Math 467: Theory of Analytic Functions

Final (Prelim is first 5 problems) May, 2022

NAME (please print legibly): ______ Your University ID Number: ______

Instructions:

- 1. Read the notes below:
 - Using any notes, books, online resources, or contacting any other people during this exam is prohibited.
- 2. Read the following Academic Honesty Statement and sign:

I affirm that I will not use any unauthorized resourced, or give or receive any unauthorized help on this exam, and that all work will be my own.

Signature:_____

QUESTION	VALUE	SCORE
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
TOTAL	60	

1. (10 points) Suppose f is an entire function such that for any $a \in \mathbb{C}$ at least one coefficient in the power series expansion $f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$ is zero, i.e. for any a there exists a non-negative integer n such that $f^{(n)}(a) = 0$. Prove that f must be a polynomial.

2. (10 points) Let f be a complex function. Prove that if f and f^2 are harmonic, then either f or \overline{f} must be holomorphic.

3. (10 points) Prove that in an infinite dimensional Hilbert space a basis (not a Hilbert basis) cannot be an orthonormal family. In your argument do not use results outside of what was proven in class.

4. (10 points) Let f be a holomorphic function in a region containing the unit disk centered at the origin and on the boundary of the disk it satisfies the inequality |f(z)| < 1. Determine the number of fixed points f can possibly have in the unit disk.

5. (10 points) Evaluate $\int_{-\infty}^{\infty} \frac{\cos t}{t-i} dt$. Justify your answer.

6. (10 points) Which of the following are Schwartz functions? Fully justify your answer in each case.

- 1. $f(x) = (1 + |x|^2)^{-N}$ where N is a positive integer.
- 2. $g(x) = e^{-\pi |x|^2}$.
- 3. $h(x) = e^{-\pi |x|^2} \sin(e^{\pi |x|^2}).$