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w 1. Introduction and statement of results 

In 1918 Hardy and Littlewood [-2] proved that as T-~ov 

T 
1~(�89 ~ Tlog T. (1) 

1 

In 1928 Ingham [3] generalized this considerably by showing that as T ~  

r T 
~(u)(�89 it)~(~)(�89 it)dt ~ (log T) "+v+ ', (2) 

1 ~ -t- V "}- s 

wher ((")(s) denotes the ~th  derivative of ((s) (=((~ Since ((u)(�89 
=((,1(�89 it), it follows in particular that 

T T 
t 1~(")(�89 it)lZdt ~2/2 + 1 (log T) 2u+ 1, (3) 

which gives (1) when #=0 .  Our object in this paper is to prove some new types 
of mean value formulae which are, when the Riemann hypothesis is assumed, 
discrete analogues of (1)-(3). 

We denote the non-trivial zeros of ~(s) by P = f l + i 7  and we set L 
1 T 

= 2-~-log ~ - .  Our main result is the following 

Theorem. I f  T is sufficiently large and ~ is any real number satisfying tctl <�89 
then 

~(U)(p + i~L-1)~(v)(1- p - i e t L  - x) 
I<v<T 

= ( _  1)u+~ ( 1 -H( l~ ,v ,  2 ~ ) - H ( v , # , -  2no0) 2~  (log T)"+~+ 2 
/~+v+ 1 

+ O(T(log T y  + ~+ '), (4) 
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where 
( 2 ~ i )  l 

H(//, v, 2~z~)=/~! ~=o ~ ( l + # + l ) ! ( l + # + v + 2 ) "  

The constant implicit in the O-term is independent of ~. 

As an immediate consequence we have 

Corollary 1. Suppose that the Riemann hypothesis is true. I f  T, ~, and H are as 
in the Theorem, then 

~)(�89 + i(Y+c~L-1))~)(�89 + c~L-1)) 
I~?-<T 

( _1 H(g,v,  2 rce ) -H(v ,# , -2 zcc0 )  2~  (log T)U+v+2 =(-1)"+~ / / + v + l  

+ O (T(log T) u+'+ 1 (5) 

In particular, 

1~r189 + i(7 + c~g- 1))12 
l<_-7<T 

1 H - 2rt~)) T = ( 2 ~ -  ( / / ' g ' 2 n c 0 - H ( # ' # '  . ~-~ (l~ 

+ O(T(log T) 2"+ a). (6) 

The constants implicit in the O-terms are independent of ~. 

In (5) and (6) we have discrete analogues of (2) and (3). Note that there are 
T 

~ -  log T terms in the sum in (6) and that the right-hand side of (6) is 

/~z T (log T) 2"+ 2 
(2//+ 1)(//+ 1) 2 2~ 

when e = 0  a n d / / >  1. Thus, comparing (3) and (6), we see that on the Riemann 
hypothesis the average of [~(")(�89 + i?)[ 2 over those zeros with 1 <7 < T is smaller 

by a factor of than the average of IEr189 2 over all points with 

l <_t<_T. 
The case l /=0  of (6) is a discrete analogue (1) and is of interest in its own 

right so we state it as 

Corollary 2. Assume the Riemann hypothesis is true. I f  T is sufficiently large and 
o~ is a real number such that I~[ < L/2, then 

1 = (  2--~log2T+O(TlogT) .  (7) I~(g+ i(7 + ~L- 1))12 1_  (sinnc~] 2 ] 
\ gc~ l/ I~7~_T 

The constant implicit in the O-term is independent of c~. 
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J. Mueller (see [6] and [7]) has recently found an interesting application of  
Corol lary 2. Denote  by 0 < 7 2  <72 <---  the imaginary parts of the zeros of ((s) 
in the upper half-plane and set 

log 7, 
2 = l i m s u p ( 7 " - 7 " - l )  2n ' 

n 

log 7, 
/~ = l i m  i n f ( 7 " -  7"- 1) 2n 

n 

A. Selberg [8] has remarked that ~ t< l  and 2 >  1, and H. Mon tgomery  [5], 
assuming the Riemann hypothesis, has shown that  #<0 .68 .  Mueller 's result is 

Corollary 3. I f  the Riemann hypothesis is true 2 > 1.9. 

As the proof  of  this is brief, we give it in Sect. 6. 

This paper is, in revised form, a part of my doctoral thesis written under the direction of 
Professor H.L. Montgomery. He suggested the problem which led to this investigation and made 
many helpful comments concerning the form and content of my thesis. It gives me gerat pleasure 
to express my gratitude to him here. I would also like to thank Professors D.J. Lewis, G. Piranian, 
and J. Ullman for carefully reading my thesis, and the referee for his very helpful suggestions. 

w 2. Some formulae and estimates 

Before we develop the basic idea of  the proof  of the Theorem, it will be useful 
to set down certain formulae and estimates. 

Throughou t  this paper s = a +  it denotes a complex variable. 
Let 

z ( 1  - s )  = n ~ - ~  ( 8 )  

F(s) being the gamma-funct ion.  The unsymmetr ic  form of the 
equat ion for ~(s) is 

(1 - s) = X(1 - s) ~ (s). (9) 

We also require the symmetr ic  form of the functional equation. Set 

functional 

~(s)=�89 (2) ~(s ). (10) 

Then 
~(s) = 4(1 - s). (11) 

The function ~(s) is entire of order  one and its only zeros are the non-trivial 
zeros of ((s). 



126 S.M. Gonek 

We write Stirling's formula for F(s) in the form 

(1) logF(s)=(s-�89189 +O ~ , (12) 

This is valid for Isl~ and ]a rgs [<r t -6 ,  where 6 > 0  is arbitrary but fixed (see 
Whittaker and Watson [10; Chaps. 12, 13]). Using this, it is not difficult to 
show that 

X ( 1 - s ) = e  Z \ ~ ]  exp[itlogt/2ne] (t3) 

for a fixed and t > 1, say. 
Euler's psi-function is defined by 

r ' ( s )  
~O ( s )  - 

r ( s )  " 

When l a r g s l < r t - 6  and Isl>�89 we have 

O(s)=l~ (~s[ )" 

(14) 

(15) 

This may be derived from (12) by means of Cauchy's estimate for analytic 
functions. 

As is well known, in each intervaI (n ,n+ l )  (n=2,3 , . . . )  we can select a 
number T, such that if ~ is the ordinate of any zero of ~(s), then IT,-,/] 

1 
> - -  In this way we obtain a sequence J" which will be fixed throughout 

log T," 
this paper. 

Recall that if T is large and does not coincide with the ordinate of any zero 
of ~(s), then 

~-(cr+iT)= ~ t-O(log T) 
1 

Iv -TI<  1 S - - p  

uniformly for - l < c r < 2  (cf. Davenport  [1; p. 99]). There are <{log T terms in 
this sum and if Te~-, each term is ,~logT. Thus, for each large T e 3 -  and 
uniformly for - 1 < cr _< 2, 

~- (a+ iT),~tog 2 T. (16) 
r 

By logarithmic differentiation of (10) we have 

2 s - 1  
~-~' (s)=~-(' (s) + �89 ~ (s/2) - �89 log n - t - - - s  (s - 1 ) (17) 



Mean values of the Rlemann zeta-function and its derivatives 

We deduce from this, (15), and (16) that 

~- ( 6 + i T ) ~ l o g  2 T 

for all large T~Y;, uniformly for - 1  <a_<2. 
Similarly, we may combine the estimate 

-(o+i0 l 

with (15) and (17) to obtain 

for a > a > l  and I t l> l ,  say. 

( a > a > l )  

127 

(18) 

~ (a + it) ~log  2[tl (19) 

Finally, we need the estimates 

[ [t] ~-~+~ if or<0 

((~)(o+it)~{tt[ ~(1-~)+~ if 0 -<a-<l  (20) 
/ 

[It] ~ if a > l ,  

where e > 0  is arbitrary, It[>_-�89 and v=0 ,  1,2 . . . . .  These may be derived from 
the case v=0 ,  It] >�88 (for which see Titchmarsh [9; pp. 81-82]) by applying 
Cauchy's estimate for the derivatives of analytic functions to ~(s) in a small 
disc centered at s=a+it .  

w 3. Beginning of the proof 

We can now begin the proof of the Theorem, although we will require a 
section of lemmas (Sect. 4 below) to complete it. 

Let 1 < a < 2  and let R denote the closed rectangle in the complex plane 
with vertices at a+i, a+iT, 1 - a + i T ,  1 -a+ i ,  where T is large. We define 

! 

I=I(#, v, 6 ) = - -  ~ ~'(s)~(U)(s+i6)~(v)(1-s-i6)ds, 
2hi on 

where @R is the boundary of R and the integral is taken in the counterclock- 
wise sense. Also, we assume @ is real and 161-5�89 By the theory of residues 

I(#,v, 6)= ~ ~(")(p+i6)~(~)(1-p--i6) (21) 
1 < , 2 < T  

provided that no zero p lies on @R. Since the ordinate of the first zero of ~(s) 
above the real axis is > 14 and no zeros lie on the vertical edges of R, we need 
only insure that T is not the ordinate of a zero. This will be the case if TeJ - ,  
the set constructed in Sec. 2. F rom now on we assume Teg - ;  at the end of the 
proof  this restriction will be removed. 
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To prove the Theorem we must estimate the integral I(#, v, 6). To do this 
we first split it into four parts corresponding to the four sides of R. We write 

4 

I(#, v, 6)= Z Ij(#, v, 6), 
j=l 

where 11 is the integral over [a+i,a+iT),  I z is over [a+iT, 1 -a+iT) ,  13 is 
over [ 1 - a + i T ,  l - a+ / ) ,  and 14 is over [1-a+i ,a+i) .  Since Ill<�89 the in- 
tegral in 14 is bounded, i.e. 14,~ 1. Next 

I2 '~ ~ -a=<o.-<amaX ~ ( a + i T ) ~ ( " ) ( a + i T + i 6 ) ~ ) ( 1 - a - i T - i 6 )  

~logZT max ]~")(a+iT+if )~v)(1-a- iT- i6) l  
1 --a<-a<-a 

by 08). The last line is 

__<logZT( max + max + m a x ) l ( w ) ( a + i T + i 6 ) ( t ~ ) ( 1 - a - i T - i 6 ) [ ,  
1--a<=a<=O 0 5 o ' - - < 1  1 =<o'=<a 

which by (20) is 
=<log 2 T(T"-~+ 2~ + T-~ + 2~ + T~-~+ 2~). 

Since a > 1 and e > 0 is arbitrary, we obtain 

12 '~ T~-~ +~. 

This and the estimate for 14 lead to 

I(#, v, 6) =I~(#, v, 6)+ I3( #, v, 6)+O(T"-~+~). (22) 

We now consider 13. The logarithmic derivative of (i1) is 

S ~ -  - - S .  

Using this and the fact that both ((~)(s) and ~-(s) satisfy the reflection principle, 
we get 

I3(#, v, 6)= 1 1-.+i - - -  ~ (1-s ) (W)(s+i f ) ( (~) (1-s - i f )ds  
2nit  - .+ iT g 

1 i~' - 2 n i l  ~(a-it)~(u)( 1 - a + i t  +ib)~(V)(a-it-ic~)idt 

l i~' -27ri ~ ~ (a+it)~")(1 -a- i t - i f i )~(~)(a+it  +ib)idt 

1 a+iT~ 
- ( s )  ( ( " ) ( 1  - s - i 6 )  ( (~) (s  + i 6 )  ds 

2rti .+i 

=Is(v, #, (5). 
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This and (22) yield 

I(#, v, 8) =I1(#, v, 8)+I1(v , #, 8) +O(T"-~+~). 

Our problem is now reduced to estimating I~(#, v, 6). 

129 

(23) 

w 3. Lemmas 

Our first two lemmas are modified versions 
N. Levinson [4]. 

Lemma 1. There is a small c >0 such that 

of Lemmas 3.2 and 3.3 of 

I o= ~ exp it log ~r ~2~! dt 
r 1 - c )  

=(2rc) l - , r%-i ,  + ~i/4 + O(r,- ~) 

for large r and a arbitrary but fixed. 

Proof. This result follows from the usual stationary phase techniques. If we set 
t = r(1 + x) then we can write 

where 

with 

I o =(27t)�89 

I t  = i exp(irf(x))(1 +x)"-~dx 
- - c  

f (x )  = (1 +x) log(1  + x ) -  (1 +x). 

Z 2 
Now f ( z ) = ~ - + . . ,  is holomorphic in a neighborhood of z = 0  with only a 

double zero at z=0 .  Thus u ( z ) = ~  = z + . . .  is holomorphic and u'(z)+-O in 
a neighborhood of z=0.  We make the change of variables u(z)=u and obtain, 
if c is sufficiently small, 

u(c) 

11= ~ eiru2/Zg(u)du, 
u( -c )  

where g(u)= 1 + ... is holomorphic in a neighborhood of u=0.  Now integration 
by parts yields 

I~= ~ e~'"~/2du+O , 
u(-c)  

and 

S e i ru2 /2du  = e ~I/4 + 0 
u(-c)  

by the method of stationary phase; this proves Lemma 1. 
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Lemma 2. For large A and A <r<B <2A 

~ exp [itl~ ( t ) ]  \2hi  dt=(2n)l-"r~e-i'+~i/4+E(r'A'B)' (24) 

where a is fixed and where 

Aa+�89 ( Ba+�89 
E(r,A,B)=O(A"-')+O (IA_rI+A �89 \IB_-~]~B~]. 

For r<=A or r>B, 

B 
( t~-~"-~dt=E(r, A, B). ! exp [it l~ ( t ) ]  \2n! 

(25) 

Proof If A<r<=A+A ~ or if B-B~<r<__B the integral is O(A") by Titchmarsh 
[9], Ch. IV, 4.5, Lemma 4.5. If instead A +A ~ < r < B - B  ~, we have 

where 

! exp [it l~ (r@) ] \2-n~! dt=Io+Jl+J2, 

J~= S exp it log ~e \2n ! dt 
A 

and similarly for J2. Now integration by parts shows that 

and of course a similar estimate holds for J2. Finally, if either r < A - A  ~ or 
r>B+B �89 the required estimate follows by integration by parts. In view of 
Lemma 1, this completes the proof. 

Lemma 3. For m-O, 1,2, ..., A large, and A <r<B<__2A, 

i e x p [ i t l o g ( t ) ] \ 2 n ]  ( log~-)  dt 
A 

( r )  m 
=(2n)l-"rae -ir+~i/4 l og~-  n +E(r,A,B)(logA) m, 

while for r ~ A or r > B, 

t ( ~ )  ( l o g ~ )  dt=E(r,A,B)(logA)~, 

where E(r, A, B) is (25). 

Proof The proof of Lemma 3 is easily obtained from Lemma 2 and integration 
by parts and therefore we omit it. 
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L e m m a  4. Let E(r,A,B) be as in (25), where A is large and A<B<_2A. Assume 
{b,},~= 1 is a sequence of complex numbers such that b, ~ n ~ for any ~ > O. Then if  
a > l ,  

~ b"E(2nn, A ,B)~A" -~ .  
n = l  na  

Proof Choose  e so that  0 < e < a - 1 .  By (25) 

b 
E ~",E(2nn, A , B ) ~  ~ n-"+~E(27rn, A,B) 

n = l  n n = l  

.= 1 .= 1 n"-~(lA - 2 n n l  +A  ~') 
1 

+ B"+�89 I ~ n~-~(lB- 2nnl + B~)" 

The p roof  of the l e m m a  is comple ted  by noting that  

and 

n _ a + ~  1 
n = l  

.= 1 n"-~(] C - 2nnl + C ~) 
~ C  - 1 .  

indeed the last inequali ty is easily established by considering separately  the 
ranges I C - 2 n n [ <  C ~ and I C - 2 n n [ > C  ~. 

L e m m a  5. Let {b.}.~ 1 be a sequence of complex numbers such that for any ~ > O, 
b . ~ n  ~. Let a> 1 and let m be a non-negative integer. Then for T sufficiently 
large, 

1 i ( ~ , l b . n _ a _ ~ , ) ) ~ ( l _ a _ i t ) ( l o g ~ _ ~ ) " d t  
2n 1 = 

= ~ b,(log n) m + O ( T " - ~ ( l o g  T)m). (26) 
l <.n<_ T / 2 n  

Proof By (13) we have 

1 T H - a - i t  t n 

- -  ao . t 

1 i ( ~  b.n-"-i~)e-~i/4exp[ztl~189176 '~dt 
2n r/2 . ~ \ 2n !  

+ 0  ~ ]b,ln -a ta-~(logt)"dt . 
2 n = l  

(27) 
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Since b. ~ n ~, • [ b , [  n - " ~  1 for a >  1. The error term is therefore 
n = l  

T ~ ~ (log T) m. (28) 

To treat the main term on the right-hand side of (27) we write it as 

n = l  2 

the inversion of summation and integration being justified by absolute con- 
vergence. Now the integral in (29) is of the form estimable by Lemma 3 with A 

T 
= ~,  B=T, and r=2nn. Thus (29) is equal to 

~" b,(logn)"+ log~- b,n-aE 2nn,-- T 
T/4n<n<=T/21z n= 1 2 ' 

for large T. By Lemma 4 the second term is 

Hence (29) is equal to 

E 
T/4n<n<-_ T/2n 

<~ T"-�89 T) m. 

b,(log n)" + O (T"- ~(log T)"). 

Using this and (28) in (27) we obtain 

1 bnn -a- i t  Z ( 1 - a - i t )  log dt 
2n T/2 n 1 

= ~ b.(log n)" + O(T  a- ~(log T)") (30) 
T/4n<n<=T/2~ 

T 
for T > To, say. Now let l be the unique integer such that T O < ~ - <  2 T o. Adding 

~o~et~er the r~sult o~ ,~0)~or ~.e ranges I ; '  ~ ]  ~--~' ""~' we find that 

1 i ( ~ b n H _ a _ i t ) ) ~ ( l _ _ a _ _ i ~ ) ( l o g ~ ) m d ~  
2 ~  T/21 n= 1 

= ~ b,(logn)m+O(T~-~(logT)"). 
T/2 ~+ ln <n~ T/2 n 

Noting that 

( ) (~)m 1 v~2' ~ b,, n-"-a Z ( 1 - a - i O  l o g ~ -  d t ~ l  
2~ 1 n=l 
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and 
b, (log n) m ~ 1, 

l <=n<=T/21+ln 

we obtain the result. 

Lemma 6. For a fixed, v>=O, and I t ]>l  we have 

Z ( ' ) ( I - s )=x (1 - s )  ( - l o g  Itl ] ~ 2rc / +O(Itl"-~(l~ 
\ 

(31) 

Proof We proceed by induction on v. The case v=0 is obviously true. 
suppose the lemma proved for v = 0 . . . . .  # - 1 .  We differentiate the identity 

and obtain 

We have 

x'(1 - s) = z ( l - s ) - -  (1 - s )  
Z 

v = O  

Now 

(32) 

X 

and by (15) and Cauchy's estimate for the derivatives of an analytic function 
applied to a small disc centered at s, we find that 

- ( l - s ) =  - 
Z 

\ I 

Also 
g(1-s)=O(l t l  ~-~) for [ t l>l .  (35) 

The required result now follows from (32)-(35) and the induction hypothesis, 
oo 

Lemma 7. Let ~(")(s) ~(V)(s) =,~= 1 A.(#,n ~ v___~) (Re s > l), where #, v _>-0. Then for x _> 1, 

#!v! x(log x)U+v+ 1 +O(x(logx)U+~)" ~, A , (# ,v )=( -1)u+v(#+v+l ) !  
n<x 

(40) 

Proof Lemma 7 is a simple exercise but we give a proof for completeness. We 
have 

( -  1) "+~ ~ A,(#, v ) -  ~ (log d)U(log r) v 
n<__x dr_-<x 

=( ~ ~ + Z ~ - ~ ~ )(l~176 ~" 
d<=VTr<=x/a r<-_CYa<=x/r a_~ffYr<=l,~ 
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Since 
(log d)" = z(log z) a + 0 (z(log z)"- 1), 

d_-<z 

our  sum is 

a <= ~v~ (l~ x ~ (log r) ~ rX log +O(x(logx) "+~). 

Now we can replace the last two sums by integrals, again introducing a 
remainder  term O(x(logx)"+~), and we have to deal with 

x ~ (logt)" log ~ (logt) ~ log - -  
1 t 1 t 

! xx~dt  
: (log (log 7 

1 

If we make  the change of variable t = exp (u log x), we see that 

1 
~ dt x)U+ ~+ 1 

i (logt)" log -7-=(lo8 S u"(1 -u)Vdu 
1 0 

#!v!  (logx).+~+ 1 
- ( # + v + l ) !  

by the well known beta integral, and our  lemma follows. 

L e m m a 8 .  Let ((")(s)((~)(s) ( s - i S ) =  B.(#,v,6) nS (a > 1), where #, v >= 0 and (5 
n = l  

is a real number. Then for x > 1 

B.(#, v, 5)=(-1)u+~+ l #Iv!x(logx) "+~+ 2 
(icS log x) l 

.-<_x t = o ( l + # + v + 2 ) !  
+ O(x(log x) u+ ~+ 1). 

co A.(#, Y )  
Proof. We write ((")(s)~(~)(s)= 

n= 1 ns  

Then  

~ (  ~ A(n) 
- -  as in L e m m a  7 and s) = - n s 

n = l  

B.(#, v, 6)= - ~ ~, A(d)di~A./a(#, v) 
n<=x n<xaln 

= - ~ , ,  A(d)d ia ~ A,(#,v). 
d < x e <=x/d 

Using L e m m a  7 to  estimate the inner sum, we find that 

y. nn(#,v, ,5)=(_l) .+~+l #!v! A(d) / x \  ~'+~+l 
,,<=~, (#+ v+ l)! X d ~ x ~ z - ~  tl~ 



M e a n  values  of the R i e m a n n  zeta-funct ion and its der ivat ives  135 

o r  

where 

B.(/~, v, ~) = ( _  1)u+~+ 1 #!v! .=<~ (#+ v+ 1)! xL.+,,+ I (X,  6)+O(xLu+.(x ,  0)), 

L , , ( x , ~ ) = a ~ ( l O g d ) " .  

To estimate L~ let O(x)= ~ A(d) and write 
d<=x 

L~(x, 6 ) -  1 u-~-zT~dO(u). 

By the prime number theorem with remainder, O(x)=x+E(x ) ,  
E ( x ) ~ x e x p ( - c  l ~ x )  fo r somef ixedc>Oandx=>l .  Thus 

(36) 

where 

L,,(x, (5) - ul -i~ 

The second integral on the right is 

1 bfl  - i ,5  
- -  dE(u). 

=~l,~logx~+ i E~u, (~ (,og~)~ 1 +~1_i~t (log~)~)du 

(log x) ~ + (log x) ~ i exp ( - c lo]/i~) du 
1 U 

(log x) ~. 

In the first integral we replace logu by ( -  1)Z(log x) ~-z(log u) ~, u i~ by 

~ (i6 log u) t and change the order of summation and integration to obtain 
l=o l! 

(~) x u i l~ du ~ ~i~tz ~ ~-l~logx~-~logu/~+zdu 
1 = 

t~o_ l! (l~ ~z=0 /+2+1" 

The innermost sum equals 

l!~c! 
x l ( 1 - x ) " d X - ( l + ~ + l ) ! ,  

0 
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SO the entire expression is equal to 

(i~ log x) l 
x ! ( l~  ~ ( l+~c+ l ) ! "  

l = 0  

This gives 

L~ (x, 6) = ~c ! (log x) ~ + 1 ~ (i~ log x) l t- O ((log x)K). 
l=o ( /+~c+ l ) !  

Using this in (36) we easily find that 

~" B~(#, v, c~)=(-1)"+~+luTvlx(lo~x~ "+~+z ~ (i6 logx)  t 
,=<x ~" " " '~ " , ~ o ( l ~ + v + - 2 ) !  

+ O (x(log x) "+ ~+ 1). 

This proves the lemma. 

L e m m a  9. Suppose that for a fixed 2 > 1, 

a .=x(logx)~+O(x(logx)  a-1 ) (x > 2). 
n < x  

Then if • > 1 is fixed, 

a,(logn)~=x(logx)~+a+O(x(logx) ~+~-1 ) (x >2). 
n < x  

Proof Trivial, by partial summation.  

L e m m a  10. Let 2, v be integers with 2 > 1 and v > O. Then 

~=o ().+ ~)! ( v + ) . ) ( 2 - 1 ) !  

Proof The  sum equals 

= �9 ( _ 1 ) ~  
,,= o ( - 1 ) "  (v -- ~c) ! (2 + K) T. (v+2)!  ,,= o \v- - lc!  

(v+2)! ~=o 

The last sum is the coefficient of x ~ in ( 1 - x ) ~ + ~ ( 1 - x )  -1 and is therefore equal 

to the coefficient o f x  ~ in (1-x)~+~-~ ,  i.e. ( -1 )~  ( v + ~ - l ) . -  ~ - So the above is 

_ v' / v + 2 - 1 ,  ( v + 2 - 1 ) ,  1 

(v+2) l  k v ]  - ( v + 2 ) ! ( 2 -  1 ) ! - ( v + 2 ) ( 2 - 1 ) ! "  

S.M. Gonek 

w 5. Completion of the proof 

We are now in a posi t ion to estimate the integral Ii(/z, v, 6) and thereby to 
complete  the proof  of the Theorem.  By (21) and (23) we have 
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~(U)(p+if)~(~(1--p--if)=I~(l~,V,f)+Ix(v,l~,f)+O(Ta-~+~), (37) 
l<=7<T 

where 1 < a < 2 ,  [31<�89 T~Y-, and 

1 a~ir ~, 
I1(/~, v, 6 ) = ~  ,+i ~ (s)~j")(s+i6)~(~(1 -s-i6)ds. 

A simple change of variable gives 

i1(1~,v, 6) - l .+.r+a) g, a+i~+~) ~ (s -i6)~W)(s)~v)(1 -s)ds. 21ri 

Now for a fixed a > l ,  the integrand is bounded over the interval [a+i, a+i(1 
+3)]. Also, by (19) and (20), the part of the integral along [a+iT, a+i(T+6)] 
is 

<{log T. T ~/3. T "-~+~/3 ,~ T "-~+~. 

Thus 
1 a+iT t~, 

I1(/~ , v, 6 ) = ~  ,!i ~ (s-i6)~w'(s)~)(1 -s)ds+O(T"-~+~)" 

Taking the vth derivative of (9) according to Leibniz's rule, we find that 

~'~'(1-s)= ~ ( ; ) ( - 1 ) ~ ) ( s ) z ~ - ~ ) ( 1 - s ) .  

Hence 

I~(tt, v, 6)= ~ (;) (-1)~ll~(#, v, 6)+O(T~-~+~), (38) 
K=O 

where 
] a+iT  ~r 

By Lemma 6, (19), and (20) it is not difficult to see that 

1~(/~, v, 6) = ( -  1)v-~ i -  ~ 2rt (a+it-i6)~W)(a+it)~)(a+it) 

�9 )~(1-a--it) log 2re ] dt+O(T"-~+~). 
By (15) and (17) 

_~' =~(a+it_i6)+_~log~+7+O (~) ~(a+it- i6)  , t rci 

for t > 1, say. Hence 
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- 2~z 1 ~ (a+it-i(5)((")(a+it)((~)(a+it)Z(1-a-it) l~ dt 

t ]v_~+, -F (--1)~-~ r~�89 l o g ~ /  dt 
2x 1 

( -  1) ~-~ ~ rci / t X ~-~ 
4 27z 1 --4 ((")(a+it)~(~)(a+it)x(1 -a- - i t )  (log ~ )  dt 

T 

+o(r"-~+~). 

The next-to-last error term is O(T "-�89 by (13) and (20) so we may write 

I1 ~(#, v, 3 ) = ( - -  1)v-~(It~ 1 +II~2+I1K3)+O(T"- i+~ ). (39) 

To treat I~ ~ 1 write 

( s -  i3)(t")(s)((~)(s)= ,= t B.(#, ~, s ( a > l )  

as in Lemma 8. Then 

1 T (  ) / t \v-K ! 
Since the B~'s are easily seen to be ~ n ~ for any e > 0, we have by Lemma 5 that 
for T sufficiently large 

I1~1 = ~ Bjt~,tc, 3)(logn)~-~+o(r"-~(logT)~-~). 
n< T/2r~ 

It now follows from Lemmas 8 and 9 that 

i3 log ~-~ T T ,+~+2 

+ O (T (log r)" +~ + ~) + O (T"- �89 (log T) ~- ~) (40) 

for all large T. 
Next, writing 

((.)(s)((~)(s) = ~ ~ A.(/I, ~c) (a>  1) 
n s n=l 

as in Lemma 7, we have 

( ) / t \~-~+~ 
1 i �89 ~ A.(#,~c)n-"-" X ( 1 - a - i t )  t l og~x  ) 

11K2=~-~ 1 n= 1 
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The A.'s are ,~ n ~ for any e > 0, hence by Lemma 5 

1 I1~2-~ ~ A.(#,~c)(logn)V-~+l +O(Y"-~(log T) ~-~+1) 
n<= T/2rr 

for sufficiently large T. By Lemmas 7 and 9 we then find that 

__ . . { V ~#+v+2 11K2 (-1)u+~#T~ T T log +O(T(logT) "+v+l) 
2(#+K+l)!  2~ \ ~ 1  
+o(r"-�89 

The treatment of I1~ 3 is analogous to that of Ix~ 2 and leads to 

(-1)"+~p!~c!r~i r ( r~u+~+l 
IlK3 = (#+K+I)!  4 2~ . l ~  +O(T(logT) "§ 

q- O ( T  a -  �89 T)  v -  r), 

for all large T. 
Combining (39)-(42), we see that 

T ( T ]u+v+2 / 1 
Ii~(#,v,a)=(-1)"+~#!~c!~ log ~-  ! 2(p+~c+ 1)! 

+ O(T(log T) u+~+ 1)+o(r~-~+"). 

(41) 

(42) 

( T) / 
its log 

l=0 

Hence, by (38) and Lemma 10, 

(:t I1(#, v, 6) = ( -  I)"+ v#! ~ -  klog ~ )  (-1)~ ( p + ~ +  1)! 

- i a l o g ~  ( - 1 ) ~  ( I + / x + K + 2 ) (  
1=0 ~c=O 

+ O (V(log T) "+ v+ 1) .o F O(T.-}+ ~) 

T !/log T ],+~+2 1 )~~176 #! i61og 
=( -1 ) "+~-~  \ ~-~I 2 ( # + v + l )  ,=o(l+#+l)!(l+l~+v+2) 

+ 0 (g(log T) "+ ~+ 1) + 0 (T"- ~+ 9. 

It follows from this and (37) (with a=�88 say) that 

T / T \~.+v+2 

l=_<~__<T 
�9 { / ~ + 1  

v + l  H(#,v, 61ogf---~)-H(v,#,-61og~--~)} 

+ O ( T 0 o g  T) "+ v+ t), 
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where T is a sufficiently large element of ~--, 161 <�89 and 

(ic) l 
HOt, V, r  

/~!~__L' ox~ ( l + y +  1)! ( l + y +  v+2)'  

Taking 8 = e L  -1, where L =  l o g ~ -  and c~ is a real number satisfying 
I~1 <L/2, we obtain 

~ ~(,)(o+ic~L_l)~(~)(l_p_ic~L_~)=(_l),+~ r log 

{1 ) 
" g + v + l  H(y,v, 2 n ~ ) - H ( v , # , - 2 n e )  +o(r(logT)U+~+~). (43) 

This is clearly equivalent to (4) when TsJ- .  To remove the restriction on T 
note that increasing T by a bounded amount introduces O(log T) terms into 
the sum in (43), and by (20) these are no larger than O(T~+~). Moreover, the 
right-hand side of (43) changes by at most O((logT)"+~+2). Since these errors 
are smaller than the O-term in (43), (43) holds for all large T within O(1) of an 
element of ~--, that is, for all large T. The proof of the Theorem is now 
complete. 

w 6. Proof  of corollary 3 

Assume the Riemann hypothesis is true and let 0<71~72~... denote the 
ordinates of the zeros of ~(s) in the upper half-plane. Integrating both sides of 
(7) with respect to �9 over the interval [ - f l /2 ,  fl/2], we have 

where 

Now if we choose 

yn+ fl/2L 

E I 
1=<7 .<T 7n--fl/2L 

l~(�89 + it)] 2tit ~ F (fl) Tlog T. 

a/2 (sinn~]~ 
F(fl)= ~ 1 -  d~. 

- /7/2 \ 7 ~  / 

(7, - 7.- 0 2n 
fl > 2 = lim sup 

. log 7. 

it is clear that the left-hand side above will be greater than 

T 

]~(�89 + it)[Z dt, 
1 

which is ~ T l o g T  by (1); that is, F(f l )>l .  But a machine calculation shows 
that F(1.9)=0.997 .... Hence 2 >  1.9. 

The same argument could of course be based on a comparison of (3) and 
(6) with #>0.  But as y increases this seems to lead to progressively worse 
lower bounds for 2. 
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