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Introduction

• The standard LFG theory of the syntax of anaphora (Dalrymple 1993) 
is rather unique:

• Highly lexicalized: binding behaviour driven by reflexives, etc.

• The superiority condition on binding (f-command) does not need to 
be separately stated: consequence of ‘inside-out’ formalization

• No separate binding principles per se: a set of general (universal) 
constraints and parameters
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Introduction

• Parameters (lexicalized):

• Positive vs. negative binding equation

• Domain: coargument (PRED), minimal complete nucleus (SUBJ), 
minimal finite domain (TENSE), root S

• Antecedent: SUBJ vs. non-SUBJ

• Universal constraints:

• Locality Condition on constraints (uninterrupted binding domains)

• Noncontainment Condition on antecedents (not equiv. to i-within-i)

• Primacy of positive constraints

• Thematic hierarchy
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Goals

1. Review Dalrymple’s theory

2. Update the theory in light of some subsequent developments; in 
particular, variable-free binding in a resource-sensitive 
compositional semantics (Glue Semantics)

3. Augment the theory to formally capture interactions with 
logophoricity

Throughout:

1. Integration with LFG’s ‘Correspondence Architecture’

2. Reference to Icelandic data (from Þráinsson, Maling, Strahan)
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Touchstone Quote 1

This indicates, I believe, that there is a close relationship between BT 
and lexical content of NPs but BT is nevertheless autonomous in the 
sense that not all binding properties of NPs follow from their lexical 
content. If they did, it would be difficult to imagine how non-overt 
NPs could have different binding properties.

(Þráinsson 1991: 70)

5



Touchstone Quote 2

But it is important to note that the semantic conditions for these 
syntactically unbound cases of long-distance reflexives in Icelandic (and 
Faroese) seem to be the same as those for the ones where a reflexive 
inside a finite (subordinate) clause is syntactically bound by the subject of 
a higher clause in the same sentence. This is shown in some detail in 
Sigurðsson (1986) and it indicates that we do not want a special account 
of the syntactically unbound long-distance reflexives in these languages. 
What we need is rather an account that takes care of both the more 
familiar instances of reflexives inside finite (subjunctive) clauses bound by 
(subject) antecedents in a higher clause and the intersentential, unbound 
reflexives just observed. That seems to make any attempt to extend the 
syntactic binding domain beyond finite-clause boundaries in languages 
like Icelandic and Faroese, for instance, a dubious enterprise.

(Þráinsson 1991: 59)
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Overview

• Icelandic data

• Background on LFG and Glue Semantics 

• Correspondence Architecture

• Anaphora in LFG-Glue

• Binding constraints

• Variable-free binding

• Anaphoric Structure

• Logophoricity

7



Mig langar að fara till Islands... ✈
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Icelandic
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Icelandic sig

• Binding out of infinitive

(1) Péturi bað Jensj um [PROj að raka sigi/j]
• Subject orientation

(2) * Egi lofaði Önnuj [PROi að kyssa sigj]
•  Binding and the subjunctive

(3) Jóni sagði [að ég hefði svikið sigi]
(4) Jóni segir [að María telji [að Haraldur vilji [að Billi heimsæki sigi]]]
(5) * Jóni lýkur þessu ekki [nema þú hjálpir séri]
(6) Jóni segir [að hann ljúki þessu ekki [nema þú hjálpir séri]
(7) Húni sagði [að sigi vantaði peninga]
(8) Jóni upplýsti hver hefði/*hafði barið sigi
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LFG
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Lexical-Functional Grammar

• Lexical-Functional Grammar (Kaplan and Bresnan 1982, Bresnan 
1982, Dalrymple et al. 1995, Bresnan 2001, Dalrymple 2001) is a 
constraint-based, model-theoretic theory of grammar.

• Structural descriptions are constraints — statements that can be 
evaluated for truth (true or false) — that must be satisfied by 
structures (models).

• LFG postulates multiple structures, each having properties relevant 
to the linguistic aspect it models.
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Lexical-Functional Grammar

• For example, constituency, dominance, and word order are 
described by phrase structure rules that define tree structures. 
This level of structure is called ‘constituent structure’ or 
‘c-structure’ for short.

• Other, more abstract aspects of syntax — such as grammatical 
functions, predication, agreement, unbounded dependencies, local 
dependencies, case, binding, etc. — are described by quantifier-
free equality statements and define attribute value matrices, a.k.a. 
feature structures. This level of structure is called ‘functional 
structure’ or ‘f-structure’ for short. 
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Lexical-Functional Grammar

• Structures are presented in parallel and elements of one structure 
‘are projected to’ or ‘correspond to’ elements of other structures 
according to ‘projection functions’, which are also called 
‘correspondence functions’. For example, the function relating 
c-structure to f-structure is the ϕ function. 

• This was subsequently generalized to a ‘Correspondence 
Architecture’ (Kaplan 1987, 1989, Halvorsen & Kaplan 1988, 
Asudeh 2006, Asudeh & Toivonen 2009). 

• Another term used in the literature is ‘Parallel Projection 
Architecture’, but this is perhaps best avoided to prevent 
confusion with Jackendoff’s recent proposals (e.g., Jackendoff 
1997, 2002, 2007).
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LFG: A Simple Example
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
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SUBJ f2
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]
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]
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
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




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Kaplan 1989). According to this architecture, there are various levels
of linguistic representation (not just syntactic ones) called projections
that are present in parallel and are related by structural correspon-
dences (i.e., projection functions) which map elements of one projec-
tion onto elements of another. C-structure and f-structure are still the
best-understood projections, but they are now two among several lev-
els of representation and the projection function φ is now one of many.
For example, f-structures are mapped onto s(emantic)-structures by the
σ-function (Halvorsen 1983, Dalrymple 1993, Dalrymple et al. 1999b,
Dalrymple 2001).

Kaplan (1987, 1989) gives (3) as a hypothetical example of the pro-
jection architecture, representing the decomposition of a single map-
ping, Γ, from form to meaning.

(3) Kaplan’s hypothetical parallel projection architecture:

anaphoric structure
•

Form Meaning
• • • • •

string c-structure f-structure semantic structure

•
discourse structure

π φ σ
α

δ

Two of the projections proposed in (3) — anaphoric structure and
discourse structure — never received much further attention in the
LFG literature, at least not in the way that Kaplan originally suggested.
Anaphors have been handled at semantic structure (Dalrymple 1993,
2001), and discourse structure has been pursued instead as information
structure (i-structure; Butt and King 2000), which encodes notions like
discourse topic and focus and old and new information.

Importantly, the correspondence functions between levels can be
composed (see below for details), since the domain of each successive
function is the range of the previous one. This is summarized in the
following passage from Kaplan (1987:363):

Although the structures related by multiple correspondences might be
descriptively or linguistically motivated levels of representation, justi-
fied by sound theoretical argumentation, they are formally and math-
ematically, and also computationally, eliminable . . . Obviously there
is a structural correspondence that goes from the word string to the
f-structure, namely the composition of π with φ. . . . So as a kind of
formal, mathematical trick, you can say ‘Those intermediate levels of
representation are not real, they are just linguistic fictions, useful for
stating the necessary constraints’.

Correspondence Architecture: Programmatic

(Kaplan 1987, 1989)
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•

Form Meaning
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π µ

φ
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ρ
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FIGURE 1 The parallel projection architecture (incorporating certain recent proposals)

Correspondence Architecture: A Recent Synthesis

(Asudeh 2006, Asudeh & Toivonen 2009)
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Lexical-Functional Grammar (LFG; Kaplan and Bresnan 1982, Bresnan 2001, Dalrymple

2001) is a constraint-based theory of grammar in which lexical items constitute key loci for

grammatical information and for cross-linguistic variation. LFG posits two syntactic represen-

tations: c(onstituent)-structure and f(unctional)-structure. C-structure represents word order,

dominance and constituency, as modelled by a standard (non-tangled) tree — i.e., a phrase-

structural parse of the phonological string; see the left side of (1). F-structure models more

abstract aspects of syntax, such as predication and grammatical functions, null pronominals,

local and unbounded dependencies, etc. F-structure is modelled as a feature structure; see the

right side of (1). The φ correspondence function maps elements of c-structure to elements of

f-structure, as exemplified in (1).
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It is perhaps not widely known that c-structure and f-structure have been understood for

more than twenty years as just two components of a larger grammatical architecture, the Corre-

spondence Architecture (Kaplan 1987, 1989, Halvorsen and Kaplan 1988, Asudeh 2004, 2006,

Asudeh and Toivonen 2008), which divides the form-meaning mapping into a series of simul-

taneously-present, discrete modules, each of which represents distinct linguistic information.

One recent version of the architecture is shown in Figure 1. The various correspondence func-

tions thus allow a single lexical entry to simultaneously specify constraints about a variety of

grammatical information.

Unbounded Dependencies: Example
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Syntax of Long-Distance Dependencies 401

(26) a man who Chris saw

PRED ‘MAN’

SPEC PRED ‘A’

ADJ

TOPIC

PRED ‘PRO’

PRONTYPE REL

RELPRO

PRED ‘SEE SUBJ,OBJ ’

SUBJ PRED ‘CHRIS’

OBJ

NP

Det

a

N

N

N

man

CP

NP

N

who

C

IP

NP

N

Chris

I

VP

V

saw

In (26), the relative pronoun appears in initial position in the relative clause, and

its f-structure is both the TOPIC and the RELPRO of the relative clause.

Example (27) shows that the relative pronoun can also appear as a subcon-

stituent of the initial phrase. Here the relative pronoun whose is a subconstituent

of the fronted phrase whose book:

Relative Clauses: Example

Note: The examples on this and the next 
slide are from Dalrymple (2001: ch. 14).
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Relative Clauses: Pied Piping Example
402 14. Long-Distance Dependencies

(27) a man whose book Chris read

PRED ‘MAN’

SPEC PRED ‘A’

ADJ

TOPIC

SPEC

PRED ‘PRO’

PRONTYPE REL

PRED ‘BOOK’

RELPRO

PRED ‘READ SUBJ,OBJ ’

SUBJ PRED ‘CHRIS’

OBJ

NP

Det

a

N

N

N

man

CP

NP

Det

whose

N

N

book

C

IP

NP

N

Chris

I

VP

V

read

In (27), the value of the TOPIC attribute is the f-structure of the fronted phrase

whose book, and the value of the RELPRO attribute is the f-structure of the relative

pronoun whose. We examine syntactic constraints on both of these dependencies

in the following.

We propose the phrase structure rules in (28–29) for the analysis of these ex-

amples:

(28) N N

=

CP

( ADJ)
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Outside-In and Inside-Out equations

• Outside-in equations with respect to an f-structure f make 
specifications about paths leading in from f:

• Inside-out equations with respect to an f-structure f make 
specifications about paths leading out from f:

• The two kinds of equation can be combined:

lexeme

HEAD ARGUMENT STRUCTURE AGREEMENT

agreeing non-agreeing

verb noun . . . intrans trans . . . person number gender

pers-1-2 pers-3 sing plur masc fem

1 2

intr-verb-lxm 3-sing-lxm

walks yawns . . .

verb⇒




HEAD

[
verb

PRD −

]

INDEX ref





intrans⇒
[
ARG-ST 〈[]〉

]

pers-3⇒



INDEX
[
index

PERS 3

]



sing⇒



INDEX
[
index

NUM sing

]



((↑ COMP) TENSE) = PRESENT

((COMP ↑) TENSE) = PRESENT

1

lexeme

HEAD ARGUMENT STRUCTURE AGREEMENT

agreeing non-agreeing

verb noun . . . intrans trans . . . person number gender

pers-1-2 pers-3 sing plur masc fem

1 2

intr-verb-lxm 3-sing-lxm

walks yawns . . .

verb⇒




HEAD

[
verb

PRD −

]

INDEX ref





intrans⇒
[
ARG-ST 〈[]〉

]

pers-3⇒



INDEX
[
index

PERS 3

]



sing⇒



INDEX
[
index

NUM sing

]



((↑ COMP) TENSE) = PRESENT

((COMP ↑) TENSE) = PRESENT

1

(↑ COMP TENSE) = PRESENT
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Outside-In and Inside-Out equations

• Outside-in equations with respect to an f-structure f make 
specifications about paths leading in from f:

• Inside-out equations with respect to an f-structure f make 
specifications about paths leading out from f:

• The two kinds of equation can be combined:

(COMP f )

((COMP f ) TENSE) = PRESENT

(f COMP TENSE) = PRESENT
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Functional Uncertainty

• Simple or limited functional uncertainty can be expressed by 
defining abbreviatory symbols disjunctively:

• Unlimited functional uncertainty can be expressed with Kleene star 
(*) or Kleene plus (+), where X* means ‘0 or more X’ and X+ means 
‘1 or more X’:

• Note that f-descriptions are therefore written in a regular language, 
as is also the case for the right-hand side of c-structure rules.

lexeme

HEAD ARGUMENT STRUCTURE AGREEMENT

agreeing non-agreeing

verb noun . . . intrans trans . . . person number gender

pers-1-2 pers-3 sing plur masc fem

1 2

intr-verb-lxm 3-sing-lxm

walks yawns . . .

verb⇒




HEAD

[
verb

PRD −

]

INDEX ref





intrans⇒
[
ARG-ST 〈[]〉

]

pers-3⇒



INDEX
[
index

PERS 3

]



sing⇒



INDEX
[
index

NUM sing

]



((↑ COMP) TENSE) = PRESENT

((COMP ↑) TENSE) = PRESENT

GF = { SUBJ | OBJ | OBJθ | OBL | COMP | XCOMP | ADJ | XADJ }

1

lexeme

HEAD ARGUMENT STRUCTURE AGREEMENT

agreeing non-agreeing

verb noun . . . intrans trans . . . person number gender

pers-1-2 pers-3 sing plur masc fem

1 2

intr-verb-lxm 3-sing-lxm

walks yawns . . .

verb⇒




HEAD

[
verb

PRD −

]

INDEX ref





intrans⇒
[
ARG-ST 〈[]〉

]

pers-3⇒



INDEX
[
index

PERS 3

]



sing⇒



INDEX
[
index

NUM sing

]



((↑ COMP) TENSE) = PRESENT

((COMP ↑) TENSE) = PRESENT

GF = { SUBJ | OBJ | OBJθ | OBL | COMP | XCOMP | ADJ | XADJ }

(↑ FOCUS) = (↑ {XCOMP | COMP}∗ GF)

(↑ INDEX) = ((GF+ ↑) SUBJ INDEX)

1

lexeme

HEAD ARGUMENT STRUCTURE AGREEMENT

agreeing non-agreeing

verb noun . . . intrans trans . . . person number gender

pers-1-2 pers-3 sing plur masc fem

1 2

intr-verb-lxm 3-sing-lxm

walks yawns . . .

verb⇒




HEAD

[
verb

PRD −

]

INDEX ref





intrans⇒
[
ARG-ST 〈[]〉

]

pers-3⇒



INDEX
[
index

PERS 3

]



sing⇒



INDEX
[
index

NUM sing

]



((↑ COMP) TENSE) = PRESENT

((COMP ↑) TENSE) = PRESENT

GF = { SUBJ | OBJ | OBJθ | OBL | COMP | XCOMP | ADJ | XADJ }

(↑ FOCUS) = (↑ {XCOMP | COMP}∗ GF)

(↑ INDEX) = ((GF+ ↑) SUBJ INDEX)

1
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Lexical Generalizations in LFG

Subsequent work within HPSG has built on this view. Linguistic generalizations in

HPSG are captured by a type hierarchy, with more specific types inheriting information

from less specific but related types. Construction Grammar (Kay, 1998) assumes a sim-

ilar hierarchy, the constructional hierarchy. On the HPSG view, lexical generalizations

are statable as relations between elements in the type lattice, where different subtypes

represent alternatives, and a type can belong to multiple supertypes. For example, Mal-

ouf (1998) provides the following depiction of a partial type hierarchy of HEAD values:

(1) HEAD

NOUN

C-NOUN GERUND

RELATIONAL

VERB

This diagram represents an AND/OR lattice: the alternative types NOUN and RELATIONAL

are disjunctively specified as different subtypes of the type HEAD. The type GERUND

inherits from two supertypes, NOUN and RELATIONAL, and the information inherited

from all supertypes is conjoined.

Work within LFG, on the other hand, has not appealed to typed feature structures

to encode linguistic generalizations. Instead, LFG encodes lexical generalizations not

in terms of formal inheritance relations between types, but in terms of inclusion rela-

tions between descriptions of structures. An LFG functional description – a collection

of equations – can be given a name, and this name can be used to stand for those equa-

tions in other linguistic descriptions. In computational treatments, these named descrip-

tions are referred to as templates. A description containing a reference to a template is

equivalent to that same description with the named equations, the template’s definition,

substituted for the template reference.

Template definitions can refer to other templates; thus, a template hierarchy similar

to the type hierarchy of HPSG or Construction Grammar can be drawn to represent the

inclusion relations between these named LFG descriptions. Importantly, however, the

relation depicted in such a diagram shows only how pieces of descriptions are factored

into patterns that recur across the lexicon and does not indicate the formal mode of com-

bination of those pieces. The context of the template reference is what determines how

the template definition combines with other parts of a larger description.

In the following, we will present several small template hierarchies and show how

they can be used in the definition of linguistic constraints. For more discussion of com-

putational issues related to the use of templates in grammatical description, see King

et al. (2004).

2 Template defi nitions

We begin with a simple lexical entry for the verb yawns:

(2) yawns ( PRED)=‘yawn SUBJ ’

( VFORM)=FINITE

( TENSE)=PRES

( SUBJ PERS)=3

( SUBJ NUM)=SG

201

Subsequent work within HPSG has built on this view. Linguistic generalizations in
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inherits from two supertypes, NOUN and RELATIONAL, and the information inherited

from all supertypes is conjoined.

Work within LFG, on the other hand, has not appealed to typed feature structures
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in terms of formal inheritance relations between types, but in terms of inclusion rela-

tions between descriptions of structures. An LFG functional description – a collection

of equations – can be given a name, and this name can be used to stand for those equa-

tions in other linguistic descriptions. In computational treatments, these named descrip-

tions are referred to as templates. A description containing a reference to a template is

equivalent to that same description with the named equations, the template’s definition,

substituted for the template reference.

Template definitions can refer to other templates; thus, a template hierarchy similar

to the type hierarchy of HPSG or Construction Grammar can be drawn to represent the

inclusion relations between these named LFG descriptions. Importantly, however, the

relation depicted in such a diagram shows only how pieces of descriptions are factored

into patterns that recur across the lexicon and does not indicate the formal mode of com-

bination of those pieces. The context of the template reference is what determines how

the template definition combines with other parts of a larger description.

In the following, we will present several small template hierarchies and show how

they can be used in the definition of linguistic constraints. For more discussion of com-

putational issues related to the use of templates in grammatical description, see King

et al. (2004).

2 Template defi nitions

We begin with a simple lexical entry for the verb yawns:

(2) yawns ( PRED)=‘yawn SUBJ ’

( VFORM)=FINITE

( TENSE)=PRES

( SUBJ PERS)=3

( SUBJ NUM)=SG
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V

A lot of this information is 
shared by other verbs.
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This lexical entry contains information that is shared by other verbs. We can define the

templates PRESENT and 3SG to encode this common information:

(3) PRESENT = ( VFORM)=FINITE

( TENSE)=PRES

3SG = ( SUBJ PERS)=3

( SUBJ NUM)=SG

The template name PRESENT names the functional description consisting of the two

equations ( VFORM)=FINITE and ( TENSE)=PRES, and similarly for 3SG. With these

definitions the entry for yawns can be rewritten as

(4) yawns ( PRED)=‘yawn SUBJ ’

@PRESENT

@3SG

A template reference (or invocation) in a lexical entry or in the definition of another

template, as in ((5) below), is marked by a preceding at-sign “@”. The present-tense

and third-singular templates will be invoked by all similarly inflected verbs, so that the

details of these subdescriptions are specified in one place but effective in many.

We can further subdivide the functional description named by PRESENT into two
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PRES-TENSE = ( TENSE)=PRES
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HPSG are captured by a type hierarchy, with more specific types inheriting information

from less specific but related types. Construction Grammar (Kay, 1998) assumes a sim-

ilar hierarchy, the constructional hierarchy. On the HPSG view, lexical generalizations

are statable as relations between elements in the type lattice, where different subtypes

represent alternatives, and a type can belong to multiple supertypes. For example, Mal-

ouf (1998) provides the following depiction of a partial type hierarchy of HEAD values:
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VERB
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in terms of formal inheritance relations between types, but in terms of inclusion rela-

tions between descriptions of structures. An LFG functional description – a collection

of equations – can be given a name, and this name can be used to stand for those equa-

tions in other linguistic descriptions. In computational treatments, these named descrip-
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relation depicted in such a diagram shows only how pieces of descriptions are factored

into patterns that recur across the lexicon and does not indicate the formal mode of com-

bination of those pieces. The context of the template reference is what determines how

the template definition combines with other parts of a larger description.

In the following, we will present several small template hierarchies and show how

they can be used in the definition of linguistic constraints. For more discussion of com-

putational issues related to the use of templates in grammatical description, see King

et al. (2004).

2 Template defi nitions

We begin with a simple lexical entry for the verb yawns:

(2) yawns ( PRED)=‘yawn SUBJ ’

( VFORM)=FINITE

( TENSE)=PRES

( SUBJ PERS)=3

( SUBJ NUM)=SG
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(8) 3PERSONSUBJ SINGSUBJ

3SG

Finally, we can define a template PRES3SG that combines both tense and agreement

features:

(9) PRES3SG = @PRESENT

@3SG

Putting all these definitions together, our template hierarchy becomes

(10) PRES-TENSE FINITE 3PERSONSUBJ SINGSUBJ

PRESENT 3SG

PRES3SG

and the lexical entry for yawns further reduces to

(11) yawns ( PRED)=‘yawn SUBJ ’

@PRES3SG

Thus we see that a number of hierarchically arranged generalizations can be ex-

pressed through a simple set of template definitions. The use of parameterized templates

allows for further generalizations to be captured by factoring out information provided

as an argument to the template. These are discussed next.

3 Parameterized templates

All intransitive verbs in LFG carry a semantic form that indicates the relation denoted

by the verb and also the fact that the verb must appear in f-structures containing the

single governable grammatical function SUBJ. The predicate, of course, differs from

verb to verb, but the SUBJ subcategorization frame is common to all intransitives. We

can define INTRANSITIVE as a parameterized template that expresses the common sub-

categorization. The predicate itself can be provided as an argument that is specified

differently in different lexical entries. This template can be used with all intransitive

verbs:

(12) INTRANSITIVE(P) = ( PRED)=‘P SUBJ ’

Whatever argument is provided in an invocation of this template will be substituted for

the parameter to create the description that replaces the template reference. Thus the

description in the original entry for the verb yawns can be equivalently specified as fol-

lows:

(13) yawns @INTRANSITIVE(yawn)

@PRES3SG
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Arguments to parameterized templates can represent any part of an f-structure descrip-

tion: attributes as well as values and even whole subdescriptions can be parameterized.

Templates can also take multiple arguments. For example, the template for a particle

verb might take the verbal predicate as one argument and the form of the particle as

another:

(14) VERB-PRT(P PRT) = ( PRED)=‘P SUBJ, OBJ ’

( PRT-FORM)=c PRT

The few templates we have defined serve to demonstrate the point that templates

interpreted only by simple substitution allow commonalities between lexical entries to

be represented succinctly and for linguistic generalizations to be expressed in a theoret-

ically motivated manner. The parameterized template INTRANSITIVE(P) is shared by

verbs like sneeze, arrive, and many others. The PRES3SG template is shared by verbs

like appears, goes, cooks, and many others. The template PRESENT, used in defining

the PRES3SG template, is also used by verbs like bake, are, and many others.

4 Templates and Boolean operators

In LFG, complex descriptions can be conjoined, disjoined, or negated. Since templates

are just names for descriptions, we can also use these operators with templates. For

instance, we could define a template PRESNOT3SG by negating the 3SG template, as

follows:

(15) PRESNOT3SG = @PRESENT

@3SG

The substitutions specified by these invocations produce the following description:

(16) ( VFORM)=FINITE

( TENSE)=PRES

( SUBJ PERS)=3

( SUBJ NUM)=SG

The first two lines are the result of expanding the PRESENT template, and the third and

fourth lines are the negation of the expansion of the 3SG template. This template can be

used in the lexical entry of verbs which are present tense but whose subject is not third

person singular (yawn, bake, appear, etc.).

With this addition we have the following template hierarchy:

(17) PRES-TENSE FINITE 3PERSONSUBJ SINGSUBJ

PRESENT 3SG

PRESNOT3SG PRES3SG

This indicates that PRESNOT3SG includes (“inherits”) descriptions from both of its an-

cestors. However, unlike an HPSG type hierarchy, this does not entail that the inherited
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Hierarchies: Templates vs. Types

• Type hierarchies are and/or lattices:

• Motherhood: or

• Multiple Dominance: and

• Type hierarchies encode inclusion/inheritance and place constraints on how the 
inheritance is interpreted.

• LFG template hierarchies encode only inclusion: multiple dominance not interpreted 
as conjunction, no real status for motherhood.

• LFG hierarchies relate descriptions only: mode of combination (logical operators) is 
determined contextually at invocation or is built into the template.

• HPSG hierarchies relate first-class ontological objects of the theory.

• LFG hierarchies are abbreviatory only and have no real ontological status.

Subsequent work within HPSG has built on this view. Linguistic generalizations in

HPSG are captured by a type hierarchy, with more specific types inheriting information

from less specific but related types. Construction Grammar (Kay, 1998) assumes a sim-

ilar hierarchy, the constructional hierarchy. On the HPSG view, lexical generalizations

are statable as relations between elements in the type lattice, where different subtypes

represent alternatives, and a type can belong to multiple supertypes. For example, Mal-

ouf (1998) provides the following depiction of a partial type hierarchy of HEAD values:

(1) HEAD

NOUN

C-NOUN GERUND

RELATIONAL

VERB

This diagram represents an AND/OR lattice: the alternative types NOUN and RELATIONAL

are disjunctively specified as different subtypes of the type HEAD. The type GERUND

inherits from two supertypes, NOUN and RELATIONAL, and the information inherited

from all supertypes is conjoined.

Work within LFG, on the other hand, has not appealed to typed feature structures

to encode linguistic generalizations. Instead, LFG encodes lexical generalizations not

in terms of formal inheritance relations between types, but in terms of inclusion rela-

tions between descriptions of structures. An LFG functional description – a collection

of equations – can be given a name, and this name can be used to stand for those equa-

tions in other linguistic descriptions. In computational treatments, these named descrip-

tions are referred to as templates. A description containing a reference to a template is

equivalent to that same description with the named equations, the template’s definition,

substituted for the template reference.

Template definitions can refer to other templates; thus, a template hierarchy similar

to the type hierarchy of HPSG or Construction Grammar can be drawn to represent the

inclusion relations between these named LFG descriptions. Importantly, however, the

relation depicted in such a diagram shows only how pieces of descriptions are factored

into patterns that recur across the lexicon and does not indicate the formal mode of com-

bination of those pieces. The context of the template reference is what determines how

the template definition combines with other parts of a larger description.

In the following, we will present several small template hierarchies and show how

they can be used in the definition of linguistic constraints. For more discussion of com-

putational issues related to the use of templates in grammatical description, see King

et al. (2004).

2 Template defi nitions

We begin with a simple lexical entry for the verb yawns:

(2) yawns ( PRED)=‘yawn SUBJ ’

( VFORM)=FINITE

( TENSE)=PRES

( SUBJ PERS)=3

( SUBJ NUM)=SG
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(8) 3PERSONSUBJ SINGSUBJ

3SG

Finally, we can define a template PRES3SG that combines both tense and agreement

features:

(9) PRES3SG = @PRESENT

@3SG

Putting all these definitions together, our template hierarchy becomes

(10) PRES-TENSE FINITE 3PERSONSUBJ SINGSUBJ

PRESENT 3SG

PRES3SG

and the lexical entry for yawns further reduces to

(11) yawns ( PRED)=‘yawn SUBJ ’

@PRES3SG

Thus we see that a number of hierarchically arranged generalizations can be ex-

pressed through a simple set of template definitions. The use of parameterized templates

allows for further generalizations to be captured by factoring out information provided

as an argument to the template. These are discussed next.

3 Parameterized templates

All intransitive verbs in LFG carry a semantic form that indicates the relation denoted

by the verb and also the fact that the verb must appear in f-structures containing the

single governable grammatical function SUBJ. The predicate, of course, differs from

verb to verb, but the SUBJ subcategorization frame is common to all intransitives. We

can define INTRANSITIVE as a parameterized template that expresses the common sub-

categorization. The predicate itself can be provided as an argument that is specified

differently in different lexical entries. This template can be used with all intransitive

verbs:

(12) INTRANSITIVE(P) = ( PRED)=‘P SUBJ ’

Whatever argument is provided in an invocation of this template will be substituted for

the parameter to create the description that replaces the template reference. Thus the

description in the original entry for the verb yawns can be equivalently specified as fol-

lows:

(13) yawns @INTRANSITIVE(yawn)

@PRES3SG
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information is conjoined. For example, in (15) PRESNOT3SG invokes 3SG via nega-

tion. Template sharing is distinct from the mode of combination, which is determined

by the context of the invocation.

For another illustration of this point, suppose that we have defined a parameterized

TRANSITIVE template to be used for verbs like devour:

(18) TRANSITIVE(P) = ( PRED)=‘P SUBJ, OBJ ’

This can be combined disjunctively with the INTRANSITIVE template to define a sub-

categorization template for verbs that can appear either with or without an object (eat,

cook, bake, etc.):

(19) TRANS-OR-INTRANS(P) = @TRANSITIVE(P) @INTRANSITIVE(P)

Notice that the parameter for TRANS-OR-INTRANS appears as an argument in the invo-

cations of both INTRANSITIVE and TRANSITIVE. The reference@TRANS-OR-INTRANS(eat)

thus expands ultimately to the disjunction

(20) ( PRED)=‘eat SUBJ, OBJ ’ ( PRED)=‘eat SUBJ ’

Finally, we can extend the hierarchical template inclusion diagram so that it bottoms

out in particular lexical items, thus showing how generalizations are captured not only

among the templates but also across the lexicon:

(21) 3PERSONSUBJ SINGSUBJ

PRESENT 3SG INTRANSITIVE TRANSITIVE

PRES3SG TRANS-OR-INTRANS

falls bakes cooked

5 Expressing defaults

Default values can be expressed in LFG bymeans of existential constraints and disjunc-

tion. An existential constraint asserts that a feature must be present in an f-structure but

it does not define the value that the feature must have. Thus the existential constraint

in (22) is satisfied only if the f-structure denoted by has some value for the feature

CASE:

(22) ( CASE)

This asserts that some (unspecified) value must be provided by a defining equation for

the f-structure . Otherwise, the existential constraint is not satisfied.

We can disjunctively combine this specification with a defining equation stating that

the f-structure has the feature CASE with value NOM:

(23) ( CASE) ( CASE)=NOM
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The first part of the disjunction is satisfied if has some value for CASE provided by

a defining equation elsewhere in the functional description (the existential constraint in

the left disjunct is satisfied). The second part of the disjunction is satisfied if has the

value NOM for CASE (the defining equation in the right disjunct is satisfied). The effect

is that NOM is the default value for CASE: if no other value is defined for that feature,

the value NOM will be installed.

This technique for specifying a default value V for a designator D can be encapsu-

lated in a parameterized template:

(24) DEFAULT(D V) = D D=V

andwe can use this tomakemore obvious the fact that NOM is the default value of CASE:

(25) @DEFAULT(( CASE) NOM)

An invocation of this default CASE assignment template could then be a part of the lex-

ical description for a noun in a language with case clitics. If there is no case clitic to

specify a particular case for the noun, the default NOM case will appear.

6 Templates and Phrase Structure Annotations

Since templates simply stand for pieces of functional descriptions, it is also possible

to use templates in annotations on phrase structure rules, to capture recurring gener-

alizations in the specification of the relation between c-structure configurations and f-

structures. There is no difference in the way templates are defined or invoked when they

are used in phrase structure rules; functional annotations in phrase structure rules can

simply be replaced with a template reference.

To take an example, suppose that every adjunct in the grammar must be annotated

with both its grammatical function and an ADJUNCT-TYPE feature, e.g., (26).

(26) VP V ADVP*

= ( ADJUNCT)

( ADJUNCT-TYPE)=VP-ADJ

This can be rewritten using a parameterized template:

(27) VP V ADVP*

= @ADJUNCT(VP-ADJ)

where the ADJUNCT template expands to:

(28) a. ADJUNCT(P) = ( ADJUNCT)

@ADJUNCT-TYPE(P)

b. ADJUNCT-TYPE(P) = ( ADJUNCT-TYPE)=P
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Defaults in LFG

The f-structure must have case and 
if nothing else provides its case, 
then its case is nominative.

Parametrized template for defaults. 

Also illustrates that parameterized 
templates can have multiple 
arguments

⇧
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Glue Semantics
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Glue Semantics

• Glue Semantics is a type-logical semantics that can be tied to any 
syntactic formalism that supports a notion of headedness.

• Glue Semantics can be thought of as categorial semantics without 
categorial syntax.

• The independent syntax assumed in Glue Semantics means that the 
logic of composition is commutative, unlike in Categorial Grammar.

• Selected works:
Dalrymple (1999, 2001), Crouch & van Genabith (2000), 
Asudeh (2004, 2005a,b, 2006, in prep.), Lev (2007), Kokkonidis (2008)
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Glue Semantics

• Lexically-contributed meaning constructors := 

• Meaning language := some lambda calculus

• Model-theoretic

• Composition language := linear logic

• Proof-theoretic

• Curry Howard Isomorphism between formulas (meanings) and types 
(proof terms)

• Successful Glue Semantics proof:

Copy Raising and Perception June 9, 2007 32

copy raising is like a case of resumption, where resumptive pronouns can also be understood essentially as a

problem of semantic composition. In both cases, there is a pronoun saturating a semantic argument position that

must be left open in order to properly compose the subject (for copy raising) or the top of the resumptive long-

distance dependencies (for resumptive pronouns in unbounded dependencies). The removal of the pronoun from

semantic composition is carried out by a lexically specified manager resource. Thus, both types of resumption

are licensed through lexical specification. In the case of copy raising, it is the specification of a manager resource

that licenses the copy raising subject and the copy raising relation. Anaphoric binding of the copy pronoun by the

subject syntactically identifies the pronoun that is causing the saturation problem for semantic composition and

the manager resource effects its removal during composition. The key difference between copy raising verbs and

perceptual resemblance verbs is then reduced to a simple lexical difference: copy raising verbs contribute manager

resources, perceptual resemblance verbs do not.

The term manager resource itself stems fromGlue Semantics (Dalrymple 1999, 2001), a theory of the syntax–

semantics interface and semantic composition. In Glue Semantics, the logic of semantic composition is linear

logic (Girard 1987), which is a resource logic, as discussed in more detail below. Each lexically contributed

meaning consists of a term from a meaning language associated with a term of linear logic. These paired terms

are called meaning constructors and are represented as follows:

(127) M : G

M is the meaning language term and G is the linear logic term (the colon is an uninterpreted pairing symbol).

The linear logic serves as a ‘glue language’ that relates syntax to semantics and specifies how semantic terms are

to be composed. The meaning constructors are used as premises in a (linear logic) proof that consumes the lexical

premises to produce a sentential meaning. A successful Glue proof proves a conclusion of the following form

(following Crouch and van Genabith 2000: 117), where Gt is a term of type t :18

(128) Γ ! M : Gt

Each step in the linear logic proof of semantics corresponds to an operation in the meaning language via the

Curry-Howard isomorphism between formulas and types (Curry and Feys 1958, Howard 1980). This means that

the syntactic well-formedness of the proof can be calculated using standard proof-theoretic methods on G while

simultaneously constructing meaning terms in the meaning language M. The meaning language M itself is

standardly interpreted model-theoretically, as is the case in this paper. Thus, although semantic composition is

driven proof-theoretically, interpretation is model-theoretic. This has the advantage that meaning construction

is sensitive only to the linear logic types of the meaning constructors and not to the actual meanings in M.

Compositionality is therefore guaranteed, since no assumptions are made about the content of meaning terms

in assembling meanings (Dalrymple et al. 1999a: 262–263). The linear logic proof thus serves as the syntax

of semantic composition, which reveals a clear relationship between linear logic terms in Glue Semantics and

categories in Categorial Grammar (Ajdukiewicz 1935, Bar-Hillel 1953, Lambek 1958, Ades and Steedman 1982,

Steedman 1996, 2000, Buszkowski et al. 1988, Oehrle et al. 1988, Morrill 1994, Carpenter 1997, Moortgat 1997),

as discussed in detail by Dalrymple et al. (1999a). Another perspective on this relationship is that linear logic

is essentially equivalent to the commutative Lambek Calculus (Moortgat 1997, Asudeh 2004, Jäger 2005). In

his discussion of desirable properties of “Lambek-style Categorial Grammar”, Jäger (2005: ix) notes that “[T]he

Curry-Howard correspondence . . . supplies the type logical syntax with an extremely elegant and independently

motivated interface to model-theoretic semantics.” This comment equally applies to Glue Semantics.

Let us consider a simple Glue derivation. Syntactic analysis of the sentence in (129) yields the meaning

constructors in (130). Note that we assign the linear logic terms in the meaning constructors mnemonic names,

18The typing in the linear logic side G is independent of, but related to, the typing in the meaning language M. The relationship can be

stated simply: type t in G corresponds to the propositional type t inM; type e in G corresponds to the individual type e inM; type ε in G

corresponds to the eventuality type ε inM (see section 6.4 for typing ofM).

Meaning language term Composition language term
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56 CHAPTER 2. AN OVERVIEW OF LFG AND GLUE SEMANTICS

(2.56) a. Application : Implication Elimination

···
a : A

···
f : A!B

!E

f (a) : B

b. Abstraction : Implication Introduction

[x : A]1
···

f : B
!I,1

λx .f : A!B

c. Pairwise substitution : Conjunction Elimination

···
a : A⊗B

[x : A]1 [y : B ]2
···

f : C
⊗E,1,2

let a be x × y in f : C

As noted above, implication elimination corresponds to functional application, and implication in-

troduction corresponds to abstraction. The assumed premise in the introduction rule is associated

with a variable that is abstracted over when the assumption is discharged. The term constructor let

is possibly less familiar. A multiplicative conjunction A⊗B corresponds to a tensor product a × b,

where a is the proof term ofA and b is the proof term of B (see the rule for conjunction introduction

(⊗I) in (2.62) below). However, let prevents projection into the individual elements of the tensor

pair and therefore enforces pairwise substitution (Abramsky 1993, Benton et al. 1993, Crouch and

van Genabith 2000:88), such that a let expression β-reduces as follows:

(2.57) let a × b be x × y in f ⇒β f [a/x , b/y ]

The substitution of the pair is simultaneous and does not involve projection into the members. So

let is not forbidding and is just a slightly more structured form of functional application.

It is the Curry-Howard term assignments that determine operations in the meaning language.

I use the locution “operations in the meaning language” purposefully. The term assignments con-

structed by rules of proof for linear logic result in linear lambdas (Abramsky 1993); these are

lambda terms in which every lambda-bound variable occurs exactly once (i.e. no vacuous abstrac-

tion and no multiple abstraction). The proof terms therefore satisfy resource sensitivity. However,

lexically contributed meanings need not contain only linear lambdas (for a similar point about the
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Pairwise Conjunction

Substitution : Elimination

···
a : A⊗B

[x : A]1 [y : B ]2
···

f : C
⊗E,1,2

let a be x × y in f : C

Beta reduction for let:

let a× b be x× y in f ⇒β f [a/x , b/y]

Key Glue Proof Rules with Curry-Howard Terms

34



1
′
. mary : gσe

2
′
. laugh : gσe ! fσt

1
′′
. mary : m

2
′′
. laugh : m ! l

Proof

1. mary : m Lex.Mary

2. laugh : m ! l Lex. laughed

3. laugh(mary) : l E!, 1, 2

Proof

mary : m laugh : m ! l
!E

laugh(mary) : l

Example: Mary laughed

≡

1. mary : ↑σe

2. laugh : (↑ SUBJ)σe ! ↑σt
f




PRED ‘laugh〈SUBJ〉’

SUBJ g

[
PRED ‘Mary’

]



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1. λRλS .most(R,S ) : (v ! r)!∀X .[(p !X )!X ] Lex.most

2. president∗ : v ! r Lex. presidents

3. speak : p ! s Lex. speak

λRλS .most(R,S ) :
(v ! r)!∀X .[(p !X )!X ]

president∗ :
v ! r

λS .most(president∗,S ) :
∀X .[(p !X )!X ]

speak :
p ! s

!E , [s/X ]
most(president∗, speak) : s

Example: Most presidents speak
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



PRED ‘speak〈SUBJ, OBJ〉’

SUBJ




PRED ‘president’

SPEC

[
PRED ‘most’

]




OBJ




PRED ‘language’

SPEC

[
PRED ‘at-least-one’

]








Example: 
Most presidents speak at least one language

1. λRλS .most(R,S ) :
(v1 ! r1 )! ∀X .[(p !X )!X ]

Lex.most

2. president∗ : v1 ! r1 Lex. presidents

3. speak : p ! l ! s Lex. speak

4. λPλQ .at -least -one(P ,Q) :
(v2 ! r2 )! ∀Y .[(l !Y )!Y ]

Lex. at least one

5. language : v2 ! r2 Lex. language

Single parse 

➡

Multiple scope possibilities
(Underspecification through 

quantification)
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λRλS .most(R,S ) :
(v1 ! r1 )! ∀X .[(p !X )!X ]

president∗ :
v1 ! r1

λS .most(president∗,S ) :
∀X .[(p !X )!X ]

λPλQ .a-l -o(P ,Q) :
(v2 ! r2 )! ∀Y .[(l !Y )!Y ]

lang :
v2 ! r2

λQ .a-l -o(lang,Q) :
∀Y .[(l !Y )!Y ]

λxλy.speak(x , y) :
p ! l ! s [z : p]1

λy.speak(z , y) :
l ! s

[s/Y ]
a-l -o(lang, λy.speak(z , y)) : s

!I,1
λz .a-l -o(lang, λy.speak(z , y)) : p ! s

[s/X ]
most(president∗, λz .a-l -o(lang, λy.speak(z , y))) : s

Most presidents speak at least one language
Subject wide scope
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λPλQ .a-l -o(P ,Q) :
(v2 ! r2 )! ∀Y .[(l !Y )!Y ]

lang :
v2 ! r2

λQ .a-l -o(lang,Q) :
∀Y .[(l !Y )!Y ]

λRλS .most(R,S ) :
(v1 ! r1 )! ∀X .[(p !X )!X ]

president∗ :
v1 ! r1

λS .most(president∗,S ) :
∀X .[(p !X )!X ]

λyλx .speak(x , y) :
l ! p ! s [z : l ]1

λx .speak(x , z ) :
p ! s

[s/X ]
most(president∗, λx .speak(x , z )) : s

!I,1
λz .most(president∗, λx .speak(x , z )) : l ! s

[s/Y ]
a-l -o(lang, λz .most(president∗ , λx .speak(x , z ))) : s

Most presidents speak at least one language
Object wide scope
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Further Points of Interest

• Glue Semantics can be understood as a representationalist 
semantic theory (cf. Kamp & Reyle 1993, Cann et al. 2005)

• Proofs can be reasoned about as representations (Asudeh & 
Crouch 2002a,b).

• Proofs have strong identity criteria: normalization, comparison

• Glue Semantics allows recovery of a non-representationalist notion 
of direct compositionality (Asudeh 2005, 2006).

➡Flexible framework with lots of scope for exploration of 
questions of compositionality and semantic representation
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Anaphoric Binding in the 
Correspondence Architecture
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Positive binding constraint (schema):

((DomainPath

¬ (→ X)

GF ↑) AntecedentPath)σ = ↑σ

Negative binding constraint (schema):

((DomainPath

¬ (→ X)

GF ↑) AntecedentPath)σ #= ↑σ

Example:

herself (( GF
∗

¬ (→ SUBJ)

GF ↑) GF)σ = ↑σ

...

Example:

sig (( GF
∗

¬ (→ TENSE)

GF ↑) SUBJ)σ = ↑σ

...

Binding Constraints ca. Dalrymple (1993)
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Equality in LFG is Token Identity: 
A Nice Consequence

• Notice that there are no indices in this theory: the antecedent and the 
anaphor are equated in semantic structure.

• This formally represents the fact that the two things denote the 
same entity in the semantics. 

• Like coindexation, equality as token identity is transitive: If A = B and 
B = C then A = C, just as if A is coindexed with B and B is coindexed 
with C, the A is coindexed with C.

• This avoids the problem for asymmetric linking/dependency 
accounts (Higginbotham 1993, Safir 2004) with circumvention of illicit 
binding configurations (requires stipulation re. obviation):
(1) John said he saw him.
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Binding Constraints ca. 
Dalrymple (2001), Asudeh (2004)

• Problem: Now the relation is asymmetric; same problem as for linking/
dependency accounts arises

• Why the change?

• Glue Semantics: resource-sensitive semantic composition

• Formally models without extra stipulations that the pronoun and its 
antecedent are satisfying separate compositional requirements (Asudeh 
2004).

• If the anaphor and its antecedent were token identical, there would be a 
resource deficit.

• Benefit: Account of non-resumptive behaviour of relational nouns (Asudeh 
2005)

((DomainPath

¬ (→ X)

GF ↑) AntecedentPath)σ = (↑σ ANTECEDENT)
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Anaphora in Glue Semantics

• Variable-free: pronouns are functions on their antecedents
(Jacobson 1999, among others)

• Commutative logic of composition allows pronouns to compose 
directly with their antecedents.

• No need for otherwise unmotivated additional type shifting 
(e.g. Jacobson’s z-shift)
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Anaphora in Glue Semantics

(1) Joe said he bowls.

• Pronominal meaning constructor:

λz .z × z : A! (A⊗P)

joe :
j

λz .z × z :
j ! (j ⊗ p)

joe × joe : j ⊗ p

[x : j ]1
λuλq.say(u, q) :
j ! b ! s

λq.say(x , q) :
b ! s

[y : p]2
λv .bowl(v) :
p ! b

bowl(y) :
b

say(x , bowl(y)) : s
⊗E,1,2

let joe × joe be x × y in say(x , bowl(y)) : s
⇒β

say(joe, bowl(joe)) : s
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A Solution

• The essential problem of the new system is that we would like the 
feature ANTECEDENT to play contrary roles: we want the pronoun 
and its antecedent to be equated for computation of binding 
constraints, but we want the antecedent and the anaphor to be 
distinguished for computation of Glue semantic proofs.

• Solution: Resuscitate anaphoric structure, an original component 
of Kaplan’s programmatic Correspondence Architecture.

• However, this is only a good solution if the move solves some 
other problems, too.

• It does: logophoricity of Icelandic/Faroese long-distance 
reflexive
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herself (( GF
∗

¬ (→ SUBJ)

GF ↑) GF)! = ↑!

λz .z × z : (↑!)!σ ! ((↑!)!σ ⊗↑σ)
...

Marı́a (↑! ID) = maria

maria : ↑σ

Adding Anaphoric Structure to the Architecture

i-structure ana-structure

• •

p-structure

•

Form Meaning
• • • • • • •

string c-structure m-structure a-structure f-structure s-structure model

π µ

φ

ι ισ
$

$σ

ρ
ρσ

λ σα ψ
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Strahan’s Observation

• In work in progress, Strahan (2009) observes that the logophoricity of 
Icelandic/Faroese sig/seg raises a problem for LFG’s inside-out theory of 
anaphoric constraints.

• She contrasts the following examples:

(1) * Hanni kemur ekki nema þú bjóðir séri

(2) Jóni segir að hann komi ekki nema þú bjóðir séri

• The problem is: If logophoricity is a property of the long-distance reflexive, 
what allows it to acquire the feature in (2) but not in (1)?

• She proposes instead that the logocentre introduced by segir (i.e. Jón) 
should instead issue a downward (outside-in) search for something to 
bind. 
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Logophoricity

• We now have a symmetric relation between the anaphor and its 
antecedent at anaphoric structure and an asymmetric relation between 
the anaphor and its antecedent in the semantics (because the anaphor 
is a function that takes its antecedent as an argument). 

• What remains is to capture the logophoricity of sig using our theoretical 
innovation.

• Intuitions (Þráinsson, Maling, Strahan, others): 

1. Logophoricity is a property introduced by certain lexical items.

2. The property can ‘drip’ down (Þráinsson via Maling).

3. The long-distance reflexive is conditioned by this property, not by mood.

4. The LDR must bind to the logocentre (Strahan).
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sig






(( GF
∗

(→ LOGOPHORIC)

GF ↑) SUBJ

(→! LOGOCENTRE) =c +
)! = ↑!

∨

(( GF
∗

¬ (→ TENSE)

GF ↑) SUBJ)! = ↑!

(( GF
∗

¬ (→ PRED)

GF ↑) SUBJ)! $= ↑!






λz .z × z : (↑!)!σ ! ((↑!)!σ ⊗↑σ)
...

Introduction of Logophoricity and Making it Drip

Drip

Introduction

Somewhat over-simplistic 
(should use templates!)

segir, etc. (↑ PRED) = ‘say〈SUBJ, COMP〉’
λpλx .say(x , p) : (↑ COMP)σ ! (↑ SUBJ)σ ! ↑σ



((↑ SUBJ)" LOGOCENTRE) = +
(↑ LOGOPHORIC) = +
(↑ GF

+

(→ MOOD) =c SUBJUNCTIVE

(↑ LOGOPHORIC) = (→ LOGOPHORIC)

)

λPλx .perspective-of (x ,P(x )) : [(↑ SUBJ)σ ! ↑σ] ! [(↑ SUBJ)σ ! ↑σ]





...
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Back to the Icelandic Data

• Binding out of infinitive

(1) Péturi bað Jensj um [PROj að raka sigi/j]
• Subject orientation

(2) * Egi lofaði Önnuj [PROi að kyssa sigj]
•  Binding and the subjunctive

(3) Jóni sagði [að ég hefði svikið sigi]
(4) Jóni segir [að María telji [að Haraldur vilji [að Billi heimsæki sigi]]]
(5) * Jóni lýkur þessu ekki [nema þú hjálpir séri]
(6) Jóni segir [að hann ljúki þessu ekki [nema þú hjálpir séri]
(7) Húni sagði [að sigi vantaði peninga]
(8) Jóni upplýsti hver hefði/*hafði barið sigi
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Prospects for Intrasentential Logophors?

• Maling (1984), Sigurðsson (1986), Þráinsson (1991) have observed that 
sig can be bound from outside the clause, though it must have an 
antecedent in discourse (Þráinsson 1991: 62).

(1) María var alltaf svo andstyggileg. Þegar Ólafurj kæmi segði hún séri/*j 
áreiðanlega að fara …

• We now have the structure we need to deal with logocentres that are 
introduced by discourse, but the discourse rules that govern this 
process need further investigation.
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Another Apparent Puzzle Solved?

• Maling (1984: 235) struggles with the following relative clause data:

(1) Jón segir að Ólafuri hafi ekki enn fundið vinnu, sem séri líki.

• Initially this seems problematic, because it would seem to complicate 
our generalizations about logophoric sig, because it is embedded in 
an object and it is not referring to the logocentre.

• However, Ólafur is the first subject outside of the coargument domain 
of the reflexive.

• This case is in fact covered by the non-logophoric generalization 
about sig; i.e. it seems to be a case of narrow syntactic binding. 

• A potentially troubling fact remains: the subjunctive marking on the 
relative clause.
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Conclusion

• In light of recent developments in LFG, particularly the addition of Glue 
Semantics to the Correspondence Architecture, we had to reconsider 
classical LFG binding constraints (Dalrymple 1993).

• We revived the notion of anaphoric structure (Kaplan 1987, 1989) and put it 
to good use.

• Not only do we recapture what was lost, we have made progress in tying 
the notion of logophoricity to the notion of syntactic binding explicitly, 
rather than treating logophoricity as an unanalyzed concept or a concept 
analyzable only purely orthogonally to non-logophoric uses (Sells 1987).

• There are some stipulations that remain and that can hopefully be eliminated.  
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