COMPLEX ANALYSIS PRELIMINARY EXAMINATION

Please write your solutions in the blue books that are provided. If you choose to use a major theorem, state it and label it clearly, but do not prove it unless otherwise indicated.

Problem $\# 1$: Let f be a complex valued function on the unit disk such that both $g=f^{2}$ and $h=f^{3}$ are analytic. Prove that f is analytic on the unit disk.

Problem $\# 2$: For each positive integer $n \geq 2$ compute

$$
\int_{0}^{\infty} \frac{d x}{1+x^{n}}
$$

Hint: Consider a contour consisting of a piece of the positive real axis, a piece of the line pointing in the direction of the n 'th primitive root of unity, and the connecting circular arc.

Problem $\# 3$: Show that if f is analytic on an open set containing the closure of the disk of radius R centered at a, then

$$
|f(a)|^{2} \leq \frac{1}{\pi R^{2}} \int_{0}^{2 \pi} \int_{0}^{R}\left|f\left(a+r e^{i \theta}\right)\right|^{2} r d r d \theta
$$

Problem \#4: Prove that for any positive integer n and any $a \in \mathbb{C}$, the polynomial $a z^{n}+z+1$ has at least one root in the disk $|z| \leq 2$.

Hint: Write $a z^{n}+z+1=a\left(z-\omega_{1}\right) \cdots\left(z-\omega_{n}\right)$, with justification, and compare the constant terms.

Problem $\# 5$: Let $f: D \rightarrow D$ be a holomorphic function on the unit disk. Prove that for all $z \in D$,

$$
\frac{\left|f^{\prime}(z)\right|}{1-|f(z)|^{2}} \leq \frac{1}{1-|z|^{2}}
$$

Hint: You may want to use the fact that the transformation

$$
z \rightarrow \frac{w-z}{1-\bar{w} z}
$$

maps D to D and swaps w and the origin.
Date: August 20, 2019.

