MATH 453 FINAL EXAM - SPRING, 2022

Instructions: You may cite results from class or the textbook, but clearly identify by name or state what you are using.

Note: Problems \#1-5 constitute the Geometry Prelim exam.

1. Let N^{n} and M^{m} be compact, $F: N \rightarrow M$ a surjective submersion. Define an equivalence relation \sim on N by $x \sim x^{\prime} \Longleftrightarrow F(x)=F\left(x^{\prime}\right)$. Prove that N / \sim is a smooth manifold and is diffeomorphic to M.
2. Let $G: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3},(u, v, w)=G(x, y, z)=\left(x, x y, x z+y z^{2}+z^{4}\right)$.
(a) Find the sets of critical points and critical values of G in as explicit forms as you can (don't worry about solving any complicated algebraic equations).
(b) Find G^{*} of $v d u+u^{2} d v+d w, d u \wedge d v+d v \wedge d w$ and $d u \wedge d v \wedge d w$.
3. For each of the following three pairs of functions $f_{j}: N_{j} \rightarrow M_{j}$ and submanifolds $S_{j} \subset M_{j}$, determine whether f_{j} is transverse to S_{j}. For any that are, find $f_{j}^{-1}\left(S_{j}\right)$.
(i) $f_{1}: \mathbb{R}^{2} \rightarrow \mathbf{S}^{1}, f_{1}(x, y)=e^{i(n x+m y)}$ and $S_{1}=\left\{e^{i 0}=1\right\}$. (Answer might depend on $n, m \in \mathbb{Z}$.) For $n \in \mathbb{N}$, \mathbf{S}^{n-1} is the unit sphere in \mathbb{R}^{n}.
(ii) $f_{2}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2},(u, v)=f_{2}(x, y, z)=(2 x+3 y, x-4 z)$ and $S_{2}=\{u+v=1\}$.
(iii) $f_{3}: \mathbb{R} \rightarrow \mathbb{R}^{3}, f_{3}(t)=(a+t, b+t, c+t)$ and $S_{3}=\mathbf{S}^{2}$. (Answer might depend on $a, b, c \in \mathbb{R}$.)
4. Suppose $S \subset M^{n}$ is a regular, codimension k submanifold. Show that if $X, Y \in \Gamma(T M)$ are such that $X_{p}, Y_{p} \in T_{p} S, \forall p \in S$, then $[X, Y]$ has the same property: $[X, Y]_{p} \in T_{p} S, \forall p \in S$.
(continued on back!)
5. Let M be a smooth, oriented, n-dimensional manifold without boundary. For $0 \leq k \leq n, \Omega_{c}^{k}:=\Omega_{c}^{k}(M)$ denotes the space of smooth, compactly supported k-forms on M.

Among other things, each Ω_{c}^{k} is a vector space over \mathbb{R}. Define a bilinear function $B_{k}: \Omega_{c}^{k} \times \Omega_{c}^{n-k} \rightarrow \mathbb{R}$ by

$$
B_{k}(\omega, \tau)=\int_{M} \omega \wedge \tau
$$

Prove that B_{k} is nondegenerate, i.e., for all $\omega \in \Omega_{c}^{k}, \omega \neq 0$, there exists a $\tau \in \Omega_{c}^{n-k}$ such that $B_{k}(\omega, \tau) \neq 0$, and for all $\tau \in \Omega_{c}^{n-k}, \tau \neq 0$, there exists a $\omega \in \Omega_{c}^{k}$ such that $B_{k}(\omega, \tau) \neq 0$.
6. If $(M, \partial M)$ is an n-dimensional manifold with $\partial M \neq \emptyset$, then a boundary defining function is a $b \in C^{\infty}(M, \mathbb{R})$ such that
(i) $b=0$ on ∂M and $b>0$ on $M \backslash \partial M$; and
(ii) $d b_{p} \neq 0, \forall p \in \partial M$.

Prove that any $(M, \partial M), \partial M \neq \emptyset$, has a boundary defining function.

