MATH 403 (PROBABILITY), AUG 2023 PRELIM

INSTRUCTOR: ARJUN KRISHNAN

This is an open notes prelim.

Problem 1. Suppose $\{X_n\}_{n=1}^{\infty}$ are iid random variables such that $\mathbb{E}[|X_1|] = +\infty$. Show

$$\overline{\lim_{n \to \infty}} \frac{S_n}{n} = +\infty \tag{1}$$

where $S_n = \sum_{i=1}^n X_i$. Hint: Consider the inequality $|X_n| \le |S_n| + |S_{n-1}|$ and first see what happens to $\lim_{i \to \infty} |X_n|/n$. Is $|X_n|/n$ large fairly regularly?

Problem 2. Suppose $\{X_n\}_{n=1}^{\infty}$ are iid Cauchy random variables with density

$$f(x) = \frac{1}{\pi(1+x^2)} \qquad x \in \mathbb{R}$$

- (1) Compute $\mathbb{E}[|X_1|]$, and find $\overline{\lim}_{n\to\infty} S_n/n$.
- (2) Compute the characteristic function $\phi(t)$ of X_1 . Hint: Consider using the residue theorem or computing the inverse Fourier transform of $e^{-|t|}$.
- (3) Does S_n/n have a weak limit?

Problem 3. Construct a sequence such that $X_n \to X$ in distribution but $X_n \not\to X$ in measure.

Suppose $F_n(t) \to F(t)$ for all $t \neq c$, where F_n is the cumulative distribution function of X_n and F is the cdf given by

$$F(t) = \begin{cases} 1 & t \ge c \\ 0 & t < c \end{cases}$$

where $c \in \mathbb{R}$. Show that $X_n \to c$ in measure.

Problem 4. Let Y_1, Y_2, \ldots be nonconstant, nonnegative, iid random variables with $\mathbb{E}Y_m = 1$.

(1) Show that

$$X_n = \prod_{m \le n} Y_m$$

defines a martingale with respect to the filtration $\mathcal{F}_n = \sigma(Y_1, \ldots, Y_n)$.

(2) The martingale convergence theorem tells us that there is an X_{∞} such that $X_n \to X_{\infty} \mathbb{P}$ a.s. Determine X_{∞} . *Hint: Consider using the law of large numbers.*

Problem 5. Let p be a fixed number in $[1, \infty]$. Let X_n be a sequence of random variables such that for every $\epsilon > 0$, there exists an N such that for all $n, m \ge N$, $\mathbb{E}[|X_n - X_m|^p] < \epsilon$. Show that there is an X such that $X_n \to X$ in probability.