Math 467: Theory of Analytic Functions

Final (Prelim is first 5 problems)
May, 2022

NAME (please print legibly): \qquad
Your University ID Number: \qquad

Instructions:

1. Read the notes below:

- Using any notes, books, online resources, or contacting any other people during this exam is prohibited.

2. Read the following Academic Honesty Statement and sign:

I affirm that I will not use any unauthorized resourced, or give or receive any unauthorized help on this exam, and that all work will be my own.

Signature: \qquad

QUESTION	VALUE	SCORE
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
TOTAL	60	

1. (10 points) Suppose f is an entire function such that for any $a \in \mathbb{C}$ at least one coefficient in the power series expansion $f(z)=\sum_{n=0}^{\infty} c_{n}(z-a)^{n}$ is zero, i.e. for any a there exists a non-negative integer n such that $f^{(n)}(a)=0$. Prove that f must be a polynomial.
2. (10 points) Let f be a complex function. Prove that if f and f^{2} are harmonic, then either f or \bar{f} must be holomorphic.
3. (10 points) Prove that in an infinite dimensional Hilbert space a basis (not a Hilbert basis) cannot be an orthonormal family. In your argument do not use results outside of what was proven in class.
4. (10 points) Let f be a holomorphic function in a region containing the unit disk centered at the origin and on the boundary of the disk it satisfies the inequality $|f(z)|<1$. Determine the number of fixed points f can possibly have in the unit disk.
5. (10 points) Evaluate $\int_{-\infty}^{\infty} \frac{\cos t}{t-i} d t$. Justify your answer.
6. (10 points) Which of the following are Schwartz functions? Fully justify your answer in each case.
7. $f(x)=\left(1+|x|^{2}\right)^{-N}$ where N is a positive integer.
8. $g(x)=e^{-\pi|x|^{2}}$.
9. $h(x)=e^{-\pi|x|^{2}} \sin \left(e^{\pi|x|^{2}}\right)$.
