Real Analysis

Problem 1. If $F: \mathbb{R} \rightarrow \mathbb{R}$ is a monotone function, show that

$$
\|F\|_{T V([a, b])}=F(b)-F(a)
$$

for any interval $[a, b]$, and that F has bounded variation on \mathbb{R} if and only if it is bounded. Here

$$
\|F\|_{T V([a, b])}=\sup _{a \leq x_{0} \leq x_{1} \leq \cdots \leq x_{n} \leq b} \sum_{i}\left|F\left(x_{i}\right)-F\left(x_{i+1}\right)\right| .
$$

Problem 2. Compute the area of a regular 2^{n}-gon, $n=2,3, \ldots$, inscribed in the unit circle. Rigorously prove that this quantity converges to π as $n \rightarrow \infty$.

For the purposes of this problem, please use the definition which states that π equals the ratio of a circle's circumference to its diameter. Do not use the definition that π is the ratio of the area of a circle to the square of its radius.

Problem 3. Suppose that $f_{n}, f \in L^{p}\left(\mathbb{R}^{n}\right), 1<p<\infty$, and $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ a.e.. Prove that $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}=0$ if and only if $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}=\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}$.

Problem 4. Compute the three dimensional Lebesgue measure of the following subset of $\mathbb{R}^{2} \times[0, \pi)$:

$$
\left\{(x, y, \theta) \in \mathbb{R}^{2} \times[0, \pi): x^{2}+y^{2} \leq 1 ; \theta \in[0, \pi) ;(x+\cos \theta)^{2}+(y+\sin \theta)^{2} \leq 1\right\}
$$

For a bit of extra credit, give a simple geometric interpretation of the quantity you just computed.

Problem 5. i) State the Fubini theorem.
ii) Define $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ by

$$
f(x, y)=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
$$

Compute

$$
\int_{0}^{1}\left(\int_{0}^{1} f(x, y) d x\right) d y \text { and } \int_{0}^{1}\left(\int_{0}^{1} f(x, y) d y\right) d x
$$

Why doesn't the result contradict the Fubini theorem?

Complex Analysis

1. Write the two Laurent series in powers of z that represent the function

$$
f(z)=\frac{1}{z^{3}\left(z^{2}+9\right)}
$$

in certain domains, and specify those domains.
2. Let $D \subset \mathbb{R}^{2}$ be a domain, such that ∂D (i.e., the frontier of D) is a positively oriented simple contour. Prove that the area of D is given by

$$
\frac{1}{2 i} \int_{\partial D} \bar{z} d z
$$

3. Let f be an analytic function inside and on a positively oriented simple contour γ, also having no zeros on γ. Prove that if f has n zeros $z_{k}(1 \leq k \leq n)$ inside C, where each z_{k} has multiplicity m_{k}, then

$$
\int_{\gamma} \frac{z f^{\prime}(z)}{f(z)} d z=2 \pi i \sum_{k=1}^{n} m_{k} z_{k}
$$

4. Compute, using the residue theorem and including complete justifications,

$$
\int_{0}^{\infty} \frac{\ln x}{(1+x)^{3}} d x
$$

5. Let $D=\{z \in \mathbb{C} \mid \operatorname{Re} z>0\}$ and $f: D \rightarrow D$ a holomorphic function. Prove that

$$
\left|f^{\prime}(z)\right| \leq \frac{\operatorname{Re} f(z)}{\operatorname{Re} z}, \quad(\forall) z \in D
$$

where $\operatorname{Re} z$ is the real part of the complex number z, i.e., $R e(x+i y)=x$.

Algebra I

Problems

1. Part a) Describe all finite groups with only two conjugacy classes.

Part b) Describe all finite groups with only three conjugacy classes.
2. (a) Let $\mathbb{F}_{3}:=\mathbb{Z} / 3 \mathbb{Z}$. Find all values of $a \in \mathbb{F}_{3}$ such that the quotient ring

$$
\mathbb{F}_{3}[x] /\left(x^{3}+x^{2}+a x+1\right)
$$

is a field. Justify your answer.
(b) Let F be a field and E an integral domain. Suppose F is a subring of E. Prove that if the dimension of E as a vector space over F is finite, then E is a field.
3. Prove that all groups of order 12 are solvable. (Note: you cannot simply state Burnside's theorem.)
4. All PID's are UFD's. Prove the first part of this assertion. That is, if R is a PID and $r \in R$, then there exists irreducible elements $p_{1}, \ldots, p_{n} \in R$ such that $r=p_{1} \cdots p_{n}$.
5. Prove that normality of fields is not transitive. That is, give an explicit example of field extensions $F \leq K \leq E$ such that E / K and K / F are normal, but E / F is not. (Make sure to justify any statements you make about your example.)

Algebra II

1. (a) Let $F \leq K \leq E$ be field extensions. Suppose K / F is Galois, and E / K is Galois. Prove or give a counterexample that E / F is Galois.
(b) Let $f \in \mathbb{Q}[x]$ be an odd degree polynomial with cyclic Galois group. Prove that all the roots of f are real.
2. Let ζ_{n} be a primitive n-th root of unity. Suppose n is odd and composite. Prove that the Galois group $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right)$ of the cyclotomic extension over \mathbb{Q} is not cyclic.
3. Let A be an integral domain with quotient field K, and let L be a finite separable extension of K. Let B be the set of elements of L that are integral over A. Prove that L is the fraction field of B.
4. If $E=\mathbb{Q}(\alpha)$ where α is a root of the cubic $x^{3}-3 x+1$, find the norm and trace of α^{2} over E.
5. Suppose

$$
0 \longrightarrow N_{1} \longrightarrow M \longrightarrow N_{2} \longrightarrow 0
$$

is an exact sequence of R-modules. Prove that if N_{1} and N_{2} are finitely generated then M is finitely generated. Give a counterexample to the converse; explicitly describe the ring R and modules involved in your example.

Topology

Problem 1.

1. Let X be a topological space. Let $\Delta_{X}=\{(x, x): x \in X\}$ be the diagonal in the product space $X \times X$. Then prove that X is Hausdorrf iff the diagonal Δ_{X} is closed in $X \times X$.
2. Prove that the topological space X is Hausdorrf iff every net $\left(s_{n}\right)_{n \in D}$ in X converges to at most one point.
3. Let C and D be disjoint compact subsets of a Hausdorrf space X. Then prove that there exist disjoint open sbsets U and V of X such that $C \subset U$ and $D \subset V$.

Problem 2. Recall that a topological space X is connected iff whenever U and V are disjoint open subsets of X such that $X=U \cup V$ then either $U=\emptyset$ or $V=\emptyset$. Recall also that a subset A of X is said to be connected iff it is connected for the relative topology from X - i.e., iff whenever U and V are open subsets of X such that $U \cap V \cap A=\emptyset$ and such that $A \subset U \cup V$ then either $A \cap U=\emptyset$ or $A \cap V=\emptyset$.

1. If A is a connected subset of the topological space X, then prove that the subset \bar{A} of X is connected.
2. If X and Y are connected topological spaces, then prove that $X \times Y$ is connected. Use this to prove that the Cartesian product of finitely many connected spaces is connected.
3. Let $\left(X_{i}\right)_{i \in I}$ be an indexed family of non-empty connected topological spaces. Suppose that we choose an element $t_{i} \in X_{i}$ for every $i \in I$. If K is any finite subset of the index set I, then let $X_{K}=\left\{\left(x_{i}\right)_{i \in I}: x_{i}=t_{i}\right.$, for all $\left.i \notin K\right\}$. Then prove that X_{K} is homeomorphic to $\prod_{i \in K} X_{i}$. Use this and what you proved above to prove that X_{K} is connected, for every finite subset K of I.
4. In class, we proved that, if X is a topological space, $x \in X$ and if \mathfrak{A} is a collection of connected subsets of X such that $x \in A$, for all $A \in \mathfrak{A}$, then the subset $\cup_{A \in \mathfrak{A}} A$ of X is connected.
If $\left(X_{i}\right)_{i \in I}$ and $t_{i}, i \in I$ are as above, then let $Y=\left\{\left(x_{i}\right)_{i \in I}: x_{i}=t_{i}\right.$, for all but finitely many $i \in$ $I\}$. Then, using your results above, prove that the subset Y of $\prod_{i \in I} X_{i}$ is connected.
5. Prove that Y is dense in $\prod_{i \in I} X_{i}$.
6. Using your results above, prove that $\prod_{i \in I} X_{i}$ is connected.

Problem 3. Let X be a set and let $\left(s_{n}\right)_{n \in D}$ be a net in the set X. Then recall that a subnet of the net $\left(s_{n}\right)_{n \in D}$ is a net $\left(t_{m}\right)_{m \in E}$ together with an order-preserving function $T: E \longrightarrow D$ such that the subset $T(E)$ of D is cofinal (i.e, such that $n \in D$ implies $\exists m \in E$ such that $n \leq T(m)$), and such that $s_{T(m)}=t_{m}$, for all $m \in E$. Recall also that, if X is a topological space and $x \in X$, then we say that the net $\left(s_{n}\right)_{n \in D}$ converges to x iff the net $\left(s_{n}\right)_{n \in D}$ is eventually in every neighborhood of x in X (i.e., iff U a neighborhood of x in X implies there exists $n \in D$ such that $m \geq n$ in D implies $s_{m} \in U$.) We say that x is a cluster point of the net $\left(s_{n}\right)_{n \in D}$ iff the net $\left(s_{n}\right)_{n \in D}$ is frequently in every neighborhood of x (i.e., iff U a neighborhood of x in X and $n \in D$ implies there exists $m \geq n$ in D such that $s_{m} \in U$.)

1. Let $\left(s_{n}\right)_{n \in D}$ be a net in the topological space X, and let x be a cluster point of x. Then prove that there exists a subnet $\left(t_{m}\right)_{m \in E}$ of the net $\left(s_{n}\right)_{n \in D}$ that converges to x.
2. Let $\left(s_{n}\right)_{n \in D}$ be a net in the topological space X, and suppose that we have a subnet $\left(t_{m}\right)_{m \in E}$ of the net $\left(s_{n}\right)_{n \in D}$ that converges to x. Then prove that x is a cluster point of the net $\left(s_{n}\right)_{n \in D}$.

Problem 4. If (X, \mathfrak{U}) is a uniform space, then in class we proved that the set \mathfrak{B} of all closed entourages in \mathfrak{U} is a base for the uniformity.

1. (X, \mathfrak{U}) and \mathfrak{B} as above, let $C=\cap_{U \in \mathfrak{B}} U$. Then prove that, for every neighborhood V of the diagonal Δ_{X} in $X \times X$, we have that $B \subset V$.
2. Suppose also that X is compact as topological space. Then so is $X \times X$, and, since a closed subset of a compact topological space is compact, it follows that all the entourages in \mathfrak{B} are compact. If V is any neighborhood of Δ_{X} in X, then by the last part of this problem, you know also that $\cap_{U \in \mathfrak{B}} U \subset V$. Use this to prove that $V \in \mathfrak{U}$.
3. Using what you've shown above, prove that, if (X, \mathfrak{U}) is any compact uniform space, then the uniformity \mathfrak{U} of X is necessarily equal to the set of all neighborhoods of the diagonal Δ_{X} in $X \times X$.
4. Using the above, prove that, if $f:(X, \mathfrak{U}) \longrightarrow(Y, \mathfrak{V})$ is a function of uniform spaces, and if f is continuous, and if X is compact as topological space, then the function $f:(X, \mathfrak{U}) \longrightarrow(Y, \mathfrak{V})$ is uniformly continuous.

Problem 5.

1. Let X be an arbitrary topological space. Let x be such that $x \notin X$. Let X^{*} be the set $X \cup\{x\}$. Then let τ be the set of all open subsets of X together with X^{*}. Then show that τ is a topology on X^{*} that is compact and such that X is an open subspace of X^{*}.
NOTE: The topology that you've constructed above is almost never the same as the topology that makes X^{*} into what is usually called the one-point compactification of X.
2. For every closed compact subset C of X, let $U_{C}=(X \backslash C) \cup\{x\}$. Let μ be the topology of X. Then let $\rho=\mu \cup\left\{U_{C}\right.$: such that C is a closed compact subset of $\left.X\right\}$. Then prove that ρ is a topology on X^{*}.
NOTE: The topology ρ that you've just constructed is the one-point compactification of X.
3. Prove that the one-point topology on X^{*} is the finest topology on X^{*} such that X^{*} is compact and such that X is an open subspace of X^{*}.

Geometry

1. Consider the subset of \mathbb{R}^{3} which is the graph $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $f(\vec{x})=|\vec{x}|$.
a) Can this graph be given a differentiable structure?
b) Can this graph be a differentiable submanifold of \mathbb{R}^{3} with its standard differentiable structure?
c) Could this set be the image of a differentiable function?
2. Consider $M_{k}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z^{2}+x y=k\right\}$.
a) For which values of k is M_{k} a smooth manifold ?
b) For $k=0$, is M_{0} connected ? Is M_{0} compact ?
3. An exact form α is a differential form that is the exterior derivative of another differential form β, i.e. $\alpha=d \beta$.
a) Determine whether the two-form $\alpha=z d x \wedge d y$ is exact in \mathbb{R}^{3}.
b) Let M represents an embedded submanifold of \mathbb{R}^{3} given by $M=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z-x^{2}-y^{2}=1\right\}$. Determine whether the restriction of α to M is exact.
4. (15 pts) Let M be a differentiable manifold. A one-parameter group of transformations, ϕ, on M, is a differentiable map from $M \times \mathbb{R}$ onto M such that $\phi(x, 0)=x$ and $\phi(\phi(x, t), s)=\phi(x, t+s)$ for all $x \in M, t, s \in \mathbb{R}$. Show that the family of maps $\phi_{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \phi_{t}(x, y)=\left(e^{a t} x, e^{b t} y\right)$, with $a, b \in \mathbb{R}$ form one parameter group of transformations.
5. a) Let M be a compact connected orientable n-manifold without boundary. Let $\beta \in \Omega^{n-1}(M)$ be a $(n-1)$-differential form. Show that there exists a point $p \in M$ such that $d \beta(p)=0$.
b) Prove that there is no embedding $f: S^{1} \rightarrow \mathbb{R}$ where S^{1} is the unit circle.
