Real Analysis

Problem 1. If $F : \mathbb{R} \to \mathbb{R}$ is a monotone function, show that

$$||F||_{TV([a,b])} = F(b) - F(a)$$

for any interval [a, b], and that F has bounded variation on \mathbb{R} if and only if it is bounded. Here

$$||F||_{TV([a,b])} = \sup_{a \le x_0 \le x_1 \le \dots \le x_n \le b} \sum_i |F(x_i) - F(x_{i+1})|.$$

Problem 2. Compute the area of a regular 2^n -gon, n = 2, 3, ..., inscribed in the unit circle. Rigorously prove that this quantity converges to π as $n \to \infty$.

For the purposes of this problem, please use the definition which states that π equals the ratio of a circle's circumference to its diameter. Do not use the definition that π is the ratio of the area of a circle to the square of its radius.

Problem 3. Suppose that $f_n, f \in L^p(\mathbb{R}^n)$, $1 , and <math>\lim_{n \to \infty} f_n(x) = f(x)$ a.e.. Prove that $\lim_{n \to \infty} ||f_n - f||_{L^p(\mathbb{R}^n)} = 0 \text{ if and only if } \lim_{n \to \infty} ||f_n||_{L^p(\mathbb{R}^n)} = ||f||_{L^p(\mathbb{R}^n)}.$

Problem 4. Compute the three dimensional Lebesgue measure of the following subset of $\mathbb{R}^2 \times [0, \pi)$:

$$\left\{ (x, y, \theta) \in \mathbb{R}^2 \times [0, \pi) : x^2 + y^2 \le 1; \theta \in [0, \pi); (x + \cos \theta)^2 + (y + \sin \theta)^2 \le 1 \right\}.$$

For a bit of extra credit, give a simple geometric interpretation of the quantity you just computed.

Problem 5. i) State the Fubini theorem.

ii) Define $f: [0,1] \times [0,1] \to \mathbb{R}$ by

$$f(x,y) = \frac{x^2 - y^2}{\left(x^2 + y^2\right)^2}.$$

Compute

$$\int_0^1 \left(\int_0^1 f(x,y) dx \right) dy \text{ and } \int_0^1 \left(\int_0^1 f(x,y) dy \right) dx.$$

Why doesn't the result contradict the Fubini theorem?

Complex Analysis

1. Write the two Laurent series in powers of z that represent the function

$$f(z) = \frac{1}{z^3(z^2+9)}$$

in certain domains, and specify those domains.

2. Let $D \subset \mathbb{R}^2$ be a domain, such that ∂D (i.e., the frontier of D) is a positively oriented simple contour. Prove that the area of D is given by

$$\frac{1}{2i} \, \int_{\partial D} \, \overline{z} \, dz.$$

3. Let f be an analytic function inside and on a positively oriented simple contour γ , also having no zeros on γ . Prove that if f has n zeros z_k $(1 \le k \le n)$ inside C, where each z_k has multiplicity m_k , then

$$\int_{\gamma} \frac{z f'(z)}{f(z)} dz = 2\pi i \sum_{k=1}^n m_k z_k.$$

4. Compute, using the residue theorem and including complete justifications,

$$\int_0^\infty \, \frac{\ln x}{(1+x)^3} \, dx$$

5. Let $D = \{z \in \mathbb{C} | Rez > 0\}$ and $f: D \to D$ a holomorphic function. Prove that

$$|f'(z)| \le \frac{\operatorname{Re} f(z)}{\operatorname{Re} z}, \qquad (\forall) z \in D,$$

where Rez is the real part of the complex number z, i.e., Re(x + iy) = x.

Algebra I

Problems

- 1. Part a) Describe all finite groups with only two conjugacy classes. Part b) Describe all finite groups with only three conjugacy classes.
- 2. (a) Let $\mathbb{F}_3 := \mathbb{Z}/3\mathbb{Z}$. Find all values of $a \in \mathbb{F}_3$ such that the quotient ring

$$\mathbb{F}_3[x]/(x^3+x^2+ax+1)$$

is a field. Justify your answer.

- (b) Let F be a field and E an integral domain. Suppose F is a subring of E. Prove that if the dimension of E as a vector space over F is finite, then E is a field.
- 3. Prove that all groups of order 12 are solvable. (Note: you cannot simply state Burnside's theorem.)

- 4. All PID's are UFD's. Prove the first part of this assertion. That is, if R is a PID and $r \in R$, then there exists irreducible elements $p_1, \ldots, p_n \in R$ such that $r = p_1 \cdots p_n$.
- 5. Prove that normality of fields is not transitive. That is, give an explicit example of field extensions $F \leq K \leq E$ such that E/K and K/F are normal, but E/F is not. (Make sure to justify any statements you make about your example.)

Algebra II

- 1. (a) Let $F \leq K \leq E$ be field extensions. Suppose K/F is Galois, and E/K is Galois. Prove or give a counterexample that E/F is Galois.
 - (b) Let $f \in \mathbb{Q}[x]$ be an odd degree polynomial with cyclic Galois group. Prove that all the roots of f are real.
- 2. Let ζ_n be a primitive *n*-th root of unity. Suppose *n* is odd and composite. Prove that the Galois group $Gal(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ of the cyclotomic extension over \mathbb{Q} is not cyclic.
- 3. Let A be an integral domain with quotient field K, and let L be a finite separable extension of K. Let B be the set of elements of L that are integral over A. Prove that L is the fraction field of B.
- 4. If $E = \mathbb{Q}(\alpha)$ where α is a root of the cubic $x^3 3x + 1$, find the norm and trace of α^2 over E.
- 5. Suppose

$$0 \longrightarrow N_1 \longrightarrow M \longrightarrow N_2 \longrightarrow 0$$

is an exact sequence of R-modules. Prove that if N_1 and N_2 are finitely generated then M is finitely generated. Give a counterexample to the converse; explicitly describe the ring R and modules involved in your example.

Topology

Problem 1.

- 1. Let X be a topological space. Let $\Delta_X = \{(x, x) : x \in X\}$ be the diagonal in the product space $X \times X$. Then **prove** that X is Hausdorff **iff** the diagonal Δ_X is closed in $X \times X$.
- 2. Prove that the topological space X is Hausdorrf **iff** every net $(s_n)_{n \in D}$ in X converges to at most one point.
- 3. Let C and D be disjoint compact subsets of a Hausdorrf space X. Then prove that there exist disjoint open sbsets U and V of X such that $C \subset U$ and $D \subset V$.

Problem 2. Recall that a topological space X is *connected* **iff** whenever U and V are disjoint open subsets of X such that $X = U \cup V$ then either $U = \emptyset$ or $V = \emptyset$. Recall also that a subset A of X is said to be *connected* **iff** it is connected for the relative topology from X - i.e., **iff** whenever U and V are open subsets of X such that $U \cap V \cap A = \emptyset$ and such that $A \subset U \cup V$ then either $A \cap U = \emptyset$ or $A \cap V = \emptyset$.

- 1. If A is a connected subset of the topological space X, then **prove** that the subset \overline{A} of X is connected.
- 2. If X and Y are connected topological spaces, then **prove** that $X \times Y$ is connected. Use this to prove that the Cartesian product of finitely many connected spaces is connected.
- 3. Let $(X_i)_{i \in I}$ be an indexed family of non-empty connected topological spaces. Suppose that we choose an element $t_i \in X_i$ for every $i \in I$. If K is any finite subset of the index set I, then let $X_K = \{(x_i)_{i \in I} : x_i = t_i, \text{ for all } i \notin K\}$. Then **prove** that X_K is homeomorphic to $\prod_{i \in K} X_i$. Use this and what you proved above to **prove** that X_K is connected, for every finite subset K of I.
- 4. In class, we proved that, if X is a topological space, x ∈ X and if A is a collection of connected subsets of X such that x ∈ A, for all A ∈ A, then the subset ∪_{A∈A}A of X is connected.
 If (X_i)_{i∈I} and t_i, i ∈ I are as above, then let Y = {(x_i)_{i∈I} : x_i = t_i, for all but finitely many i ∈ I}. Then, using your results above, **prove** that the subset Y of ∏_{i∈I} X_i is connected.
- 5. **Prove** that Y is dense in $\prod_{i \in I} X_i$.
- 6. Using your results above, **prove** that $\prod_{i \in I} X_i$ is connected.

Problem 3. Let X be a set and let $(s_n)_{n \in D}$ be a net in the set X. Then recall that a subnet of the net $(s_n)_{n \in D}$ is a net $(t_m)_{m \in E}$ together with an order-preserving function $T : E \longrightarrow D$ such that the subset T(E) of D is cofinal (i.e, such that $n \in D$ implies $\exists m \in E$ such that $n \leq T(m)$), and such that $s_{T(m)} = t_m$, for all $m \in E$. Recall also that, if X is a topological space and $x \in X$, then we say that the net $(s_n)_{n \in D}$ converges to x iff the net $(s_n)_{n \in D}$ is eventually in every neighborhood of x in X (i.e., iff U a neighborhood of x in X implies there exists $n \in D$ such that $m \geq n$ in D implies $s_m \in U$.) We say that x is a cluster point of the net $(s_n)_{n \in D}$ iff the net $(s_n)_{n \in D}$ is frequently in every neighborhood of x (i.e., iff U a neighborhood of x in X and $n \in D$ implies there exists $m \geq n$ in D such that $s_m \in U$.)

- 1. Let $(s_n)_{n \in D}$ be a net in the topological space X, and let x be a cluster point of x. Then **prove** that there exists a subnet $(t_m)_{m \in E}$ of the net $(s_n)_{n \in D}$ that converges to x.
- 2. Let $(s_n)_{n \in D}$ be a net in the topological space X, and suppose that we have a subnet $(t_m)_{m \in E}$ of the net $(s_n)_{n \in D}$ that converges to x. Then **prove** that x is a cluster point of the net $(s_n)_{n \in D}$.

Problem 4. If (X, \mathfrak{U}) is a uniform space, then in class we proved that the set \mathfrak{B} of all closed entourages in \mathfrak{U} is a base for the uniformity.

- 1. (X,\mathfrak{U}) and \mathfrak{B} as above, let $C = \bigcap_{U \in \mathfrak{B}} U$. Then **prove** that, for every neighborhood V of the diagonal Δ_X in $X \times X$, we have that $B \subset V$.
- 2. Suppose also that X is compact as topological space. Then so is $X \times X$, and, since a closed subset of a compact topological space is compact, it follows that all the entourages in \mathfrak{B} are compact. If V is any neighborhood of Δ_X in X, then by the last part of this problem, you know also that $\cap_{U \in \mathfrak{B}} U \subset V$. Use this to **prove** that $V \in \mathfrak{U}$.
- 3. Using what you've shown above, **prove** that, if (X, \mathfrak{U}) is any *compact* uniform space, then the uniformity \mathfrak{U} of X is necessarily equal to the set of all neighborhoods of the diagonal Δ_X in $X \times X$.
- 4. Using the above, **prove** that, if $f: (X, \mathfrak{U}) \longrightarrow (Y, \mathfrak{V})$ is a function of uniform spaces, and if f is continuous, and if X is compact as topological space, then the function $f: (X, \mathfrak{U}) \longrightarrow (Y, \mathfrak{V})$ is uniformly continuous.

Problem 5.

- 1. Let X be an arbitrary topological space. Let x be such that $x \notin X$. Let X^* be the set $X \cup \{x\}$. Then let τ be the set of all open subsets of X together with X^* . Then show that τ is a topology on X^* that is compact and such that X is an open subspace of X^* . **NOTE:** The topology that you've constructed above is almost *never* the same as the topology that makes X^* into what is usually called the *one-point* compactification of X.
- 2. For every closed compact subset C of X, let $U_C = (X \setminus C) \cup \{x\}$. Let μ be the topology of X. Then let $\rho = \mu \cup \{U_C : \text{ such that } C \text{ is a closed compact subset of } X\}$. Then prove that ρ is a topology on X^* .

NOTE: The topology ρ that you've just constructed is the *one-point* compactification of X.

3. Prove that the one-point topology on X^* is the finest topology on X^* such that X^* is compact and such that X is an open subspace of X^* .

Geometry

1. Consider the subset of \mathbb{R}^3 which is the graph $f: \mathbb{R}^2 \to \mathbb{R}$ given by $f(\vec{x}) = |\vec{x}|$.

a) Can this graph be given a differentiable structure?

b) Can this graph be a differentiable submanifold of \mathbb{R}^3 with its standard differentiable structure?

c) Could this set be the image of a differentiable function?

2. Consider $M_k = \{(x, y, z) \in \mathbb{R}^3 | z^2 + xy = k\}.$

a) For which values of k is M_k a smooth manifold ?

b) For k = 0, is M_0 connected ? Is M_0 compact ?

3. An exact form α is a differential form that is the exterior derivative of another differential form β , i.e. $\alpha = d\beta$.

a) Determine whether the two-form $\alpha = zdx \wedge dy$ is exact in \mathbb{R}^3 .

b) Let M represents an embedded submanifold of \mathbb{R}^3 given by

 $M = \{(x, y, z) \in \mathbb{R}^3 | z - x^2 - y^2 = 1\}$. Determine whether the restriction of α to M is exact.

4. (15 pts) Let M be a differentiable manifold. A one-parameter group of transformations, ϕ , on M, is a differentiable map from $M \times \mathbb{R}$ onto M such that $\phi(x, 0) = x$ and $\phi(\phi(x, t), s) = \phi(x, t+s)$ for all $x \in M$, $t, s \in \mathbb{R}$. Show that the family of maps $\phi_t : \mathbb{R}^2 \to \mathbb{R}^2$, $\phi_t(x, y) = (e^{at}x, e^{bt}y)$, with $a, b \in \mathbb{R}$ form one parameter group of transformations.

5. a) Let M be a compact connected orientable n-manifold without boundary. Let $\beta \in \Omega^{n-1}(M)$ be a (n-1)-differential form. Show that there exists a point $p \in M$ such that $d\beta(p) = 0$. b) Prove that there is no embedding $f: S^1 \to \mathbb{R}$ where S^1 is the unit circle.