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Abstract. Wave packets emerged in recent years as a very useful
tool in the study of nonlinear wave equations. In this article we
introduce a phase space transform adapted to the geometry of wave
packets, and use it to characterize and study the associated classes
of pseudodifferential and Fourier integral operators.

1. Introduction

A natural way to study pseudodifferential and Fourier integral oper-
ators is by means of phase space transforms. This is easiest to under-
stand within the framework of the S0

00 calculus, where the localization
occurs on the unit scale both in position and in the frequency. The
corresponding phase space transform is precisely the Bargmann trans-
form,

Tu(x, ξ) = cn

∫
Rn

eiξ(x−y)e−
(x−y)2

2 u(y)dy

The Bargmann transform is an isometry from L2(Rn) into L2(Cn) so
an inverse for it is provided by the adjoint operator. This inverse is
not uniquely determined since T is not onto. Precisely, the range of T
consists of those functions satisfying a Cauchy-Riemann type equation,
i∂ξv = (∂x−iξ)v. The connection with the S0

00 type calculus is provided
by the following simple result:

Theorem 1.1. ([14]) Let A : S(Rn) → S ′(Rn) be a linear operator.
Then A ∈ OPS0

00 if and only if the kernel K of TAT ∗ satisfies

|K(x1, ξ1, x2, ξ2)| ≤ cN(1 + |x1 − x2|+ |ξ1 − ξ2|)−N ∀N ∈ N.

This provides an easy way to study the calculus and the L2 bound-
edness of OPS0

00 pseudodifferential operators. One can also talk about
S0

00 type Fourier integral operators, etc. For more details and further
development of these ideas we refer the reader to [5], [6], [15], [14].

On the other hand, in the study of the wave equation with rough
coefficients one is naturally led to consider wave packets. These are
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exact or approximate solutions to the wave equation which are local-
ized in position and frequency on dual scales. Wave packets were first
introduced in the work of Smith [12], [11], and since then have found
many uses both theoretically (see [16], [13], [17]) and numerically (see
[3] and references therein).

In the initial data space, the wave packets correspond to what is
called the second dyadic decomposition. Precisely, we begin with a
dyadic decomposition in frequency; then, each dyadic annulus of size
λ is subdivided into sectors of angle λ−

1
2 . Thus the Fourier space is

partitioned into boxes which at frequency λ have size λ×(λ
1
2 )n−1. Then

for each such box one considers an equipartition of the physical space
into boxes on the dual scale λ−1 × (λ−

1
2 )n−1.

One can decompose any initial data set for the wave equation into
a discrete, almost orthogonal superposition of localized initial data on
the above scale. Then the wave packets are essentially obtained by
transporting those initial data along the corresponding Hamilton flow.

The first aim of this paper is to introduce a phase space transform
adapted to the scales described above. Via an inversion formula this
leads to a continuous (even smooth) counterpart of the discrete second
dyadic decomposition for the initial data.

Then we consider the associated classes of symbols, and characterize
the corresponding pseudodifferential operators using our phase space
transform. This analysis is not entirely straightforward as it shares
some of the features of the S1,1 calculus.

Starting with a suitable class of canonical transformations we intro-
duce the Fourier integral operators adapted to this geometry. For these
we discuss the calculus and the L2 boundedness properties.

Finally, we consider evolution equations governed by first order op-
erators with almost homogeneous symbols, and we show that the gen-
erated evolution operators are in effect Fourier integral operators as-
sociated to the canonical transformations generated by the Hamilton
flow. In the case of S0

00 calculus this analysis was carried out in [10],
[14]. For similar results see also [2].

As an application, we consider the question of constructing paramet-
rices for half-wave evolutions with rough coefficients. In the spirit of the
paradifferential calculus, we regularize the coefficients on a frequency
dependent scale to obtain a modified evolution which fits within our
setup. On the other hand we show that the original and the modified
evolutions are close in the L2 sense.
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2. The phase space structure

Given two vectors ξ, η ∈ Rn we denote

ξ ∧ η = ξ ⊗ η − η ⊗ ξ

We can decompose η into components which are parallel, respectively
perpendicular to ξ by

η =
1

ξ2
((η · ξ)ξ + (η ∧ ξ)ξ)

The Euclidean operator norm of ξ ∧ η is denoted by |ξ ∧ η|. One can
show that it equals exactly |ξ| times the length of the component of η
which is perpendicular to ξ.

In the Fourier space we define a Riemannian metric g, which at the
point ξ is defined by

gξ(η) =
1

ξ2(1 + ξ2)
(ξ · η)2 +

1

ξ2(1 + ξ2)
1
2

|ξ ∧ η|2

In the physical space we use a dual scale, given by the metric g−1.
Consequently we set

g−1
ξ (y) =

1 + ξ2

ξ2
(ξ · y)2 +

(1 + ξ2)
1
2

ξ2
|ξ ∧ y|2

Putting these two together we obtain a Riemannian metric in T ∗Rn,
given by

ds2 = gξ(dξ) + g−1
ξ (dx)

By a slight abuse of notation we also use g for the phase space metric
and set

gx,ξ(y, η) = g−1
ξ (y) + gξ(η)

We denote by d the distance induced by this metric in T ∗Rn. On
occasion we omit the spatial component,

d(ξ, η) := d((0, ξ), (0, η))

For ξ ∈ Rn we denote a unit size neighborhood by

Rξ = {η ∈ Rn; gξ(ξ − η) ≤ 1/4}

This is a dyadic sector around ξ of radial length 〈ξ〉 and width 〈ξ〉
1
2

(or equivalently, of angle 〈ξ〉−
1
2 ). It is easy to verify that g is a slowly

varying metric, in the sense that

Lemma 2.1. The metric g is slowly varying. Precisely,

ξ ∈ Rη =⇒ 1

16
gη ≤ gξ ≤ 16gη
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This shows that within Rξ we can freeze the metric to gξ and obtain
an equivalent distance. Thus Rξ roughly coincides with a unit sized
ball with respect to the metric g.

The dual balls to Rξ in the physical space are denoted by

R−1
ξ = {y ∈ Rn; g−1

ξ (y) ≤ 4}

These are roughly boxes of size 〈ξ〉−1 in the ξ direction and 〈ξ〉−
1
2 in all

directions normal to ξ. Then we can describe small balls in the phase
space roughly by

B((x, ξ), ε) ≈ (x+ εR−1
ξ )× εRξ, ε ≤ 1

To measure the regularity of functions on the scale given by the
metric g we use the notation

|∇ka(x, ξ)|g = sup{(Πk
j=1vj∇)a(x, ξ); gx,ξ(vj) ≤ 1, j = 1, k}

Since g is slowly varying, within unit size balls we can freeze the metric
for this purpose. We can control the regularity of the metric g on the
g scale:

Lemma 2.2. The metric g is smooth on the g scale,

|∇α
ξ gξ(η)|g . gξ(η), η ∈ Rn

Proof. We can write gξ as a matrix,

gξ =
1

1 + ξ2

ξ

|ξ|
⊗ ξ

|ξ|
+

1

(1 + ξ2)
1
2

(
In −

ξ

|ξ|
⊗ ξ

|ξ|

)
When |ξ| < 1 we only need to verify that all components are smooth,
which is easy. For larger ξ we can assume that ξ = re1. We rescale

ξ1 = rζ1, ξ′ = r
1
2 ζ ′

to bring ξ to e1 and gξ to In. The metric g in the new coordinates has
the form

gr(ζ) =
(ζ1, r

− 1
2 ζ ′)⊗ (ζ1, r

− 1
2 ζ ′)

(r−2 + ζ2
1 + r−1ζ ′2)(ζ2

1 + r−1ζ ′2)

+
ζ ′2e1 ⊗ e1 − ζ1(e1 ⊗ (0, ζ ′) + (0, ζ ′)⊗ e1)

(r−2 + ζ2
1 + r−1ζ ′2)

1
2 (ζ2

1 + r−1ζ ′2)

+
(ζ2

1 + r−1ζ ′2)I ′n−1 − (0, ζ ′)⊗ (0, ζ ′)

(r−2 + ζ2
1 + r−1ζ ′2)

1
2 (ζ2

1 + r−1ζ ′2)
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In the rescaled setting we need to prove that the derivatives of the
components of gr at ζ = e1 are uniformly bounded with respect to
r ≥ 1. But this is straightforward. �

The above results show that the short range geometry is essentially
flat, and is described by the frozen metric gξ. This is no longer the
case for the long range geometry. To characterize it we begin with a
simpler result allowing us to compare g at different points:

Lemma 2.3. Let ξ, η ∈ Rn. Then

g−1
ξ (u) . g−1

η (u)(1 + gη(ξ − η))

and the dual bound

gξ(u) . gη(u)(1 + gξ(ξ − η))

Proof. Since gη(η) ≤ 1 it follows that

(1 + gη(ξ − η)) ≈ 1 + gη(ξ)

We write ξ as

ξ =
ξ · η
η2

η +
1

η2
(ξ ∧ η)η

Then we express the component of u along ξ as

ξ · u =
ξ · η
η2

η · u+
1

η2
(ξ ∧ η)η · u

Hence we have

g−1
ξ (u) .

〈ξ〉2

ξ2η4
(|ξ · η|2|η · u|2 + |ξ ∧ η|2|u|2|η|2) + 〈ξ〉|u|2

.g−1
η (u)

(
〈ξ〉2

〈η〉2
+
〈ξ〉2|ξ ∧ η|2

|ξ|2|η|2〈η〉
+
〈ξ〉
〈η〉

)

.g−1
η (u)

(
1 +

ξ2

〈η〉2
+
|ξ ∧ η|2

|η|2〈η〉

)
≈g−1

η (u)(1 + gη(ξ))

�

This allows us to consider the size of g at distant points.

Lemma 2.4. Let ξ1, ξ2 ∈ Rn. Then for η ∈ Rξ1 and ξ ∈ Rξ2 we have

1 + gξ1(η − ξ) ≈ 1 + gξ1(ξ1 − ξ2)
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Proof. We first note that gξ1(η − ξ1) ≈ 1, so without any restriction in
generality we can take η = ξ1. By Lemma 2.3 we also have

gξ1(ξ − ξ2) . gξ2(ξ − ξ1)(1 + gξ1(ξ1 − ξ2)) . (1 + gξ1(ξ1 − ξ2))

Then the “.” bound follows. The opposite inequality must also be
true by symmetry.

�

Finally, we give a complete characterization of the distance d.

Theorem 2.5. We have

(1) 1 + d(ξ, η) ≈ ln

(
gξ(ξ − η) +

〈ξ〉
〈η〉

+
〈η〉
〈ξ〉

+ 〈ξ, η〉−
)

and

(2) 1 + d((x, ξ), (y, η)) ≈ 1 + d(ξ, η) +ln(1 + g−1
ξ (x− y)) + |x− y|

We note that the role of the last term in (1) is roughly to differentiate
the region where η is close to ξ from the region where η is close to −ξ.

Proof. For (1), we first find a path between ξ and η whose length is
comparable to the right hand side. The intuitive idea is that it is less
costly to move in angle at a lower speed. Therefore we choose the
following route γ0:

- from ξ and η we go radially towards the origin until the vectors are
in the same dyadic angular piece centered at another vector ζ0;

- then we move in angle inside this piece.
To estimate the length of this path we express the metric in polar

coordinates

ξ = rΘ

Then

(3) ds2 = (d ln〈r〉)2 + 〈r〉−1(dΘ)2

Hence the length of γ0 is

1 + l(γ0) ≈ 1 + ln
〈ξ〉
〈ζ0〉

+ ln
〈η〉
〈ζ0〉

= 1 + ln
〈ξ〉〈η〉
〈ζ0〉2

To determine 〈ζ0〉 we assume that 〈ξ〉 ≥ 〈η〉 and consider two cases
depending on the size of the angle θ between ξ and η.

Case 1, θ < 〈η〉−
1
2 . Then we take ζ0 = η therefore

1 + l(γ0) ≈ 1 + ln
〈ξ〉
〈η〉
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This is comparable to the right hand side of (1) since

gξ(ξ − η) +
〈η〉
〈ξ〉

. 1

while the last term 〈ξ, η〉− is 0 if 〈η〉 � 1 and O(〈ξ〉) otherwise.

Case 2, θ ≥ 〈η〉−
1
2 . Then θ ≈ 〈ζ0〉−

1
2 therefore

1 + l(γ0) ≈ 1 + ln
〈ξ〉
〈η〉

+ ln(〈η〉2θ4)

On the other hand in the right hand side of (1) we have

1 + gξ(ξ − η) ≈ 1 +
η2 sin2 θ

〈ξ〉
≈ 1 +

〈η〉
〈ξ〉

(〈η〉 sin2 θ)

while

〈ξ, η〉− = |ξ||η|(cos θ)− .
〈ξ〉
〈η〉

(〈η〉2θ4)

Clearly we get
1 + l(γ0) & RHS(1)

For the converse we consider two cases. If θ < 3π/4 then sin θ ≈ θ so
we can use the gξ(ξ − η) term to control l(γ). Otherwise (cos θ)− ≈ 1,
so we use the 〈ξ, η〉− term.

To complete the proof of (1) it remains to show that the length of
any path γ joining ξ and η has RHS(1) as a lower bound. We have

l(γ) ≈
∫ (

gγ(t)(γ̇(t))
) 1

2 dt.

Choose ζ on γ of minimum norm, |ζ| = min |γ(t)|. Using the expression
(3) of the metric in polar coordinates we can infer immediately that:

l(γ) & ln
〈ξ〉〈η〉
〈ζ〉2

+ θ〈ζ〉
1
2 = f(〈ζ〉)

Given the choice of ζ0 above, it remains to show that ζ0 is an approxi-
mate minimum for f ,

f(〈ζ〉) & f(〈ζ0〉), 〈ζ〉 ≤ 〈η〉 ≤ 〈ξ〉
But this is a straightforward computation.

We now turn our attention to the investigation of (2). First we make
the observation that

d((x, ξ), (y, η)) ≈ d((x, ξ), (y, ξ)) + d(ξ, η)

This is immediate using the triangle inequality and

d((x, ξ), (y, η)) ≥ d(ξ, η) = d((y, ξ), (y, η)) = d((x, ξ), (x, η))
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This reduces the proof of (2) to the case when ξ = η. We proceed
as in the first part. First we construct a geodesic whose length is
comparable to ln(1 + g−1

ξ (x− y)) + |x− y|.
We consider the piecewise straight trajectory

γ(ζ) : (x, ξ) → (x, ζ) → (y, ζ) → (y, ξ)

where ζ ∈ [0, ξ]. This has length

l(γ(ζ)) ≈
√
g−1

ζ (x− y) + ln
〈ξ〉
〈ζ〉

= f(ζ)

Then we optimize its length with respect to ζ ∈ [0, ξ] and show that

min
λ∈[0,1]

f(λ) ≈ ln(1 + g−1
ξ (x− y)) + |x− y|

For one direction we note the trivial bound f(λ) ≥ |x−y|. In addition,

f(λ) & ln(1 + g−1
ζ (x− y)) + ln

〈ξ〉
〈ζ〉

& ln(1 + g−1
ξ (x− y))

For the other direction we consider three cases:
(i) g−1

ξ (x− y) ≤ 1. Then we set ζ = ξ and

f(ζ) ≈
√
g−1

ξ (x− y) ≈ ln(1 + g−1
ξ (x− y))

(ii) g−1
ξ (x − y) > 1 and |x − y| < 1. Then we choose ζ so that

g−1
ζ (x− y) = 1. This gives

f(ζ) = 1 + ln
〈ξ〉
〈ζ〉

≤ 1 + ln
g−1

ξ (x− y)

g−1
ζ (x− y)

= 1 + ln g−1
ξ (x− y) ≈ ln(1 + g−1

ξ (x− y))

(iii) |x− y| ≥ 1. Then we take ζ = 0 which gives

f(ζ) = ln 〈ξ〉+ |x− y| . ln(1 + g−1
ξ (x− y)) + |x− y|

Pick now any path γ which joins (x, ξ) and (y, ξ). Define

θ = sup
(z,η)∈γ

∠(ξ, η), r = min
(z,η)∈γ

〈η〉

We choose ζ ∈ [0, ξ] with

〈ζ〉 = min{r, θ−2}
Then the frequency projection of the trajectory γ is contained above ζ

in a sector centered at ζ and of angle 〈ζ〉−
1
2 . This implies that

g−1
η & g−1

ζ ∀(z, η) ∈ γ
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Taking advantage of the analysis in the proof of (1) it follows that

l(γ) &
√
g−1

ζ (x− y) + d(ξ, ζ) ≈
√
g−1

ζ (x− y) + ln
〈ξ〉
〈ζ〉

= f(ζ)

which concludes the proof.
�

Later in the paper we want to use the distance d to express phase
space kernel bounds of pseudodifferential operators. For this purpose
the last term in (2) proves inconvenient. Hence we introduce a second

distance d̃ which is a technical modification of the distance d. The term
|x − y| arises when the geodesic moves between x and y at frequency
close to 0 and speed 1. We make this move less expensive by setting

d̃((x, ξ), (y, η)) = min { d((x, ξ), (y, η)), inf
x1,y1

{d((x, ξ), (x1, 0))

+ ln(1 + |x1 − y1|) + d((y1, 0), (y, η))} }
It is easy to prove that this is a distance since d is a distance and
ln(1 + x) is subadditive in R+. By (2) we have

d((x, ξ), (x1, 0)) ≈ d(ξ, 0) + |x− x1|
therefore we can approximate d̃ with

d̃((x, ξ), (y, η)) = min{d((x, ξ), (y, η)),
d(ξ, 0) + ln(1 + |x− y|) + d(0, η)}

(4)

When |x − y| < 1 the two distances are comparable. However, the

long range behavior of d̃ is given by

(5) d̃((x, ξ), (y, η)) ≈ d(ξ, η) + ln(1 + g−1
ξ (x− y))

We also introduce an even version of d and d̃,

deven(ξ, η) = min{d(ξ, η), d(ξ,−η)}
and

d̃even((x, ξ), (y, η)) = min{d̃((x, ξ), (y, η)), d̃((x, ξ), (y,−η))}
Then we have

(6) 1+ d̃even((x, ξ), (y, η)) ≈ ln

(
gξ(ξ − η) + g−1

ξ (x− y) +
〈ξ〉
〈η〉

+
〈η〉
〈ξ〉

)
Lemma 2.6. For large enough N we have∫

R2n

e−Nd̃even((x,ξ),(y,η))dydη . 1

and the similar bound for d̃.
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Proof. By (6) we have∫
R2n

e−Nd̃even((x,ξ),(y,η))dydη .
∫

R2n

(1+gξ(ξ−η)+g−1
ξ (x−y))−cNdydη . 1

�

3. The phase space transform

The coherent states adapted to the phase space structure induced by
the metric g are bump functions φx,ξ which are localized in frequency
within Rξ and in position in x+R−1

ξ . We certainly cannot have sharp
localization at both ends. Unlike in the case of the classical Bargmann
transform, we choose to have sharp frequency localization in order to
prevent potentially troublesome concentrations at the origin.

Definition 3.1. Let h be an L2 normalized smooth function supported
in B(0, 1

16
). Then the coherent states φx,ξ are defined by

(7) φ̂x,ξ(η) = 〈η〉−
n+1

4 h(gη(ξ − η))e−iηx

We also introduce the notation

φξ(η) = 〈η〉−
n+1

4 h(gη(ξ − η))

We note that φx,ξ(y) are not exactly L2 normalized but

‖φx,ξ‖L2 ≈ 1

One can also see that they can be represented in the form

(8) φx,ξ(y) = 〈ξ〉
n+1

4 kξ(y − x)eiξ(y−x)

where kξ is a smooth bump function on the R−1
ξ scale.

Lemma 2.1 allows us to describe the frequency support of the coher-
ent states:

Lemma 3.2. For ξ, η ∈ Rn we have

φ̂x,ξ(η) 6= 0 =⇒ ξ ∈ Rη, η ∈ Rξ

Now we can define our phase space transform:

Definition 3.3. The phase transform T is

(9) Tu(x, ξ) =

∫
Rn

u(y)φx,ξ(y) dy, ∀u ∈ S(Rn)
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We can also express Tu in terms of the Fourier transform of u,

Tu(x, ξ) =

∫
Rn

û(η)φ̂x,ξ(η) dη

The adjoint operator T ∗ is given by

T ∗f(y) =

∫
Rn

f(x, ξ)φx,ξ(y) dxdξ

It is easy to see that

Proposition 3.4. The following mapping properties hold:

T : S(Rn) → S(R2n), T ∗ : S(R2n) → S(Rn)

By duality this allows us to extend T and T ∗ to linear operators

T : S ′(Rn) → S ′(R2n), T ∗ : S ′(R2n) → S ′(Rn)

As for the classical Bargmann transform we have

Proposition 3.5. The phase space transform T is an isometry

T : L2(Rn) −→ L2(R2n).

Thus we have the inversion formula

(10) u(y) =

∫
R2n

Tu(x, ξ)φx,ξ(y) dxdξ

Proof. A straightforward calculation using the Fourier inversion for-
mula leads to:

T̂ ∗Tu(ζ) =

∫
û(η)φ̂x,ξ(η)φ̂x,ξ(ζ) dηdxdξ

=

∫
û(η)eix(ζ−η)h(gζ(ξ − ζ))h(gη(ξ − η))〈η〉−

n+1
4 〈ζ〉−

n+1
4 dηdxdξ

=〈ζ〉−
n+1

2 û(ζ)

∫
|h(gζ(ξ − ζ)|2dξ

=û(ζ)

�

4. Symbol classes and pseudodifferential operators

As a starting point we define the symbol class which is associated to
the metric g. Precisely, we consider symbols which are smooth in ξ on
the Rξ scale and in x on the R−1

ξ scale. To describe their size we need
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Definition 4.1. A function m : R2n → R+ is slowly varying function
with respect to the metric g if

d((x, ξ), (y, η)) ≤ 1 ⇒ m(x, ξ) ≈ m(y, η)

and there exists k so that

m(x, 0) . m(y, 0)(1 + |x− y|)k

Obvious examples of slowly varying functions are 1, 〈ξ〉s. Since
within each unit ball m can change by a fixed factor, we easily ob-
tain

(11) m(x, ξ) . m(y, η)eCd̃((x,ξ),(y,η))

Definition 4.2. Let m : R2n → R+ be a slowly varying function with
respect to the metric g. The symbol a ∈ C∞(R2n) belongs to S(m, g) if
it satisfies the following estimates:

(12) |∇αa(x, ξ))|g ≤ cαm(x, ξ)

If m = 1 then we simply write S(g).

Unfortunately, the corresponding class of operators OPS(g) is not
so well behaved because a certain degree of concentration at frequency
0 is permitted for the corresponding pseudodifferential operator. This
phenomena is similar to what happens in the case of S0

1,1 symbols,
only it gets worse here. To remedy this we consider the analogue of
Hörmander’s [8] S̃0

1,1 class (see also [1], [4], [9]):

Definition 4.3. Let m : R2n → R+ be an even slowly varying function
with respect to the metric g. The symbol a ∈ S(m, g) belongs to S̃(m, g)
if in addition it satisfies the following estimates:

(13) |S<λ(Dx + ξ)a(x, ξ)| ≤ cNm(x, ξ)

(
λ

〈ξ〉

)N

, 1 ≤ λ ≤ 〈ξ〉

where S<λ is a smooth multiplier selecting the region 〈η〉 . λ.

This is a condition which limits the part of A(x,D) which takes high
frequencies to low frequencies. It is dependent on the calculus that
we use. The one above is adapted to the left calculus, but we would
have to use a different one for the right calculus or say for the Weyl
calculus. A useful example of symbols satisfying this extra condition
is as follows:

Remark 4.4. Let a ∈ S(m, g) so that â(η, ξ) is supported in |η| � |ξ|.
Then a ∈ S̃(m, g). This is because the expression in (13) vanishes if
λ� 〈ξ〉.
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Our main result is to characterize the symbols in the S̃(m, g) class
in terms of the phase space transform.

Theorem 4.5. Let A : S(Rn) → S ′(Rn) be a linear operator. Let
m : R2n → R+ be an even slowly varying function with respect to the
metric g. Then A ∈ OPS̃(m, g) if and only if the kernel K of TAT ∗

satisfies the following bounds:

(14) |K(x1, ξ1, x2, ξ2)| ≤ cNm(x1, ξ1)e
−Nd̃even((x1,ξ1),(x2,ξ2))

for all N ∈ N.

We note that by (11) the factors m(x1, ξ1) and m(x2, ξ2) are inter-
changeable. We use the even distance here because for such operators
the input from frequency ξ to frequency −ξ is nontrivial. This is a
reflection of the fact that R−ξ is contained in a dilation of Rξ. Using

the expression for d̃even we also rewrite the bound (14) in the form

(15) |K(x1, ξ1, x2, ξ2)| ≤ cN
m(x1, ξ1) min{〈ξ1〉/〈ξ2〉, 〈ξ2〉/〈ξ1〉}N

(1 + gξ2(ξ1 − ξ2) + g−1
ξ1

(x1 − x2))N

The above theorem immediately leads to

Corollary 4.6. Let A : S(Rn) → S ′(Rn) be a linear operator. Then
A ∈ OPS̃(m, g) iff A∗ ∈ OPS̃(m, g).

As far as multiplicative properties are concerned, we note that while

S(m1, g) · S(m2, g) ⊂ S(m1m2, g)

the similar property for operators can fail. In the terminology of
Hörmander [7], section 18.5, this is connected to the fact that our
metric on the cotangent space T ∗Rn is not temperate with respect to
the symplectic form.

The opposite happens with the S̃ symbol classes. While

S̃(m1, g) · S̃(m2, g) 6⊂ S̃(m1m2, g)

we do have the more interesting property:

Corollary 4.7. Let m1,m2 be even slowly varying functions with re-
spect to the metric g. Then

OPS̃(m1, g)OPS̃(m2, g) ⊂ OPS̃(m1m2, g).

Proof. For i = 1, 2 we consider symbols ai ∈ S̃(mi, g) and denote by
Ki the kernels of TAi(x,D)T ∗. Then the kernel K of the operator
TA1(x,D)A2(x,D)T ∗ is given by

K(x1, ξ1, x2, ξ2) =

∫
K1(x1, ξ1, x, ξ)K2(x, ξ, x2, ξ2)dxdξ
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We take absolute values and use (14) for K1 and K2. Taking advantage

of the triangle inequality for d̃even we obtain

|K(x1, ξ1, x2, ξ2)|

.cNm1(x1, ξ1)m2(x2, ξ2)

∫
e−Nd̃even((x1,ξ1),(x,ξ))e−2Nd̃even((x,ξ),(x2,ξ2))dxdξ

.cNm1(x1, ξ1)m2(x2, ξ2)e
−Nd̃even((x1,ξ1),(x2,ξ2))

∫
e−Nd̃even((x,ξ),(x2,ξ2))dxdξ

By lemma 2.6 the last integral has size O(1). Also m1 and m2 are
slowly varying so their arguments are interchangeable. Hence the proof
is concluded. �

Next we turn our attention to Sobolev space estimates. The simplest
one is:

Theorem 4.8. Let a ∈ S̃(g). Then

A(x,D) : L2 → L2

Proof. We write A(x,D) = T ∗(TA(x,D)T ∗)T . Since T is an isometry,
A(x,D) is L2 bounded if and only if TA(x,D)T ∗ is L2 bounded. This
follows from the kernel bounds

sup
x1,ξ1

∫
|K(x1, ξ1, x2, ξ2)|dx2dξ2 <∞

sup
x2,ξ2

∫
|K(x1, ξ1, x2, ξ2)|dx1dξ1 <∞

These are an immediate consequence of the kernel bound (14) and of
Lemma 2.6. �

Since we trivially have

〈ξ〉s ∈ S(〈ξ〉s, g), s ∈ R
we can use the composition theorem to conclude that

Corollary 4.9. Let a ∈ S̃(g). Then

A(x,D) : Hs → Hs, s ∈ R

We turn our attention for a moment to the S(g) symbol class. As a
byproduct of the proof of Theorem 4.5 one obtains

Corollary 4.10. If a ∈ S(g) then the kernel K of TAT ∗ satisfies

(16) |K(x1, ξ1, x2, ξ2)| ≤ cN
(〈ξ2〉/〈ξ1〉)

n+1
4

(1 + gξ2(ξ1 − ξ2) + g−1
ξ1

(x1 − x2))N
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Since
1

1 + gξ2(ξ1 − ξ2)
.
〈ξ2〉2

〈ξ1〉2

the bound (16) is as strong as (14) in the region {|ξ2| . |ξ1|}. This
leads to the following alternative characterization of S̃g:

Theorem 4.11. Let A : S → S ′ be a linear operator. Then A ∈
OPS̃(g) iff A ∈ OPS(g) and A∗ ∈ OPS(g).

Remark 4.12. If a ∈ S(g) then one can prove that

a(x,D) : Hs(Rn) −→ Hs(Rn), (∀) s > n− 2

2

A direct argument using (16) only yields the n−1
2

threshold, and a
slightly finer analysis is needed for the optimal result.

While the even phase space structure is compatible with the calcu-
lus of pseudodifferential operators, things change if we want to consider
Fourier integral operators. Indeed, there is no reason to restrict our-
selves to canonical transformations which commute with the symmetry
with respect to the origin. Hence we introduce a third and smaller class
of pseudodifferential operators:

Definition 4.13. Let m : R2n → R+ be an even slowly varying function

with respect to the metric g. The symbol a ∈ S̃(m, g) belongs to ˜̃S(m, g)
if in addition it satisfies the following estimates:
(17)

|S<ε〈ξ〉(Dx + (1 + ε)ξ)a(x, ξ)| ≤ cNm(x, ξ)〈ξ〉−N , 〈ξ〉−
1
2 < ε < 〈ξ〉

1
2

Then we have the characterization theorem

Theorem 4.14. Let A : S(Rn) → S ′(Rn) be a linear operator. Let
m : R2n → R+ be a slowly varying function with respect to the metric

g. Then A ∈ OP ˜̃S(m, g) if and only if the kernel K of TAT ∗ satisfies
the following bounds:

(18) |K(x1, ξ1, x2, ξ2)| ≤ cNm(x1, ξ1)e
−Nd̃((x1,ξ1),(x2,ξ2))

for all N ∈ N.

The proof essentially repeats the proof of Theorem 4.5 and is omit-
ted.

We now return to the proof of our main result.
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Proof of Theorem 4.5. a) Consider a symbol a ∈ S(m, g). The kernel
K of TA(x,D)T ∗ has the form

K(x1, ξ1, x2, ξ2) =

∫
eix·(ξ−η)a(x, ξ)φ̂x1,ξ1(η)φ̂x2,ξ2(ξ) dxdξdη

Given our choice of the coherent states, we can rewrite it in the form

K = [|Rξ1 ||Rξ2|]−
1
2

∫
ei[ξ(x−x2)+η(x1−x)]a(x, ξ)Gξ1,ξ2(η, ξ)dxdξdη

where

Gξ1,ξ2(ξ, η) =

(
〈ξ1〉〈ξ2〉
〈η〉〈ξ〉

)n+1
4

h(gξ(ξ2 − ξ))h(gη(ξ1 − η))

We note thatGξ1,ξ2 is a size one bump function with support inRξ1×Rξ2

and smooth on the same scale. This is all that we need in the sequel.
The fact that a depends also on ξ makes no difference, since a(x, ξ) is
also smooth in Rξ2 on the Rξ2 scale and has size m(x, ξ2).

a1) An uniform bound on K. The Fourier transform of a bump
function is a bump function on the dual scale. Hence, taking the Fourier
transform with respect to ξ and η in K we obtain
(19)

|K| . [|Rξ1||Rξ2|]
1
2m(x2, ξ2)

∫
(1+g−1

ξ1
(x1−x))−N(1+g−1

ξ2
(x2−x))−Ndx

Estimating each of the two bump functions under the integral in L2

yields

|K| . [|Rξ1||Rξ2|]
1
2m(x2, ξ2)[|Rξ1||Rξ2|]−

1
2 . m(x2, ξ2)

Estimating the first bump in L∞ and the second in L1 yields the better
bound

(20) |K| . m(x2, ξ2)|Rξ1|
1
2 |Rξ2 |−

1
2

a2) Frequency decay for K. We begin with the relation

(21) (1−∆g−1
ξ2

)Neix(ξ−η) = (1 + gξ2(η − ξ))Neix(ξ−η)

Substituting this in K and integrating by parts yields

K = [|Rξ1||Rξ2|]−
1
2

∫
ei[ξ(x−x2)+η(x1−x)](1−∆g−1

ξ2

)Na(x, ξ)

(1 + gξ2(η − ξ))−NGξ1,ξ2(η, ξ)dxdξdη

For ξ ∈ Rξ2 the symbol (1 − ∆g−1
ξ2

)Na(x, ξ) has the same bounds and

regularity as a(x, ξ). Also, by Lemma 2.4, within Rξ1×Rξ2 the function
(1 + gξ2(η − ξ))−N is smooth and has size (1 + gξ2(ξ1 − ξ2))

−N . Then
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we can include it in G and argue as in case (a1) to obtain the analogue
of (20),

(22) |K| . |Rξ1|
1
2 |Rξ2|−

1
2m(x2, ξ2)(1 + gξ2(ξ1 − ξ2))

−N

a3) Spatial decay for K. Here we return to the bound (19) and
improve the estimate for the integral. For this we use the bound in
Lemma 2.3. This yields

(1 + g−1
ξ1

(x2 − x)) . (1 + g−1
ξ2

(x2 − x))(1 + gξ2(ξ1 − ξ2))

and by the triangle inequality

(1+ g−1
ξ1

(x1−x2)) . (1+ g−1
ξ2

(x2−x))(1+ gξ2(ξ1− ξ2))(1+ g−1
ξ1

(x1−x))
By (19) this implies that

|K| . [|Rξ1||Rξ2 |]
1
2

∫
m(x2, ξ2)(1 + gξ2(ξ1 − ξ2))

N

(1 + g−1
ξ1

(x1 − x2))N(1 + g−1
ξ2

(x2 − x))N
dx

After integration in x we get
(23)

|K| . m(x2, ξ2)|Rξ1|
1
2 |Rξ2 |−

1
2 (1 + gξ2(ξ1 − ξ2))

N(1 + g−1
ξ1

(x1 − x2))
−N

We can combine (22) and (23) to obtain
(24)

|K| . m(x2, ξ2)|Rξ1|
1
2 |Rξ2|−

1
2 (1 + gξ2(ξ1 − ξ2))

−N(1 + g−1
ξ1

(x1 − x2))
−N

which is the optimal bound under the assumption a ∈ S(m, g) (see
Corollary 4.10).

Since

1 + gξ2(ξ1 − ξ2) ≥
1 + ξ2

1

1 + ξ2
2

this bound gives rapid decay for K as |ξ2|/|ξ1| → 0. To conclude
the proof of the bound for K it remains to obtain the rapid decay as
|ξ2|/|ξ1| → ∞. This is the only place in the argument where we use
the S̃(m, g) structure.

a4) High-low frequency bounds. Suppose that 〈ξ1〉 � 〈ξ2〉. Choose
λ = 4〈ξ1〉. Then

φ̂x1,ξ1(η) = S<λ(η)φ̂x1,ξ1(η)

Substituting this in the expression for K, S<λ can be interpreted as a
multiplier in the x variable. Then

K(x1, ξ1, x2, ξ2) =

∫
e−ixη(S<λe

ixξa(x, ξ))φ̂x1,ξ1(η)φ̂x2,ξ2(ξ) dxdξdη

Thus we obtain a similar expression but with a(x, ξ) replaced by

e−ixξS<λ(e
ixξa(x, ξ)) = S<λ(Dx + ξ)a(x, ξ)
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Then we can simply apply the bound (23) provided we know the
stronger symbol estimate

(25) |∇kS<λ(Dx + ξ)a(x, ξ)|g . ck,Nm(x, ξ)(λ/〈ξ〉)N

For k = 0 this is exactly our hypothesis (13). For k > 0 we begin with
(12) which yields

|S<λ(Dx + ξ)∇ka(x, ξ)|g . cNm(x, ξ)(λ/〈ξ〉)−k0

for some large k. Here the large factor on the right measures the
possible change in m(x, ξ) within a λ−1 ball, in which the kernel of the
multiplier is concentrated.

The x derivatives commute with the multiplier. The ξ derivatives
yield extra λ−1 factors, which combined with the additional 〈ξ〉 factor
coming from g yield

|∇kS<λ(Dx + ξ)a(x, ξ)|g . ck,Nm(x, ξ)(λ/〈ξ〉)−2k−k0

Interpolating this with (13) for k = 0 on unit g-balls yields (25) and
concludes the proof of the bounds for K.

b) Assume now that K verifies (14). We interpret A as a pseudo-
differential operator with symbol a(x, ξ) and prove that a satisfies (12)
and (13). For a we have the following representation:

(26) a(x, ξ) =

∫
e−ix·(ξ−η)K(x1, ξ1, x2, ξ2)φ̂x1,ξ1(η)φ̂x2,ξ2(ξ) dxidξidη

With the same notations as in the case of K this gives

a(x, ξ) =

∫
[|Rξ1 ||Rξ2|]−

1
2 e−i[ξ(x−x2)+η(x1−x)]K(x1, ξ1, x2, ξ2)

Gξ1,ξ2(η, ξ) dxidξidη

Since we only have pointwise bounds on K, the sole nontrivial oscilla-
tory integral here is the one with respect to η.

b1) An uniform bound on a. Taking the Fourier transform with
respect to η yields

|a(x, ξ)| .
∫

1Rξ2
(ξ)|Rξ1|

1
2 |Rξ2|−

1
2 |K(x1, ξ1, x2, ξ2)|

(1 + g−1
ξ1

(x− x1))N
dxidξi

We replace K with its bound to obtain

|a(x, ξ)| .
∫

1Rξ2
(ξ)|Rξ1|

1
2 |Rξ2|−

1
2 min{〈ξ1〉/〈ξ2〉, 〈ξ2〉/〈ξ1〉}Nm(x2, ξ2)

(1 + gξ2(ξ2 − ξ1))N

1

(1 + g−1
ξ1

(x1 − x2))N(1 + g−1
ξ1

(x− x1))N
dxidξi
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where due to the “min” factor we are allowed to freely interchange gξ1

and gξ2 . We integrate successively with respect to x2 and then x1 to
obtain

|a(x, ξ)| .
∫

1Rξ2
(ξ) min{〈ξ1〉/〈ξ2〉, 〈ξ2〉/〈ξ1〉}Nm(x, ξ2)

|Rξ1|
3
2 |Rξ2|

1
2 (1 + gξ2(ξ2 − ξ1))N

dξi

Since

|Rξ1|−
3
2 |Rξ2|−

1
2 min{〈ξ1〉/〈ξ2〉, 〈ξ2〉/〈ξ1〉}N . |Rξ2|−2

we also integrate in ξ1 to obtain

|a(x, ξ)| . m(x, ξ)

∫
1Rξ2

(ξ)|Rξ2|−1dξ2 . m(x, ξ)

b2) The x derivatives of a. Using the relation (21) we can write

(1−∆g−1
ξ

)ka(x, ξ) =

∫
e−ix·(ξ−η)K(x1, ξ1, x2, ξ2)(1 + gξ(ξ − η))k

φ̂x1,ξ1(η)φ̂x2,ξ2(ξ) dxidξidη

By Lemma 2.4 the factor (1 + gξ(ξ − η))k is smooth in η ∈ Rξ1 on the
Rξ1 scale so we can introduce it in G. Its size is comparable to

(1 + gξ(ξ − η)) ≈ (1 + gξ2(ξ2 − ξ1)) ξ ∈ Rξ2 , η ∈ Rξ1

Hence it yields an additional factor of

(1 + gξ2(ξ2 − ξ1))
k

We continue the estimate as in (b1). The above additional factor is
controlled by the off diagonal decay of K. Hence we obtain the same
bound,

(27) |(1−∆g−1
ξ

)ka(x, ξ)| . m(x, ξ)

b3) The ξ derivatives of a.

(1−∆gξ
)ka(x, ξ) =

∫
eixηK(x1, ξ1, x2, ξ2)φ̂x1,ξ1(η)

(1−∆gξ
)k(e−ixξφ̂x2,ξ2(ξ)) dxidξidη

We evaluate the differentiated term. Since

e−ixξφ̂x2,ξ2(ξ) = ei(x2−x)ξh(gξ(ξ − ξ2))

and gξ(ξ − ξ2) is smooth in ξ on the Rξ scale, we obtain

|(1−∆gξ
)k(e−ixξφ̂x2,ξ2(ξ))| . (1 + g−1

ξ (x2 − x))k1Rξ
(ξ2)
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We use this and continue as in (b1). The additional factor

(1 + g−1
ξ (x2 − x))k

is again negligible due to the off diagonal decay of K, so we obtain

(28) |(1−∆gξ
)ka(x, ξ)| . m(x, ξ)

b4) Additional decay near frequency ξ. From (26) we obtain

S<λ(Dx + ξ)a(x, ξ) =

∫
e−ix·(ξ−η)K(x1, ξ1, x2, ξ2)

S<λ(η)φ̂x1,ξ1(η)φ̂x2,ξ2(ξ) dxidξidη

=

∫
e−ix·(ξ−η)S<4λ(ξ1)K(x1, ξ1, x2, ξ2)

S<λ(η)φ̂x1,ξ1(η)φ̂x2,ξ2(ξ) dxidξidη

We can include S<λ(η) in φ̂x1,ξ1(η). Since ξ1 is restricted to 〈ξ1〉 ≤ λ,
we can repeat the estimates in (b1) with the additional factor(

λ

〈ξ1〉

)N

coming from the “min” factor in the bound for K.
This concludes the proof of the theorem.

�

5. Fourier integral operators

A canonical transformation of the phase space is a map which pre-
serves the symplectic form

σ = dx ∧ dξ
Here we introduce canonical transformations which are adapted to the
metric g.

Definition 5.1. A locally Lipschitz canonical transformation

χ : T ∗Rn → T ∗Rn

is called g-Lipschitz if the following conditions are satisfied:
(i) If (y, η) = χ(x, ξ) then 〈η〉 ≈ 〈ξ〉.
(ii) If in addition (y1, η1) = χ(x1, ξ1) then

d((y, η), (y1, η1)) . d((x, ξ), (x1, ξ1))

If χ is a diffeomorphism and both χ and χ−1 are g-Lipschitz then we
say that χ is g-bi-Lipschitz. A simple but useful observation is
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Lemma 5.2. If χ is g-Lipschitz then it is also d̃-Lipschitz.

Proof. We need to show that

d̃(χ(x1, ξ1), χ(x2, ξ2)) . d̃((x1, ξ1), (x2, ξ2))

If

d̃((x1, ξ1), (x2, ξ2)) & |x1 − x2|
then

d̃((x1, ξ1), (x2, ξ2)) ≈ d((x1, ξ1), (x2, ξ2))

and the proof is finished.
Otherwise, we must have |x1 − x2| � 1 and, by (4),

d̃((x1, ξ1),(x2, ξ2)) ≈ d((x1, ξ1), (x1, 0))+d((x2, ξ2), (x2, 0))+ ln |x1 − x2|
& d(χ(x1, ξ1), χ(x1, 0)) + d(χ(x2, ξ2), χ(x2, 0)) + ln |x1 − x2|
& d̃(χ(x1, ξ1), χ(x1, 0)) + d̃(χ(x2, ξ2), χ(x2, 0)) + ln |x1 − x2|

Hence we are left with proving that

d̃(χ(x1, 0), χ(x2, 0)) . ln |x1 − x2|
But by property (i) above we can neglect the frequency components on
the left and write

d̃(χ(x1, 0), χ(x2, 0)) ≈ ln d(χ(x1, 0), χ(x2, 0)) +O(1)

. ln d((x1, 0), (x2, 0)) +O(1)

. ln |x1 − x2|
This concludes the proof. �

To such canonical transformations we associate classes of Fourier
integral operators.

Definition 5.3. Let χ be a g-Lipschitz canonical transformation and
m : T ∗Rn → R+ be slowly varying. Let A : S(Rn) → S ′(Rn) be a linear
operator. We say that A ∈ FIO(m, g, χ) if the kernel K of TAT ∗

satisfies

|K(y, η, x, ξ)| ≤ cNm(x, ξ)e−Nd̃((y,η),χ(x,ξ))), N ∈ N

We note that in the case when χ is the identity we have

FIO(m, g, I) = OP ˜̃S(m, g)

This definition allows us to quickly establish algebra properties of
Fourier integral operators.
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Theorem 5.4. Let Ai ∈ FIO(mi, g, χi) for i = 1, 2. Then

A1A2 ∈ FIO(m, g, χ), m = (m1 ◦ χ2)m2, χ = χ1 ◦ χ2.

Proof. Let Ki be the kernels of TAiT
∗ for i = 1, 2. Then the kernel K

of TA1A2T
∗ is given by

K(y, η, x, ξ) =

∫
K1(y, η, z, ζ)K2(z, ζ, x, ξ)dzdζ

We use the bounds in Definition 5.3 for K1 and K2. This gives

|K(y, η, x, ξ)| .
∫
m1(z, ζ)m2(x, ξ)e

−Nd̃((y,η),χ1(z,ζ))e−Nd̃((z,ζ),χ2(x,ξ))dzdζ

From the triangle inequality and the Lipschitz property of χ1 we
obtain

d̃((y, η), χ1(z, ζ)) + d̃((z, ζ), χ2(x, ξ)) & d̃((y, η), χ1 ◦ χ2(x, ξ))

Hence, using also the fact that m1 is slowly varying we get

|K(y, η, x, ξ)| .m1(χ2(x, ξ))m2(x, ξ)e
−cNd̃((y,η),χ1◦χ2(x,ξ))∫

e−cNd̃((z,ζ),χ2(x,ξ))dzdζ

which by Lemma 2.6 gives

|K(y, η, x, ξ)| . m1(χ2(x, ξ))m2(x, ξ)e
−cNd̃((y,η),,χ1◦χ2(x,ξ))

�

Also we consider the boundedness of Fourier integral operators in L2

and in Sobolev spaces.

Theorem 5.5. Let χ be a g-bi-Lipschitz canonical transformation and
A ∈ FIO(1, g, χ). Then

A : L2 → L2

Proof. It suffices to show that TAT ∗ is L2 bounded. Its kernel K
satisfies

|K(y, η, x, ξ)| . e−Nd̃((y,η),χ(x,ξ)))

Then by Lemma 2.6 we have

sup
x,ξ

∫
|K(y, η, x, ξ)|dydη <∞

Since χ is bi-Lipschitz we also have

|K(y, η, x, ξ)| . e−Nd̃(χ−1(y,η),(x,ξ)))
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which yields

sup
y,η

∫
|K(y, η, x, ξ)|dxdξ <∞

This concludes the proof. �

6. Evolution equations

Here we study evolution equations of the form

(29) (Dt + a(t, x,D))u = 0 u(0) = u0

where t ∈ [0, 1] and x ∈ Rn. We assume that
(i) The symbol a(t, x, ξ) is real.
(ii) ax is almost homogeneous,

|ax(t, x, ξ)| . 〈ξ〉, |ξ ∧ (axξ(t, x, ξ)ξ − ax(x, ξ))| . 〈ξ〉
3
2

(iii) a satisfies (13), (17) uniformly in t. It also satisfies (12) for
α ≥ 2 with one exception described in (ii).

As we prove later on, under these conditions the evolution (29) is L2

well-posed. We denote by S(t, s) the generated L2 bounded evolution
operator. Our goal is to describe S(t, s) as Fourier integral operators
associated to the corresponding Hamilton flow.

The Hamilton flow associated to this evolution is

ẋ = aξ(t, x, ξ), ξ̇ = −ax(t, x, ξ)

We denote the trajectories of the flow by

[0, 1] 3 t→ (xt, ξt)

and the fixed time maps by χ(t, s) : T ∗Rn → T ∗Rn,

χ(t, s)(xs, ξs) = (xt, ξt)

Then we have

Proposition 6.1. Under the assumptions (i), (ii), (iii) above the fixed
time maps χ(t, s) are g-smooth g-bi-Lipschitz canonical transforma-
tions.

Proof. The fact that χ(t, s) is a canonical transformation is a property
shared by all Hamiltonian flows. The bi-Lipschitz regularity is obtained
by studying the linearized flow, which involves the second derivatives
of the symbol a:

ẏ = aξx(t, x
t, ξt)y + aξξ(t, x

t, ξt)η

η̇ = −axx(t, x
t, ξt)y − axξ(t, x

t, ξt)η
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For this we seek to propagate the norm

g−1
ξt (y) + gξt(η)

via a Gronwall type inequality. We consider the two components in
each of the two terms. By (iii) we have

|aξx(t, x
t, ξt)y| . 〈ξt〉−

1
2 g−1

ξt (y)
1
2 , |aξξ(t, x

t, ξt)η| . 〈ξt〉−
1
2 gξt(η)

1
2

hence the Euclidean length of y is easy to propagate. We need a more
refined computation for the component in the ξ direction:

d

dt
(yξt) = ξtaξxy + ξtaξξη − yax

For the middle term we use again the condition (iii), but the first and
the last are paired and we use (ii).

For η the roles are reversed. It is easy to bound the component in the
ξt direction, but we need a better estimate for the component which is
normal to ξt. We compute

d

dt
(ξt ∧ η) = −ξt ∧ axxy − ξt ∧ axξη − ax ∧ η

We use (iii) for the first term, and also in the last two but only for the
component of η which is normal to ξ. However, for the component of
η in the ξ direction we use (ii).

Finally, to prove that χ is g-smooth one needs to further differentiate
the linearized flow and use the relations (12) for α ≥ 3. This is a routine
computation which is left for the reader. �

Our main result is

Theorem 6.2. Assume that (i),(ii) and (iii) above hold. Then the
evolution (29) is L2 well-posed. Furthermore, the evolution operators
S(t, s) are Fourier integral operators associated to the Hamilton flow,

S(t, s) ∈ FIO(1, g, χ(t, s))

Proof. We begin with a preliminary result.

Lemma 6.3. The function

ψξ(η) = (|ξ|∂ξ + |η|∂η)φξ(η)

satisfies the same bounds as φξ(η),

|∇α
ξψξ(η)|g ≤ cα

Proof. The proof is routine but not totally trivial. �
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Next we compute the action of pseudodifferential operators on co-
herent states.

Lemma 6.4. We have

A(t, x,D)φy,η = (a(t, y, η)− i(ax(t, y, η)∂η − aξ(t, y, η)(∂y + iη))φy,η

+ ry,η

where the remainder r satisfies

〈ry,η, φz,ζ〉 = O(e−Nd((y,η),(z,ζ)))

Proof. The variable t is irrelevant here so we drop it. We expand a in
a modified Taylor series around (y, η),

a(x, ξ) = a(y, η) + aξ(y, η)(ξ − η) + ax(y, ξ)(x− y) + b(x, ξ)

At the operator level this becomes

(30) A(x,D) = a(y, η) + aξ(y, η)(Dx − η) + (x− y)ax(y,D) + b(x,D)

We apply this to φy,η and use the expression (7) to evaluate each
of the terms. For the first term we need to do nothing. The Fourier
transform of the second term is

F(aξ(y, η)(Dx − η)φy,η) = iaξ(y, η)(∂y + iη)φ̂y,η(ξ)

For the third term we compute

F((x− y)ax(y,D)φy,η) =− (Dξ + y)[ax(y, ξ)φ̂y,η(ξ)]

=e−iyξax(y, ξ)Dξφη(ξ) + iaxξ(y, ξ)φ̂y,η(ξ)

=e−iyξax(y, η)Dηφη(ξ)

+e−iyξ(〈ξ〉−1ax(y, ξ)− 〈η〉−1ax(y, η))〈ξ〉Dξφη(ξ)

+e−iyξ〈η〉−1ax(y, η)(〈ξ〉Dξ − 〈η〉Dη)ψη(ξ)

+iaxξ(y, ξ)φ̂y,η(ξ)

The first term is what we want, everything else must go into r. The
second term is controlled due to the almost homogeneity of ax(x, ξ) in
(ii). For the third term we use Lemma 6.3. For the fourth we use (iii).

Finally we consider the last term in (30). We claim that the symbol
B satisfies

b ∈ ˜̃S(m, g), m = eN0d̃(x,ξ;y,η)

By Theorem 4.14 this shows that its contribution can be included in
ry,η. Derivatives of b of order two and higher can be estimated directly
using (ii) and (iii). The conditions (13) and (17) also follow trivially
from the similar conditions for a. Hence it suffices to verify that

|b(x, ξ)| . eNd̃(x,ξ;y,η), |∇gb(x, ξ)| . eNd̃(x,ξ;y,η)
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The first bound follows from the second by integration along a geodesic.
For the second we integrate the second derivative along a geodesic. This
works well within balls of size one, but since g is changing we loose a
fixed factor when we move from a ball to the next one. This gives
the above bound with d̃ replaced by d. To account for the change to
d̃ we need to consider geodesics on the set ξ = 0. There the metric
is Euclidean, so integration only gives linear rather than exponential
growth.

�

This allows us to conjugate the operator A with respect to T ∗. We
define the selfadjoint phase space operator

Ã = (a(t, y, η) + i(ax(t, y, η)∂η − aξ(t, y, η)(∂y − iη))φy,η.

Then

Lemma 6.5. The operator Ã is an approximate conjugate of A with
respect to T ∗,

AT ∗ − T ∗Ã = R, RT ∈ OP ˜̃S(1, g)

Proof. We have

Rf(x) =

∫
f(x2, ξ2)A(x,D)φx2,ξ2 − φx2,ξ2(Ãf)(x2, ξ2)dx2dξ2

In the second term we integrate by parts to move the derivatives on
φx2,ξ2 . By Lemma 6.4 this yields

Rf(x) =

∫
f(x2, ξ2)rx2,ξ2(x)dx2dξ2

Then the kernel K of TR is

K((x1, ξ1), (x2, ξ2)) =〈rx2,ξ2 , φx1,ξ1〉

which is rapidly decreasing off diagonal. To show that RT ∈ OP ˜̃S(1, g)
we need to consider the kernel of TRTT ∗. The kernel of TT ∗ decreases
rapidly off diagonal, hence so does the kernel of the composition. �

Since Ã is selfadjoint we write

A−A∗ = AT ∗T −T ∗TA∗ = T ∗ÃT +RT −T ∗ÃT −T ∗R∗ = RT −T ∗R∗

Thus a consequence of this Lemma is that A is essentially selfadjoint.
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Corollary 6.6. We have

A− A∗ ∈ OP ˜̃S(1, g)

This implies that the evolution (29) is L2 well-posed, i.e. that the
evolution operators S(t, s) are L2 bounded. Now we show that they
are FIO’s associated to the canonical transformations χ(t, s). Without
any restriction in generality we take s = 0. We need to obtain bounds
for the kernel Kt of TS(t, 0)T ∗. More generally, given a solution u =
S(t, 0)u0 to (29) we seek to control the flow for Tu.

By Lemma 6.5 and Corollary 6.6 we can write

0 = T (Dt + A(x,D))u = (Dt + Ã)Tu+R0(t)u

where R0(t)T
∗ has a kernel with rapid decay off the diagonal.

Hence if u solves (29) then v = Tu solves

(Dt + Ã)v = R1(t)v

which is a transport equation modulo a good integral part. We pull
this back to time 0 using the Ã flow S̃(t, s),

w(t) = S̃(0, t)v(t)

This solves

Dtw = R2(t)w, R2(t) = S̃(0, t)R1(t)S̃(t, 0)

The pull back R2 of R1 still has a kernel with rapid off diagonal de-
cay since S̃(t, 0) corresponds to the transport along the Hamilton flow

which is symplectic therefore measure preserving, and it also is d̃ bi-
Lipschitz.

Finally, to get bounds for w we take absolute values above

(31) ∂t|w(t, x, ξ)| ≤ cM

∫
|w(t, y, η)|e−Md̃((x,ξ),(y,η))dydη

and use the maximum principle for |w|.
Precisely, in order to obtain bounds for the kernel of TS(t, 0)T ∗ we

take initial data u0 = φx2,ξ2 and we want to prove that

|v(t, x1, ξ1)| ≤ cNe
−Nd̃((x1,ξ1),χ(t,0)(x2,ξ2))

This translates to

|w(t, x, ξ)| ≤ cNe
−Nd̃((x,ξ),(x2,ξ2))

The initial data for w is

w(0) = Tφx2,ξ2
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therefore satisfies the above inequality with some constant cN(0). We
claim that if C is sufficiently large depending on c2N in (31) then

|w(t, x, ξ)| ≤ eCtcN(0)e−Nd̃((x,ξ),(x2,ξ2))

For this we verify that the right hand side is a supersolution for (31)
with M = 2N . We need to verify that

Ce−Nd̃((x,ξ),(x2,ξ2)) ≥ CM

∫
e−2Nd̃((x,ξ),(y,η))e−Nd̃((y,η),(x2,ξ2))dydη

Indeed from the triangle inequality we can bound the right hand side
integrand by

e−Nd̃((x,ξ),(y,η))e−Nd̃((x,ξ),(x2,ξ2))

and then use Lemma (2.6) to carry out the integration.
�

Let B(0) be a pseudodifferential operator. Conjugating it with re-
spect to the Dt+A flow we obtain a time dependent family of operators

B(t) = S(t, 0)B(0)S(0, t)

Given a slowly varying weight m with respect to the metric g, the
composition result in Theorem 5.4 yields

Proposition 6.7. Assume that B(0) ∈ OP ˜̃S(m, g). Then for all t we

have B(t) ∈ OP ˜̃S(m ◦ χ(t, 0), g).

We would like to obtain an Egorov type result, i.e. to characterize
the symbol of B(t) in terms of the symbol of B(0). In the context of
the above result this is not possible since the metric g is exactly on the
scale of the uncertainty principle. However, we can still prove a result
which amounts to a first order calculus:

Theorem 6.8. Assume that a satisfies (i),(ii) and (iii). Let m be a
slowly varying weight and B(0) be a pseudodifferential operator whose
symbol satisfies (12) for all |α| ≥ 1, and also (13), (17). Then B(t)
is a pseudodifferential operator which belongs to the same class. In
addition,

b(t)− b(0) ◦ χ(0, t) ∈ S(m, g)

Proof. For fixed (x0, ξ0) we define the operators

C(t) = B(t)− b(0, x0, ξ0)

Then c(0, x0, ξ0) = 0. Hence, using (12) for b(0) with |α| = 1 we obtain

|c(0, x, ξ)| . mx0,ξ0(x, ξ) := m(x, ξ)eCd̃(x,ξ,x0,ξ0)
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Thus we have

c(0) ∈ ˜̃S(mx0,ξ0 , g)

By the previous proposition, this yields

c(t) ∈ ˜̃S(mx0,ξ0 ◦ χ(t, 0), g)

Using (12) for c(t) in the unit ball centered at (x0, ξ0) we conclude that

|b(t, xt
0, ξ

t
0)− b(0, x0, ξ0)| . m(x0, ξ0)

and also that b(t) satisfies (12) for |α| ≥ 1 with respect to the weight
m ◦ χ(0, t).

The conditions (13), (17) for b(t) follow directly from the similar
conditions for c(t) with (x, ξ) = (x0, ξ0). �

7. Half-wave operators and paradifferential calculus

A large class of symbols which satisfy the conditions of the previous
section can be obtained from half wave operators whose coefficients are
mollified in a paradifferential fashion. Precisely, we begin with a real
symbol a(x, ξ) which is homogeneous of order 1 in ξ, and satisfies the
following regularity conditions:

(a) a(x, ξ) is smooth in ξ.
(b) |∇xa(x, ξ)| . |ξ|
(c) |(ξ ∧∇x)

2a(x, ξ)| . |ξ|3.
Then we consider the evolution governed by a(x,D),

(Dt + A(x,D))u = 0, u(0) = u0

The Hamilton flow {
ẋ = aξ(x, ξ)

ξ̇ = −ax(x, ξ)

is homogeneous. To describe its regularity we introduce a subelliptic
Riemannian metric ghom on the cosphere bundle

S∗Rn = Rn × Sn−1

If we denote by (x, ξ) the coordinates in S∗Rn then ghom is defined by

ds2 =

{
dx2 + dξ2 if dx · ξ = 0
∞ otherwise

We note that at each (x, ξ) this metric only allows for displacements
in directions which are perpendicular to (ξ, 0).

We denote by dhom the induced distance. The following character-
ization shows that this is is related to Smith’s pseudometric in [12],
[11].
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Lemma 7.1. We have

(32) dhom((x0, ξ0), (x1, ξ1)) ≈ |x0 − x1|+ |ξ0 − ξ1|+ |(x0 − x1)ξ0|
1
2

Proof. We first prove the inequality

|x0 − x1|+ |ξ0 − ξ1|+ |(x0 − x1)ξ0|
1
2 . dhom((x0, ξ0), (x1, ξ1))

The first two terms on the left are easy to bound, it remains to con-
sider the third. Let γ be an admissible trajectory between (x0, ξ0) and
(x1, ξ1). Since ξdx = 0 on γ we write

(x0 − x1)ξ0 =

∫
γ

ξ0dx =

∫
γ

(ξ0 − ξ)dx

Taking absolute values,

|(x0 − x1)ξ0| ≤
∫

γ

|ξ0 − ξ|ds ≤
∫

γ

|γ|ds = |γ|2

It remains to prove the converse, i.e. to find an a trajectory γ be-
tween (x0, ξ0) and (x1, ξ1) whose length is at most comparable to the
right hand side in (32). We first simplify the problem somewhat. By
moving first from (x0, ξ0) to (x1, ξ0) and then along the spherical geo-
desic from (x1, ξ0) to (x1, ξ1) we reduce the problem to the case ξ0 = ξ1.
In a similar fashion we dispense with the component of x0 − x1 which
is perpendicular to ξ0.

Thus we have reduced the problem to estimating d((0, ξ0), (εξ0, ξ0)).
It suffices to work in two dimensions, where we can use complex nota-
tions.

If ε > 1 then we move from (0, ξ0) to (0, iξ0), then straight to (εξ0, iξ0)
and back to (εξ0, ξ0) for an O(1 + ε) distance.

If ε < 1 then we choose a trajectory composed of straight lines and
spherical geodesics as follows:

(0, ξ0) → (0, eiθξ0) → (
iεeiθ

2 sin θ
ξ0, e

iθξ0) → (
iεeiθ

2 sin θ
ξ0, e

−iθξ0)

→ (εξ0, e
−iθξ0) → (εξ0, ξ0)

Its length is O(|θ| + ε/|θ|). The optimal balance is reached at θ ≈
√
ε

for a length of O(
√
ε).

�

Next we study the regularity of the Hamilton flow of a using this
metric.

Proposition 7.2. Assume that a satisfies (a),(b) and (c). Then its
Hamilton flow maps χ(t, s) are homogeneous and ghom-Lipschitz.
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Proof. Consider γ0(t) = (x0(t), ξ0(t)) respectively γ1(t) = (x1(t), ξ1(t))
two trajectories of the Hamilton flow in [0, T ]. We take ε > 0 and T
small and prove that

dhom(γ0(0), γ1(0)) < ε⇒ dhom(γ0(t), γ1(t)) < Cε

Without any restriction in generality we can make the bootstrap as-
sumption

dhom(γ0(t), γ1(t)) < 2Cε

which we rewrite in an expanded fashion as

|x0(t)− x1(t)| . ε, |(x0(t)− x1(t))ξ0(t)| . ε2|ξ0(t)|∣∣∣∣ ξ0(t)|ξ0(t)|
− ξ1(t)

|ξ1(t)|

∣∣∣∣ . ε
(33)

To propagate the first relation we need to show that

|aξ(x0(t), ξ0(t))− aξ(x1(t), ξ1(t))| . ε

which follows since aξ is Lipschitz continuous.
For the second component we compute

d

dt
[(x0(t)− x1(t))ξ0(t)] =(aξ(x0(t), ξ0(t))− aξ(x1(t), ξ1(t)))ξ0(t)

− (x0(t)− x1(t))ax(x0(t), ξ0(t))

Since a is smooth in ξ we can rewrite this as

d

dt
[(x0(t)− x1(t))ξ0(t)] =(aξ(x0(t), ξ0(t))− aξ(x1(t), ξ0(t)))ξ0(t)

+ (ξ1(t))− ξ0(t))aξξ(x1(t), ξ0(t))ξ0(t)

− (x0(t)− x1(t))ax(x0(t), ξ0(t)) +O(ε2)|ξ0|

By homogeneity the second term drops and the first one simplifies to
give

a(x0(t), ξ0(t))−a(x1(t), ξ0(t)))−(x0(t)−x1(t))ax(x0(t), ξ0(t))+O(ε2)|ξ0|
The component of x1 − x0 which is perpendicular to ξ0 has size O(ε2)
which is acceptable. For the parallel component on the other hand we
use the Taylor expansion of second order to gain the O(ε2).

Finally to propagate the third relation in (33) we need to show that

||ξ0(t)|−1Πξ0(t)ax(x0(t)), ξ0(t))− |ξ1(t)|−1Πξ1(t)ax(x1(t)), ξ1(t))| . ε

Since ax is Lipschitz in ξ we can replace ξ1 by ξ0 in the second term
modulo O(ε) errors. It remains to show that

|η(ax(x0(t)), ξ0(t))− ax(x1(t)), ξ0(t)))| . ε|ξ0(t)|
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where η is a unit vector normal to ξ0. As a function of x the function
η(ax(x, ξ0(t)) is Lipschitz in directions perpendicular to ξ0 and Hölder
1/2 in the ξ0 direction. This suffices for the desired conclusion. �

One can easily prove that A − A∗ is L2 bounded, which implies
that the above evolution is well-posed in L2. However, due to the low
regularity of the coefficients there is considerable interaction between
different frequencies. Thus in order to better understand the flow it is
convenient to replace the operator A with an L2 bounded perturbation
of it, obtained by regularizing the symbol in x. Precisely, we define the
modified symbol

ã(x, ξ) = Sξ(Dx)a(x, ξ)

where the symbol of Sξ is given by

Sξ(η) = h(gξ(η))

The evolution generated by Ã can be described using Fourier integral
operators as in the previous section provided that

Proposition 7.3. If the symbol a satisfies (a),(b) and (c) then the
symbol ã satisfies the conditions (i),(ii),(iii) in Section 6.

To see that the evolution generated by A is a Lipschitz perturbation
of the evolution generated by Ã we need

Proposition 7.4. If the symbol a satisfies (a),(b) and (c) then the
difference A(x,D)− Ã(x,D) is L2 bounded.

Finally, the Hamilton flow for ã stays close to the Hamilton flow for
a, so the two canonical transformations are interchangeable in the def-
inition of Fourier integral operators. Denoting by χ̃(t, s) the Hamilton
flow maps for ã we have

Proposition 7.5. If the symbol a satisfies (a),(b) and (c) then the
Hamilton flows for a and ã are close,

d(χ(t, s)(x, ξ), χ̃(t, s)(x, ξ)) . 1

Proof of Proposition 7.3. The bound |ax| . |ξ| easily leads to |ãx| . ξ.
For the almost homogeneity of ã we compute

ξ∂ξãx(x, ξ) =(ξ∂ξSξ(Dx))a(x, ξ) + Sξ(Dx)ξ∂ξa(x, ξ)

=(ξ∂ξSξ(Dx))a(x, ξ) + Sξ(Dx)a(x, ξ)

=(ξ∂ξSξ(Dx))a(x, ξ) + ãx(x, ξ)
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Finally we consider the regularity of the derivatives of ã of second
order and higher,

∇α
g−1

ξ
∇β

gξ
ã(x, ξ) = ∇α

g−1
ξ
∇β

gξ
(Sξ(Dx)a(x, ξ))

We first argue why we gain a |ξ|−1 factor. In the case of x deriva-
tives, we can put onto a either one derivative in the ξ direction or two
derivatives perpendicular to ξ. In both cases we gain |ξ|−1.

In the case of ξ derivatives we consider three cases. If one ξ derivative
falls on Sξ then we obtain a similar symbol S̃ξ but which in addition is
supported away from the origin. Then we use the bound

|S̃ξ(D)a(x)| . |ξ|−1(‖|ξ|−1ξ∇a‖L∞ + ‖|ξ|−2(ξ ∧∇)2a‖L∞)

If we have two derivatives perpendicular to ξ on a(x, ξ) then we gain
|ξ|−1 because of the regularity of a. If we have two derivatives of
which at least one is in the ξ direction then we get 0 because of the
homogeneity of a.

Consider now the mixed case. If we have one x derivative and one
ξ derivative on a both in directions perpendicular to ξ then we gain
|ξ|− 1

2 from each. If instead the ξ derivative is in the ξ direction, this is
precisely the one case we do not need.

Additional ξ derivatives which fall on a are well behaved since a
is smooth and homogeneous in ξ. The ones which fall on Sξ on the
other hand yield symbols of similar size and support. Additional x
derivatives have a similar effect on the symbol of Sξ.

�

Proof of Proposition 7.4. We introduce an intermediate weaker symbol
regularization,

ã0(x, ξ) = S〈ξ〉(Dx)a(x, ξ)

where the symbol of S〈ξ〉(Dx) is

S〈ξ〉(η) = h(
〈η〉
4〈ξ〉

)

First we bound in L2 the difference A(x,D)− Ã0(x,D). For this we
only use the C1 spatial regularity of the symbol A. Expanding a in
spherical harmonics the problem reduces to the case when

a(x, ξ) = a(x)b(ξ)

For this we need to show that

‖B(a,∇f)‖L2 . ‖a‖C1‖f‖L2
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where B is the bilinear multiplier with symbol

b(η, ξ) = 1− h(
〈η〉
4〈ξ〉

)

But this is a direct consequence of the Coifman-Meyer estimates [4].
Secondly, we bound in L2 the difference C(x,D)= Ã(x,D)−Ã0(x,D).

Its symbol

c(x, ξ) = (Sξ(Dx)− S〈ξ〉(Dx))a(x, ξ)

has spatial Fourier transform supported in

{4〈η〉 < 〈ξ〉} \ {8gξ(η) > 1}

The homogeneity of a is not useful here. Instead we do a Littlewood-
Paley decomposition in ξ,

a(x, ξ) =
∞∑

j=0

aj(x, ξ), supp aj(x, ξ) ⊂ {〈ξ〉 ≈ 2j}

Correspondingly we have a decomposition

c(x, ξ) =
∑

cj(x, ξ)

Due to the above support condition, cj takes frequencies of size 2j into
frequencies of the same size. By orthogonality it suffices to show that
cj(x,D) are L2 bounded.

To fix the spatial and frequency scales we consider an additional
decomposition for cj,

cj(x, ξ) =

j∑
k=0

cjk(x,D)

where

cjk(x, ξ) = S〈ξ〉(Dx)(S2k+1ξ(Dx)− S2kξ(Dx))aj(x, ξ)

For small k, say k ≤ 8, it is easy to see that

cjk ∈ S̃(1, g)

which implies that they are L2 bounded. For larger k we note that the
multiplier

S〈ξ〉(η)
(
S2k+1ξ(η)− S2kξ(η)

)
is supported in the region

{〈η〉 � 2j, |〈η〉 ∧ ξ| ≈ 2j+ j+k
2 }
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Using the condition (c) on the regularity of the symbol a we conclude
that cjk satisfies the pointwise bound

(34) |cjk(x, ξ)| . 2−k

To finish the proof of the lemma it suffices to show that we also have
a similar L2 bound,

(35) ‖Cjk(x,D)‖L2→L2 . 2−k

To prove this we split the region {〈ξ〉 ≈ 2j} into angular tubes Rl of
size

2j × (2
k+j
2 )n−1

We make a further angular decomposition in ξ,

cjk(x, ξ) =
∑

l

cljk(x, ξ), suppξ c
l
jk(x, ξ) ⊂ Rl

The symbols cljk satisfy (34), are smooth in ξ on the scale of Rl and in
x on the dual scale. Hence they satisfy

‖C l
jk(x,D)‖L2→L2 . 2−k

In addition, the Fourier supports of their outputs are essentially dis-
joint. Thus (35) follows.

�

Proof of Proposition 7.5. We follow the same argument as in the proof
of Proposition 7.2. We consider bicharacteristics (x0(t), ξ0(t)) for a
and (x1(t), ξ1(t)) for ã with the same initial data (x, ξ) at time 0. We
assume that |ξ| ≈ λ. Then it is easy to see that we must also have
|ξ0(t))| ≈ λ, |ξ1(t)| ≈ λ. Hence we should prove that

|x0(t)− x1(t)| ≤ λ−
1
2 , |(x0(t)− x1(t))ξ0(t)| ≤ 1∣∣∣∣ ξ0(t)|ξ0(t)|

− ξ1(t)

|ξ1(t)|

∣∣∣∣ ≤ λ−
1
2

(36)

which is similar to the computation in part (a) with ε = λ−
1
2 . We make

a bootstrap assumption as before by doubling the constants.
We seek to prove the three relations using the bootstrap assumption

and the Hamilton flow equations. Modulo the computation in part (a),
for the first term we need to show that

|(ã− a)ξ(x1(t), ξ1(t))| . λ−
1
2

For the second we need

|(ã− a)ξ(x1(t), ξ1(t))ξ1| . 1
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Finally for the third we want

|Πξ1(t)(a− ã)x(x1(t)), ξ1(t))| . λ
1
2

�
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