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Algebra II

1) Show that if α is algebraic over a field k, then the mutiplicity of α in its
minimal polynomial f(x) = irr(α, k, x) must be 1 if the characteristic is 0,
and pµ for some nonnegative integer µ if the characterisitic is p > 0. In the
latter case, deduce that αp

µ
must be separable over k and

[k(α) : k] = pµ[k(α) : k]s (1)

Hint: Equation (1) follows easily from everything else. There are several
different ways to see this.

2) Let F be an intermediate field between K and k where K/k is a finite
Galois extension with Galois group G.

a) Let H = {σ ∈ G | σ(F ) = F}. Show that H equals the normalizer of
J = Gal(K/F ) in G = Gal(K/k).

b) Let E = KH . Show that E is the smallest subfield of F containing k
such that F/E is Galois.

3a) Give an example of a Galois extension of Q whose Galois group is
isomorphic to Z3 × S3 if possible (justifying each one of your claims). If not
possible, briefly explain why not.

b) Prove that there are an infinite number of such extensions if true. If
false, briefly explain why not.

c) Give an example of a Galois extension of a finite field whose Galois
group is isomorphic to Z3×S3 if possible (justifying each one of your claims).
If not possible, briefly explain why not.
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4a) Let n ∈ Z+ and assume that the characteristic of k is either 0 or
relatively prime to n. Let ζ = ζn be a primitive nth root of 1, and let α be a
root of xn − a for some fixed a ∈ k. Show that if ζ ∈ k, then k(α) is Galois
over k with a Galois group that is cyclic and [k(α) : k] dividing n. Give an
example to show that [k(α) : k] need not equal n.

b) Let k = Fap be the algebraic closure of Fp and let K = k(t) for some
element t transcendental over k. Does there exist an extension of K that is
purely inseparable of degree p over K? If so, produce a specific example of
such an extension being careful to prove every one of your claims. If such an
extension does not exist, then say so.

c) Let K be as in part b above. Does there exist an extension of K
that is Galois cyclic of degree p? If so, produce a specific example of such
an extension being careful to prove every one of your claims. If such an
extension does not exist, then say so.

5) Give an example of each of the following if possible. If not possible,
briefly explain why not. In each case, completely justify your reasoning. For
purposes of the prelims, you must have at least 4 of these correct to count as
having the problem correct.

a) an extension K/k of finite degree that has an infinite number of in-
termediate fields

b)a prime p 6= 7 such that ζ7 has degree ϕ(7) = 6 over Fp
c) a prime p 6= 7 such that ζ7 has degree 2 over Fp
d) a prime p 6= 3, 5 such that ζ15 has degree ϕ(15) = 8 over Fp
e) an irreducible cubic polynomial in Q[x] with precisely one real root

whose discriminant ∆ is a square in Q
f) an irreducible cubic polynomial over a finite field k whose discriminant

∆ is NOT a square in k.



Complex Analysis

1. Suppose that u and u2 are harmonic on a region (an open connected
set) Ω ⊂ C. Prove that u is constant on Ω. (You may wish to use
the fact that any two points in a region may be connected by a curve
consisting of line segments parallel to the coordinate axis.)

2. Find a conformal map f(z) of the region Ω = {z : |z| < 1 and =z >
1/2} which maps Ω one-to-one and onto the unit disc {z : |z| < 1}.
Illustrate the various stages of your mapping and argue that the map
does what you claim.

3. Suppose that a1, a2, . . . , an are distinct point in C with |ak| < 1. Put

f(z) =
n∏
k=1

z − ak
1− akz

.

a) What is the modulus of f(z) on |z| = 1? Why?

b) Select a number b in |z| < 1 and show that f(z) = b has n solutions
in |z| < 1 counting multiplicities.

4. Use the calculus of residues to evaluate∫ ∞
−∞

x sinx

1 + x2
dx.

5. Let f(z) be holomorphic on the disc |z| ≤ R with R > 1, and suppose
that f(z) has a root at z = i and at z = −i. Let M = max|z|=R |f(z)|.
Prove that

|f(z)| ≤ M |z2 + 1|
R2 − 1

.



Geometry, problems and answers

1.
(a)(6) Let F : R2 → R2 be given by F (x, y) = (x2 + y2, xy). Carefully

compute the pull back F ∗(−vdu+udv). List the properties of d and the pull
back which are used in this computation.

Answers:
A quick list of facts that make calculating with forms easier: F ∗ commutes

with d and distributes over ∧. d is an antiderivation, i.e. d(ω ∧ η) = dω ∧
η + (−1)kω ∧ dη. F ∗(f) = f ◦ F .

F ∗(−vdu+ udv) = −F ∗vF ∗(du) + F ∗(u)F ∗(dv)

= −(v ◦ F )d(F ∗u) + (u ◦ F )dF ∗v

= −xyd(x2 + y2) + (x2 + y2)d(xy)

= −xy(2xdx+ 2ydy) + (x2 + y2)(ydx+ xdy)

= (y3 − x2y)dx+ (x3 − xy2)dy

(b)(7) Let α be a non-zero 1 co-vector and let γ be a k-covector on Rn

(n > k). Show that α∧γ = 0 if and only if γ = α∧β for some k−1 convector
β on Rn.

Answers:
Let γ = α ∧ β then α ∧ γ = α ∧ α ∧ β = 0 because α ∧ α = 0 for any one

form.
Let α∧ γ = 0. Let α = α1, α2, . . . αn be a basis for one forms on Rn (any

set of independent vectors can be extended to a basis). Then γ =
∑
aIα

I

for sets I = {i1 . . . ik} because such wedge products form a basis for ΛkRn.
Considering 0 = α ∧ γ =

∑
aIα

1 ∧ αI we see that aI = 0 for all I that do
not contain 1 since such α1 ∧ αI are independent basis vectors of Λk+1Rn.
From the remaining terms we can factor out α1. The k − 1 form β is given
by β =

∑
aIα

I−{1} summed over all of the sets I which contain 1.

(c)(7) What axioms describe a derivation of smooth functions at p ∈ Rn?
Show that the map from derivations δ to directional derivatives (Dv) at p is
bijective and linear.



Answers:
A derivation δ is a linear functional from the space of smooth functions

at p to R. In addition δ satisfies the product rule: δ(fg) = f(p)δg + g(p)δf .
These axioms are enough to guarantee that δ takes constants to 0 and that
δ is a local operator.

The directional derivative Dvf = d
dt
f(p + tv) |t=0 is clearly a derivation

and the inclusion map is linear and 1 to 1 since directional derivatives are
different on coordinate functions.

It remains to show that every derivation is a directional derivative for
some v ∈ Rn. To determine v apply δ to the coordinate functions xi. Given
δxi = ai set v = ai ∂

∂xi
. δ and Dv agree on coordinate functions.

Use the Taylor formula to show that if the directional derivative and the
derivation agree on coordinate functions they agree on all smooth functions.
Since f(x) = f(p) + fi · (xi− pi) + fij · (xi− pi)(xj− pj)+ higher order terms,
we see that δ and Dv are completely determined by the values they take
when applied to the coordinate functions.

2.
The Lie group G = SO(2, 1) consists of the invertible matrices which

preserve a certain matrix:

G = {A | ATJA = J} where J =

−1 0 0
0 1 0
0 0 1


(a)(7) Describe the elements in the tangent space to G at the identity

element (e or I). Describe the relation between these elements and the lie
algebra of G, giving a definition of the lie algebra of G.

Answers:
To determine the restrictions on the tangent space at e consider curves

A(t) with A(0) = I and AT (t)JA(t) = J . Differentiating and evaluating
at t = 0 we have A′(0) = −JA′(0)TJ . If we let bij be the components of
the tangential matrix A′(0) we see that the following identities are satisfied:
bii = 0, b12 = b21, b13 = b31 and b23 = −b32.



The tangent space is 3 dimensional. The lie algebra of G is the space of
left invariant vector fields on G. These fields can be completely determined
by their value at e and therefore the lie algebra is also a 3 dimensional vector
space.

(b)(7) If Y is a left invariant vector field on G and

Ye =

0 1 0
1 0 0
0 0 0


what is the value of the vector field Y at g ( that is Yg ) if

g =

1 0 0
0 0 1
0 −1 0


Yg =.

Answers:
Because the left action of g on G is given as multiplication by a (constant)

matrix (also called g) we have

g∗(Ye) = g∗(A
′(0)) =

d

dt
gA(t) |t=0= g

d

dt
A(t) |t=0= gYe

Multiplying the matrix g against Ye gives Yg =

 0 1 0
0 0 0
−1 0 0


(c)(6) Compare the vector space of all smooth vector fields on G and the

space of left invariant vector fields on G including their dimensions.

Answers:
There are many vector fields on G. There is no finite basis for this space

and the dimension is infinite.
There are relatively few left invariant vector fields Y on G and each such

field is determined by its value Ye at a single point, say the identity. Then
Y at g is given by the matrix formula Yg = gYe. Ye is in the tangent space



at the identity which is 3 dimensional by the first result above and therefore
the space of left invariant vector fields on G is a 3 dimensional vector space.

3.
(a) (8) If F : R2 → R is given by F (x, y) = x3 + xy + y3 = a for which

values of a are the level sets of F guaranteed to be embedded submanifolds
of R2? Explain your reasoning – you may quote theorems.

Answers:
F (x, y) = x3 + xy+ y3. ∂F

∂x
= 3x2 + y, F

y
= x+ 3y2. The inverse function

theorem guarantees that the level set is a submanifold unless it contains a
point where DF has rank 0, i.e. both partial derivatives are 0. Some algebra
shows that this can happen only if x = y = −1

3
or x = y = 0. F (0, 0) = 0

and F (−1
3
,−1

3
) = 1

27
so unless a equals one of those two values the level set

is a submanifold. If a is equal to one of those two values then more analysis
is needed to determine whether the level set is a submanifold at the critical
points.

(b)(2) Give an example of an immersed submanifold which is not embed-
ded.

Answers:
There are two canonical examples. One is a figure eight which is the

image of an open unit interval. At the “crossing point” the image is not a
submanifold (it is not locally homeomorphic to an interval). The second is
the result of taking S to be a line in R2 with irrational slope and then taking
the quotient of the plane with respect to the integer lattice to obtain a torus.
The line S never closes and is dense in the torus, hence it’s image does not
have any charts exhibiting S as a submanifold.

(c)(10) Show that if i : Sk →Mn is an injective immersion of a k-manifold
into an n-manifold then for any p ∈ S there is an open set p ∈ U ⊆ S for
which i(U) is an embedded submanifold and i : U →M is a diffeomorphism
onto i(U). (Hint: Use constant rank theorem).

Answers:
Given i : Sk → Mn and a point p we have that a i∗ has rank k at every

point because i is an immersion. By the constant rank theorem there are open



sets U and V and chart functions φ and ψ such that the map ψ ◦ i◦φ−1Rn →
Rn is given by x1, . . . xk → (x1, . . . , xk, 0, . . . ). This shows that i(U) is the
zero set of xk+1 = . . . xn = 0 (restricted to V ) and therefore i(U) is an
embedded submanifold.

Comments: The map I doesn’t need to be injective. In the example, the
effect of restricting to U is to remove the parts of i(Sk which are too close to
i(p) and are preventing i(Sk) from being an embedded submanifold.

4.
(a)(5) Explain how one determines whether a function between manifolds

F : Mn → Nk is C∞ at a point p ∈ M . Explain how the definition of a
manifold insures that this definition is well defined.

Answers:
F : M → N is smooth at p off for some charts φ : p ∈ U → Rn, ψ : F (p) ∈

V → Rk we have F̃ = ψ◦F ◦φ−1 : Rn → Rk is C∞. We only need to check one
chart because if alternate charts are used the smooth transition functions τ, ρ
insure that F̃ is smooth if and only if the alternative representation τ ◦ F̃ ◦ ρ
is smooth.

(b)(15) We consider three types of manifold structures related to the man-
ifold Mn: the n dimensional manifold M itself, a k dimensional embedded
submanifold S contained in M and the 2n dimensional tangent bundle TM .
Explain the difference between the charts and the transition functions used
to describe each of these structures. (Don’t forget to explain the difference
between the tangent bundle transition functions and those for an arbitrary
vector bundle over M).

Answers:
(a) For M the transition functions between charts must be smooth dif-

feomorphisms from Rn → Rn. Among other things this allows you to unam-
biguously specify the smooth functions on M as above.

(b) For Sk ⊆ Mn the charts must identify points of S with the natural
embedding of Rk into Rn along the first k coordinates.. The transition func-
tions, in addition to being smooth, must map this Rk subspace to the Rk

subspace on the next chart.



For the manifold TM the R2nchart is a product Rn×Rn and the transition
map is the product of a diffeomorphism φ and a linear map L. (x1, . . . , xn, a1, . . . an) 7→
(y1(~x), . . . , yn(~x), L(~a) where the coefficients of the matrix L can depend on
~x. In order to be the tangent bundle we must have that L = Dφ, that is the
linear map is the linearization of the diffeomorphism φ.

5.
Assume the existence of C∞ bump functions and partitions of unity on

M .
(a)(5) Let A and B be two disjoint closed sets in a manifold M . Find a

C∞ function F on M such that F is identically 1 on A and is identically 0
on B.

Answers:
Consider the partition of unity subordinate to (M − A) and (M − B).

suppφM−B ⊆ M − B hence φM−B restricted to B is identically 0. On the
other hand φM−B + φM−A = 1 and φM−A is identically 0 on A. This means
φM−B is identically 1 on A.

(b) (5) Prove or give counter-example: If S is a smooth submanifold of
M then every C∞ function g : M → R restricts to a C∞ function on S.

Answers:
If S is a smooth submanifold then i : S → M is C∞ and the restriction

of g to S is simply g ◦ i which is smooth by the chain rule. S does not need
to be an embedded submanifold for this is true for immersed sub manifolds
as well.

(c) (10) Prove or give counter-example: If S is a smooth embedded sub-
manifold of M then every C∞ function f : S → R is the restriction of some
globally defined C∞ function g : M → R. f = g|S.

Answers:
This is more complicated. One uses the structure of the submanifold

charts and a partition of unity on M .



Let Uα be an atlas for S ⊂ M with partition of unity ρα. For each
ψα(p) ∈ ψα(S) extend the function f to be a constant in the xk+1, . . . , xn

variables and then multiply by ρα.

fα ◦ ψ−1(x1, . . . , xn) = ραf ◦ ψ−1(x1, . . . , xk) = ραf(p)

fα can be defined as 0 outside Uα so it is defined and smooth on all of
M .

∑
fα = f̃ is defined and smooth on all of M since the sums are locally

finite. For each p ∈ S we have
∑
fα(p) =

∑
ραf(p) = (

∑
ρα)f(p) = f(p)

so f̃ is an extension of f to the entire manifold M . f is the restriction of a
smooth function on M to S.


