General Topology (MTH 440)

Fall 2022
Final/Qualifying exam*, December 19, 8:00-11:00 am

Problem I. Let X be a compact, and Hausdoref topological space, and let C, and C^{\prime} be disjoint closed subsets of X. Prove that there are disjoint open subsets U, and U^{\prime} of X containing C, and C^{\prime}, respectively.

Problem II. Let X be a topological space, and let $\left(C_{n}\right)_{n=1}^{\infty}$ be a sequence of connected subspaces of X such that for every n the sets C_{n}, and C_{n+2} intersect. Prove that $\bigcup_{n=1}^{\infty} C_{n}$ is either connected, or has precisely 2 connected components.

Problem III. Given real numbers a and b satisfying $27 b^{2}+4 a^{3} \neq 0$, denote by $F_{a, b}$ the subset of \mathbb{R}^{2} defined by

$$
F_{a, b}:=\left\{(x, y) \in \mathbb{R}^{2}: y^{2} \leq x^{3}+a x+b\right\}
$$

1. Prove that for all a, and b the set $F_{a, b}$ is a manifold with boundary of dimension 2;
2. Find all a, and b for which $F_{a, b}$ is connected.

Problem IV. Consider the set of probability vectors Δ in \mathbb{R}^{3}, defined by

$$
\Delta:=\{(x, y, z): x \geq 0, y \geq 0, z \geq 0, x+y+z=1\}
$$

Let X be a manifold, and let A, B, and C be pairwise disjoint closed subsets of X. Prove that there is a smooth function $f: X \rightarrow \Delta$, such that

$$
f=(1,0,0) \text { on } A, f=(0,1,0) \text { on } B, \text { and } f=(0,0,1) \text { on } C .
$$

Problem V. Let $R: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the smooth function defined by

$$
R(\theta, t):=(\cos (2 \theta)(1+t \sin \theta), \sin (2 \theta)(1+t \sin \theta), t \cos \theta)
$$

and put $M:=R\left(\mathbb{R} \times\left[-\frac{1}{2}, \frac{1}{2}\right]\right)$.

1. Prove that M is a smooth manifold with boundary that is homeomorphic to a Möbius band;
2. Denote by 0 the origin in \mathbb{R}^{3}, and put

$$
M_{0}:=\operatorname{Int}(M) \times\{\mathbf{0}\}, \text { and } S_{0}:=S^{1} \times\{0\} \times\{\mathbf{0}\} .
$$

Note that $S_{0} \subseteq M_{0}$, and that M_{0}, and S_{0} are both submanifolds of the normal bundle of $\operatorname{Int}(M)$. Compute the mod 2 intersection number $I_{2}\left(S_{0}, M_{0}\right)$ inside the normal bundle of $\operatorname{Int}(M)$.

[^0]
[^0]: *"Master pass" = 2 essentially correct solutions; "Ph.D. pass" = at least 3 essentially correct solutions.

