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Abstract
We use a smoothed version of the explicit formula to find an accurate pointwise
approximation to the Riemann zeta function as a product over its nontrivial zeros
multiplied by a product over the primes. We model the first product by characteristic
polynomials of random matrices. This provides a statistical model of the zeta function
which involves the primes in a natural way. We then employ the model in a heuristic
calculation of the moments of the modulus of the zeta function on the critical line.
For the second and fourth moments, we establish all of the steps in our approach
rigorously. This calculation illuminates recent conjectures for these moments based
on connections with random matrix theory.
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1. Introduction
An important theme in the study of the Riemann zeta function ζ (s) has been the
estimation of the mean values (or moments)

Ik(T ) = 1

T

∫ T

0

∣∣∣ζ(1

2
+ it

)∣∣∣2k

dt.
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These have applications to bounding the order of ζ (s) in the critical strip as well as
to estimating the possible number of zeros of the zeta function off the critical line.
Moreover, the techniques developed in these problems, in addition to being interesting
in their own right, have been used to estimate mean values of other important functions
in analytic number theory, such as Dirichlet polynomials.

In 1917 Hardy and Littlewood [9] proved that

I1(T ) ∼ log T

as T → ∞. Nine years later, in 1926, Ingham [11] showed that

I2(T ) ∼ 1

2π2
(log T )4.

There are no proven asymptotic results for Ik when k > 2, although it has long been
conjectured that

Ik(T ) ∼ ck(log T )k
2

for some positive constant ck . In several lectures starting in the late 1980s, Conrey and
Ghosh cast this in a more precise form, namely,

Ik(T ) ∼ a(k)g(k)

�(k2 + 1)
(log T )k

2
,

where

a(k) =
∏
p

((
1 − 1

p

)k2 ∞∑
m=0

(�(m + k)

m! �(k)

)2
p−m

)
, (1)

the product being taken over all prime numbers, and g(k) is an integer when k is an
integer. The results of Hardy and Littlewood and of Ingham give g(1) = 1 and g(2) = 2,
respectively. However, until recently, no one had formed a plausible conjecture for
g(k) when k > 2. Then, in the early 1990s, Conrey and Ghosh [4] conjectured that
g(3) = 42. Later, Conrey and Gonek [5] conjectured that g(4) = 24024. The method
employed by the last two authors reproduced the previous values of g(k) as well, but
it did not produce a value for g(k) when k > 4.

It was recently suggested by Keating and Snaith [14] that the characteristic poly-
nomial of a large random unitary matrix can be used to model the value distribution of
the Riemann zeta function near a large height T . Their idea was that because the zeta
function is analytic away from the point s = 1, it can be approximated at s = 1/2 + it
by polynomials whose zeros are the same as the zeros of ζ (s) close to t . These zeros
(suitably renormalized) are believed to be distributed like the eigenangles of unitary
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matrices chosen with Haar measure, so they used the characteristic polynomial

ZN (U, θ ) =
N∏

n=1

(1 − ei(θn−θ)), (2)

where the θn are the eigenangles of a random N × N unitary matrix U , to model ζ (s).
For scaling reasons, they used matrices of size N = log T to model ζ (1/2 + it) when
t is near T . They then calculated the moments of |ZN (U, θ )| and found that

EN

[|ZN (U, θ )|2k
] ∼ G2(k + 1)

G(2k + 1)
Nk2

, (3)

where EN denotes expectation with respect to Haar measure, and G(z) is the Barnes
G-function. When k = 1, 2, 3, 4, they observed that

G2(k + 1)

G(2k + 1)
= g(k)

�(k2 + 1)
,

where g(k) is the same as in the results of Hardy and Littlewood and of Ingham and in
the conjectures of Conrey and Ghosh and Conrey and Gonek given above. They then
conjectured that this holds in general. That is, they made the following conjecture.

CONJECTURE 1 (see Keating and Snaith [14])
For k fixed with Re k > −1/2,

1

T

∫ 2T

T

∣∣∣ζ(1

2
+ it

)∣∣∣2k

dt ∼ a(k)
G2(k + 1)

G(2k + 1)
(log T )k

2
,

as T → ∞, where a(k) is given by (1) and G is the Barnes G-function.

The characteristic polynomial approach has been successful in providing insight into
other important and previously intractable problems in number theory as well (see,
e.g., [16] for a survey of recent results). However, the model has the drawback that it
contains no arithmetical information—the prime numbers never appear. Indeed, they
must be inserted in an ad hoc manner. This is reflected, for example, by the absence
of the arithmetical factor a(k) in equation (3). Fortunately, in the moment problem it
was only the factor g(k), and not a(k), that proved elusive. A realistic model for the
zeta function (and other L-functions) clearly should include the primes.

In this article we present a new model for the zeta function which overcomes this
difficulty in a natural way. Our starting point is an explicit formula connecting the
zeros and the primes, from which we deduce a representation of the zeta function as a
partial Euler product times a partial Hadamard product. Making certain assumptions
about how these products behave, we then reproduce Conjecture 1. The representation
that we use is the following one.
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THEOREM 1
Let s = σ + it with σ � 0 and |t | � 2, let X � 2 be a real parameter, and let K be any
fixed positive integer. Let f (x) be a nonnegative C∞-function of mass one supported
on [0, 1], and set u(x) = Xf (X log(x/e) + 1)/x. Thus, u(x) is a function of mass one
supported on [e1−1/X, e]. Set

U (z) =
∫ ∞

0
u(x)E1(z log x) dx, (4)

where E1(z) is the exponential integral
∫ ∞
z

e−w/w dw. Then

ζ (s) = PX(s)ZX(s)

(
1 + O

( XK+2

(|s| log X)K

)
+ O(X−σ log X)

)
, (5)

where

PX(s) = exp
( ∑

n�X

�(n)

ns log n

)
, (6)

�(n) is the von Mangoldt function, and

ZX(s) = exp
(
−

∑
ρn

U
(
(s − ρn) log X

))
. (7)

The constants implied by the O-terms depend only on f and K .

We remark that Theorem 1 is unconditional—it does not depend on the assumption of
any unproved hypothesis. Moreover, it can easily be modified to accommodate weight
functions u supported on the larger interval [1, e]. Finally, as is apparent from the
proof, the second error term can be deleted if we replace PX(s) by

P̃X(s) = exp
( ∑

n�X

�(n)

ns log n
v(elog n/ log X)

)
,

where v(t) = ∫ ∞
t

u(x) dx.
To clarify (5), we temporarily assume the Riemann hypothesis and take s =

1/2 + it . We denote the nontrivial zeros of ζ (s) by ρn = 1/2 + iγn, ordered by their
height above the real axis, with γ−n = −γn. Since the support of u is concentrated
near e, U (z) is roughly E1(z), which is asymptotic to −γ − log z as z → 0. Here,
γ = 0.5772 . . . is Euler’s constant. Thus, for those ordinates γn close enough to t ,
we see that exp

(−U (i(t − γn) log X)
)

looks roughly like i(t − γn) eγ log X. We expect
the ordinates farther away not to contribute substantially to the exponential defining
ZX(s). Now, PX(s) looks roughly like

∏
p�X(1 − p−s)−1, and hence, our formula for
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ζ (1/2 + it) looks roughly like∏
p�X

(1 − p−1/2−it )−1
∏
γn|t−γn|<1/ log X

(
i(t − γn)eγ log X

)
. (8)

This formula is a hybrid consisting of a truncated Euler product and (essentially)
a truncated Hadamard product, with the parameter X mediating between them. Near
height T we are approximating part of the zeta function by a polynomial of degree
about log T/ log X. The rest of the zeta function, which comes from the zeros we have
neglected, is approximated by the finite Euler product. Formally, when we take X

large, we reduce the number of zeros used to approximate zeta but make up for it with
more primes, and when we take X small, we approach the previous model (2). Note,
however, that in order for the error terms in (5) to be smaller than the main term, it
is necessary to work in an intermediate regime, where both the zeros and the primes
contribute.

To see how to use our formula to model the zeta function and as a test case, we
heuristically calculate Ik(T ). The new model is more elaborate than the original one,
so more work is required. Nevertheless, the idea is straightforward. The 2kth moment
of |ζ (1/2 + it)| is asymptotic to the 2kth moment of |PX(1/2 + it) ZX(1/2 + it)|. We
argue that when X is not too large relative to T , the 2kth moment of this product splits
as the product of the moments. We call this the splitting conjecture.

CONJECTURE 2 (Splitting conjecture)
Let X and T → ∞ with X = O((log T )2−ε). Then for k > −1/2, we have

1

T

∫ 2T

T

∣∣∣ζ(1

2
+ it

)∣∣∣2k

dt ∼
(

1

T

∫ 2T

T

∣∣∣PX

(1

2
+ it

)∣∣∣2k

dt

)
×

(
1

T

∫ 2T

T

∣∣∣ZX

(1

2
+ it

)∣∣∣2k

dt

)
.

Our motivation for making the splitting conjecture is based on the following obser-
vation relating to (8). PX(1/2 + it) is approximately given by a product of terms
associated with primes p ≤ X. Each of these terms is a periodic function of t with
period at least 2π/ log X. On the other hand, ZX(1/2 + it) vanishes at the nontrivial
zeros and so oscillates on the scale 2π/ log |t |. If X = o(T ), then ZX(1/2 + it) can
thus be thought of as oscillating much faster than PX(1/2 + it) (cf., e.g., Figures 2
and 3 in the appendix), and this separation of scales then suggests that they contribute
independently to the moments in the limit as T → ∞. When k = 1 and k = 2, we can
prove this if X = O((log T )2−ε) (see Corollary 1).

In Section 3 we calculate the moments of P rigorously and establish the following
theorem.
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THEOREM 2
Let 1/2 � c < 1, let ε > 0, and let k > 0 be any positive real number. Suppose that
X and T → ∞ and X = O

(
(log T )1/(1−c+ε)

)
. Then we have

1

T

∫ 2T

T

|PX(σ + it)|2k dt = a(k, σ )FX(k, σ )

(
1 + Ok

( 1

log X

))
uniformly for c � σ � 1, where

a(k, σ ) =
∏
p

{(
1 − 1

p2σ

)k2 ∞∑
m=0

dk(pm)2

p2mσ

}
(9)

and

FX(k, σ ) =
{

ζ (2σ )k
2
e−k2E1((2σ−1) log X) if σ > 1/2,

(eγ log X)k
2

if σ = 1/2.

Here, E1 is the exponential integral, and γ = 0.5772 . . . is Euler’s constant.

Note that a(k, 1/2) is the same as a(k) in (1).
In Section 4 we conjecture an asymptotic estimate for

∫ 2T

T
|ZX(1/2 + it)|2k dt

using random matrix theory. We introduce random matrix theory in the following
way. The statistical distribution of the ordinates γn is conjectured to coincide with that
of the eigenangles θn of N ×N random unitary matrices chosen with Haar measure for
some N (see, e.g., [17], [18], and [15]). The choice of N requires consideration. The
numbers γn are spaced 2π/ log T apart on average, whereas the average spacing of the
θn is 2π/N , and so we take N to be the greatest integer less than or equal to log T .
We therefore conjecture that the 2kth moment of |ZX(1/2 + it)|, when averaged over t

around T , is asymptotically the same as |ZX(1/2 + it)|2k when the γn are replaced by
θn and averaged over all unitary matrices with N as specified above. We perform this
random matrix calculation in Section 4 (see Theorem 4, which is stated there) and so
obtain the following conjecture.

CONJECTURE 3
Suppose that X, T → ∞ with X = O((log T )2−ε). Then for any fixed k > −1/2, we
have

1

T

∫ 2T

T

∣∣∣ZX

(1

2
+ it

)∣∣∣2k

dt ∼ G2(k + 1)

G(2k + 1)

( log T

eγ log X

)k2

.

We actually expect Conjecture 3 to hold for a much larger range of X, but the correct
bound on the size of X with respect to T is unclear.
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We note that this asymptotic formula coincides with that in (3), where N is taken to
be on the order of log T/eγ log X. This is consistent with the fact that the polynomial
in (8) is of about this degree. Alternatively, the mean density of eigenvalues is N

divided by 2π , and this is comparable to the mean density of the ordinates of the zeros
when multiplied by eγ log X, as they are in (8).

Combining the result of Theorem 2 with the formula in Conjecture 3 and using
the splitting conjecture, we recover precisely the conjecture put forward by Keating
and Snaith [14]. Note that, as must be the case, all X-dependent terms cancel out.

In Section 5, we prove the following theorem.

THEOREM 3
Let ε > 0, and let X and T → ∞ with X = O((log T )2−ε). Then for k = 1 and k = 2,
we have

1

T

∫ 2T

T

∣∣∣ζ(1

2
+ it

)
PX

(1

2
+ it

)−1∣∣∣2k

dt ∼ G2(k + 1)

G(2k + 1)

( log T

eγ log X

)k2

.

Since ζ (1/2 + it)PX(1/2 + it)−1 = ZX(1/2 + it)(1 + o(1)) for t ∈ [T , 2T ], it follows
from this that Conjecture 3 holds when k = 1 and k = 2. Moreover, combining
Theorem 3 with our estimate for

1

T

∫ 2T

T

∣∣∣PX

(1

2
+ it

)∣∣∣2k

dt

from Theorem 2, we also see that Conjecture 2 holds for k = 1 and k = 2. Thus, we
obtain the following corollary.

COROLLARY 1
Conjectures 2 and 3 are true for k = 1 and k = 2.

Clearly, our model can be adapted straightforwardly to other L-functions (see [13]). It
can also be used to reproduce other moment results and conjectures, such as those given
by Gonek [7] and by Hughes, Keating, and O’Connell [10] concerning derivatives of
the Riemann zeta function at the zeros of the zeta function. We also expect it to provide
further insight into the connection between prime numbers and the zeros of the zeta
function. It would be particularly interesting to determine whether the model can be
extended to capture lower-order terms in the asymptotic expansions of the moments
of ζ (1/2 + it) and other L-functions (cf. [3]).

2. Proof of Theorem 1
We begin the proof by stating a smoothed form of the explicit formula due to Bombieri
and Hejhal [2, page 837].
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LEMMA 1
Let u(x) be a real, nonnegative C∞-function with compact support in [1, e], and let u

be normalized so that if

v(t) =
∫ ∞

t

u(x) dx,

then v(0) = 1. Let

ũ(z) =
∫ ∞

0
u(x)xz−1 dx

be the Mellin transform of u. Then for s not a zero or pole of the zeta function, we
have

−ζ ′

ζ
(s) =

∞∑
n=2

�(n)

ns
v(elog n/ log X) −

∑
ρ

ũ(1 − (s − ρ) log X)

s − ρ
+ ũ(1 − (s − 1) log X)

s − 1

−
∞∑

m=1

ũ(1 − (s + 2m) log X)

s + 2m
, (10)

where the sum over ρ runs over all the nontrivial zeros of the zeta function.

This lemma is proved in a familiar way, beginning with

1

2π i

∫
(c)

ζ ′

ζ
(z + s )̃u(1 + z log X)

dz

z
,

where the integral is over the vertical line Re z = c = max{2, 2 − Re s}.
The support condition on u implies that v(elog n/ log X) = 0 when n > X, so the

sum over n is finite. Furthermore, if |Im z| > 2, say, then by integrating ũ by parts K

times, we see that

|̃u(z)| � max
x

|u(K)(x)|
∣∣∣ �(z)

�(z + K)

∣∣∣ (eRe z+K + 1)

� max
x

|u(K)(x)| emax{Re z+K,0}

(1 + |z|)K (11)

for any positive integer K . Thus, the sums over ρ and m on the right-hand side of (10)
converge absolutely, so long as s �= ρ and s �= −2m. This, in fact, is the reason we
require smoothing.

Next, we integrate (10) along the horizontal line from s0 = σ0 + it0 to +∞,
where σ0 � 0 and |t0| � 2. If the line does not pass through a zero, then on the
left-hand side we obtain − log ζ (s0). We choose the branch of the logarithm here so
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that limσ→∞ log ζ (s) = 0. If the line of integration does pass through a zero, then
we define log ζ (σ + it) = limε→0+(1/2)

(
log ζ (σ + i(t + ε)) + log ζ (σ + i(t − ε))

)
.

Recalling the definition of U (z) in (4), we see that∫ ∞

s0

ũ(1 − (s − z) log X)

s − z
ds =

∫ ∞

0
u(x)E1

(
(s0 − z) log X log x

)
dx

= U
(
(s0 − z) log X

)
, (12)

provided that s0 −z is not real and negative (so as to avoid the branch cut of E1). If it is,
then we use the convention that U ((s0 − z) log X) = limε→0+(1/2)

(
U ((s0 − z) log X +

iε) + U ((s0 − z) log X − iε)
)
. Note that the logarithms in (12) are both positive since

the support of u is in [1, e] and X � 2. It therefore follows from (10) that

log ζ (s0) =
∞∑

n=2

�(n)

ns0 log n
v(elog n/ log X) −

∑
ρ

U
(
(s0 − ρ) log X

)
+U

(
(s0 − 1) log X

) −
∞∑

m=1

U
(
(s0 + 2m) log X

)
. (13)

The interchange of summation and integration in the sums is justified by absolute
convergence. This representation holds for all points in Re s � 0 not equal to the pole
or one of the zeros of the zeta function.

Now suppose that u(x) = Xf (X log(x/e)+1)/x, where f is C∞, real, nonnegative,
has total mass one, and is supported on [0, 1]. Since maxx |f (K)(x)| is bounded and
independent of X, we see that maxx |u(K)(x)| �K XK+1. It therefore follows from
(11) that

ũ(s) �K

emax{σ,0}XK+1

(1 + |s|)K .

From this, (12), and since |t0| � 2, we find that if r is real, then

U
(
(s0 − r) log X

) =
∫ ∞

s0

ũ(1 − (s − r) log X)

s − r
ds

�K

XK+1

(log X)K

∫ ∞

σ0

Xmax{r−σ, 0}

|(σ − r) + it0|K+1
dσ

�K

XK+1+max{r−σ0, 0}

(log X)K

∫ ∞

σ0

1

|(σ − r) + it0|K+1
dσ

�K

XK+1+max{r−σ0, 0}

(|s0 − r| log X)K
.

In particular, for any fixed positive integer K , we have that

U
(
(s0 − 1) log X

) �K

XK+1+max{1−σ0, 0}

(|s0| log X)K
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and, since σ0 � 0, that

∞∑
m=1

U
(
(s0 + 2m) log X

) �K

XK+1

(log X)K

∞∑
m=1

1

|s0 + 2m|K+1

�K

XK+1

(|s0| log X)K
.

Inserting these estimates into (13) and replacing s0 by s, we find that

log ζ (s) =
∞∑

n=2

�(n)

ns log n
v(elog n/ log X) −

∑
ρ

U
(
(s − ρ) log X

) + O
( XK+2

(|s| log X)K

)
for σ � 0, |t | � 2, and K any fixed positive integer. Exponentiating both sides, we
obtain

ζ (s) = P̃X(s)ZX(s)

(
1 + O

( XK+2

(|s| log X)K

))
, (14)

where

P̃X(s) = exp
( ∑

n�X

�(n)

ns log n
v(elog n/ log X)

)
and

ZX(s) = exp
(
−

∑
ρ

U
(
(s − ρ) log X

))
.

We now show that replacing P̃X(s) by

PX(s) = exp
( ∑

n�X

�(n)

ns log n

)
only introduces a small error term into (14). To see this, note that v((elog n/ log X)) = 1
for n � X1−1/X because the support of u(x) is in [e1−1/X, e]. Therefore,

P̃X(s)

PX(s)
= exp

( ∑
X1−1/X�n�X

�(n)

ns log n

(
v(elog X/ log n) − 1

))

� exp
( ∑

X1−1/X�n�X

1

nσ

)
� exp (X−σ log X).

This completes the proof of Theorem 1, provided that s is not a nontrivial zero of
the zeta function. To remove this restriction, we recall the formula

E1(z) = −log z − γ −
∞∑

m=1

(−1)mzm

m! m
,
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where |arg z| < π , log z denotes the principal branch of the logarithm, and γ is Euler’s
constant. From this and (4), we observe that we may interpret exp(−U (z)) to be
asymptotic to Cz for some constant C as z → 0. Thus, both sides of (5) vanish at the
zeros. �

3. Proof of Theorem 2
We prove Theorem 2 by first proving a couple of lemmas.

LEMMA 2
Let k � 0, let 1/2 � c < 1 be arbitrary but fixed, and suppose that 2 � X �
(log T )1/(1−c+ε), where ε > 0 is also fixed. Then

1

T

∫ 2T

T

|PX(σ + it)|2k dt = a(k, σ )
∏
p�X

(
1 − 1

p2σ

)−k2(
1 + Ok(X−1/2+ε)

)
uniformly for c � σ � 1, where a(k, σ ) is given by (9).

Proof
Raising PX(s) to the kth power, where PX(s) is defined in (6), we have

PX(s)k = exp
(
k

∑
n�X

�(n)

ns log n

)
=

∏
p�X

exp
(

log (1 − p−s)−k − k
∑
m

pm>X

1

mpms

)
.

Thus, if we write

PX(s)k =
∞∑

n=1

βk(n)

ns
, (15)

then we immediately see that βk(n) is a multiplicative function of n, 0 � βk(n) � dk(n)
for all n, where dk(n) is the kth divisor function; βk(pm) = dk(pm) if pm � X; and
βk(n) = 0 if p | n for any prime p > X.

Let S(X) denote the set of X-smooth numbers; that is, S(X) = {n : p | n =⇒
p � X}. We truncate the sum in (15) at T θ , where θ is a small positive number to be
chosen later, and we obtain

PX(s)k =
∑

n∈S(X)
n�T θ

βk(n)

ns
+ O

( ∑
n∈S(X)
n>T θ

βk(n)

nσ

)
.
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For ε > 0 fixed and σ � c, the sum in the O-term is

�
∑
n>T θ

n∈S(X)

( n

T θ

)ε dk(n)

nσ
� T −εθ

∑
n∈S(X)

dk(n)

nc−ε

= T −εθ
∏
p�X

(1 − pε−c)−k = T −εθ exp

(
O

(
k

∑
p�X

pε−c
))

� T −εθ exp

(
O

( k X1−c+ε

(1 − c + ε) log X

))
.

Now suppose that 2 � X � (log T )1/(1−c+ε) with the same ε. Then this is

� T −εθ exp

(
O

( k log T

log log T

))
�k T −εθ/2.

Thus, we find that

PX(s)k =
∑

n∈S(X)
n�T θ

βk(n)

ns
+ Ok(T −εθ/2). (16)

By the classical mean value theorem for Dirichlet polynomials, we see that∫ 2T

T

∣∣∣ ∑
n�T θ

n∈S(X)

βk(n)

nσ+it

∣∣∣2
dt = (

T + O(T θ log T )
) ∑

n�T θ

n∈S(X)

βk(n)2

n2σ
.

Using the method above, we may extend the sum on the right-hand side to infinity
with an error again no larger than Ok(T −εθ/2). Thus, taking θ = 1/2, say, we find that

1

T

∫ 2T

T

∣∣∣ ∑
n�T 1/2

n∈S(X)

βk(n)

nσ+it

∣∣∣2
dt =

∑
n∈S(X)

βk(n)2

n2σ

(
1 + Ok(T −ε/4)

)
.

Therefore, from (16) and the Cauchy-Schwarz inequality, it follows that

1

T

∫ 2T

T

|PX(σ + it)|2k dt = (
1 + Ok(T −ε/4)

) ∑
n∈S(X)

βk(n)2

n2σ
.

Since the βk(n) are multiplicative and satisfy 0 � βk(n) � dk(n) and βk(pm) =
dk(pm) if pm � X, we have

∏
p�X

( ∑
0�m�Np

dk(pm)2

p2σm

)
�

∑
n∈S(X)

βk(n)2

n2σ
�

∏
p�X

( ∞∑
m=0

dk(pm)2

p2σm

)
,
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where Np = [log X/ log p], the integer part of log X/ log p. Observe that the ratio of
the left-hand side to the right-hand side is

∏
p�X

(
1 −

∑
m�Np+1 dk(pm)2p−2σm∑

m�0 dk(pm)2p−2σm

)
=

∏
p�X

(
1 + O

( ∑
m�Np+1

dk(pm)2

p2σm

))

=
∏
p�X

(
1 + O(p(Np+1)(ε−2σ ))

)
, (17)

where we have used the bound dk(n) � nε/2 and summed the geometric series. We
split the product over primes into two parts, depending on whether 2 � p �

√
X or√

X < p � X. In the first, we use the estimate Np + 1 > log X/(log p), and in the
second, we use Np = 1. We conclude that (17) equals∏

p�
√

X

(
1 + O(Xε−2σ )

) ×
∏

√
X<p�X

(
1 + O(p2(ε−2σ ))

) = 1 + O(X−1/2+ε)

for σ � 1/2. Hence,

∑
n∈S(X)

βk(n)2

n2σ
=

∏
p�X

( ∞∑
m=0

dk(pm)2

p2mσ

)(
1 + Ok(X−1/2+ε)

)
.

Writing the product here as

∏
p�X

((
1 − 1

p2σ

)k2 ∞∑
m=0

dk(pm)2

p2mσ

) ∏
p�X

(
1 − 1

p2σ

)−k2

,

we note that the first of the two factors may be extended over all the primes because
for σ � 1/2,

∏
p>X

((
1 − 1

p2σ

)k2 ∞∑
m=0

dk(pm)2

p2mσ

)
=

∏
p>X

(
1 + Ok

( 1

p4σ

))

= 1 + Ok

( X−1

log X

)
.

Thus, by the definition of a(k, σ ) in (9), we find that

∑
n∈S(X)

βk(n)2

n2σ
= a(k, σ )

∏
p�X

(
1 − 1

p2σ

)−k2(
1 + Ok(X−1/2+ε)

)
,

and this completes the proof of Lemma 2. �
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LEMMA 3
If k is a real number, then∏

p�X

(
1 − 1

p2σ

)−k2

= FX(k, σ )

(
1 + Ok

( 1

log X

))

uniformly for σ � 1/2, where

FX(k, σ ) =
{

ζ (2σ )k
2
e−k2E1((2σ−1) log X) if σ > 1/2,

(eγ log X)k
2

if σ = 1/2,

and E1 is the exponential integral.

Proof
Mertens’s theorem asserts that∏

p�X

(
1 − 1

p

)−1
= eγ log X

(
1 + O

( 1

log X

))
.

Raising both sides to the k2th power establishes the result when σ = 1/2. When
σ > 1/2, we see that∏

p�X

(
1 − 1

p2σ

)−1
= ζ (2σ ) exp

( ∑
p>X

log
(

1 − 1

p2σ

))
.

By the prime number theorem in the form π (x) = x/ log x + O(x/(log x)A), we find
that ∑

p>X

log
(

1 − 1

p2σ

)
= −

∑
p>X

(
1

p2σ
+ O

( 1

p4σ

))

= −
∫ ∞

X

(
1

u2σ
+ O

( 1

u4σ

))
du

log u
+ O

( 1

(log X)A

)
= −E1

(
(2σ − 1) log X

) + O
( 1

(log X)A

)
.

Hence,∏
p�X

(
1 − 1

p2σ

)−k2

= ζ (2σ )k
2

exp
( −k2E1((2σ − 1) log X)

)(
1 + Ok

( 1

log X

))
,

as asserted. �

The proof of Theorem 2 now follows immediately from Lemmas 2 and 3. �
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4. Support for Conjecture 3
In this section we give heuristic arguments supporting Conjecture 3, which we restate
as

1

T

∫ 2T

T

∣∣∣ZX

(1

2
+ it

)∣∣∣2k

dt ∼ G2(k + 1)

G(2k + 1)

( log T

eγ log X

)k2

as T → ∞, where ZX(s) is given by (7).
We assume the Riemann hypothesis. Since Re E1(ix) = − Ci(|x|) for x ∈ R,

where

Ci(z) = −
∫ ∞

z

cos w

w
dw,

we find that

1

T

∫ 2T

T

∣∣∣ZX

(1

2
+it

)∣∣∣2k

dt = 1

T

∫ 2T

T

∏
γn

exp
(

2k

∫ e

1
u(y) Ci(|t − γn| log y log X) dy

)
dt,

(18)

where u(y) is a smooth nonnegative function supported on [e1−1/X, e] and of total
mass one. Since the terms in the exponent decay as |γn − t | increases, this product is
effectively a local statistic. That is, the integrand depends only on those zeros close
to t . In recent years, considerable evidence has been amassed suggesting that the zeros
of the Riemann zeta function around height T are distributed like the eigenangles of
unitary matrices of size log T chosen with Haar measure (see, e.g., the survey article
[15]). We therefore model the right-hand side of (18) by replacing the ordinates γn

by the eigenangles of an N × N unitary matrix and averaging over all such matrices
with Haar measure, where N = [log T ]. Thus, the right-hand side of (18) should be
asymptotic to

EN

[ N∏
n=1

exp
(

2k

∫ e

1
u(y) Ci(|θn| log y log X) dy

)]
,

where the θn are the eigenangles of the random matrix and EN [·] denotes the expecta-
tion with respect to Haar measure. However, since the eigenangles of a unitary matrix
are naturally 2π-periodic objects, it is convenient to periodicize our function, which
we do by defining

φ(θ ) = exp

(
2k

∫ e

1
u(y)

( ∞∑
j=−∞

Ci(|θ + 2πj | log y log X)
)

dy

)
. (19)

It follows from our proof of Lemma 5 that the terms with j �= 0, which make the
random matrix calculation much easier, only contribute �k 1/ log X to φ(θ ) when
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−π < θ � π . Hence, they do not affect the accuracy of the model. Thus, we argue
that

1

T

∫ 2T

T

∣∣∣ZX

(1

2
+ it

)∣∣∣2k

dt ∼ EN

[ N∏
n=1

φ(θn)
]
. (20)

The remainder of this section is devoted to the proof of the following theorem.

THEOREM 4
Let φ(θ ) be defined as in (19). Then for fixed k > −1/2 and X � 2, we have, as
N → ∞,

EN

[ N∏
n=1

φ(θn)
]

∼ (G(k + 1))2

G(2k + 1)

( N

eγ log X

)k2(
1 + Ok

( 1

log X

))
.

Remark 1
The random matrix model of Keating and Snaith [14] for the moments of the Riemann
zeta function involves the characteristic polynomial (2). Note that if we set M =
N/(eγ log X), then by (3) we have

EM

[|ZM (U, θ )|2k
] ∼ (G(k + 1))2

G(2k + 1)

( N

eγ log X

)k2

,

which is the same answer we find in Theorem 4. This is easily explained by the fact
that in our model the eigenangles are multiplied by eγ log X, and so their mean density
is M/2π . Given that for random matrices the mean density is the only parameter in
the asymptotics of local eigenvalue statistics, it is natural that the result should be the
same as for unitary matrices of dimension M since their eigenangles have precisely
this mean density.

Proof
Heine’s identity [20] evaluates the expected value in (20) as a Toeplitz determinant

EN

[ N∏
n=1

φ(θn)
]

= det[φi−j ]1�i,j�N, (21)

where

φn = 1

2π

∫ π

−π

φ(θ )e−inθ dθ
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is the nth Fourier coefficient of φ(θ ). The Toeplitz symbol φ(θ ) is singular since it
is zero when θ = 0. Thus, the asymptotic evaluation of this determinant requires
knowledge of the Fisher-Hartwig conjecture in a form proved by Basor [1].

We factor out the singularity in φ(θ ) by writing

φ(θ ) = b(θ )(2 − 2 cos θ )k,

where

b(θ ) = exp

(
− k log(2 − 2 cos θ ) + 2k

∫ e

1
u(y)

( ∞∑
j=−∞

Ci(|θ + 2πj | log y log X)
)

dy

)
.

(22)

As we see in the proof of Lemma 5, the logarithmic singularities in the exponent on
the right-hand side cancel. Thus, b(θ ) never equals zero. The asymptotic behavior of
the Toeplitz determinant with these symbols has been determined by Basor [1]. She
showed that if k > −1/2, then

det[φi−j ]1�i,j�N ∼ E exp
( N

2π

∫ π

−π

log b(θ ) dθ
)
Nk2

(23)

as N → ∞, where the constant E is given by

E = exp

( ∞∑
n=1

n
( 1

2π

∫ π

−π

log b(θ )e−inθ dθ
)2

)
b(0)−k G2(k + 1)

G(2k + 1)
.

To evaluate E, we need to know b(0) and the Fourier coefficients of log b(θ ).
These are given by the next two lemmas.

LEMMA 4
Let b(θ ) be given by (22). Then

1

2π

∫ π

−π

log b(θ )e−inθ dθ =

⎧⎪⎨⎪⎩
0 if n = 0,

k

n
v(en/ log X) if n � 1,

where

v(t) =
∫ ∞

t

u(y) dy.

LEMMA 5
Let b(θ ) be given by (22), and let u(x) have total mass one with support in [e1−1/X, e].
Then

b(0) = exp
(
2k(log log X + γ )

)(
1 + Ok

( 1

log X

))
.
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Before proving the lemmas, we complete the proof of Theorem 4. Since u is a
nonnegative function supported in [e1−1/X, e] of total mass one, we see that

v(t) =
⎧⎨⎩1 if t � e1−1/X,

0 if t � e,

and 0 � v(t) � 1 if t ∈ [e, e1−1/X]. Thus,

∞∑
n=1

1

n

(
v
(

exp
( n

log X

)))2

=
∑

n�(1−1/X) log X

1

n
+ O

( ∑
(1−1/X) log X<n�log X

1

n

)
.

The first sum on the right-hand side equals log log X + γ + O (1/ log X), and the
second is O(X−1). Hence, we find that

∞∑
n=1

1

n
v

(
exp

( n

log X

))2

= log log X + γ + O
( 1

log X

)
.

Using this and the value of b(0) given by Lemma 5, we obtain

E = exp
( −k2(log log X + γ )

) (G(k + 1))2

G(2k + 1)

(
1 + Ok

( 1

log X

))
.

The proof of Theorem 4 is completed by combining this, the case n = 0 of
Lemma 4, (21), and (23). �

Proof of Lemma 4
We evaluate

1

2π

∫ π

−π

log b(θ )e−inθ dθ,

where b(θ ) is given by (22). After some straightforward algebra, we see that this equals

−k

π

∫ π

0
log(2 − 2 cos θ ) cos nθ dθ + 2k

π

∫ e

1
u(y)

( ∫ ∞

0
Ci(θ log y log X) cos nθ dθ

)
dy.

(24)

When n = 0, the first integral vanishes by symmetry, and the second vanishes
because ∫ ∞

0
Ci(θ ) dθ = 0.
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This is a special case of the formula (see Gradshteyn and Ryzhik [8, page 645])

∫ ∞

0
Ci(Aθ ) cos nθ dθ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− π

2n
if A < n,

− π

4n
if A = n,

0 otherwise,

(25)

for A > 0, which we require in (27) as well. Thus, both terms in (24) vanish, and
Lemma 4 holds in this case.

When n is a positive integer, the first term in (24) equals

− k

π

∫ π

0
log(2 − 2 cos θ ) cos nθ dθ = − k

π

∫ π

0

(
log 4 + 2 log

(
sin

θ

2

))
cos nθ dθ

= −4k

π

∫ π/2

0
log(sin θ ) cos 2nθ dθ

= k

n
(26)

(see Gradshteyn and Ryzhik [8, page 584]). The second term in (24) is, by (25),

2k

π

∫ e

1
u(y)

( ∫ ∞

0
Ci(θ log y log X) cos nθ dθ

)
dy = − k

n

∫ en/ log X

1
u(y) dy

= k

n

(
v(en/ log X) − 1

)
. (27)

Inserting (27) and (26) into (24), we find that for n > 0, an integer

1

2π

∫ π

−π

log b(θ )e−inθ dθ = k

n
v(en/ log X).

This completes the proof of Lemma 4. �

Proof of Lemma 5
We calculate b(0), where

b(θ ) = exp

(
− k log(2 − 2 cos θ ) + 2k

∫ e

1
u(y)

( ∞∑
j=−∞

Ci(|θ + 2πj | log y log X)
)

dy

)
.

(28)
Using the expansion

Ci(x) = γ + log x + O(x2)
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for x > 0, we find that the first term in the exponent and the j = 0 term combined
contribute

−k log(2 − 2 cos θ ) + 2k

∫ e

1
u(y) Ci(|θ | log y log X) dy

= 2k
{ −log(|θ |) + O(θ2) +

∫ e

1
u(y)

(
log(|θ | log y log X) + γ + OX(θ2)

)
dy

}
= 2k

{
γ + log log X +

∫ e

1
u(y) log log y dy + OX(θ2)

}
since u(x) has total mass one. Moreover, u(x) is supported in [e1−1/X, e], so we have∫ e

1
u(y) log log y dy � 1

X
.

Therefore, we find that

lim
θ→0

{ −k log(2 − 2 cos θ ) + 2k

∫ e

1
u(y) Ci(|θ | log y log X) dy

}
(29)

= 2k(log log X + γ ) + Ok

( 1

X

)
.

Now consider the contribution of the terms with j �= 0 in (28). An integration by
parts shows that

Ci(x) = −
∫ ∞

x

cos t

t
dt = sin x

x
+ O

( 1

x2

)
for x positive and � 1. Thus, since (1 − 1/X) log X � log y log X � log X, X > 2,
and θ ∈ (−π, π ], we see that

∞∑
j=−∞
j �=0

Ci(|θ + 2πj | log y log X)

= 1

log y log X

∞∑
j=−∞
j �=0

sin(|θ + 2πj | log y log X)

|θ + 2πj | + O
( 1

(log X)2

)
.

In a standard way (via Abel partial summation), one can show that the series on the
right-hand side is uniformly convergent for y ∈ [e1−1/X, e], except possibly in the
neighborhood of a finite number of points, and boundedly convergent over the whole
interval. Moreover, the series may be bounded independently of θ ∈ (−π, π ]. We may
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therefore multiply by the continuous function u(y) and integrate to find that∫ e

1
u(y)

( ∞∑
j=−∞
j �=0

Ci(|θ + 2πj | log y log X)
)

dy � 1

log X

∫ e

1

u(y)

log y
dy + O

( 1

(log X)2

)

� 1

log X

uniformly for θ ∈ (−π, π ]. Combining this and (29) with (28), we obtain

b(0) = exp

(
2k(log log X + γ ) + Ok

( 1

log X

))
= exp

(
2k(log log X + γ )

)(
1 + Ok

( 1

log X

))
.

This completes the proof of Lemma 5. �

5. Proof of Theorem 3
We begin with a lemma.

LEMMA 6
Define

QX(s) =
∏

p�
√

X

(
1 − 1

ps

) ∏
√

X<p�X

(
1 − 1

ps
+ 1

2p2s

)
and

RX(s) =
∏

p�
√

X

(
1 − 2

ps
+ 1

p2s

) ∏
√

X<p�X

(
1 − 2

ps
+ 2

p2s

)
.

Then for X sufficiently large, we have

PX(s)−1 = QX(s)

(
1 + O

( 1

log X

))
(30)

and

PX(s)−2 = RX(s)

(
1 + O

( 1

log X

))
(31)

uniformly for σ � 1/2.
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Proof
By (6), we have

PX(s) =
∏
p�X

exp
( ∑

1�j�Np

1

j pjs

)
,

where Np = [log X/ log p], the integer part of log X/ log p. The primes
√

X < p � X

have Np = 1, so a straightforward calculation shows that

PX(s)QX(s) = exp

(
−

∑
p�

√
X

∑
j>Np

1

jpjs
+

∑
√

X<p�X

( 1

ps
−

∞∑
j=1

1

j

( 1

ps
− 1

2p2s

)j))
.

The argument of the exponential is clearly

�
∑

p�
√

X

1

pσ (Np+1) +
∑

√
X<p�X

1

p3σ
.

Since Np + 1 > log X/ log p, we have pNp+1 > X. Thus, for σ � 1/2, this is

� X−1/2
∑

p�
√

X

1 +
∑

√
X<p�X

1

p3/2
� 1

log X
.

It follows that

PX(s)QX(s) = 1 + O
( 1

log X

)
,

which is equivalent to (30).
To prove (31), we square QX(s) and note that for X large enough,∏
√

X<p�X

(
1 − 1

ps
+ 1

2p2s

)2
=

∏
√

X<p�X

(
1 − 2

ps
+ 2

p2s
+ O

( 1

p3σ

))

=
∏

√
X<p�X

(
1 − 2

ps
+ 2

p2s

)(
1 + O

( 1

p3σ

))

=
∏

√
X<p�X

(
1 − 2

ps
+ 2

p2s

)(
1 + O

( 1

log X

))
.

The approximation in (31) now follows.
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We now prove Theorem 3 when k = 1. In this case, G2(k + 1)/G(2k + 1) =
G2(2)/G(3) = 1, and by Lemma 6 we may replace PX(1/2 + it)−1 by QX(1/2 + it).
Thus, it suffices to show that for X → ∞ with X � (log T )2−ε ,

1

T

∫ 2T

T

∣∣∣ζ(1

2
+ it

)
QX

(1

2
+ it

)∣∣∣2
dt = log T

eγ log X

(
1 + O

( 1

log X

))
.

Let S(X) = {n : p | n =⇒ p � X} be the set of X-smooth numbers, and write

QX

(1

2
+ it

)
=

∑
n∈S(X)

α−1(n)

n1/2+it
,

where α−1(n) = µ(n), the Möbius function, if n ∈ S(
√

X), α−1(p) = µ(p) for all
p � X, and α−1(n) � d(n) for all n ∈ S(X). As in (16), if the ε above is sufficiently
small, then we find that

QX

(1

2
+ it

)
=

∑
n�T θ

n∈S(X)

α−1(n)

n1/2+it
+ O(T −θε/10). (32)

(The exponent 1/10 in place of 1/2 is accounted for by the slight difference between
the conditions X � (log T )2−ε and X � (log T )1/(1/2+ε).) Now for m and n coprime
positive integers, we have the formula∫ 2T

T

∣∣∣ζ(1

2
+ it

)∣∣∣2(m

n

)it
dt = T√

mn

(
log

( T

2πmn

)
+ 2γ − 1

)
+ O

(
mnT 8/9(log T )6

)
(see, e.g., [12, Corollary 24.5]). Using this and the main term in (32) with θ = 1/20,
we find that

1

T

∫ 2T

T

∣∣∣ζ(1

2
+ it

)∣∣∣2∣∣∣ ∑
n�T 1/20

n∈S(X)

α−1(n)

n1/2+it

∣∣∣2
dt

=
∑

m,n�T 1/20

m,n∈S(X)

α−1(m)

m

α−1(n)

n
(m, n)

{
log

(T (m, n)2

2πmn

)
+ 2γ − 1

+O
( mn

(m, n)2
T −1/9(log T )6

)}
, (33)

where (m, n) denotes the greatest common divisor of m and n. The O-term contributes

� T −1/9(log T )6
( ∑

n�T 1/20

d(n)
)2

� T −1/90(log T )8.
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Grouping together those m and n for which (m, n) = g, replacing m by gm and n by
gn, and then using the inequality d(ab) � d(a)d(b), we find that

∑
m,n�T θ

m,n∈S(X)

α−1(m)

m

α−1(n)

n
(m, n)

(
log

( (m, n)2

2πmn

)
+ 2γ − 1

)

�
∑

g∈S(X)

1

g

∑
m,n∈S(X)

(m,n)=1

d(gm)d(gn) log mn

mn
�

∑
g∈S(X)

d(g)2

g

( ∑
n∈S(X)

d(n) log n

n

)2
.

If we write f (σ ) = ∑
n∈S(X) d(n)n−σ = ∏

p�X(1 − p−σ )−2, then the sum over n

is −f
′
(1), which, by logarithmic differentiation, is 2f (1)

∑
p�X log p/(p − 1) �

f (1)(log X) � (log X)3. We also have
∑

g∈S(X) d(g)2g−1 � ∏
p�X(1 − p−1)−4 �

(log X)4, and so the expression above is � (log X)10.
Thus far, then, we have

1

T

∫ 2T

T

∣∣∣ζ(1

2
+ it

)∣∣∣2∣∣∣ ∑
n�T 1/20

n∈S(X)

α−1(n)

n1/2+it

∣∣∣2
dt

= log T
∑

m,n�T 1/20

m,n∈S(X)

α−1(m)

m

α−1(n)

n
(m, n) + O

(
(log X)10

)
. (34)

Since
∑

g|n φ(g) = n, the remaining sum here is

∑
m,n�T 1/20

m,n∈S(X)

α−1(m)

m

α−1(n)

n

( ∑
g|m
g|n

φ(g)
)

=
∑

g�T 1/20

g∈S(X)

φ(g)

g2

( ∑
n�T 1/20g−1

n∈S(X)

α−1(gn)

n

)2
. (35)

We extend the sums on the right-hand side to all of S(X). For this, we use several
estimates. First,∑

n∈S(X)

|α−1(gn)|
n

� d(g)
∑

n∈S(X)

d(n)

n
= d(g)

∏
p�X

(
1 − 1

p

)−2
� d(g)(log X)2.

Second, ∑
n>T 1/20g−1

n∈S(X)

|α−1(gn)|
n

� d(g)
∑

n>T 1/20g−1

n∈S(X)

d(n)

n
� d(g)

(T 1/20

g

)−1/4 ∑
n∈S(X)

d(n)

n3/4

� d(g)g1/4T −1/80
∏
p�X

(
1 − 1

p3/4

)−2

� d(g)g1/4T −1/80e10X1/4/ log X � d(g)g1/4T −1/100,
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say. From these it follows that the square of the sum over n in (35) is( ∑
n∈S(X)

α−1(gn)

n

)2
+ O

(
d(g)2g1/2T −1/200). (36)

Similarly, we find that

∑
g∈S(X)

φ(g)d(g)2

g3/2
� T 1/400 and

∑
g>T 1/20

g∈S(X)

φ(g)d(g)2

g2
� T −1/100.

Using these and (36), we find that the right-hand side of (35) equals( ∑
g∈S(X)

−
∑

g>T 1/20

g∈S(X)

)φ(g)

g2

( ∑
n∈S(X)

α−1(gn)

n

)2
+ O

(
T −1/200

∑
g�T 1/20

g∈S(X)

φ(g)d(g)2

g3/2

)

=
∑

g∈S(X)

φ(g)

g2

( ∑
n∈S(X)

α−1(gn)

n

)2
+ O(T −1/400).

Combining this with (34), we now have

1

T

∫ 2T

T

∣∣∣ζ(1

2
+ it

)∣∣∣2∣∣∣ ∑
n�T 1/20

n∈S(X)

α−1(n)

n1/2+it

∣∣∣2
dt

= log T
∑

g∈S(X)

φ(g)

g2

( ∑
n∈S(X)

α−1(gn)

n

)2
+ O

(
(log X)10). (37)

Since α−1 and φ are multiplicative functions, we may expand the entire sum into the
Euler product

∏
p�X

( ∑
r

∑
j

∑
k

ϕ(pr )α−1(pj+r )α−1(pk+r )

p2r+j+k

)
.

Recall that α−1(n) = µ(n), the Möbius function, if n ∈ S(
√

X), α−1(p) = µ(p) for
all p � X, and α−1(n) � d(n) for all n ∈ S(X). Thus, the product equals∏
p�

√
X

(
1 − 1

p

) ∏
√

X<p�X

(
1 − 1

p
+ O

( 1

p2

))
=

∏
p�X

(
1 − 1

p

) ∏
√

X<p�X

(
1 + O

( 1

p2

))

= 1

eγ log X

(
1 + O

( 1

log X

))
.
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Since log X � log log T , it now follows from (37) that

1

T

∫ 2T

T

∣∣∣ζ(1

2
+ it

)∣∣∣2∣∣∣ ∑
n�T 1/20

n∈S(X)

α−1(n)

n1/2+it

∣∣∣2
dt = log T

eγ log X

(
1 + O

( 1

log X

))
. (38)

Rewriting (32) (with θ = 1/20) as QX(1/2 + it) = ∑+O(T −ε/200), we see that

1

T

∫ 2T

T

∣∣∣ζ(1

2
+ it

)
QX

(1

2
+ it

)∣∣∣2
dt

= 1

T

∫ 2T

T

∣∣∣ζ(1

2
+ it

)∣∣∣2∣∣∣∑ +O(T −ε/200)
∣∣∣2

dt

= 1

T

∫ 2T

T

∣∣∣ζ(1

2
+ it

)∣∣∣2∣∣∣∑ ∣∣∣2
dt + O

(
1

T 1+ε/200

∫ 2T

T

∣∣∣ζ(1

2
+ it

)∣∣∣2∣∣∣∑ ∣∣∣ dt

)
+O

(
1

T 1+ε/100

∫ 2T

T

∣∣∣ζ(1

2
+ it

)∣∣∣2
dt

)
.

The final term is O(T −ε/200) since the second moment of the zeta function is
O(T log T ). Also, by the Cauchy-Schwarz inequality and (38), the second term is

� 1

T 1+ε/200

( ∫ 2T

T

∣∣∣ζ(1

2
+ it

) ∑ ∣∣∣2
dt

∫ 2T

T

∣∣∣ζ(1

2
+ it

)∣∣∣2
dt

)1/2

� 1

T 1+ε/200

(T 2 log2 T

log X

)1/2
� T −ε/400.

From these estimates and (38), we may now conclude that

1

T

∫ 2T

T

∣∣∣ζ(1

2
+ it

)
QX

(1

2
+ it

)∣∣∣2
dt = log T

eγ log X

(
1 + O

( 1

log X

))
for X = O((log T )2−ε). This completes the proof of Theorem 3 in the case k = 1.

We now prove Theorem 3 for k = 2. By Lemma 6, we may replace PX(1/2+ it)−2

by RX(1/2 + it). Furthermore, G2(3)/G(5) = 1/12, so it suffices to show that

1

T

∫ 2T

T

∣∣∣ζ(1

2
+ it

)2
RX

(1

2
+ it

)∣∣∣2
dt = 1

12

(
1 + o(1)

)( log T

eγ log X

)4
(39)

for X � (log T )2−ε . By (16) (see (32) also and the comment following it), we have

RX

(1

2
+ it

)
=

∑
n�T θ

n∈S(X)

α−2(n)

n1/2+it
+ O(T −εθ/10),
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say, where α−2(p) = −2 for all p � X, α−2(p2) = 1 if p �
√

X, α−2(p2) = 2 if√
X < p � X, and α−2(pj ) = 0 otherwise. In particular, we note that |α−2(n)| �

d(n).
In carrying out the proof of splitting for this case, we gloss over some of the

less important steps as these are handled analogously to those for the k = 1 case. In
particular, by an argument similar to the one at the end of the proof of the case k = 1,
one can show that

1

T

∫ 2T

T

∣∣∣ζ(1

2
+ it

)
PX

(1

2
+ it

)−1∣∣∣4
dt

=
(

1 + O
( 1

log X

))
1

T

∫ 2T

T

∣∣∣ζ(1

2
+ it

)2
RX

(1

2
+ it

)∣∣∣2
dt

=
(

1 + O
( 1

log X

))
1

T

∫ 2T

T

∣∣∣ζ(1

2
+ it

)2 ∑
n�Y

n∈S(X)

α−2(n)

n1/2+it

∣∣∣2
dt, (40)

where Y = T ε1 and ε1 = 1/ log X.
To estimate the right-hand side, we use an analogue of (33) due to Jose

Gaggero Jara [6]. Let A(s) = ∑
n�Y ann

−s , where the an are complex coefficients
and Y = T θ with θ < 1/150. Gaggero’s formula is(

1 + O
( 1

(log T )B

))
1

T

∫ 2T

T

∣∣∣ζ(1

2
+ it

)
A

(1

2
+ it

)∣∣∣2
dt

=
4∑

k=1

{ ∑
m,n�Y

ck(m, n)aman

mn
(m, n)

(
logk

(YT (m, n)

2πmn

)
+ logk

(T (m, n)

2πY

))}

−
∑

m,n�Y

aman

mn

∑
0<d<Y/4

(m, d)(n, d)

d

(
log

( Y

4d

)
+ O(1)

) ∑
v<V1

1

v

∑
u<U1

(ndu,mdv)=1

1

u

−
∑

m,n�Y

aman

mn

∑
0<d<mn/4Y

(m, d)(n, d)

d

(
log

( mn

4dY

)
+ O(1)

) ∑
v<V ′

1

1

v

∑
u<U ′

1
(ndu,mdv)=1

1

u
.

Here,

U1 = CYT

dnd

, V1 = CYT

dmd

,
(41)

U ′
1 = CmnT

Ydnd

, V ′
1 = CmnT

Ydmd

,
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C = 2/π , B is an arbitrary positive number, and for integers n and d we write
nd = n/(n, d). Also, c4(m, n) = (1/4π2)δ(mn)δ(nm), where

δ(n) =
∏
pr ||n

(
1 + r

(1 − 1/p)

(1 + 1/p)

)
,

and cj (m, n) � |c4(m, n)|(log log 3mn)4−j for j = 1, 2, 3.
To estimate the right-hand side of (40), we take an = α−2(n) and Y = T ε1 in this

and obtain(
1 + O

( 1

log X

))
1

T

∫ 2T

T

∣∣∣ζ(1

2
+ it

)2
RX

(1

2
+ it

)∣∣∣2
dt

=
( 1

2π2
+ O(ε1)

)
log4 T

∑
m,n�Y

m,n∈S(X)

α−2(m)α−2(n)δ(m/(m, n))δ(n/(m, n))

mn
(m, n)

−
∑

m,n�Y
m,n∈S(X)

α−2(m)α−2(n)

mn

∑
0<d<Y/4

(m, d)(n, d)

d

(
log

( Y

4d

)
+ O(1)

)

×
∑
v<V1

1

v

∑
u<U1

(ndu,mdv)=1

1

u
−

∑
m,n�Y

m,n∈S(X)

α−2(m)α−2(n)

mn

×
∑

0<d<mn/4Y

(m, d)(n, d)

d

(
log

( mn

4dY

)
+ O(1)

) ∑
v<V ′

1

1

v

∑
u<U ′

1
(ndu,mdv)=1

1

u

= T1 − T2 − T3, (42)

say.
Let us denote the sum in T1 by S1. Grouping together those terms for which

(m, n) = g and then replacing m by mg and n by ng, we obtain

S1 =
∑
g�Y

g∈S(X)

1

g

∑
n�Y/g
n∈S(X)

α−2(gn)δ(n)

n

( ∑
m�Y/g
(m,n)=1
m∈S(X)

α−2(gm)δ(m)

m

)
. (43)

Let P = ∏
p�X p. Since α−2 is supported on cube-free integers, the g’s we are

summing over may be restricted to numbers of the form

g = g1 g2
2, where g1 | P, g2 |

( P

g1

)
.
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Note that this representation is unique and that (g1, g2) = 1. The summation over g in
(43) may therefore be replaced by the double sum∑

g1�Y
g1|P

∑
g2�(Y/g1)1/2

g2|(P/g1)

.

In the sum over n, we group terms together according to their greatest common
divisor with g = g1 g2

2. Observe that we may assume that (n, g2) = 1; otherwise, a
cube divides g1 g2

2 n, and α−2(gn) vanishes. If we then write (n, g1) = r and n = rN ,
we may replace the sum over n in (43) by∑

r|g1

∑
N�(Y/rg1g

2
2 )

N∈S(X)
(N,(g1/r)g2)=1

.

Ignoring the restriction (m, n) = 1 for the moment, we may similarly write the
sum over m in (43) as ∑

s|g1

∑
M�(Y/sg1g

2
2 )

M∈S(X)
(M,(g1/s)g2)=1

.

Instead of (m, n) = 1, we now have (sM, rN) = 1 or, equivalently, (M,N ) = (r, s) =
(N, s) = (M, r) = 1. We may impose the condition (r, s) = 1 by replacing s | g1

in (5) by s | (g1/r) since g1 is square-free. Furthermore, since (N, g1/r) = 1 and
s | (g1/r), we automatically have (N, s) = 1. Thus, the coprimality conditions on
M are (M, (g1/s)g2) = (M,N ) = (M, r) = 1. The first condition implies the third
because r | (g1/s). Thus, we need only require that (M,N (g1/s)g2) = 1. The sum
over m may therefore be written ∑

s|g1/r

∑
M�(Y/sg1g

2
2 )

M∈S(X)
(M,N(g1/s)g2)=1

.

We now have

S1 =
∑
g1�Y
g1|P

1

g1

∑
g2�(Y/g1)1/2

g2|(P/g1)

1

g2
2

∑
r|g1

1

r

∑
s|(g1/r)

1

s

∑
N�(Y/rg1g

2
2 )

N∈S(X)
(N,(g1/r)g2)=1

α−2(r2g2
2N (g1/r))δ(rN )

N

×
∑

M�(Y/sg1g
2
2 )

M∈S(X)
(M,N(g1/s)g2)=1

α−2(s2g2
2M(g1/s))δ(sM)

M
.
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Note that if N and r have a common factor, then α−2(r2g2
2N (g1/r)) = 0 and similarly

for M and s. We may therefore replace the coprimality conditions in the sums over N

and M by (N, g1g2) = 1 and (M,Ng1g2) = 1, respectively. The new conditions then
imply that α−2(r2g2

2N (g1/r)) = α−2(r2)α−2(g2
2)α−2(N )α−2(g1/r), δ(rN ) = δ(r)δ(N ),

and similarly for α−2(s2g2
2M(g1/s)) and δ(sM). Hence,

S1 =
∑
g1�Y
g1|P

α−2(g1)2

g1

∑
g2�(Y/g1)1/2

g2|(P/g1)

α−2(g2
2)2

g2
2

∑
r|g1

α−2(r2)δ(r)

α−2(r)r

∑
s|(g1/r)

α−2(s2)δ(s)

α−2(s)s

×
∑

N�(Y/rg1g
2
2 )

N∈S(X)
(N,g1g2)=1

α−2(N )δ(N )

N

∑
M�(Y/sg1g

2
2 )

M∈S(X)
(M,Ng1g2)=1

α−2(M)δ(M)

M
.

We next extend each of the sums here to all of S(X). The error terms that this
introduces are handled as they were in the case k = 1, and they contribute at most
“little o” of the main term. Observing also that M and N may be restricted to cube-free
integers, we obtain

S1 = (
1 + o(1)

) ∑
g1|P

α−2(g1)2

g1

∑
g2|(P/g1)

α−2(g2
2)2

g2
2

∑
r|g1

α−2(r2)δ(r)

α−2(r)r

∑
s|(g1/r)

α−2(s2)δ(s)

α−2(s)s

×
∑

N |(P/g1g2)2

α−2(N )δ(N )

N

∑
M|(P/Ng1g2)2

α−2(M)δ(M)

M
. (44)

We now define the following multiplicative functions:

A(n) =
∑
d|n

α−2(d)δ(d)

d
=

∏
pa ||n

(
1 + α−2(p)δ(p)

p
+ · · · + α−2(pa)δ(pa)

pa

)
,

B(n) =
∑
d|n

α−2(d)δ(d)

dA(d2)
=

∏
pa ||n

(
1 + α−2(p)δ(p)

p A(p2)
+ · · · + α−2(pa)δ(pa)

pa A(p2a)

)
,

C(n) =
∑

d|(n,P )

α−2(d2)δ(d)

α−2(d)d
=

∏
p|(n,P )

(
1 + α−2(p2)δ(p)

α−2(p)p

)
,

D(n) =
∑

d|(n,P )

α−2(d2)δ(d)

α−2(d)C(d)d
=

∏
p|(n,P )

(
1 + α−2(p2)δ(p)

α−2(p)C(p)p

)
,

E(n) =
∑
d|n

α−2(d2)2

A(d2)B(d2) d2
=

∏
p|l

(
1 + α−2(p2)2

A(p2)B(p2) p2

)
,

and

F (n) =
∑
d|n

α−2(d)2C(d)D(d)

A(d2)B(d2)E(d) d
=

∏
p|l

(
1 + α−2(p)2C(p)D(p)

A(p2)B(p2)E(p) d

)
.
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Using these definitions and working from the inside out in (44), we find first that
the sum over M is A((P/Ng1g2)2) = A(P 2)/A(N2)A(g2

1)A(g2
2). The contribution of

the sums over M and N together is then (A(P 2)/A(g2
1)A(g2

2))(B(P 2)/B(g2
1)B(g2

2)).
Thus, so far, we have

S1 = (
1 + o(1)

)
A(P 2)B(P 2)

∑
g1|P

α−2(g1)2

g1A(g2
1)B(g2

1)

∑
g2|(P/g1)

α−2(g2
2)2

g2
2A(g2

2)B(g2
2)

×
∑
r|g1

α−2(r2)δ(r)

α−2(r)r

∑
s|(g1/r)

α−2(s2)δ(s)

α−2(s)s
.

The sums over r and s contribute C(g1)D(g1), and the sum over g2 is then E(P )/E(g1).
Thus, we see that

S1 = (
1 + o(1)

)
A(P 2)B(P 2)E(P )

∑
g1|P

α−2(g1)2C(g1)D(g1)

g1A(g2
1)B(g2

1)E(g1)

= (
1 + o(1)

)
A(P 2)B(P 2)E(P )F (P ).

Using the expression for F (P ) as a product, we see that this is the same as

S1 = (
1 + o(1)

)∏
p|P

(
A(p2)B(p2)E(p) + α−2(p)2C(p)D(p)

p

)
. (45)

By the definitions of C and D, we see that

C(p)D(p) =
(

1 + α−2(p2)δ(p)

α−2(p)p

)
+ α−2(p2)δ(p)

α−2(p)p

= 1 − α−2(p2)δ(p)

p
(46)

since α−2(p) = −2 for p dividing P . Similarly,

A(p2) B(p2) E(p) = A(p2) B(p2) + α−2(p2)2

p2
.

It is clear that A(p2) = A(p3) = · · · . Therefore,

B(p2) = 1 + α−2(p)δ(p)

p A(p2)
+ α−2(p2)δ(p2)

p2 A(p2)

= 1 + 1

A(p2)

(
A(p2) − 1

)
= 2 − 1

A(p2)
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and

A(p2) B(p2) E(p) = 2A(p2) − 1 + α−2(p2)2

p2
.

We use this, (46), and α−2(p) = −2, and we obtain

A(p2)B(p2)E(p) + α−2(p)2C(p)D(p)

p

= 2A(p2) − 1 + α−2(p2)2

p2
+ 4

p
− 4α−2(p2)2δ(p)

p2

= 2
(

1 − 2δ(p)

p
+ α−2(p2)δ(p2)

p2

)
− 1 + α−2(p2)2

p2
+ 4

p
− 4α−2(p2)2δ(p)

p2

= 1 + 4 − 4δ(p)

p
+ α−2(p2)(α−2(p2) − 4α−2(p2)δ(p) + 2δ(p2))

p2
.

Recall that δ(pr ) = 1 + r((1 − 1/p)/(1 + 1/p)), so that δ(p) = 2/(1 + 1/p) and
δ(p2) = 2δ(p) − 1. Also recall that α−2(p2) = 1 if p �

√
X. Thus, for p �

√
X, the

last line is

= 1 + 4 − 4δ(p)

p
+ 1 − 4δ(p) + 2(2δ(p) − 1)

p2
= 1 + 4 − 4δ(p)

p
− 1

p2

= 1 + 4

p
− 8

p + 1
− 1

p2
= (1 − 1/p)3

1 + 1/p
= (1 − 1/p)4

1 − 1/p2
.

On the other hand, if
√

X < p � X, then α−2(p2) = 2, and the last line is

= (1 − 1/p)4

1 − 1/p2
+ O

( 1

p2

)
.

Combining these results in (45), we find that

S1 = (
1 + o(1)

) ∏
p�

√
X

( (1 − 1/p)4

1 − 1/p2

) ∏
√

X<p�X

(
(1 − 1/p)4

1 − 1/p2
+ O

( 1

p2

))

= (
1 + o(1)

) ∏
p�X

( (1 − 1/p)4

1 − 1/p2

) ∏
√

X<p�X

(
1 + O

( 1

p2

))

= (
1 + o(1)

) ∏
p�X

(
1 − 1

p

)4 ∏
p

(
1 − 1

p2

)−1

= (
1 + o(1)

)π2

6
(eγ log X)−4.
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Since

T1 = S1

( 1

2π2
+ O(ε1)

)
log4 T

and ε1 = 1/ log X, we now see that

T1 =
( 1

12
+ o(1)

)( log T

eγ log X

)4
. (47)

�

To treat the second term on the right-hand side of (42), T2, we require two lemmas.

LEMMA 7
Suppose that a and b are positive integers with (a, b) = 1. Then for b � x, we have∑

n�x
(an,b)=1

1

n
= φ(b)

b
log x + O(log log 2b).

Proof
Since (a, b) = 1, the condition (an, b) = 1 is equivalent to (n, b) = 1. Thus, the sum
is ∑

n�x
(n,b)=1

1

n
=

∑
n�x

1

n

∑
d|n
d|b

µ(d) =
∑
d|b

µ(d)

d

∑
m�x/d

1

m
=

∑
d|b

µ(d)

d

(
log

(x

d

)
+ O(1)

)
.

Now,
∑

d|b µ(d)/d = φ(b)/b and

∑
d|b

µ(d) log d

d
= φ(b)

b

∑
p|b

log p

p − 1
� φ(b)

b
log log 2b � log log 2b.

Furthermore, ∑
d|b

|µ(d)|
d

=
∏
p|b

(
1 + 1

p

)
� b

φ(b)
� log log 2b.

Thus, we find that ∑
n�x

(an,b)=1

1

n
= φ(b)

b
log x + O(log log 2b). �
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LEMMA 8
Let κ(n) = ∏

p|n(1 + 1/p)−1, and let U,V be either U1, V1 or U ′
1, V

′
1 as defined in

(41). If m, n, d � Y � T 1/150 and (nd,md ) = 1, then∑
v<V

1

v

∑
u<U

(ndu,mdv)=1

1

u
= 6

π2
κ(md ) κ(nd ) log U log V + O(log T log log T ).

Proof
The conditions (ndu,mdv) = 1 and (nd,md ) = 1 are equivalent to (v, nd ) = 1 and
(u,mdv) = 1. Hence, by Lemma 7, the double sum equals

∑
v<V

(v,nd )=1

1

v

∑
u<U

(u,mdv)=1

1

u
= log U

∑
v<V

(v,nd )=1

1

v

(φ(mdv)

mdv
+ O

(
log log(mdV )

))

= log U
∑
v<V

(v,nd )=1

1

v

(φ(mdv)

mdv

)
+ O (log T log log T ) . (48)

By denoting the sum on the right-hand side by
∑

, we have

∑
=

∑
v<V

(v,nd )=1

1

v

∑
r|mdv

µ(r)

r
=

∑
r<mdV

µ(r)

r

∑
v<V

(v,nd )=1
r|mdv

1

v
.

Now set (md, r) = g, and write r = gR. Then (md/g,R) = 1, and we find that

∑
=

∑
g|md

1

g

∑
R<mdV/g

(md/g,R)=1

µ(gR)

R

∑
v<V

(v,nd )=1
R|v

1

v
.

If we set v = Rw, then w < V/R, and (Rw, nd ) = 1 is the same as the two conditions
(R, nd ) = 1 and (w, nd ) = 1. Thus, using Lemma 7 and the observation that the inner
sum vanishes unless R < V , we obtain

∑
=

∑
g|md

1

g

∑
R<mdV/g

(md/g,R)=1
(nd ,R)=1

µ(gR)

R2

∑
w<V/R

(w,nd )=1

1

w

=
∑
g|md

1

g

∑
R<V

(md/g,R)=1
(nd ,R)=1

µ(gR)

R2

(φ(nd )

nd

log
V

R
+ O(log log 2nd )

)
.
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We may assume that (R, g) = 1; otherwise, µ(gR) = 0. The coprimality conditions
on the sum may then be written (mdnd, R) = 1, and we find that∑

=
∑
g|md

µ(g)

g

∑
R<V

(R,mdnd )=1

µ(R)

R2

(φ(nd )

nd

log
V

R
+ O(log log 2nd )

)

= φ(nd )

nd

log V
∑
g|md

µ(g)

g

∑
R<V

(R,mdnd )=1

µ(R)

R2

+ O
(

log log 2nd

∑
g|md

|µ(g)|
g

∑
R<V

log R

R2

)
.

Since
∑

g|md
|µ(g)|/g = ∏

p|md
(1 + 1/p) � log log 2md , the error term is �

(log log 2md log log 2nd ). The main term is

= φ(nd )

nd

log V
∑
g|md

µ(g)

g

( ∞∑
R=1

(R,mdnd )=1

µ(R)

R2
+ O(V −1)

)

= ζ (2)−1
∏

p|mdnd

(
1 − 1

p2

)−1 φ(nd )

nd

log V
∑
g|md

µ(g)

g
+ O

( log V

V

∑
g|md

|µ(g)|
g

)
= 6

π2

∏
p|mdnd

(
1 − 1

p2

)−1 φ(md )

md

φ(nd )

nd

log V + O
( log V log log 2md

V

)
.

By hypothesis, (md, nd ) = 1. Furthermore,
∏

p|l(1 − 1/p2)−1(φ(l)/l) = ∏
p|l(1 +

1/p)−1 = κ(l). Thus, combining our estimates, we obtain∑
= 6

π2
κ(md )κ(nd ) log V + O(log log 2md log log 2nd ).

Since m, n � T 1/150, we obtain from this and (48) that∑
v<V

1

v

∑
u<U

(ndu,mdv)=1

1

u
= 6

π2
κ(md )κ(nd ) log U log V + O(log T log log T ). �

Returning to T2 in (42) and using Lemma 8, we have

T2 = 6

π2

∑
m,n�Y

m,n∈S(X)

α−2(m)α−2(n)

mn

∑
0<d<Y/4
d∈S(X)

(m, d)(n, d)

d

(
log

( Y

4d

)
+ O(1)

)

× (
κ(md ) κ(nd ) log U1 log V1 + O(log T log log T )

)
,
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where U1 = CYT/dnd, V1 = CYT/dmd, and Y = T ε1 . By interchanging the order of
summation, we find that

T2 = 6

π2

∑
0<d<Y/4
d∈S(X)

1

d

(
log

( Y

4d

)
+ O(1)

) ∑
m,n�Y

m,n∈S(X)

α−2(m)α−2(n)(m, d)(n, d)

mn

× (
κ(md ) κ(nd ) log U1 log V1 + O(log T log log T )

)
.

Since κ(n) � log log 3n, the expression in the last parentheses is

= κ(md ) κ(nd )
(

log U1 log V1 + O(log T log log3 T )
)=(

1+O(ε1)
)
κ(md ) κ(nd ) log2 T .

Thus,

T2 = 6

π2

(
1 + O(ε1)

)
log2 T

×
∑

0<d<Y/4
d∈S(X)

(log(Y/4d) + O(1))

d

( ∑
n�Y

n∈S(X)

α−2(n) (n, d)κ(n/(n, d))

n

)2
. (49)

Denote the inner sum by S(d). By extending the sum to all of S(X), as we did,
for example, after (35), we introduce an error term that is o(1) times the main term.
Thus, grouping together terms in S(d) for which (n, d) = e, say, we obtain

S(d) = (
1 + o(1)

) ∑
e|d

e
∑

n∈S(X)
(n,d)=e

α−2(n) κ(n/e)

n

= (
1 + o(1)

) ∑
e|d

∑
N∈S(X)

(N,d/e)=1

α−2(eN ) κ(N )

N
.

Since α−2 is supported on only cube-free numbers in S(X), we may assume that
e | P 2. Therefore, e | (d, P 2) = D, say. Now D may be written uniquely as D = D1D

2
2,

where D1 | P and D2 | (P/D1), so that, in particular, (D1,D2) = 1. Furthermore, we
may write any divisor e of D as e = e1e2e

2
3, where e1 | D1, e2 | D2, and e3 | (D2/e2).

Note that this means that the ei are pairwise coprime. The condition (N, d/e) = 1 is
now (N, (D1D

2
2/e1e2e

2
3)) = 1. Also, α−2(eN ) = α−2(e1e2e

2
3N ), so we may assume that

(N, e3) = 1 and therefore that (N, (D1D
2
2/e1e2)) = 1. Observe, moreover, that e2 | D2

implies e2 | (D2
2/e2). Thus, (N, (D1D

2
2/e1e2)) = 1 is the same as (N, (D1D2/e1)) = 1.

It follows that N and e1 can have a common factor, but N and e2 or e3 cannot. We may
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therefore write α−2(e1e2e
2
3N ) = α−2(e1N )α−2(e2)α−2(e2

3) and

S(d) = S(D)

= (
1 + o(1)

) ∑
e1|D1

∑
e2|D2

α−2(e2)
∑

e3|(D2/e2)

α−2(e2
3)

∑
N∈S(X)

(N,(D1D2/e1))=1

α−2(e1N ) κ(N )

N

= (
1 + o(1)

) ∑
e1|D1

∑
N∈S(X)

(N,(D1D2/e1))=1

α−2(e1N ) κ(N )

N

∑
e3|D2

α−2(e2
3)

∑
e2|(D2/e3)

α−2(e2).

The innermost sum is∑
e2|(D2/e3)

α−2(e2) =
∏

p|(D2/e3)

(
1 + α−2(p)

) =
∏

p|(D2/e3)

(1 − 2)

= µ
(D2

e3

)
= µ(D2)µ(e3).

We also have ∑
e3|D2

µ(e3)α−2(e2
3) =

∏
p|D2

(
1 − α−2(p2)

)
.

At this point, it is convenient to define numbers

P1 =
∏

p�
√

X

p and P2 =
∏

√
X<p�X

p.

Notice that P = P1P2. Since α−2(p2) = 1 if p | P1 and α−2(p2) = 2 if p | P2, the sum
over e3 equals zero unless D2 | P2, in which case it equals µ(D2). Thus, if D2 and P1

have a common factor, S(D1D
2
2) = 0, whereas if D2 | P2, then

S(d) = S(D1D
2
2) = (

1 + o(1)
) ∑

e1|D1

∑
N∈S(X)

(N,(D1D2/e1))=1

α−2(e1N ) κ(N )

N
.

From this point on, we therefore assume that D2 | P2.
Now set (N, e1) = r , and write N = rM . Then we have

S(D1D
2
2) = (

1 + o(1)
) ∑

e1|D1

∑
r|e1

∑
N∈S(X)
(N,e1)=r

(N,(D1D2/e1))=1

α−2(e1N ) κ(N )

N

= (
1 + o(1)

) ∑
e1|D1

∑
r|e1

1

r

∑
M∈S(X)

(M,e1/r)=1
(rM,(D1D2/e1))=1

α−2(r2M(e1/r)) κ(rM)

M
.

We may assume that (M, r) = 1 and (r, e1/r) = 1 since, otherwise, α−2(r2M(e1/r)) =
0. Actually, (r, e1/r) = 1 is automatically satisfied because r | e1 and e1 is square-free.
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It follows that κ(rM) = κ(r)κ(M) and, since we also have (M, e1/r) = 1, that
α−2(r2M(e1/r)) = α−2(r2)α−2(M)α−2(e1/r). The coprimality conditions in the sum
are now seen to be equivalent to the conditions (M, r) = (r, e1/r) = (M, e1/r) =
(M, (D1D2/e1)) = (r, (D1D2/e1)) = 1. As we have already pointed out, the second of
these is automatic. Similarly, so is the last. The remaining conditions are equivalent
to (M,D1D2) = 1, so we find that

S(D1D
2
2) = (

1 + o(1)
) ∑

e1|D1

α−2(e1)
∑
r|e1

α−2(r2)κ(r)

rα−2(r)

∑
M∈S(X)

(M,D1D2)=1

α−2(M) κ(M)

M
.

The sum over M equals

∏
p|(P/D1D2)

(
1 + α−2(p) κ(p)

p
+ α−2(p2) κ(p2)

p2

)
= G

( P

D1D2

)
, (50)

say. Hence,

S(D1D
2
2) = (

1 + o(1)
)
G

( P

D1D2

) ∑
e1|D1

α−2(e1)
∑
r|e1

α−2(r2)κ(r)

rα−2(r)
.

The double sum equals

∑
r|D1

α−2(r2)κ(r)

rα−2(r)

∑
f1|(D1/r)

α−2(f1) = µ(D1)
∑
r|D1

µ(r)α−2(r2)κ(r)

rα−2(r)

= µ(D1)
∏
p|D1

(
1 + α−2(p2)κ(p)2p

)
= µ(D1)H (D1), (51)

say. Thus,

S(d) = S(D1D
2
2) = (

1 + o(1)
)
G(P )

µ(D1)H (D1)

G(D1)G(D2)
, (52)

provided D2 | P2; otherwise, S(d) = 0.
We use this in (49). Recall that for each d < Y/4, we had set (d, P 2) = D1D

2
2

with D1 | P and D2 | (P/D1). Recall also that P = P1P2 and Y = T ε1 . We therefore
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see that

T2 = 6

π2

(
1 + O(ε1)

)
log2 T

∑
0<d<Y/4
d∈S(X)

(log(Y/4d) + O(1))

d
S(d)2

= 6

π2

(
1 + O(ε1)

)
log2 T

∑
D2|P2

1

D2
2

×
∑

D1|(P/D2)

S(D1D
2
2)2

D1

∑
0<δ<Y/4D1D

2
2

(δ,(P1P2)2/D1D
2
2 )=1

(log(Y/(4D1D
2
2δ)) + O(1))

δ
.

The coprimality condition in the last sum is equivalent to (δ, P1P2/D2) = 1. Thus,
using (52), we find that

T2 = 6

π2

(
1 + O(ε1)

)
G(P )2 log2 T

∑
D2|P2

1

D2
2G(D2)2

∑
D1|(P/D2)

H (D1)2

D1G(D1)2

×
∑

0<δ<Y/4D1D
2
2

(δ,P1P2/D2)=1

(log(Y/(4D1D
2
2δ)) + O(1))

δ
.

By Lemma 7, the sum over δ is

� log Y
∑

0<δ<Y/4D1D
2
2

(δ,P1P2/D2)=1

1

δ
� φ(P )

P

D2

φ(D2)
log2 Y.

Thus,

T2 � G(P )2 φ(P )

P
log2 T log2 Y

∑
D2|P2

1

D2φ(D2)G(D2)2

∑
D1|(P/D2)

H (D1)2

D1G(D1)2
.

If we denote the innermost sum by I (P/D2), then

I
( P

D2

)
=

∏
p|(P/D2)

(
1 + H (p)2

pG(p)2

)
, (53)

and we find that

T2 � G(P )2I (P )
φ(P )

P
log2 T log2 Y

∑
D2|P2

1

D2φ(D2)G(D2)2I (D2)

� ε2
1G(P )2I (P )

φ(P )

P
log4 T

∏
p|P2

(
1 + 1

pφ(p)G(p)2I (p)

)
.
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Now, by the definitions of G, H , and I in (50), (51), and (53), we have G(p) =
1 − 2/p + O(1/p2), H (p) = 1 + O(1/p), and I (p) = 1 + 1/p

(
(1 + O(1/p))/(1 −

2/p + O(1/p2))
)2 = 1 + 1/p + O(1/p2). From these estimates, it is clear that the

product over p dividing P2 here is
∏√

X<p�X(1 + O(1/p2)) � 1. Thus,

T2 � ε2
1G(P )2I (P )

φ(P )

P
log4 T

� ε2
1 log4 T

∏
p|P

((
1 − 4

p
+ O

( 1

p2

))(
1 + O

( 1

p2

)))

� ε2
1 log4 T

∏
p|P

(
1 − 1

p

)4
� ε1

2
( log T

log X

)4
.

The treatment of T3 is almost identical and leads to the same bound. Thus, by
combining our estimates for T1 (see (47)), T2, and T3 with (42) and noting that we
may take ε1 > 0 as small as we like, we obtain (39). This completes the proof of the
case k = 2 of Theorem 3 and, thus, the proof of the theorem. �

Appendix. Graphs

To illustrate Theorem 1, in Figures 1 – 3 we have plotted |ZX(1/2+ it)| and |PX(1/2+
it)| for t near the 1012th zero for two values of X, and we have compared their product
with the Riemann zeta function. The values of X used are X = 26.31 ≈ log γ1012

and X = 1000. Though the functions PX and ZX depend on X, when multiplied
together the X dependence mostly cancels out, and we have an accurate pointwise

1 2 3 4 5

1

2

3

4

5

6

7

Figure 1. Graph of |ζ (1/2 + i(x + t0))| (solid) and |PX(1/2 + i(x + t0))ZX(1/2 + i(x + t0))| with
t0 = γ1012+40, X = log t0 (dots), and X = 1000 (dash dots)



A HYBRID EULER-HADAMARD PRODUCT 547

1 2 3 4 5

1

2

3

4

Figure 2. Graph of |PX(1/2 + i(x + t0))| with t0 = γ1012+40, X = log t0 (dots), and X = 1000
(dash dots)

1 2 3 4 5

1

2

3

4

5

6

Figure 3. Graph of |ZX(1/2 + i(x + t0))| with t0 = γ1012+40, X = log t0 (dots), and X = 1000
(dash dots)

approximation to the zeta function. The actual functions plotted are∣∣∣PX

(1

2
+ i(x + t0)

)∣∣∣ = exp
( ∑

n�X

�(n) cos((x + t0) log n)

log n
√

n

)
and ∣∣∣ZX

(1

2
+ i(x + t0)

)∣∣∣ =
N+100∏
n=N+1

exp
(

Ci(|x + t0 − γn| log X)
)
,
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where t0 = γ1012+40. The values of the zeros of the zeta function came from Andrew
Odlyzko’s table [19]. The functions were plotted for x between 0 and 5, a range
covering the zeros between γ1012+40 and γ1012+60. Note that the function ZX that we
have plotted is an unsmoothed, truncated form of the function ZX that appears in
Theorem 1. Note also that ZX(1/2 + it) oscillates more rapidly than PX(1/2 + it), as
asserted in our motivation for the splitting conjecture, Conjecture 2.
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