

C—l/2 -ate . -ate

n C

1 1
(c-C %) /2m<n< (C+C 2) /27

c—a+€ z n—l « C-l

1
C /"'in<C

2nd finally that

C/m<n

This gives the result. [ ]

oo I

Lemma 1.5. Let {b_}

nfn=1 be a sequence of complex numbers

such that for any ¢ > 0 , bn «n® . Let a >1 and let m

be a non-negative integer. Then for T sufficiently large,

T/ :
(31) 1 J ( z bn n‘a_lt>x(l—a—it) (log %)m dt
n=1

1
- Z b_(log )™+ o(T? 2 (log ™) .
1<n<T/27




3
:
E
[
:
z

R I R T

H

22

Proof: By (1ll) we have

1 T o -a-it t.m
(32) = f N b n X (l-a-it) (log 5=) dt
T/2 \ n=1
1 (T T —a-it) _-mi/4
=ﬁ-[ z b n e
T/2 \ n=1 n
- explit log —E—](Ji)a—%é(log )™ at
2me” 2T 27
T %@ - _3
+ Q f ) Ibn]n ) ’/z(log't)In dat).
T/2\n=1
since b < n® , ) lbnln_a<<l if a > 1 . The error term

n=1

in (32) is therefore

T _3 1
(33) < f £37 %2 (1og £)™ at « 17 2 (1og T)™ .
/2

To treat the main term on the right-hand side of (32) we

write it as

(34) ] b_n 2 T4

n=1 o
T 1
. 1 . t t.a-s t >
5 [ explit log 5 ne](ig) (log 5;) dat ) ,

T/2

the inversion of summation and integration being justified
by absolute convergence. Now the integral in (34) is of the

form estimable by Lemma 1.3 with A = 5 B =T, and



r = 2T™n . Thus (34) is equal to

AN w
i: b (log n)m + (log g)m Z b n—aE(ZTrn, g-, T)
T/4m<n<T/2m ° n=1 "
for large T . By Lemma 1.4 the second term is
1 1
< (log %)m(g)a / « 72 /z(log ’I‘)m
Hence (34) is equal to
z m a=-t4 m
bn(log n) + O(T (log T) ) .
T/4m<n<T/2T
Using this and (33) in (32) we obtain
1 T s -a-it t.m
(35) 5= J Y b n x(l-a-it) (log 5=) dt
T/2 \ n=1
Z m a-4 m
= b (log n)" + O(T (log T) )
T/47<n<T/2m O

for T > T say. Now let £ be the unique integer such

O 14
that T, < %<2To . We add together the result of (35) for
2
T T T T T .
the ranges [-—5—1-, _SL——l—]’ [ =T 2_2], ey [5’ T] and obtain
2 2 2 2
1 (T e -a-it t,m
T J ) bon X (l-a-it) (log 5=) dt
T/2%\ n=1 n
Z m a-14 m
= bn(log n) + O(T )log ™) .

1/2m T/2%<n<T/27




v =0 1is trivial. For Vv

B (1-8) = x(1-s) - (1)

1 we write

1
.e., x(l-s) °%Z(l—s) . The logarithmic derivative of (7) is

X' 1oy = ~Loys oL

1 S 1 (1-

ind by (16) this is

£37)

%%(1—s)

Also, by (11),

(39)

x (1-

Combining (36),

for

2

s)

)

= -1 5.2 AL=S)
= log T 5 log 5 5 log

+ O(-]%{—) + O(W) v

_1
s) = o(|t|%7 %)

(38), and (39) yields

(el > 1) .

(el > 1) .

1

X(l)(l—s) = x(1-s) (-log %;% + O(T%T))
_3
= x(1-5) (- log £2b) + o(]£|777)
| t] > 1 This proves the lemma when v
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Now assume the lemma is true for Vv < uy . Differentia-

ting (36) u-1 times and using Leibniz's rule leads to

(40) %M (1-5) =

(U;l)x(\)) (l_s) (XXL(].—'S) (11—\)—1)

By (37) and Cauchy's inequality for analytic functions ap-

plied to a small disc centered at s we find

ac 1 w1 1

a (X1 - 1 w1 (1-w)
dwk ( X(l W) log m™ + 5 log 5 + 5 log(——j——) w=s « TET
If k > 1 this gives

(41) (%%(1—sn(k) < T%ﬁ"

From (39), (40), (41), and the inductive hypothesis it fol-

lows that

_ . u=2
N (1-s) = X(U 1 (1-6) X(1-5) + 7o(H l)<X(l—s)(—log %;Ly
X v=0 v m

—3 ——
+ o(ht]|%" % (1og |E])Y l)>‘°(T%T)

' =3 -
= ¥ - Xo1-s) + 0([£]%T % (log [[iMTH)

- 3 _ '
G(l—s) (-log Jz—tﬂL)“ Ly o@f® /2(log lt]) ¥ 2)>X—X—(1—s)

+ O(|t|g_$é(log [tl)u_z)



Lel

= X(1l-s) (-log >

3y (38) the last line is

X (1-s) (-1log %5})““1(—1og %§$ + O(T%T)’

+ O(ltfg—%é(log lt[)“‘z

3
x (1-s) (-log %%})“ +0(lt]9 % (10g [£H*h

‘his completes the proof. |j

Lemma 1.7. Let f(w) = )

3(n) being a non-decreasing function, and suppose

a
oo
lnO

l~18

n

Then if ¢ > 0 , o+c > 1 , X is not an integer,

the integer nearest x ,

an 1 c+iT Xw R
n<x n c-iT T (o+c-1)
l-o 1l-o
$(2x) x log x d(N) X
+ O T ) + O(—Trx—_m—)

For a proof of this lemma see Titchmarsh [19; pp.

557.

and N

_ . _3 -
T 1-s)+ o(le]7T A tog [£)TE)

a
—3 (Rew >1) , where an<< d(n),
n

is

53-



Lemma 1.8. Let E(u)(s)c(v)(s) = ) —23 (Re s > 1) , where
=1l n

i,v > 0 . Then

HAV

_ (=1) pivl
(42) I B, = D

EANE: +
g BTV y Yy

x(log +0(x(log x

?roof: First we assume x 1s half an odd integer and apply

cemma 1.7 with f£(w) = C(U)(w)c(v)(w) , a_ = An , 0 =0

n 14

mmd ¢ > 1 . Since £ has a pole of order y+v+2 at

w =1, we must take o = u+v+2 . Alsoc if d(n) denotes

the divisor function, we have

la_l = I (tog &% (1og D < (log ;"™ da(m) « n®
d|n
for any e > 0 . Hence we may choose ¢(n) = n® in Lemma
1.7. We then obtain
c+iT S c
] A - 2%i f S (6 ) (g L as + of =)
n<x c-iT T(c-1)*™V
1+e
X
+ 0 (=)

Moving the contour to the left as far as s we find

il
N =




1 [T V), x5
E,ﬂ,—i j(c_iT a (S)C (s) —S—- ds

1 . 1 ' .
/o+1iT /o =1T c—-iT s
L J +f CT . f c M (51 ™) sy X as
c+iT Y, +1T b—iT
S

+ Res c(u)(s)c(v)(S) %; s=1

_ (-1 e
(s-l)v+l

residue is easily seen to be

+ c, + ... for s near 1 , the

Since C(v)(s) 0

u+v
(~-1) plvl .
WFvrD) T = Paevr (109 x)
where Pu+v+l is a monic polynomial of degree u+v+l . By

(21) we see that

c+iT S
[ M) (orimy 2 ™V (o+im) X ds
Y +1T
(1) (v) x7
< max |z'" (o+iT) (0+iT) | &
/250<c
1 C C
fHte X _ X
D 7

The same bound holds for the integral over [%-—iT, c-iT] .

The remaining integral is (also by (21))

1 .

/o+1T <] T 1 .

C(U)(S)C(V)(S) %; ds «:xl/z J t’é+€ %} <<xl/2ffé+€.
1

?pmmwwmmmmw&




Combining these estimates we obtain

u+v c
(-1) ulivl X
Y A = xP (log x) + O : )
n<x n (Utv+l)! p+v+1 T(c_l)u+v+2
l+¢ c . 1
+ o) + o) + o™ T/
T 2

. e _ _ J1/2
Jow taking ¢ = 1l+e and T = X , the errors are all

_>(x%+3/2€)

integer. Now varying X in (42) by 0(1)

left-hand side of (42) by at most O(XE)

on the right-hand side by at most O((log X)

. This proves the lemma when X

is half an odd

changes the

and the main term

u+v+l) . As

nsoth these variations can be absorbed in the error term in

(42), we see that (42) holds for all x .

the proof. [ ]

This completes

' (1) () T B
Lemma 1.9. Let =2(s)t (s)zC (s) = § — (Res > 1) .

c s

n=1 n

If w,v > 0 , then

u+v+1

(-1) ulvt H+v+2 1
Y} B = x(log X) (L + of =) )
n<x n (p+v+2) ! log x
. . th .
Proof: As in Lemma 1.8, we write An for the n coeffi-~
cient of the Dirichlet series for c(u)(s);(v)(s) and we
set
S(x) = | A_ .
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Also we write

P(x) = . A@) ,

n<x

where A{(n) is the nth coefficient of the Dirichlet series

]
for ~EZ-(S) . (There should be no confusion with the Euler

s>si-function in the present context.) Then

Y B_=-1) ] A(dA =-Y A@ ) A
n<x n n<x di|n n/d d<x e<x/d ©
= - 1 MasE .
d<x
3y Lemma 1.8 the last sum is
gy MFVEL + +
) dz A(d)(( liu+v+l)$-v. %((log %)u v 0((log g)u N
<X )
— (—l)U+\)+l u[\)lx Z A(d)(log §)u+\)+l
(p+v+1) ! a<x d d
A(d) Xy UtV
+o<xdi{——d (log 77 7) .

I+ is now not difficult to see that the lemma will follow if

we prove that for k > 0,

A(d) xk _ 1 k+1 k
dz —5-(log )~ = w7 (log ¥) + 0((log x)7) .
<
To this end, we write y(u) = u + E(u) where, by the prime
number theorem, E(u) = O(u exp(-cvlog u)) for some ¢ > 0 .

Then




k
(loqux/u) av (u)

X k
q + J (1og /W~ g (y)
1 u

L
K+1

k 1X
(log x k+1 + E (u) (lgg x/1) ]l

x k- k
+ Jl El(lg) (k(log %) s (log %) ) du

L

k+l(10g x)k‘*'l + 0((log x)k)

X
+ o,(( 'E‘zu”(log %)k du) .

i1 u

X >4
[ J—F‘L‘;‘—U(log :i)k du <« ( exp(-cvYlog u) (log }—{-)k du
1l u e 1 4 b

x/2
<« (log x)k J exp(—c/logu)%il-
1

ple
+ exp(-cvlog x /2) f

(log %) du
x/2 v u

< (lc~gx)k + exp(-cv/log x/2) < (log x)k

This gives the required result. [ ]

ST




2(5)—'

E z

Zemma 1.10. Suppose § # 0 is real and
C (1i9)
n 3 (Re s > 1) . Then
n
J C_(i8) = x (I X 4
n<x D . 194

log x)

independent

here the implicit constant in the O-term is

T

S .
2
Re s > 1 we have 77 (s) =

‘roof: Since for
we see that

14

-1

formula

We use the well-known
x log x + (2y - 1)x + O(xl/z)

L d(n)
n<x
to see that
(43) L C (i8) = -x] !§L(_di)(S log % - (2y-1)x fé.ii)é
niX diX d diX d
+ O(xl/2 y A%Q%) .
d<x 4
Y(u) = u + E(u) as in the proof of Lemma.l.9,

We write



where E(u) = (u exp(-cv¥log u)) . Then the error term in

(43) 1is
« x1/2 [Cav) Xl/z(w(m_ .1 r‘ v (wdu
Jp 172 L7272 T
| 5 1/2 X du
z X P(x) + % L- ul/z < x .,
: Furthermore
AMd) x _ [* log x/u
L Tois o9 g 'J =Ty ()
x d 1 u

Alsc the second sum on the

1

3/2

X : X
log g/u du + log g/u
1 1-16

X
log x . 1 [ _au LE(w1log x/u“
is T I5 ) I-1% =55 |
u u
1
x
- E (u) -3 ¥
L St L+ (1-i8)1log %)
u .
16
log x . 17X, p(1)log x +
id 62
x PN
+ o{log x J exp(—ﬁ 1og u g4
1
i
log x | l-x O(log x) .
id 62
right-hand side of (43) is




is
L c (i = . - + O(log %))+ 0(x)
<X

l) + 0(x log x) .

This proves the lemma.

Lemma 1.11. Suppose that

1

) a, x(log x)k + O(x(log X)k— )

n<x

for some fixed %k > 1 . If > 0 1is fixed then

k+2 k+2-1

) a_(log ¥ = x(log x) + 0(x(log x)

n<x

) .




Proof: Write

X
) an(log n)ﬂ f _(log u)Q' ds (u)
1<% 1

A-1 du

S(u) (log uyzl _ S(u) (log u) 3

X
S(x)(logxf'-z[ (logu)* %1 g

1

(log u) k-2 du)

k+2~1

S(x) (log x)2 + O0(x(log x) )

x(log %) "% + 0(x(log x)K*4-1) . ]

$5. Completion of the Proof of Theorem 1.1

We now have the lemmas necessary for completing the
Proofs of Theorems 1.1 and 1.2 at our disposal. 1In this
section we prove Theorem 1.1.

By (23) and (26) we know that

(44) Z Z(p+id)z (1l=-p=-1i8)
1<y<T

1
= 2 Re I,(0,0,i8) + O(T™ rtey




and upon replacing s by a+it and using (16) to estimate

w(%) , We get

( El arit) = &l (ati L £ o, T 1
{46) 7 (a+it) = z (a+it) + 5 log 5= + 1 + O(T_t—r) ’
orovided that |a+it| > 1 . (The condition J|a+it| > 1

irises from the hypothesis |[s| > %» in (16).) As

‘a+it] > 1 when t e [1, T+8] , we may substitute the right-

nand side of (46) into the integrand in (45). This yields

1 T+6C, 5
I.(0,0,18) = =— 2—(a+it-1i8) 7z (a+it)x(l-a-it)dt
1 2w 1 c
T+34
1 1 2 . . t
+ > Jl 5 - (a+it) y(l=a-it) log > dt
T+S§ _.
+ o= f IL ;% (a+it)yx (l-a-it)dt
27 1 4
T+6§
+ O<Y |;(a+it)|2 Ix(l-a—it)|%§> + 0(1) .
1

By the estimates available from (11) and (21), the next-to-

last error term is

T+6
< J ta—%@+s
1

1
gt « T ~2*E

Therefore we may write



1 {T+5 .

_ N 2 . .
Ill = 5o L 7?(a+1t i) z" (a+it) ¥ (l-a-it)dt ,
T+8
_ 1 1 2 . s t
I12 = 55 L. > " (atit)x(l-a-it) log T dt ,
and
T+S§ .
_ 1 mi 2 , s
I3~ E?-Jl - ¢ (a+it) x(l-a-it)dt .
' 2 o Cn(icS)
To treat I,, we write =2-(s-i8)¢“(s) = ) ——“—0o
11 z st LS

(Re 5 > l)' so that

T+5 /

v
I,, = = )
11 2T 1 n=1

c_(18)n™* )y (1 a-it)ae .
This 1is precisely the type of integral Lemma 1.5 estimates.

We need to check, however, that Cn(ié) « n% for any

e > 0 . But

u
d

il

I oa@atd a

) « ) A(d)(fi—l)g/2
dln

C (i¢)
n dln

< ne/2 Z A(d) = nE/2 log n «x n® .

d]n

Hence we may apply Lemma 1.5. We obtain




1
Z C_(i8) + o(r?™ %)
1<n< (T+68) /2w

1
Z; C_(i3) + o(T?" /)
1<n<T/27 o

Finally, using Lemma 1.10 to estimate the sum gives

(T/ZTT)ia -1
2

S

_ lgxlog T/27

(48) I,y = 3% 15 *

)

1
+ O(T log T) + o(T2™ %) .

Write cz(s) = ) d(n)n”%

We now estimate I
: n=1

12

(Re s > 1) . Then

I =

12 27 de .

1 JT+5 v —a-it £

d(n)n x (l-a-it) log
1 2T

Since d(n) « n® , we have by Lemma 1.5,

' 1
Zz “d(n)log n + O(T®" 2 log T)
l<n< (T+8) /27

§ a-‘s
d(n)log n + O(T log T) .
l<n<T/27

From the elementary fact that

(49) } d(n) =x logx + O(x)
n<x

and Lemma 1.11, it follows that




VIV R

ket

X(log x)2 + O(x log x) .

Thus
T T, 2 a-4 .
We treat 113 in a manner analogous to 112 . Clearly
T+8 . © .
1L mi -a-it .
I,, = =— —=({ )} d(n)n x(l-a-it)dt .
13 2m Jl 4 n=1

Applying Lemma 1.5 and (49) to this yields

I LES Ez

134 1cn<(Te) /2n

(51)

1
O(T log T) + O(Ta é)

d(n) + o(r® %y

Combining (47), (48), (50), and (51), and taking

a = > [ we find that

)

4
is
. _ T (log T/27 (T/2m) -1
1,(0,0,18) = o= ( L .
T T, 2
+ H(log ﬂ) + O(T lOg T) .

Inserting this into (44) and setting a

N

gives




4

%

S

(52) 1 c(e+i8)r(l-p-i8) = s=(log 5=)°

l<y~<T

T

+ T (cos(é lO%ZT/zﬁ) - %>+ O(T log T) ,

S

where the error term is independent of & . ©Now take

2TC .
d = <
5 (Tog /27 with ¢ # 0 , ¢ real, and [c|<

The right-hand side of (52) is then

(log T/2T)
7} .

+ Z(COS 2;‘32' 1 (1og T)2) + O(T log T)

™
4T C

2 _ (sin nc)2
c

|
[
@]
(e
k
[

) + O(T log T) ,

where the error is uniform in ¢ . Thus for T large and

Tes,
2ric 2mic
(53) I tlot ;=o)L (1-p= o7 ,57)
1<y<T log.L/ZQ log T/21
_ . _ ,sin mc,2, T 2
= (1 ('——T-Tc——')‘ ) 5 (log T)” + O(T log T)

By our construction of § , any large real number is within
0(l) of an element of § . Furthermore, there are at most
O(log T) zeros of ¢¢(s) within a distance 0(1l) of

% f iT . Thus by (21), a change in T of order O0(l) in-
duces a change in the left-hand side of (53) of size at most
O(T%é+€ log T) . On the other hand, a change of 0(1l) 1in

T in the main term on the right-hand side of (53) induces a




change of at most O0O((log T)2) . As both these variations

are smaller than the error term in (53), (53) is established

for all large T . This is the first part of Theorem 1l.1l.
Finally, to prove (4) in Theorem 1.1 it suffices to
note that the Riemann hypothesis and reflection principle

imply that each summand on the left-hand side of (3) 1is

2m1ic

________)|2
log T/27

|?;(%+ iy +

- ]

6. Completion of the Proof of Theorem 1.2.

By (24) and (26) we have

(54) I e eme™a-0 = 1 uv,0
1<y<T

a-f+e

+ TITGTETET + O(T )

where yuy,v >1 , a>1, T 1is large, T ¢ 5§ , and

o1 AT ey L)
I (4,v,0) = o L+i s e sy 1-syas

Differentiating (12) according to Leibniz's rule vyields

\) —
c1ms) = T 0 s VT s
k=0 -

We substitute this into the formula for Il(u,v,O) and

Obtain




may write this as

AV, K
(K) ("l) IlK(UIVIO) ’

v
I, (w,v,0) = g
K_

0

where

a+iT ., -
v, = g [T B e )M () O sy as
' a+i

Now by Lemma 1.6

_q1yv=x T _,
I, (uv,0 = £ f Earit) e M arin) o () (avie)
: 1
+ x(1-a-it) (log 55 "7 at

ot
=

| § B
g(a+it);(“)(a+it);(K)(a+it) £37 % (10g £) V7KL dt> ,

) '
and if we use (46) to replace =—(a+it) in the main term

g

we obtain

y&wmmm*w»mmmmm T




v-k T,
T (1,0 = S f E-arit) 0 M) (arie) £ () (avit)
' 1
+ x(1-a-it) (log 52) ™" at
V=K T
+ 21 L_ 5 e @rie) £ (ari) x(1-a-it) (Log ST ae
Sy V=K (T .
+ i:%%——-.ﬁ_ = £ (arie) ¢ ) (avit) x(1-a-it) (log S5V ae
T (k) v-k dt
+ 0 f z (a+it) (a+tit)x (l-a-it) | (log t) T
1
T ' (W) (k) a-°4 v-k-1
+ 0 f Etarit) g™ (arie) 0 1) (arin)| £37 % (1og 1) at
1 : |

By (11), (20), and (21) the two error terms are easily seen

1
to be O(Ta ’é+€) . Thus we may write
(56) I, (u,v,0) =1 + T + T + O(Ta_l/2+€)
1k V0D =0 g 1k2 1x3 .
. [os)
To treat I we write E—(S)C(U)(S)C(K)(S) = ) B
1kl C n=1 -S—:

o

(Re s > 1) so that

v=-k T «© .
= =1) -a-it s t vk
T1e1 © 2T Jl nlenn >x(l a-it) (log =) dt .

In order to use Lemma 1.5 to estimate this integral we must

first show that B < n® for any € > 0 . We have




s | = § A4 ) (log e)"(log =

n d[n el(n/d) ed
< (log ™™ ¥ an@ I 1
dln e‘(n/d)
= (log n)U+K ) A(d)d(%)
d|n
<<rf/%log n)U+ 2 A(d) = nE/z(log n)U+K+l
d[n
< n€ .
Hence
_ (_q1y V=K V=K
(57) I = (-1) {, B_(log n)

l<n<t/2m ©

L
+ O(Ta_’é(log Tf)—K)

Now by Lemma 1.9

u+k+1 utk+2 ‘
g -1 tk! T T +ic+1
By = T 25109 7 + 0(2(log M.
1<n<T/27 ° (uheF2) L T T

Therefore we have from Lemma 1.11 that

+c+l
g vk _ (=DM el T T, vt
Bn(log n) - (U+K+2)1 '2W(log 2T
l<n<T/27 .

+ 0(T(log T)" MARS

This and (57) lead to




(_l)u+v+l nre

_ T u+v+2
1x1l (L+k+2) !

2T

T
(58) I s=(log

v=-K+1

1
+ 0(T(log T)W™VTL) &+ 0 (T2 2 (1og T) )

We now estimate Il'<2 . Write g(u)(s)c(K)(s) =

2 —% (Re 5 > 1) . Then

. =<_-;_>i:_‘if 1
1k 2 2T 2

o~ 8

1 n

la_ | = 7 (log @ "(log L)Y« (log m " T 1
n' 4 d 4
|n |n

= (log n)Ll+K d(n) € (log n)U+K ne/2

we have by Lemma 1.5

V=K B B )
IlK2:=( l; Ez An(log n)v K+l o (7T ’é(log T)v K+l
l<n<T/27

From Lemma 1.3

Utk

-1 le! T T  p+k+l

(59) zz A, = T 27109 37 ’
1<n<T/27

+ 0(T(log T)"*™)

It follows from this and Lemma 1.11 that

A n—a—ff>x(l—a—it)(log LRt gy
1 n 27




H+K
Ez An(log n)v K+l _ (-1) Hik! T(lo igou+v+2

1<n<T/2T (D) T 2w 09 2m
+ O(T (log Tﬂl+v+l) .
Thus
H+v
(-1) plg! T T, U+ +2 U+v+1
(60) I7.9 2 (HeRF) 1T 37 Log 77) + 0(T(log T) )
1 .
+ 0(T? % (10g T) V7KL |
We treat IlK3 in a manner analogous to IlKZ .
Clearly
v=-k T .
- (-1) mi -a-it e t\v-x
I3 = 3¢ { i z An x (1-a-it) (log =) dt .
1 n=1
Hence by Lemma 1.5
V=K _ .
(-1) Ti Z; V=K
I = A_(log n)
1x3 4 l<n<T/27 n
— 1 -—
+ 0(T? %2 (log T)V™F)
Furthermore, from Lemma 1.1l and (59) we have
Ez A (log n)v—K _ (—l)H+KU,K1 ig(log 'T)u+v+l
l<n<T/2n n (p+x+1) 1 27 2m

+ 0(T(log T)H*V) .

Thus




DM Ve i T u+v+l

(61) Tik3 © (i+x+1) ! 4 77 (1og 2T

1 -
+ 0(T(log ™) + o(1®™ % (10g T) V7%

We now combine (56), (58), (60), and (61l) and take

a = % to obtain

L (v 0) = (-1) " Vures E AN SN PR 1

1k HrVy - (p+k+1)! 2 utk+2’ 27 g

+ 0(T(log T)HTVTL
Substituting this into (55), we find that
Il(u,v,O) =
K _

RERTA (-1) 1_ 1 T phv+2

Q o Heve Kzo (u+e+1) 1 (v-K) ! G iwar)) 2pltes D

+ 0(T(log T) "™V

, we conclude

NS

Inserting this into (54) and taking a =

that

I e o™ a0 = v tlog V2
l<y<T

+ 0(T(1log T)HtVTly

where




CEE Rt R e

v K
PRI e (-1) 11
A(u,v) = (-1) " “utvt KEO G To=aT S T i)
v K
(-1) 11
’ KZO L) T (- T2 \)+K+2)> )

This proves (5) of Theorem 1.2 for T large, T € § . How-
ever, the restriction T e § 1is easily removed as it was

in the proof of Theorem 1.1 in Section I.S.

It remains to note that by the reflection principle,

if ¥ = v and the Riemann hypothesis is true, the left-

hand side of (5) is

1 \ 2
l<§<T [C(v) S in|® .

Thus (6) is true and the proof of Theorem 1.2 is complete.




