
Real Analysis

Problem 1. If F : R→ R is a monotone function, show that

||F ||TV ([a,b]) = F (b)− F (a)

for any interval [a, b], and that F has bounded variation on R if and only if it is bounded. Here

||F ||TV ([a,b]) = sup
a≤x0≤x1≤···≤xn≤b

∑
i

|F (xi)− F (xi+1)|.

Problem 2. Compute the area of a regular 2n-gon, n = 2, 3, . . . , inscribed in the unit circle.
Rigorously prove that this quantity converges to π as n→∞.

For the purposes of this problem, please use the definition which states that π equals the ratio
of a circle’s circumference to its diameter. Do not use the definition that π is the ratio of the area
of a circle to the square of its radius.

Problem 3. Suppose that fn, f ∈ Lp(Rn), 1 < p <∞, and limn→∞ fn(x) = f(x) a.e.. Prove that

lim
n→∞

||fn − f ||Lp(Rn) = 0 if and only if lim
n→∞

||fn||Lp(Rn) = ||f ||Lp(Rn).

Problem 4. Compute the three dimensional Lebesgue measure of the following subset of R2×[0, π):

{
(x, y, θ) ∈ R2 × [0, π) : x2 + y2 ≤ 1; θ ∈ [0, π); (x+ cos θ)

2
+ (y + sin θ)

2 ≤ 1
}
.

For a bit of extra credit, give a simple geometric interpretation of the quantity you just computed.

Problem 5. i) State the Fubini theorem.

ii) Define f : [0, 1]× [0, 1]→ R by

f(x, y) =
x2 − y2

(x2 + y2)
2 .

Compute ∫ 1

0

(∫ 1

0

f(x, y)dx

)
dy and

∫ 1

0

(∫ 1

0

f(x, y)dy

)
dx.

Why doesn’t the result contradict the Fubini theorem?
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Complex Analysis

1. Write the two Laurent series in powers of z that represent the function

f(z) =
1

z3(z2 + 9)

in certain domains, and specify those domains.
2. Let D ⊂ R2 be a domain, such that ∂D (i.e., the frontier of D) is a positively oriented simple

contour. Prove that the area of D is given by

1

2i

∫
∂D

z dz.

3. Let f be an analytic function inside and on a positively oriented simple contour γ, also having
no zeros on γ. Prove that if f has n zeros zk (1 ≤ k ≤ n) inside C, where each zk has multiplicity
mk, then ∫

γ

z f ′(z)

f(z)
dz = 2πi

n∑
k=1

mkzk.

4. Compute, using the residue theorem and including complete justifications,∫ ∞
0

lnx

(1 + x)3
dx.

5. Let D = {z ∈ C|Re z > 0} and f : D → D a holomorphic function. Prove that

|f ′(z)| ≤ Re f(z)

Re z
, (∀)z ∈ D,

where Re z is the real part of the complex number z, i.e., Re (x+ iy) = x.

Algebra I

Problems

1. Part a) Describe all finite groups with only two conjugacy classes.
Part b) Describe all finite groups with only three conjugacy classes.

2. (a) Let F3 := Z/3Z. Find all values of a ∈ F3 such that the quotient ring

F3[x]/(x3 + x2 + ax+ 1)

is a field. Justify your answer.

(b) Let F be a field and E an integral domain. Suppose F is a subring of E. Prove that if
the dimension of E as a vector space over F is finite, then E is a field.

3. Prove that all groups of order 12 are solvable. (Note: you cannot simply state Burnside’s
theorem.)
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4. All PID’s are UFD’s. Prove the first part of this assertion. That is, if R is a PID and r ∈ R,
then there exists irreducible elements p1, . . . , pn ∈ R such that r = p1 · · · pn.

5. Prove that normality of fields is not transitive. That is, give an explicit example of field
extensions F ≤ K ≤ E such that E/K and K/F are normal, but E/F is not. (Make sure to
justify any statements you make about your example.)

Algebra II

1. (a) Let F ≤ K ≤ E be field extensions. Suppose K/F is Galois, and E/K is Galois. Prove
or give a counterexample that E/F is Galois.

(b) Let f ∈ Q[x] be an odd degree polynomial with cyclic Galois group. Prove that all the
roots of f are real.

2. Let ζn be a primitive n-th root of unity. Suppose n is odd and composite. Prove that the
Galois group Gal(Q(ζn)/Q) of the cyclotomic extension over Q is not cyclic.

3. Let A be an integral domain with quotient field K, and let L be a finite separable extension
of K. Let B be the set of elements of L that are integral over A. Prove that L is the fraction
field of B.

4. If E = Q(α) where α is a root of the cubic x3− 3x+ 1, find the norm and trace of α2 over E.

5. Suppose
0 −→ N1 −→M −→ N2 −→ 0

is an exact sequence of R-modules. Prove that if N1 and N2 are finitely generated then M is
finitely generated. Give a counterexample to the converse; explicitly describe the ring R and
modules involved in your example.

Topology

Problem 1.

1. Let X be a topological space. Let ∆X = {(x, x) : x ∈ X} be the diagonal in the product
space X ×X. Then prove that X is Hausdorrf iff the diagonal ∆X is closed in X ×X.

2. Prove that the topological space X is Hausdorrf iff every net (sn)n∈D in X converges to at
most one point.

3. Let C and D be disjoint compact subsets of a Hausdorrf space X. Then prove that there
exist disjoint open sbsets U and V of X such that C ⊂ U and D ⊂ V .
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Problem 2. Recall that a topological space X is connected iff whenever U and V are disjoint
open subsets of X such that X = U ∪ V then either U = ∅ or V = ∅. Recall also that a subset A
of X is said to be connected iff it is connected for the relative topology from X – i.e., iff whenever
U and V are open subsets of X such that U ∩ V ∩ A = ∅ and such that A ⊂ U ∪ V then either
A ∩ U = ∅ or A ∩ V = ∅.

1. If A is a connected subset of the topological space X, then prove that the subset A of X is
connected.

2. If X and Y are connected topological spaces, then prove that X × Y is connected. Use this
to prove that the Cartesian product of finitely many connected spaces is connected.

3. Let (Xi)i∈I be an indexed family of non-empty connected topological spaces. Suppose that
we choose an element ti ∈ Xi for every i ∈ I. If K is any finite subset of the index set I,
then let XK = {(xi)i∈I : xi = ti, for all i /∈ K}. Then prove that XK is homeomorphic to∏
i∈K Xi. Use this and what you proved above to prove that XK is connected, for every

finite subset K of I.

4. In class, we proved that, if X is a topological space, x ∈ X and if A is a collection of connected
subsets of X such that x ∈ A, for all A ∈ A, then the subset ∪A∈AA of X is connected.

If (Xi)i∈I and ti, i ∈ I are as above, then let Y = {(xi)i∈I : xi = ti, for all but finitely many i ∈
I}. Then, using your results above, prove that the subset Y of

∏
i∈I Xi is connected.

5. Prove that Y is dense in
∏
i∈I Xi.

6. Using your results above, prove that
∏
i∈I Xi is connected.
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Problem 3. Let X be a set and let (sn)n∈D be a net in the set X. Then recall that a subnet of
the net (sn)n∈D is a net (tm)m∈E together with an order-preserving function T : E −→ D such that
the subset T (E) of D is cofinal (i.e, such that n ∈ D implies ∃ m ∈ E such that n ≤ T (m)), and
such that sT (m) = tm, for all m ∈ E. Recall also that, if X is a topological space and x ∈ X, then
we say that the net (sn)n∈D converges to x iff the net (sn)n∈D is eventually in every neighborhood
of x in X (i.e., iff U a neighborhood of x in X implies there exists n ∈ D such that m ≥ n in
D implies sm ∈ U .) We say that x is a cluster point of the net (sn)n∈D iff the net (sn)n∈D is
frequently in every neighborhood of x (i.e., iff U a neighborhood of x in X and n ∈ D implies there
exists m ≥ n in D such that sm ∈ U .)

1. Let (sn)n∈D be a net in the topological space X, and let x be a cluster point of x. Then
prove that there exists a subnet (tm)m∈E of the net (sn)n∈D that converges to x.

2. Let (sn)n∈D be a net in the topological space X, and suppose that we have a subnet (tm)m∈E
of the net (sn)n∈D that converges to x. Then prove that x is a cluster point of the net
(sn)n∈D.
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Problem 4. If (X,U) is a uniform space, then in class we proved that the set B of all closed
entourages in U is a base for the uniformity.

1. (X,U) and B as above, let C = ∩U∈BU . Then prove that, for every neighborhood V of the
diagonal ∆X in X ×X, we have that B ⊂ V .

2. Suppose also that X is compact as topological space. Then so is X ×X, and, since a closed
subset of a compact topological space is compact, it follows that all the entourages in B are
compact. If V is any neighborhood of ∆X in X, then by the last part of this problem, you
know also that ∩U∈BU ⊂ V . Use this to prove that V ∈ U.

3. Using what you’ve shown above, prove that, if (X,U) is any compact uniform space, then the
uniformity U of X is necessarily equal to the set of all neighborhoods of the diagonal ∆X in
X ×X.

4. Using the above, prove that, if f : (X,U) −→ (Y,V) is a function of uniform spaces, and if f
is continuous, and if X is compact as topological space, then the function f : (X,U) −→ (Y,V)
is uniformly continuous.
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Problem 5.

1. Let X be an arbitrary topological space. Let x be such that x /∈ X. Let X∗ be the set
X ∪ {x}. Then let τ be the set of all open subsets of X together with X∗. Then show that τ
is a topology on X∗ that is compact and such that X is an open subspace of X∗.

NOTE: The topology that you’ve constructed above is almost never the same as the topology
that makes X∗ into what is usually called the one-point compactification of X.

2. For every closed compact subset C of X, let UC = (X \ C) ∪ {x}. Let µ be the topology of
X. Then let ρ = µ ∪ {UC : such that C is a closed compact subset of X}. Then prove that ρ
is a topology on X∗.

NOTE: The topology ρ that you’ve just constructed is the one-point compactification of X.

3. Prove that the one-point topology on X∗ is the finest topology on X∗ such that X∗ is
compact and such that X is an open subspace of X∗.

Geometry

1. Consider the subset of R3 which is the graph f : R2 → R given by f(~x) = |~x|.
a) Can this graph be given a differentiable structure?
b) Can this graph be a differentiable submanifold of R3 with its standard differentiable struc-

ture?
c) Could this set be the image of a differentiable function?

2. Consider Mk = {(x, y, z) ∈ R3|z2 + xy = k}.
a) For which values of k is Mk a smooth manifold ?
b) For k = 0, is M0 connected ? Is M0 compact ?

3. An exact form α is a differential form that is the exterior derivative of another differential
form β, i.e. α = dβ.

a) Determine whether the two-form α = zdx ∧ dy is exact in R3.
b) Let M represents an embedded submanifold of R3 given by

M = {(x, y, z) ∈ R3|z − x2 − y2 = 1}. Determine whether the restriction of α to M is exact.

4. (15 pts) Let M be a differentiable manifold. A one-parameter group of transformations, φ, on
M , is a differentiable map from M ×R onto M such that φ(x, 0) = x and φ(φ(x, t), s) = φ(x, t+ s)
for all x ∈ M , t, s ∈ R. Show that the family of maps φt : R2 → R2, φt(x, y) = (eatx, ebty), with
a, b ∈ R form one parameter group of transformations.
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5. a) LetM be a compact connected orientable n-manifold without boundary. Let β ∈ Ωn−1(M)
be a (n− 1)-differential form. Show that there exists a point p ∈M such that dβ(p) = 0.

b) Prove that there is no embedding f : S1 → R where S1 is the unit circle.
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