Real Analysis Preliminary Exam, August 2022

- 1. Let (X, \mathcal{S}, μ) be a measure space such that $\mu(X) < \infty$. Prove that if \mathcal{A} is a family of disjoint sets in \mathcal{S} such that $\mu(A) > 0$ for all $A \in \mathcal{A}$, then \mathcal{A} is a countable set.
- 2. Let (X, \mathcal{S}, μ) be a measure space and consider $(f_n)_n \subset L^1(X)$ to be a sequence of functions converging pointwise a.e. to $f \in L^1(X)$. Show that

$$\lim_{n \to \infty} \int_X |f_n - f| \, d\mu = 0$$

if and only if

$$\lim_{n \to \infty} \int_X |f_n| \, d\mu = \int_X |f| \, d\mu.$$

 If h : ℝ → ℝ is a Lebesgue measurable function, then its associated Hardy-Littlewood maximal function h^{*} : ℝ → [0, ∞] is defined by

$$h^*(b) = \sup_{t>0} \frac{1}{2t} \int_{[b-t,b+t]} |h(x)| \, d\lambda(x), \qquad (\forall) \, b \in \mathbb{R}.$$

Prove that

$$\lambda\left(\{b\in\mathbb{R};\ h^*(b)=\infty\}\right)=0$$

for all $h \in L^1(\mathbb{R})$.

- 4. Let λ denote the Lebesgue measure on [0, 1].
 - i) Show that

$$\int_{[0,1]} \int_{[0,1]} \frac{x^2 - y^2}{(x^2 + y^2)^2} d\lambda(y) d\lambda(x) = \frac{\pi}{4},$$
$$\int_{[0,1]} \int_{[0,1]} \frac{x^2 - y^2}{(x^2 + y^2)^2} d\lambda(x) d\lambda(y) = -\frac{\pi}{4}.$$

ii) Argue why the previous two equalities violate neither Tonelli's theorem nor Fubini's theorem.

5. Let $f:[0,1] \to \mathbb{R}$ be a Lebesgue measurable function. Prove that

$$\lim_{p \to \infty} \|f\|_{L^p([0,1])} = \|f\|_{L^\infty([0,1])}$$