Real Analysis

Problem 1. If F: R — R is a monotone function, show that

Elrv (fae)y = F(0) — F(a)

for any interval [a, b], and that F has bounded variation on R if and only if it is bounded. Here

Fllovqes = s SO 1F(@) — Flai)l.

a<zo<z1 < Swn<b

Problem 2. Compute the area of a regular 2™-gon, n = 2,3,..., inscribed in the unit circle.
Rigorously prove that this quantity converges to m as n — oo.

For the purposes of this problem, please use the definition which states that 7 equals the ratio
of a circle’s circumference to its diameter. Do not use the definition that 7 is the ratio of the area
of a circle to the square of its radius.

Problem 3. Suppose that f,, f € LP(R"), 1 < p < o0, and lim,, o fr(z) = f(x) a.e.. Prove that

nh_{rolo I fr — f||Lp(Rn) = 0 if and only if nh_{go ||fn||Lp(Rn) = ||f||Lp(Rn)-
Problem 4. Compute the three dimensional Lebesgue measure of the following subset of R? x [0, 7):
{(x,y,é)) eR? x [0,7): 22 + % < 1;0 € [0,7); (x 4 cos ) + (y +sin6)* < 1} .
For a bit of extra credit, give a simple geometric interpretation of the quantity you just computed.

Problem 5. i) State the Fubini theorem.
ii) Define f : [0,1] x [0,1] = R by

22— g2
(22 +y2)%

/01 (/Olf(:c,y)dx) dy and /O1 (/01 f(x,y)dy> da.

Why doesn’t the result contradict the Fubini theorem?

fx,y) =

Compute



Complex Analysis

1. Write the two Laurent series in powers of z that represent the function

1

f(Z):m

in certain domains, and specify those domains.

2. Let D C R? be a domain, such that 9D (i.e., the frontier of D) is a positively oriented simple
contour. Prove that the area of D is given by
1

21 oD

3. Let f be an analytic function inside and on a positively oriented simple contour v, also having
no zeros on 7. Prove that if f has n zeros z; (1 < k <n) inside C, where each z; has multiplicity
my, then

2 f'(2)
v f(2)

4. Compute, using the residue theorem and including complete justifications,

*  lnzx
T da.
/o (T+ap ™

5. Let D = {z € C| Rez > 0} and f: D — D a holomorphic function. Prove that

o < Ref()
rel < 2,

n
dz = 2mi g M2 -
k=1

(V)z € D,

where Rez is the real part of the complex number z, i.e., Re(z + iy) = .
Algebra 1

Problems

1. Part a) Describe all finite groups with only two conjugacy classes.
Part b) Describe all finite groups with only three conjugacy classes.

2. (a) Let F3:=Z/3Z. Find all values of a € F3 such that the quotient ring
Fsz]/(2® + 2?4+ ax + 1)

is a field. Justify your answer.
(b) Let F Dbe a field and E an integral domain. Suppose F is a subring of E. Prove that if
the dimension of E as a vector space over F' is finite, then F is a field.

3. Prove that all groups of order 12 are solvable. (Note: you cannot simply state Burnside’s
theorem.)



4. All PID’s are UFD’s. Prove the first part of this assertion. That is, if R is a PID and r € R,

5.

then there exists irreducible elements pq,...,p, € R such that r =p;---py,.

Prove that normality of fields is not transitive. That is, give an explicit example of field
extensions F' < K < F such that E/K and K/F are normal, but E/F is not. (Make sure to
justify any statements you make about your example.)

Algebra II

1.

(a) Let F < K < FE be field extensions. Suppose K/F is Galois, and E/K is Galois. Prove
or give a counterexample that E/F is Galois.

(b) Let f € Q[z] be an odd degree polynomial with cyclic Galois group. Prove that all the
roots of f are real.

. Let (,, be a primitive n-th root of unity. Suppose n is odd and composite. Prove that the

Galois group Gal(Q((,)/Q) of the cyclotomic extension over @ is not cyclic.

. Let A be an integral domain with quotient field K, and let L be a finite separable extension

of K. Let B be the set of elements of L that are integral over A. Prove that L is the fraction
field of B.

If E = Q(a) where « is a root of the cubic 23 — 3z + 1, find the norm and trace of a2 over E.

. Suppose

00— N, — M — Ny —0

is an exact sequence of R-modules. Prove that if N; and Ny are finitely generated then M is
finitely generated. Give a counterexample to the converse; explicitly describe the ring R and
modules involved in your example.

Topology

Problem 1.

1.

Let X be a topological space. Let Ax = {(x,z) : = € X} be the diagonal in the product
space X X X. Then prove that X is Hausdorrf iff the diagonal Ax is closed in X x X.

. Prove that the topological space X is Hausdorrf iff every net (s,)nep in X converges to at

most one point.

. Let C and D be disjoint compact subsets of a Hausdorrf space X. Then prove that there

exist disjoint open sbsets U and V of X such that C C U and D C V.



Problem 2. Recall that a topological space X is connected iff whenever U and V are disjoint
open subsets of X such that X = U UV then either U = ) or V = . Recall also that a subset A
of X is said to be connected iff it is connected for the relative topology from X — i.e., iff whenever
U and V are open subsets of X such that UNV N A = 0 and such that A C U UV then either
ANU=0or ANV = 0.

1.

If A is a connected subset of the topological space X, then prove that the subset A of X is
connected.

. If X and Y are connected topological spaces, then prove that X x Y is connected. Use this

to prove that the Cartesian product of finitely many connected spaces is connected.

. Let (X;)ier be an indexed family of non-empty connected topological spaces. Suppose that

we choose an element ¢; € X; for every ¢ € I. If K is any finite subset of the index set I,
then let Xx = {(;)ier : ®; = t;, for all i ¢ K}. Then prove that Xy is homeomorphic to
[I;cx Xi- Use this and what you proved above to prove that X is connected, for every
finite subset K of I.

In class, we proved that, if X is a topological space, x € X and if 2l is a collection of connected
subsets of X such that x € A, for all A € 2, then the subset Uacg A of X is connected.

If (X;)icr and t;, ¢ € I are as above, then let Y = {(z;)ics : x; = t;, for all but finitely many ¢ €

I}. Then, using your results above, prove that the subset Y of [],.; X; is connected.

. Prove that Y is dense in [[,.; Xi.

. Using your results above, prove that [, ; X; is connected.



Problem 3. Let X be a set and let (s,,)nep be a net in the set X. Then recall that a subnet of
the net (8, )nep is a net (t,)mer together with an order-preserving function T': E — D such that
the subset T'(E) of D is cofinal (i.e, such that n € D implies 3 m € E such that n < T'(m)), and
such that sp(p,) = tim, for all m € E. Recall also that, if X is a topological space and z € X, then
we say that the net (s,)nep converges to x iff the net (s,,)nep is eventually in every neighborhood
of z in X (i.e., iff U a neighborhood of = in X implies there exists n € D such that m > n in
D implies s,, € U.) We say that = is a cluster point of the net (s,)nep iff the net (s,)nep is
frequently in every neighborhood of z (i.e., iff U a neighborhood of 2 in X and n € D implies there
exists m > n in D such that s, € U.)

1. Let (sp)nep be a net in the topological space X, and let « be a cluster point of z. Then
prove that there exists a subnet (¢,,)meg of the net (s,),ep that converges to x.

2. Let (sp)nep be a net in the topological space X, and suppose that we have a subnet (¢,,)mer
of the net (s,)nep that converges to x. Then prove that z is a cluster point of the net

(Sn)neD-



Problem 4. If (X,4) is a uniform space, then in class we proved that the set B of all closed
entourages in il is a base for the uniformity.

1. (X,4) and B as above, let C' = NyepU. Then prove that, for every neighborhood V of the
diagonal Ax in X x X, we have that B C V.

2. Suppose also that X is compact as topological space. Then so is X x X, and, since a closed
subset of a compact topological space is compact, it follows that all the entourages in B are
compact. If V is any neighborhood of Ax in X, then by the last part of this problem, you
know also that NyegU C V. Use this to prove that V € 4l

3. Using what you’ve shown above, prove that, if (X, 4l) is any compact uniform space, then the
uniformity 4 of X is necessarily equal to the set of all neighborhoods of the diagonal Ax in
X x X.

4. Using the above, prove that, if f: (X,4) — (Y,9) is a function of uniform spaces, and if f
is continuous, and if X is compact as topological space, then the function f : (X, ) — (Y,)
is uniformly continuous.



Problem 5.

1. Let X be an arbitrary topological space. Let x be such that z ¢ X. Let X* be the set
X U{z}. Then let 7 be the set of all open subsets of X together with X*. Then show that 7
is a topology on X* that is compact and such that X is an open subspace of X*.

NOTE: The topology that you’ve constructed above is almost never the same as the topology
that makes X ™ into what is usually called the one-point compactification of X.

2. For every closed compact subset C' of X, let Us = (X \ C) U {z}. Let u be the topology of
X. Then let p = pU{Uc : such that C is a closed compact subset of X}. Then prove that p
is a topology on X*.

NOTE: The topology p that you’ve just constructed is the one-point compactification of X.

3. Prove that the one-point topology on X* is the finest topology on X* such that X* is
compact and such that X is an open subspace of X*.

Geometry

1. Consider the subset of R? which is the graph f: R? — R given by f(%) = |Z|.

a) Can this graph be given a differentiable structure?

b) Can this graph be a differentiable submanifold of R? with its standard differentiable struc-
ture?

c) Could this set be the image of a differentiable function?

2. Consider My = {(x,y,2) € R®|2? + xy = k}.
a) For which values of k is M}, a smooth manifold ?
b) For k = 0, is My connected ? Is My compact ?

3. An exact form « is a differential form that is the exterior derivative of another differential
form 3, i.e. a =dp.

a) Determine whether the two-form o = zdx A dy is exact in R3.

b) Let M represents an embedded submanifold of R? given by
M = {(z,y,2) € R}z — 2% — y? = 1}. Determine whether the restriction of o to M is exact.

4. (15 pts) Let M be a differentiable manifold. A one-parameter group of transformations, ¢, on
M, is a differentiable map from M x R onto M such that ¢(z,0) = z and ¢(¢p(x,t),s) = ¢(x,t + s)
for all z € M, t,s € R. Show that the family of maps ¢; : R? — R?, ¢;(z,y) = (e®x, e’*y), with
a,b € R form one parameter group of transformations.



5. a) Let M be a compact connected orientable n-manifold without boundary. Let 8 € Q"1 (M)
be a (n — 1)-differential form. Show that there exists a point p € M such that df(p) = 0.
b) Prove that there is no embedding f : S' — R where S* is the unit circle.



