
Lexical-Functional Grammar

Ash Asudeh
Carleton University

University of Iceland
July 3, 2009

1



Architecture and Structures

2



Basic Syntactic Architecture of LFG

• Two basic, simultaneous representations of syntax:

• C(onstituent)-structure: constituency, dominance, word order, 
phrase structure
Annotated trees

• F(unctional)-structure: abstract grammatical relations/functions 
(subject, object, etc.), tense, case, agreement, predication, local 
and non-local dependencies
Feature structures/attribute-value matrices

• Kaplan & Bresnan (1982):

“festschrift”
2006/6/5
page 365

Direct Compositionality and the Architecture of LFG / 365

17.2 The Parallel Projection Architecture

The original architecture of LFG (Kaplan and Bresnan 1982) consisted
of two syntactic levels: constituent structure (c-structure) and func-
tional structure (f-structure). C-structures are represented as trees,
which are described in the usual manner (with a set of nodes, a la-
beling on the set, and functions for dominance and precedence). The
level of c-structure represents syntactic information about precedence,
dominance, and constituency. F-structures are represented as feature
structures (attribute-value matrices), described by a set of recursive
functional equations on a set of symbols. The level of f-structure is
another aspect of syntactic representation — it is not a semantic rep-
resentation. However, f-structure represents more abstract aspects of
syntax, such as grammatical functions, predication, subcategorization,
and local and non-local dependencies. C-structure and f-structure are
projected from lexical items, which specify their c-structure category
and f-structure feature contributions. Variables in lexical items are in-
stantiated by the c-structure parse. The two syntactic representations
are present simultaneously, in parallel. They are related by the φ pro-
jection function, also known as a correspondence function. The φ func-
tion maps c-structure nodes (i.e., tree nodes) to f-structure nodes (i.e.,
feature structures). The original grammatical architecture of LFG is
shown schematically in (2).

(2) The original LFG architecture:

constituent structure functional structure
φ

An LFG representation of an expression on this view is a triple con-
sisting of a c-structure, an f-structure and a φ projection function that
maps the c-structure to the f-structure: 〈c, f , φ〉.

C-structures and f-structures are constructed by simultaneous con-
straint satisfaction. LFG is a declarative, non-transformational theory.
The fact that c-structure and f-structure are represented using distinct
data structures (trees and feature structures) distinguishes LFG from
both transformational theories such as P&P, which represents all syn-
tactic information in a tree, and non-transformational theories such as
Head-Driven Phrase Structure Grammar (Pollard and Sag 1987, 1994),
which represents all grammatical information, whether syntactic or not,
in a directed acyclic graph. LFG uses mixed data structures related by
structural correspondences, rather than a single monolithic data struc-
ture.

The LFG architecture was subsequently further generalized to a par-
allel projection architecture (Kaplan 1987, Halvorsen and Kaplan 1988,

3



LFG’s Parallel Projection Architecture

• Kaplan (1987,1989):

“festschrift”
2006/6/5
page 366

366 / Ash Asudeh

Kaplan 1989). According to this architecture, there are various levels
of linguistic representation (not just syntactic ones) called projections
that are present in parallel and are related by structural correspon-
dences (i.e., projection functions) which map elements of one projec-
tion onto elements of another. C-structure and f-structure are still the
best-understood projections, but they are now two among several lev-
els of representation and the projection function φ is now one of many.
For example, f-structures are mapped onto s(emantic)-structures by the
σ-function (Halvorsen 1983, Dalrymple 1993, Dalrymple et al. 1999b,
Dalrymple 2001).

Kaplan (1987, 1989) gives (3) as a hypothetical example of the pro-
jection architecture, representing the decomposition of a single map-
ping, Γ, from form to meaning.

(3) Kaplan’s hypothetical parallel projection architecture:

anaphoric structure
•

Form Meaning
• • • • •

string c-structure f-structure semantic structure

•
discourse structure

π φ σ
α

δ

Two of the projections proposed in (3) — anaphoric structure and
discourse structure — never received much further attention in the
LFG literature, at least not in the way that Kaplan originally suggested.
Anaphors have been handled at semantic structure (Dalrymple 1993,
2001), and discourse structure has been pursued instead as information
structure (i-structure; Butt and King 2000), which encodes notions like
discourse topic and focus and old and new information.

Importantly, the correspondence functions between levels can be
composed (see below for details), since the domain of each successive
function is the range of the previous one. This is summarized in the
following passage from Kaplan (1987:363):

Although the structures related by multiple correspondences might be
descriptively or linguistically motivated levels of representation, justi-
fied by sound theoretical argumentation, they are formally and math-
ematically, and also computationally, eliminable . . . Obviously there
is a structural correspondence that goes from the word string to the
f-structure, namely the composition of π with φ. . . . So as a kind of
formal, mathematical trick, you can say ‘Those intermediate levels of
representation are not real, they are just linguistic fictions, useful for
stating the necessary constraints’.

4



LFG’s Parallel Projection Architecture

• Asudeh (2006):

“festsch
rift”

2006/6/5
p
age

369

D
ir

e
c
t

C
o
m
p
o
sit

io
n
a
lit

y
a
n
d

t
h
e

A
r
c
h
it

e
c
t
u
r
e

o
f

L
F
G

/
369

i-structure
•

p-structure
•

Form Meaning
• • • • • • •

string c-structure m-structure a-structure f-structure s-structure model
π µ

φ

ι ισ

ρ
ρσ

λ σα ψ

FIGURE 1 The parallel projection architecture (incorporating certain recent proposals)

5



Design Principles

• Principle I: Variability
External structures (modelled by LFG c-structures) vary across 
languages.

• Principle II: Universality
Internal structures (modelled by LFG f-structures) are largely 
invariant across languages.

• Principle III: Monotonicity
The mapping from c-structure to f-structure is not one-to-one, but 
it is monotonic (information-preserving).

6



Nonconfigurationality

• Two fundamental ways for language to realize underlying concepts:

• Phrase structure (groups)

• Morphology (shapes)

• Bresnan (1998, 2001): ‘Morphology competes with syntax’

• English: phrase structure strategy (configurational)

• Warlpiri: morphological strategy (nonconfigurational)

7



English

• Underlying meaning: 
That of ‘the two small children are chasing that dog’

S

NP

the two small children

Aux

are

VP

V

chasing

NP

that dog

S

NP

wita-jarra-rlu

small-DUAL-ERG

Aux

ka-pala

pres-3duSUBJ

V

wajili-pi-nyi

chase-NPAST

NP

yalumpu

that-ABS

NP

kurdu-jarra-rlu

child-DUAL-ERG

NP

maliki

dog-ABS

8



English and Warlpiri

• English:

(1) a. The two small children are chasing that dog.
 b. * The two small are chasing that children dog.
 c. * The two small are dog chasing children that.
 d. * Chasing are the two small that dog children.
 e. * That are children chasing the two small dog.

• Warlpiri: 

• All of the permutations in (1) are grammatical ways to express the same 
underlying concept of ‘the two small children are chasing that dog’

• Even more permutations than this are possible

• Only restriction: Aux must be in second position
(Note: this is a slight simplification)

9



Warlpiri

• Underlying meaning: 
That of ‘the two small children are chasing that dog’

S

NP

the two small children

Aux

are

VP

V

chasing

NP

that dog

S

NP

wita-jarra-rlu

small-DUAL-ERG

Aux

ka-pala

pres-3duSUBJ

V

wajili-pi-nyi

chase-NPAST

NP

yalumpu

that-ABS

NP

kurdu-jarra-rlu

child-DUAL-ERG

NP

maliki

dog-ABS

10



Abstract Syntax

• Despite the striking structural differences between English and Warlpiri, there are nevertheless 
common syntactic constraints on the two languages.

• Example: a subject can bind an object reflexive, but not vice versa

 (1) a. Lucy is hitting herself.
  b. * Herself is hitting Lucy.

 (2) a. Napaljarri-rli  ka-nyanu  paka-rni
   Napaljarri-ERG PRES-REFL hit-NONPAST
   ‘Napaljarri is hitting herself.’

  b.  * Napaljarri  ka-nyanupaka-rni
       Napaljarri.ABS PRES-REFL hit-NONPAST
       ‘Herself is hitting Napaljarri.’

➡How should abstract grammatical relations be captured?
Transformational Grammar: configurationally, using a uniform syntactic representation

LFG: non-configurationally, using a separate syntactic representation

11



C-structure

• Language variation in phrasal expression:

• Basic word order: 

• SVO (English), SOV (Japanese), VSO (Irish), VOS (Malagasy)

• Constituency: 

• Grouping of verb and complements, 

• Grouping of noun and modifiers

• Strict vs. free word order: 

• configurational languages vs. case-marking languages

12



Constraints on C-structures:
Phrase Structure Rules

• LFG distinguishes between the objects in the model and 
descriptions of those objects (i.e. constraints on the objects).

• C-structure trees are constrained by phrase structure rules.

• Right-hand side of LFG phrase structure rules are regular 
expressions:

➡disjunction, optionality, arbitrary repetition (Kleene plus [+] and 
star [*])

Unlike many theories, LFG assumes that daughters
of all phrasal categories are optional. In particular,
the head of a maximal phrase need not appear. In
many languages, for example, tensed verbs appear
in I (King, 1995; Sells, 2001). A Swedish sentence
such as (3), with a tensed verb and no nontensed
verbs, has a VP that does not contain a V.

(3) Anna såg boken
Anna saw book.DEF

‘Anna saw the book.’

Nonhead daughters are also only optionally present. In
Japanese and other so-called ‘prodrop’ languages, a
verb can appear with no overt arguments. If no overt
arguments of a verb are present, the c-structure tree
contains only the verb:

(4) koware-ta
break-PAST
‘[it/something] broke.’

C-structure does not contain subparts of words or
unpronounced features, nor does it contain null pro-
nominals in prodrop languages such as Japanese.
Rather, it reflects the structure and grouping of the
full syntactic units – the words and phrases – in the
sentence.

Phrase Structure Rules

LFG draws a strong distinction between the formal
objects of the theory – constituent structure trees and
functional structures – and the constraints or descrip-
tions involving those objects. C-structure trees are
constrained by phrase structure rules, which license
local tree configurations. The phrase structure rule in
(5a) licenses the c-structure in (5b):

The right-hand side of an LFG phrase structure rule
is a regular expression, allowing for disjunction, op-
tionality, and arbitrary repetition of a node or se-
quence of nodes. The V and NP daughters in the
rule in (6) are optional, and the Kleene star (*) anno-
tation on the PP indicates that a sequence of zero or
more PP constituents may appear.

(6) V0 ! (V) (NP) PP*

Functional Structure

Syntactic analyses in traditional grammatical descrip-
tions are stated in terms of abstract syntactic functions
such as subject, object, and complement. These func-
tions are represented at LFG’s functional structure.
F-structure represents abstract grammatical functions
such as subject and object, as well as features such as
tense, case, person, and number.

Grammatical Functions and Their Representation

In a sentence such as David devoured a sandwich,
David is the subject and a sandwich is the object. This
information is represented by an attribute-value struc-
ture, the f-structure, in which the value of the SUBJ
feature is the f-structure for the subject and the value of
the OBJ feature is the f-structure for the object.

(7) David devoured a sandwich.

For clarity, many of the features and values in
this f-structure have been omitted, a practice often
followed in LFG presentations. The full f-structure
contains tense, aspect, person, number, and other
functional features.

Every content word in a sentence contributes a
value for the feature PRED. These values are called
semantic forms. In the functional structure, semantic
forms are surrounded by single quotes: the semantic
form contributed by the word David is ‘DAVID.’

An important property of semantic forms is that
they are uniquely instantiated for each instance of
their use, reflecting the unique semantic contribution
of each word within the sentence. This is occasionally

84 Lexical Functional Grammar
Unlike many theories, LFG assumes that daughters

of all phrasal categories are optional. In particular,
the head of a maximal phrase need not appear. In
many languages, for example, tensed verbs appear
in I (King, 1995; Sells, 2001). A Swedish sentence
such as (3), with a tensed verb and no nontensed
verbs, has a VP that does not contain a V.

(3) Anna såg boken
Anna saw book.DEF

‘Anna saw the book.’

Nonhead daughters are also only optionally present. In
Japanese and other so-called ‘prodrop’ languages, a
verb can appear with no overt arguments. If no overt
arguments of a verb are present, the c-structure tree
contains only the verb:

(4) koware-ta
break-PAST
‘[it/something] broke.’

C-structure does not contain subparts of words or
unpronounced features, nor does it contain null pro-
nominals in prodrop languages such as Japanese.
Rather, it reflects the structure and grouping of the
full syntactic units – the words and phrases – in the
sentence.

Phrase Structure Rules

LFG draws a strong distinction between the formal
objects of the theory – constituent structure trees and
functional structures – and the constraints or descrip-
tions involving those objects. C-structure trees are
constrained by phrase structure rules, which license
local tree configurations. The phrase structure rule in
(5a) licenses the c-structure in (5b):

The right-hand side of an LFG phrase structure rule
is a regular expression, allowing for disjunction, op-
tionality, and arbitrary repetition of a node or se-
quence of nodes. The V and NP daughters in the
rule in (6) are optional, and the Kleene star (*) anno-
tation on the PP indicates that a sequence of zero or
more PP constituents may appear.

(6) V0 ! (V) (NP) PP*

Functional Structure

Syntactic analyses in traditional grammatical descrip-
tions are stated in terms of abstract syntactic functions
such as subject, object, and complement. These func-
tions are represented at LFG’s functional structure.
F-structure represents abstract grammatical functions
such as subject and object, as well as features such as
tense, case, person, and number.

Grammatical Functions and Their Representation

In a sentence such as David devoured a sandwich,
David is the subject and a sandwich is the object. This
information is represented by an attribute-value struc-
ture, the f-structure, in which the value of the SUBJ
feature is the f-structure for the subject and the value of
the OBJ feature is the f-structure for the object.

(7) David devoured a sandwich.

For clarity, many of the features and values in
this f-structure have been omitted, a practice often
followed in LFG presentations. The full f-structure
contains tense, aspect, person, number, and other
functional features.

Every content word in a sentence contributes a
value for the feature PRED. These values are called
semantic forms. In the functional structure, semantic
forms are surrounded by single quotes: the semantic
form contributed by the word David is ‘DAVID.’

An important property of semantic forms is that
they are uniquely instantiated for each instance of
their use, reflecting the unique semantic contribution
of each word within the sentence. This is occasionally

84 Lexical Functional Grammar

Unlike many theories, LFG assumes that daughters
of all phrasal categories are optional. In particular,
the head of a maximal phrase need not appear. In
many languages, for example, tensed verbs appear
in I (King, 1995; Sells, 2001). A Swedish sentence
such as (3), with a tensed verb and no nontensed
verbs, has a VP that does not contain a V.

(3) Anna såg boken
Anna saw book.DEF

‘Anna saw the book.’

Nonhead daughters are also only optionally present. In
Japanese and other so-called ‘prodrop’ languages, a
verb can appear with no overt arguments. If no overt
arguments of a verb are present, the c-structure tree
contains only the verb:

(4) koware-ta
break-PAST
‘[it/something] broke.’

C-structure does not contain subparts of words or
unpronounced features, nor does it contain null pro-
nominals in prodrop languages such as Japanese.
Rather, it reflects the structure and grouping of the
full syntactic units – the words and phrases – in the
sentence.

Phrase Structure Rules

LFG draws a strong distinction between the formal
objects of the theory – constituent structure trees and
functional structures – and the constraints or descrip-
tions involving those objects. C-structure trees are
constrained by phrase structure rules, which license
local tree configurations. The phrase structure rule in
(5a) licenses the c-structure in (5b):

The right-hand side of an LFG phrase structure rule
is a regular expression, allowing for disjunction, op-
tionality, and arbitrary repetition of a node or se-
quence of nodes. The V and NP daughters in the
rule in (6) are optional, and the Kleene star (*) anno-
tation on the PP indicates that a sequence of zero or
more PP constituents may appear.

(6) V0 ! (V) (NP) PP*

Functional Structure

Syntactic analyses in traditional grammatical descrip-
tions are stated in terms of abstract syntactic functions
such as subject, object, and complement. These func-
tions are represented at LFG’s functional structure.
F-structure represents abstract grammatical functions
such as subject and object, as well as features such as
tense, case, person, and number.

Grammatical Functions and Their Representation

In a sentence such as David devoured a sandwich,
David is the subject and a sandwich is the object. This
information is represented by an attribute-value struc-
ture, the f-structure, in which the value of the SUBJ
feature is the f-structure for the subject and the value of
the OBJ feature is the f-structure for the object.

(7) David devoured a sandwich.

For clarity, many of the features and values in
this f-structure have been omitted, a practice often
followed in LFG presentations. The full f-structure
contains tense, aspect, person, number, and other
functional features.

Every content word in a sentence contributes a
value for the feature PRED. These values are called
semantic forms. In the functional structure, semantic
forms are surrounded by single quotes: the semantic
form contributed by the word David is ‘DAVID.’

An important property of semantic forms is that
they are uniquely instantiated for each instance of
their use, reflecting the unique semantic contribution
of each word within the sentence. This is occasionally

84 Lexical Functional Grammar

13



F-structures

• F-structures represent abstract grammatical functions (subject, 
object, etc.), grammatical features (tense, case, person, number, 
etc.), and grammatical dependencies (raising, control, 
unbounded dependencies)

(1)David devoured a sandwich.

Unlike many theories, LFG assumes that daughters
of all phrasal categories are optional. In particular,
the head of a maximal phrase need not appear. In
many languages, for example, tensed verbs appear
in I (King, 1995; Sells, 2001). A Swedish sentence
such as (3), with a tensed verb and no nontensed
verbs, has a VP that does not contain a V.

(3) Anna såg boken
Anna saw book.DEF

‘Anna saw the book.’

Nonhead daughters are also only optionally present. In
Japanese and other so-called ‘prodrop’ languages, a
verb can appear with no overt arguments. If no overt
arguments of a verb are present, the c-structure tree
contains only the verb:

(4) koware-ta
break-PAST
‘[it/something] broke.’

C-structure does not contain subparts of words or
unpronounced features, nor does it contain null pro-
nominals in prodrop languages such as Japanese.
Rather, it reflects the structure and grouping of the
full syntactic units – the words and phrases – in the
sentence.

Phrase Structure Rules

LFG draws a strong distinction between the formal
objects of the theory – constituent structure trees and
functional structures – and the constraints or descrip-
tions involving those objects. C-structure trees are
constrained by phrase structure rules, which license
local tree configurations. The phrase structure rule in
(5a) licenses the c-structure in (5b):

The right-hand side of an LFG phrase structure rule
is a regular expression, allowing for disjunction, op-
tionality, and arbitrary repetition of a node or se-
quence of nodes. The V and NP daughters in the
rule in (6) are optional, and the Kleene star (*) anno-
tation on the PP indicates that a sequence of zero or
more PP constituents may appear.

(6) V0 ! (V) (NP) PP*

Functional Structure

Syntactic analyses in traditional grammatical descrip-
tions are stated in terms of abstract syntactic functions
such as subject, object, and complement. These func-
tions are represented at LFG’s functional structure.
F-structure represents abstract grammatical functions
such as subject and object, as well as features such as
tense, case, person, and number.

Grammatical Functions and Their Representation

In a sentence such as David devoured a sandwich,
David is the subject and a sandwich is the object. This
information is represented by an attribute-value struc-
ture, the f-structure, in which the value of the SUBJ
feature is the f-structure for the subject and the value of
the OBJ feature is the f-structure for the object.

(7) David devoured a sandwich.

For clarity, many of the features and values in
this f-structure have been omitted, a practice often
followed in LFG presentations. The full f-structure
contains tense, aspect, person, number, and other
functional features.

Every content word in a sentence contributes a
value for the feature PRED. These values are called
semantic forms. In the functional structure, semantic
forms are surrounded by single quotes: the semantic
form contributed by the word David is ‘DAVID.’

An important property of semantic forms is that
they are uniquely instantiated for each instance of
their use, reflecting the unique semantic contribution
of each word within the sentence. This is occasionally

84 Lexical Functional Grammar

14



Unlike many theories, LFG assumes that daughters
of all phrasal categories are optional. In particular,
the head of a maximal phrase need not appear. In
many languages, for example, tensed verbs appear
in I (King, 1995; Sells, 2001). A Swedish sentence
such as (3), with a tensed verb and no nontensed
verbs, has a VP that does not contain a V.

(3) Anna såg boken
Anna saw book.DEF

‘Anna saw the book.’

Nonhead daughters are also only optionally present. In
Japanese and other so-called ‘prodrop’ languages, a
verb can appear with no overt arguments. If no overt
arguments of a verb are present, the c-structure tree
contains only the verb:

(4) koware-ta
break-PAST
‘[it/something] broke.’

C-structure does not contain subparts of words or
unpronounced features, nor does it contain null pro-
nominals in prodrop languages such as Japanese.
Rather, it reflects the structure and grouping of the
full syntactic units – the words and phrases – in the
sentence.

Phrase Structure Rules

LFG draws a strong distinction between the formal
objects of the theory – constituent structure trees and
functional structures – and the constraints or descrip-
tions involving those objects. C-structure trees are
constrained by phrase structure rules, which license
local tree configurations. The phrase structure rule in
(5a) licenses the c-structure in (5b):

The right-hand side of an LFG phrase structure rule
is a regular expression, allowing for disjunction, op-
tionality, and arbitrary repetition of a node or se-
quence of nodes. The V and NP daughters in the
rule in (6) are optional, and the Kleene star (*) anno-
tation on the PP indicates that a sequence of zero or
more PP constituents may appear.

(6) V0 ! (V) (NP) PP*

Functional Structure

Syntactic analyses in traditional grammatical descrip-
tions are stated in terms of abstract syntactic functions
such as subject, object, and complement. These func-
tions are represented at LFG’s functional structure.
F-structure represents abstract grammatical functions
such as subject and object, as well as features such as
tense, case, person, and number.

Grammatical Functions and Their Representation

In a sentence such as David devoured a sandwich,
David is the subject and a sandwich is the object. This
information is represented by an attribute-value struc-
ture, the f-structure, in which the value of the SUBJ
feature is the f-structure for the subject and the value of
the OBJ feature is the f-structure for the object.

(7) David devoured a sandwich.

For clarity, many of the features and values in
this f-structure have been omitted, a practice often
followed in LFG presentations. The full f-structure
contains tense, aspect, person, number, and other
functional features.

Every content word in a sentence contributes a
value for the feature PRED. These values are called
semantic forms. In the functional structure, semantic
forms are surrounded by single quotes: the semantic
form contributed by the word David is ‘DAVID.’

An important property of semantic forms is that
they are uniquely instantiated for each instance of
their use, reflecting the unique semantic contribution
of each word within the sentence. This is occasionally

84 Lexical Functional Grammar

Anatomy of an F-structure

Feature Value: complex (semantic form)

Value: complex 
(feature structure)Feature

Feature
Value: complex 

(feature structure)

Feature

Feature

Value: simple (semantic form)Feature

Value: simple (semantic form)

Value: simple

15



General Constraints on F-structures:
Completeness, Coherence, Uniqueness

• Completeness: 
All the grammatical functions subcategorized by a predicate must be 
present in the f-structure.

(1)* David devoured.

Devour <SUBJ, OBJ>

• Coherence:
Only the grammatical functions subcategorized by a predicate may be 
present in the f-structure.

(2)* David devoured a sandwich that it was raining.

• Uniqueness:
No attribute may have more than one value.

16



Uniqueness and Semantic Forms

• Semantic forms (values of PRED features) are unique.

➡Multiple instances of semantic forms cannot unify, even if the 
semantic forms are otherwise compatible.

(1) * David devoured a sandwich a sandwich.

indicated by associating a unique numerical identifier
with each instance of a semantic form, as in (8):

(8) David devoured a sandwich.

In (8), the particular occurrence of the semantic form
for the word David as it is used in this sentence is
represented as ‘DAVID42.’ Another use of David will
be associated with a different unique identifier, per-
haps ‘DAVID73.’ Representing semantic forms with
explicit numerical identifiers clearly shows that each
word makes a unique contribution to the f-structure.
However, the identifiers also add unnecessary clut-
ter to the f-structure and, therefore, are usually not
displayed.
A verb or other predicate generally requires a par-

ticular set of arguments: for example, the verb
devoured requires a subject (SUBJ) and an object
(OBJ). These arguments are said to be governed by
the predicate; equivalently, the predicate is said
to subcategorize for its arguments. The semantic
form contributed by a verb or other predicate con-
tains information about the arguments it governs.
As shown in (8), the governed arguments appear in
angled brackets: ‘DEVOURhSUBJ,OBJi.’
The LFG requirements of completeness and coher-

ence ensure that all and only the grammatical functions
governed by a predicate are found in the structure of a
grammatically acceptable sentence. For example, the
unacceptability of example (9) shows that the verb
devoured cannot appear without an OBJ:

(9) *David devoured.

This sentence violates the principle of complete-
ness, according to which every grammatical function
governed by a predicate must be filled. Here, the OBJ
is not present, and the sentence is incomplete.
Furthermore, devour cannot appear with other

functions than the grammatical functions SUBJ and
OBJ that it governs. Example (10) shows that it can-
not appear with a sentential complement in addition
to its object:

(10) *David devoured a sandwich that it was raining.

This sentence violates the principle of coherence,
according to which only the grammatical functions
that are governed by a predicate can appear. Because
the sentence contains a grammatical function that the
verb devour does not govern, it is incoherent.

The grammatical functions that a predicate can
govern are called governable grammatical functions.
The inventory of universally available governable
grammatical functions is given in Table 1. Languages
differ as to which of these functions are relevant, but
in many languages, including English, all of these
functions are used.

Not all phrases fill argument positions of a predi-
cate. Modifying adjunct phrases are not required by a
predicate and hence are not governable. In (11), the
phrase yesterday bears the nongovernable grammatical
function ADJ (unct):

(11) David devoured a sandwich yesterday.

There are two nongovernable grammatical functions.
The function ADJ is the grammatical function of
modifiers such as in the park, with a hammer, and
yesterday. The function XADJ is the grammatical
function of open predicative adjuncts whose subject
is externally controlled; as with the governable gram-
matical function XCOMP, the X in the name of the
function indicates that it is an open function whose
SUBJ is supplied externally. The phrase filling the
XADJ role is in boldface in (12).

(12a) Having opened the window, David took a deep
breath.

(12b) David ate the celery naked.
(12c) David ate the celery raw.

In (12a) and (12b), the open adjunct XADJ is con-
trolled by the subject of the main clause: It is David
who opened the window, and it is David who is
naked. In (12c), the XADJ is controlled by the object:
It is the celery that is raw.

Unlike governable grammatical functions, more
than one adjunct function can appear in a sentence:

(13) David devoured a sandwich at noon yesterday.

Table 1 Governable grammatical functions

SUBJ Subject
OBJ Object
COMP Sentential or closed (nonpredicative) infinitival

complement
XCOMP An open (predicative) complement, often infinitival,

whose SUBJ function is externally controlled
OBJy A family of secondary OBJ functions associated with a

particular, language-specific set of thematic roles;
in English, only OBJTHEME is allowed, while other
languages allow more than one thematically
restricted secondary object

OBLy A family of thematically restricted oblique functions
such as OBLGOAL or OBLAGENT, often corresponding
to adpositional phrases at c-structure

Lexical Functional Grammar 85

17



Features and the Lexicon in LFG

18



Lexical Entries in LFG

Subsequent work within HPSG has built on this view. Linguistic generalizations in

HPSG are captured by a type hierarchy, with more specific types inheriting information

from less specific but related types. Construction Grammar (Kay, 1998) assumes a sim-

ilar hierarchy, the constructional hierarchy. On the HPSG view, lexical generalizations

are statable as relations between elements in the type lattice, where different subtypes

represent alternatives, and a type can belong to multiple supertypes. For example, Mal-

ouf (1998) provides the following depiction of a partial type hierarchy of HEAD values:

(1) HEAD

NOUN

C-NOUN GERUND

RELATIONAL

VERB

This diagram represents an AND/OR lattice: the alternative types NOUN and RELATIONAL

are disjunctively specified as different subtypes of the type HEAD. The type GERUND

inherits from two supertypes, NOUN and RELATIONAL, and the information inherited

from all supertypes is conjoined.

Work within LFG, on the other hand, has not appealed to typed feature structures

to encode linguistic generalizations. Instead, LFG encodes lexical generalizations not

in terms of formal inheritance relations between types, but in terms of inclusion rela-

tions between descriptions of structures. An LFG functional description – a collection

of equations – can be given a name, and this name can be used to stand for those equa-

tions in other linguistic descriptions. In computational treatments, these named descrip-

tions are referred to as templates. A description containing a reference to a template is

equivalent to that same description with the named equations, the template’s definition,

substituted for the template reference.

Template definitions can refer to other templates; thus, a template hierarchy similar

to the type hierarchy of HPSG or Construction Grammar can be drawn to represent the

inclusion relations between these named LFG descriptions. Importantly, however, the

relation depicted in such a diagram shows only how pieces of descriptions are factored

into patterns that recur across the lexicon and does not indicate the formal mode of com-

bination of those pieces. The context of the template reference is what determines how

the template definition combines with other parts of a larger description.

In the following, we will present several small template hierarchies and show how

they can be used in the definition of linguistic constraints. For more discussion of com-

putational issues related to the use of templates in grammatical description, see King

et al. (2004).

2 Template defi nitions

We begin with a simple lexical entry for the verb yawns:

(2) yawns ( PRED)=‘yawn SUBJ ’

( VFORM)=FINITE

( TENSE)=PRES

( SUBJ PERS)=3

( SUBJ NUM)=SG

201

Subsequent work within HPSG has built on this view. Linguistic generalizations in

HPSG are captured by a type hierarchy, with more specific types inheriting information

from less specific but related types. Construction Grammar (Kay, 1998) assumes a sim-

ilar hierarchy, the constructional hierarchy. On the HPSG view, lexical generalizations

are statable as relations between elements in the type lattice, where different subtypes

represent alternatives, and a type can belong to multiple supertypes. For example, Mal-

ouf (1998) provides the following depiction of a partial type hierarchy of HEAD values:

(1) HEAD

NOUN

C-NOUN GERUND

RELATIONAL

VERB

This diagram represents an AND/OR lattice: the alternative types NOUN and RELATIONAL

are disjunctively specified as different subtypes of the type HEAD. The type GERUND

inherits from two supertypes, NOUN and RELATIONAL, and the information inherited

from all supertypes is conjoined.

Work within LFG, on the other hand, has not appealed to typed feature structures

to encode linguistic generalizations. Instead, LFG encodes lexical generalizations not

in terms of formal inheritance relations between types, but in terms of inclusion rela-

tions between descriptions of structures. An LFG functional description – a collection

of equations – can be given a name, and this name can be used to stand for those equa-

tions in other linguistic descriptions. In computational treatments, these named descrip-

tions are referred to as templates. A description containing a reference to a template is

equivalent to that same description with the named equations, the template’s definition,

substituted for the template reference.

Template definitions can refer to other templates; thus, a template hierarchy similar

to the type hierarchy of HPSG or Construction Grammar can be drawn to represent the

inclusion relations between these named LFG descriptions. Importantly, however, the

relation depicted in such a diagram shows only how pieces of descriptions are factored

into patterns that recur across the lexicon and does not indicate the formal mode of com-

bination of those pieces. The context of the template reference is what determines how

the template definition combines with other parts of a larger description.

In the following, we will present several small template hierarchies and show how

they can be used in the definition of linguistic constraints. For more discussion of com-

putational issues related to the use of templates in grammatical description, see King

et al. (2004).

2 Template defi nitions

We begin with a simple lexical entry for the verb yawns:

(2) yawns ( PRED)=‘yawn SUBJ ’

( VFORM)=FINITE

( TENSE)=PRES

( SUBJ PERS)=3

( SUBJ NUM)=SG

201

V

F(unctional)-description, 
made up of functional 

schemata

19



Two Main Kinds of F-structure Constraints:
Defining Equations and Constraining Equations

• Functional schemata and functional descriptions are often referred to as 
equations. This is a little inaccurate, because equality is not always the 
relevant relation, but it is certainly the most common way of specifying 
constraints on f-structures in LFG. So the term has stuck.

• There are two main classes of f-structure constraints in LFG:

1.Defining Equations
These equations define the f-structure by specifying which features 
have which values. They ‘make it so’. Defining equations are stated 
with a simple equality (or other relation symbol).

(21) David sneezed

Notice, however, that the f-description also holds of
the f-structure in (22), which also contains all the
attributes and values that are mentioned in the
f-description in (20):

However, the f-structure in (22) is not the minimal
or smallest solution to the f-description in (20) be-
cause it contains additional attributes and values
that do not appear in the f-description. We require
the f-structure solution for a particular f-description
to be the minimal solution to the f-description:
no additional attributes or values that are not men-
tioned in the f-description are included. Thus, the
correct solution to the f-description in (20) is the
f-structure in (21), not the larger one in (22). Formally,
the solution to an f-description is the most general
f-structure that satisfies the f-description, which sub-
sumes all other (larger) f-structures that satisfy the
f-description.
In addition to the defining constraints just de-

scribed, LFG also allows elements of the f-description
to check the properties of the minimal solution to the
defining equations. The expression in (23) is a con-
straining equation, distinguished from a defining
equation by the c subscript on the equals sign in the
expression:

(23) (f SUBJ NUM)¼ c SG

When this expression appears, the f-structure f that is
the minimal solution to the defining equations must
contain the feature SUBJ whose value has an feature
NUM with value SG. The constraining equation in
(23) does not hold of the f-structure in (21) because in
that f-structure the value of the NUM feature has
been left unspecified and the SUBJ of f does not
have a NUM feature with value SG.
In contrast, the functional description in (24a)

for the sentence David sneezes has a well-formed
solution, the f-structure in (24b):

(24a) (f PRED)¼ ‘SNEEZEhSUBJi’
(f TENSE)¼ PRES
(f SUBJ)¼ g
(g PRED)¼ ‘DAVID’
(g NUM)¼ SG
(f SUBJ NUM)¼ c SG

(24b)

Here, the value SG for the NUM feature for g is
specified in the second-to-last line of the functional
description. Thus, the f-structure in (24b) satisfies the
defining constraints given in the first five lines of
(24a). Moreover, it satisfies the constraining equation
given in the last line of (24a).

We can also place other requirements on the mini-
mal solution to the defining equations in some
f-description. The expression in (25a) requires f not
to have the value PRESENT for the feature TENSE,
which can happen if f has no TENSE feature or if f
has a TENSE feature with some value other than
PRESENT. When it appears in a functional descrip-
tion, the expression in (25b) is an existential con-
straint, requiring f to contain the feature TENSE,
but not requiring any particular value for this feature.
We can also use a negative existential constraint to
require an f-structure not to contain an feature, as in
(25c), which requires f not to contain the feature
TENSE with any value whatsoever.

(25a) Negative equation: (f TENSE) 6¼ PRESENT
(25b) Existential constraint: (f TENSE)
(25c) Negative existential constraint: :(f TENSE)

Functional descriptions can also be stated in terms
of the Boolean operations of conjunction, disjunction,
and negation. In the f-descriptions just given, we im-
plicitly assume that the constraints in the f-description
are interpreted conjunctively; if an f-description con-
tains more than one requirement, each requirement
must hold. LFG also allows disjunctions and negations
of sets of requirements. For example, a verb like
sneeze contributes the following f-description:

(26) sneeze

Disjunction is indicated by curly brackets, with the
alternatives separated by a vertical bar |. Negation for
a set of requirements is represented by prefixing :, and
the scope of negation is indicated by curly brackets.

Lexical Functional Grammar 87

20



Two Main Kinds of F-structure Constraints:
Defining Equations and Constraining Equations

• There are two main classes of f-structure constraints in LFG:

2.Constraining Equations
These equations further constrain the f-structure once it has been 
constructed. 

In other words:
1. Satisfy defining equations, setting aside constraining equations, to get 
minimal model.
2. Satisfy constraining equations.

There are a number of different kinds of constraining equations, but the 
ones that check feature-value pairs are written with a subscript c on the 
equality like this:

(21) David sneezed

Notice, however, that the f-description also holds of
the f-structure in (22), which also contains all the
attributes and values that are mentioned in the
f-description in (20):

However, the f-structure in (22) is not the minimal
or smallest solution to the f-description in (20) be-
cause it contains additional attributes and values
that do not appear in the f-description. We require
the f-structure solution for a particular f-description
to be the minimal solution to the f-description:
no additional attributes or values that are not men-
tioned in the f-description are included. Thus, the
correct solution to the f-description in (20) is the
f-structure in (21), not the larger one in (22). Formally,
the solution to an f-description is the most general
f-structure that satisfies the f-description, which sub-
sumes all other (larger) f-structures that satisfy the
f-description.
In addition to the defining constraints just de-

scribed, LFG also allows elements of the f-description
to check the properties of the minimal solution to the
defining equations. The expression in (23) is a con-
straining equation, distinguished from a defining
equation by the c subscript on the equals sign in the
expression:

(23) (f SUBJ NUM)¼ c SG

When this expression appears, the f-structure f that is
the minimal solution to the defining equations must
contain the feature SUBJ whose value has an feature
NUM with value SG. The constraining equation in
(23) does not hold of the f-structure in (21) because in
that f-structure the value of the NUM feature has
been left unspecified and the SUBJ of f does not
have a NUM feature with value SG.
In contrast, the functional description in (24a)

for the sentence David sneezes has a well-formed
solution, the f-structure in (24b):

(24a) (f PRED)¼ ‘SNEEZEhSUBJi’
(f TENSE)¼ PRES
(f SUBJ)¼ g
(g PRED)¼ ‘DAVID’
(g NUM)¼ SG
(f SUBJ NUM)¼ c SG

(24b)

Here, the value SG for the NUM feature for g is
specified in the second-to-last line of the functional
description. Thus, the f-structure in (24b) satisfies the
defining constraints given in the first five lines of
(24a). Moreover, it satisfies the constraining equation
given in the last line of (24a).

We can also place other requirements on the mini-
mal solution to the defining equations in some
f-description. The expression in (25a) requires f not
to have the value PRESENT for the feature TENSE,
which can happen if f has no TENSE feature or if f
has a TENSE feature with some value other than
PRESENT. When it appears in a functional descrip-
tion, the expression in (25b) is an existential con-
straint, requiring f to contain the feature TENSE,
but not requiring any particular value for this feature.
We can also use a negative existential constraint to
require an f-structure not to contain an feature, as in
(25c), which requires f not to contain the feature
TENSE with any value whatsoever.

(25a) Negative equation: (f TENSE) 6¼ PRESENT
(25b) Existential constraint: (f TENSE)
(25c) Negative existential constraint: :(f TENSE)

Functional descriptions can also be stated in terms
of the Boolean operations of conjunction, disjunction,
and negation. In the f-descriptions just given, we im-
plicitly assume that the constraints in the f-description
are interpreted conjunctively; if an f-description con-
tains more than one requirement, each requirement
must hold. LFG also allows disjunctions and negations
of sets of requirements. For example, a verb like
sneeze contributes the following f-description:

(26) sneeze

Disjunction is indicated by curly brackets, with the
alternatives separated by a vertical bar |. Negation for
a set of requirements is represented by prefixing :, and
the scope of negation is indicated by curly brackets.

Lexical Functional Grammar 87

21



(21) David sneezed

Notice, however, that the f-description also holds of
the f-structure in (22), which also contains all the
attributes and values that are mentioned in the
f-description in (20):

However, the f-structure in (22) is not the minimal
or smallest solution to the f-description in (20) be-
cause it contains additional attributes and values
that do not appear in the f-description. We require
the f-structure solution for a particular f-description
to be the minimal solution to the f-description:
no additional attributes or values that are not men-
tioned in the f-description are included. Thus, the
correct solution to the f-description in (20) is the
f-structure in (21), not the larger one in (22). Formally,
the solution to an f-description is the most general
f-structure that satisfies the f-description, which sub-
sumes all other (larger) f-structures that satisfy the
f-description.
In addition to the defining constraints just de-

scribed, LFG also allows elements of the f-description
to check the properties of the minimal solution to the
defining equations. The expression in (23) is a con-
straining equation, distinguished from a defining
equation by the c subscript on the equals sign in the
expression:

(23) (f SUBJ NUM)¼ c SG

When this expression appears, the f-structure f that is
the minimal solution to the defining equations must
contain the feature SUBJ whose value has an feature
NUM with value SG. The constraining equation in
(23) does not hold of the f-structure in (21) because in
that f-structure the value of the NUM feature has
been left unspecified and the SUBJ of f does not
have a NUM feature with value SG.
In contrast, the functional description in (24a)

for the sentence David sneezes has a well-formed
solution, the f-structure in (24b):

(24a) (f PRED)¼ ‘SNEEZEhSUBJi’
(f TENSE)¼ PRES
(f SUBJ)¼ g
(g PRED)¼ ‘DAVID’
(g NUM)¼ SG
(f SUBJ NUM)¼ c SG

(24b)

Here, the value SG for the NUM feature for g is
specified in the second-to-last line of the functional
description. Thus, the f-structure in (24b) satisfies the
defining constraints given in the first five lines of
(24a). Moreover, it satisfies the constraining equation
given in the last line of (24a).

We can also place other requirements on the mini-
mal solution to the defining equations in some
f-description. The expression in (25a) requires f not
to have the value PRESENT for the feature TENSE,
which can happen if f has no TENSE feature or if f
has a TENSE feature with some value other than
PRESENT. When it appears in a functional descrip-
tion, the expression in (25b) is an existential con-
straint, requiring f to contain the feature TENSE,
but not requiring any particular value for this feature.
We can also use a negative existential constraint to
require an f-structure not to contain an feature, as in
(25c), which requires f not to contain the feature
TENSE with any value whatsoever.

(25a) Negative equation: (f TENSE) 6¼ PRESENT
(25b) Existential constraint: (f TENSE)
(25c) Negative existential constraint: :(f TENSE)

Functional descriptions can also be stated in terms
of the Boolean operations of conjunction, disjunction,
and negation. In the f-descriptions just given, we im-
plicitly assume that the constraints in the f-description
are interpreted conjunctively; if an f-description con-
tains more than one requirement, each requirement
must hold. LFG also allows disjunctions and negations
of sets of requirements. For example, a verb like
sneeze contributes the following f-description:

(26) sneeze

Disjunction is indicated by curly brackets, with the
alternatives separated by a vertical bar |. Negation for
a set of requirements is represented by prefixing :, and
the scope of negation is indicated by curly brackets.

Lexical Functional Grammar 87

(21) David sneezed

Notice, however, that the f-description also holds of
the f-structure in (22), which also contains all the
attributes and values that are mentioned in the
f-description in (20):

However, the f-structure in (22) is not the minimal
or smallest solution to the f-description in (20) be-
cause it contains additional attributes and values
that do not appear in the f-description. We require
the f-structure solution for a particular f-description
to be the minimal solution to the f-description:
no additional attributes or values that are not men-
tioned in the f-description are included. Thus, the
correct solution to the f-description in (20) is the
f-structure in (21), not the larger one in (22). Formally,
the solution to an f-description is the most general
f-structure that satisfies the f-description, which sub-
sumes all other (larger) f-structures that satisfy the
f-description.
In addition to the defining constraints just de-

scribed, LFG also allows elements of the f-description
to check the properties of the minimal solution to the
defining equations. The expression in (23) is a con-
straining equation, distinguished from a defining
equation by the c subscript on the equals sign in the
expression:

(23) (f SUBJ NUM)¼ c SG

When this expression appears, the f-structure f that is
the minimal solution to the defining equations must
contain the feature SUBJ whose value has an feature
NUM with value SG. The constraining equation in
(23) does not hold of the f-structure in (21) because in
that f-structure the value of the NUM feature has
been left unspecified and the SUBJ of f does not
have a NUM feature with value SG.
In contrast, the functional description in (24a)

for the sentence David sneezes has a well-formed
solution, the f-structure in (24b):

(24a) (f PRED)¼ ‘SNEEZEhSUBJi’
(f TENSE)¼ PRES
(f SUBJ)¼ g
(g PRED)¼ ‘DAVID’
(g NUM)¼ SG
(f SUBJ NUM)¼ c SG

(24b)

Here, the value SG for the NUM feature for g is
specified in the second-to-last line of the functional
description. Thus, the f-structure in (24b) satisfies the
defining constraints given in the first five lines of
(24a). Moreover, it satisfies the constraining equation
given in the last line of (24a).

We can also place other requirements on the mini-
mal solution to the defining equations in some
f-description. The expression in (25a) requires f not
to have the value PRESENT for the feature TENSE,
which can happen if f has no TENSE feature or if f
has a TENSE feature with some value other than
PRESENT. When it appears in a functional descrip-
tion, the expression in (25b) is an existential con-
straint, requiring f to contain the feature TENSE,
but not requiring any particular value for this feature.
We can also use a negative existential constraint to
require an f-structure not to contain an feature, as in
(25c), which requires f not to contain the feature
TENSE with any value whatsoever.

(25a) Negative equation: (f TENSE) 6¼ PRESENT
(25b) Existential constraint: (f TENSE)
(25c) Negative existential constraint: :(f TENSE)

Functional descriptions can also be stated in terms
of the Boolean operations of conjunction, disjunction,
and negation. In the f-descriptions just given, we im-
plicitly assume that the constraints in the f-description
are interpreted conjunctively; if an f-description con-
tains more than one requirement, each requirement
must hold. LFG also allows disjunctions and negations
of sets of requirements. For example, a verb like
sneeze contributes the following f-description:

(26) sneeze

Disjunction is indicated by curly brackets, with the
alternatives separated by a vertical bar |. Negation for
a set of requirements is represented by prefixing :, and
the scope of negation is indicated by curly brackets.

Lexical Functional Grammar 87

(21) David sneezed

Notice, however, that the f-description also holds of
the f-structure in (22), which also contains all the
attributes and values that are mentioned in the
f-description in (20):

However, the f-structure in (22) is not the minimal
or smallest solution to the f-description in (20) be-
cause it contains additional attributes and values
that do not appear in the f-description. We require
the f-structure solution for a particular f-description
to be the minimal solution to the f-description:
no additional attributes or values that are not men-
tioned in the f-description are included. Thus, the
correct solution to the f-description in (20) is the
f-structure in (21), not the larger one in (22). Formally,
the solution to an f-description is the most general
f-structure that satisfies the f-description, which sub-
sumes all other (larger) f-structures that satisfy the
f-description.
In addition to the defining constraints just de-

scribed, LFG also allows elements of the f-description
to check the properties of the minimal solution to the
defining equations. The expression in (23) is a con-
straining equation, distinguished from a defining
equation by the c subscript on the equals sign in the
expression:

(23) (f SUBJ NUM)¼ c SG

When this expression appears, the f-structure f that is
the minimal solution to the defining equations must
contain the feature SUBJ whose value has an feature
NUM with value SG. The constraining equation in
(23) does not hold of the f-structure in (21) because in
that f-structure the value of the NUM feature has
been left unspecified and the SUBJ of f does not
have a NUM feature with value SG.
In contrast, the functional description in (24a)

for the sentence David sneezes has a well-formed
solution, the f-structure in (24b):

(24a) (f PRED)¼ ‘SNEEZEhSUBJi’
(f TENSE)¼ PRES
(f SUBJ)¼ g
(g PRED)¼ ‘DAVID’
(g NUM)¼ SG
(f SUBJ NUM)¼ c SG

(24b)

Here, the value SG for the NUM feature for g is
specified in the second-to-last line of the functional
description. Thus, the f-structure in (24b) satisfies the
defining constraints given in the first five lines of
(24a). Moreover, it satisfies the constraining equation
given in the last line of (24a).

We can also place other requirements on the mini-
mal solution to the defining equations in some
f-description. The expression in (25a) requires f not
to have the value PRESENT for the feature TENSE,
which can happen if f has no TENSE feature or if f
has a TENSE feature with some value other than
PRESENT. When it appears in a functional descrip-
tion, the expression in (25b) is an existential con-
straint, requiring f to contain the feature TENSE,
but not requiring any particular value for this feature.
We can also use a negative existential constraint to
require an f-structure not to contain an feature, as in
(25c), which requires f not to contain the feature
TENSE with any value whatsoever.

(25a) Negative equation: (f TENSE) 6¼ PRESENT
(25b) Existential constraint: (f TENSE)
(25c) Negative existential constraint: :(f TENSE)

Functional descriptions can also be stated in terms
of the Boolean operations of conjunction, disjunction,
and negation. In the f-descriptions just given, we im-
plicitly assume that the constraints in the f-description
are interpreted conjunctively; if an f-description con-
tains more than one requirement, each requirement
must hold. LFG also allows disjunctions and negations
of sets of requirements. For example, a verb like
sneeze contributes the following f-description:

(26) sneeze

Disjunction is indicated by curly brackets, with the
alternatives separated by a vertical bar |. Negation for
a set of requirements is represented by prefixing :, and
the scope of negation is indicated by curly brackets.

Lexical Functional Grammar 87

Other Kinds of Constraining Equations

22



• The lexical entry for ‘sneeze’ (from Dalrymple 2001:87) says the following: 
The PRED of ‘sneeze’ is ‘SNEEZE<SUBJ>’. Also (conjunction): Either (disjunction) the 
VFORM is BASE (i.e. it’s a non-finite form) or it has present tense and it is not the case 
that (negation) its subject has third person singular agreement features (cf. She sneeze.)

Functional Constraints 109

2.4. Optionality

An f-description can also be optional. When this happens, the f-description

may but need not be satisfied.

Bresnan and Mchombo (1987) show that verbs in Chicheŵa optionally carry

information about their subjects; in a Chicheŵa sentence, a subject noun phrase

may be either present or absent:

(64) a. njûchi

bees

zi-ná-lúm-a

SUBJ-PAST-bite-INDICATIVE

alenje

hunters

‘The bees bit the hunters.’

b. zi-ná-lúm-a

SUBJ-PAST-bite-INDICATIVE

alenje

hunters

‘They bit the hunters.’

Bresnan and Mchombo propose that the verb zi-ná-lúm-a ‘bit’ optionally con-

tributes an f-description constraining the value of the PRED attribute of its subject.

This optional f-description is enclosed in parentheses:

(65) zi-ná-lúm-a: (( SUBJ PRED) = ‘PRO’)

Since the equation ( SUBJ PRED) = ‘PRO’ is optional, it may but need not con-

tribute to the minimal solution to the f-description for the sentence. If an overt

subject noun phrase does not contribute its own PRED value, the f-structure for

this sentence is incomplete unless this equation is satisfied, and the wellformed

f-structure for the SUBJ contains the pair PRED ‘PRO’ . If an overt subject noun

phrase appears, the equation may not be satisfied, since the PRED value of the

overt subject would produce a clash; instead, the PRED value for the SUBJ is the

one specified by the subject noun phrase:

(66) a. njûchi

bees

zi-ná-lúm-a

SUBJ-PAST-bite-INDICATIVE

alenje

hunters

‘The bees bit the hunters.’

PRED ‘BITE SUBJ,OBJ ’

SUBJ

PRED ‘BEES’

NOUNCLASS 10

OBJ

PRED ‘HUNTERS’

NOUNCLASS 2

Optionality, Disjunction, Conjunction, Negation

(21) David sneezed

Notice, however, that the f-description also holds of
the f-structure in (22), which also contains all the
attributes and values that are mentioned in the
f-description in (20):

However, the f-structure in (22) is not the minimal
or smallest solution to the f-description in (20) be-
cause it contains additional attributes and values
that do not appear in the f-description. We require
the f-structure solution for a particular f-description
to be the minimal solution to the f-description:
no additional attributes or values that are not men-
tioned in the f-description are included. Thus, the
correct solution to the f-description in (20) is the
f-structure in (21), not the larger one in (22). Formally,
the solution to an f-description is the most general
f-structure that satisfies the f-description, which sub-
sumes all other (larger) f-structures that satisfy the
f-description.
In addition to the defining constraints just de-

scribed, LFG also allows elements of the f-description
to check the properties of the minimal solution to the
defining equations. The expression in (23) is a con-
straining equation, distinguished from a defining
equation by the c subscript on the equals sign in the
expression:

(23) (f SUBJ NUM)¼ c SG

When this expression appears, the f-structure f that is
the minimal solution to the defining equations must
contain the feature SUBJ whose value has an feature
NUM with value SG. The constraining equation in
(23) does not hold of the f-structure in (21) because in
that f-structure the value of the NUM feature has
been left unspecified and the SUBJ of f does not
have a NUM feature with value SG.
In contrast, the functional description in (24a)

for the sentence David sneezes has a well-formed
solution, the f-structure in (24b):

(24a) (f PRED)¼ ‘SNEEZEhSUBJi’
(f TENSE)¼ PRES
(f SUBJ)¼ g
(g PRED)¼ ‘DAVID’
(g NUM)¼ SG
(f SUBJ NUM)¼ c SG

(24b)

Here, the value SG for the NUM feature for g is
specified in the second-to-last line of the functional
description. Thus, the f-structure in (24b) satisfies the
defining constraints given in the first five lines of
(24a). Moreover, it satisfies the constraining equation
given in the last line of (24a).

We can also place other requirements on the mini-
mal solution to the defining equations in some
f-description. The expression in (25a) requires f not
to have the value PRESENT for the feature TENSE,
which can happen if f has no TENSE feature or if f
has a TENSE feature with some value other than
PRESENT. When it appears in a functional descrip-
tion, the expression in (25b) is an existential con-
straint, requiring f to contain the feature TENSE,
but not requiring any particular value for this feature.
We can also use a negative existential constraint to
require an f-structure not to contain an feature, as in
(25c), which requires f not to contain the feature
TENSE with any value whatsoever.

(25a) Negative equation: (f TENSE) 6¼ PRESENT
(25b) Existential constraint: (f TENSE)
(25c) Negative existential constraint: :(f TENSE)

Functional descriptions can also be stated in terms
of the Boolean operations of conjunction, disjunction,
and negation. In the f-descriptions just given, we im-
plicitly assume that the constraints in the f-description
are interpreted conjunctively; if an f-description con-
tains more than one requirement, each requirement
must hold. LFG also allows disjunctions and negations
of sets of requirements. For example, a verb like
sneeze contributes the following f-description:

(26) sneeze

Disjunction is indicated by curly brackets, with the
alternatives separated by a vertical bar |. Negation for
a set of requirements is represented by prefixing :, and
the scope of negation is indicated by curly brackets.

Lexical Functional Grammar 87

Disjunction { A | B }

Negation  ¬ A or  ¬{ ... }

Conjunction (implicit) 

Optionality ( A )

Hint: ‘pro-drop’ in LFG!

23



Outside-In and Inside-Out equations

• Outside-in equations with respect to an f-structure f make 
specifications about paths leading in from f:

• Inside-out equations with respect to an f-structure f make 
specifications about paths leading out from f:

• The two kinds of equation can be combined:

lexeme

HEAD ARGUMENT STRUCTURE AGREEMENT

agreeing non-agreeing

verb noun . . . intrans trans . . . person number gender

pers-1-2 pers-3 sing plur masc fem

1 2

intr-verb-lxm 3-sing-lxm

walks yawns . . .

verb⇒




HEAD

[
verb

PRD −

]

INDEX ref





intrans⇒
[
ARG-ST 〈[]〉

]

pers-3⇒



INDEX
[
index

PERS 3

]



sing⇒



INDEX
[
index

NUM sing

]



((↑ COMP) TENSE) = PRESENT

((COMP ↑) TENSE) = PRESENT

1

lexeme

HEAD ARGUMENT STRUCTURE AGREEMENT

agreeing non-agreeing

verb noun . . . intrans trans . . . person number gender

pers-1-2 pers-3 sing plur masc fem

1 2

intr-verb-lxm 3-sing-lxm

walks yawns . . .

verb⇒




HEAD

[
verb

PRD −

]

INDEX ref





intrans⇒
[
ARG-ST 〈[]〉

]

pers-3⇒



INDEX
[
index

PERS 3

]



sing⇒



INDEX
[
index

NUM sing

]



((↑ COMP) TENSE) = PRESENT

((COMP ↑) TENSE) = PRESENT

1

(↑ COMP TENSE) = PRESENT

24



Outside-In and Inside-Out equations

• Outside-in equations with respect to an f-structure f make 
specifications about paths leading in from f:

• Inside-out equations with respect to an f-structure f make 
specifications about paths leading out from f:

• The two kinds of equation can be combined:

(COMP f )

((COMP f ) TENSE) = PRESENT

(f COMP TENSE) = PRESENT

25



Functional Uncertainty

• Simple or limited functional uncertainty can be expressed by 
defining abbreviatory symbols disjunctively:

• Unlimited functional uncertainty can be expressed with Kleene star 
(*) or Kleene plus (+), where X* means ‘0 or more X’ and X+ means 
‘1 or more X’:

• Note that f-descriptions are therefore written in a regular language, 
as is also the case for the right-hand side of 
c-structure rules.

lexeme

HEAD ARGUMENT STRUCTURE AGREEMENT

agreeing non-agreeing

verb noun . . . intrans trans . . . person number gender

pers-1-2 pers-3 sing plur masc fem

1 2

intr-verb-lxm 3-sing-lxm

walks yawns . . .

verb⇒




HEAD

[
verb

PRD −

]

INDEX ref





intrans⇒
[
ARG-ST 〈[]〉

]

pers-3⇒



INDEX
[
index

PERS 3

]



sing⇒



INDEX
[
index

NUM sing

]



((↑ COMP) TENSE) = PRESENT

((COMP ↑) TENSE) = PRESENT

GF = { SUBJ | OBJ | OBJθ | OBL | COMP | XCOMP | ADJ | XADJ }

1

lexeme

HEAD ARGUMENT STRUCTURE AGREEMENT

agreeing non-agreeing

verb noun . . . intrans trans . . . person number gender

pers-1-2 pers-3 sing plur masc fem

1 2

intr-verb-lxm 3-sing-lxm

walks yawns . . .

verb⇒




HEAD

[
verb

PRD −

]

INDEX ref





intrans⇒
[
ARG-ST 〈[]〉

]

pers-3⇒



INDEX
[
index

PERS 3

]



sing⇒



INDEX
[
index

NUM sing

]



((↑ COMP) TENSE) = PRESENT

((COMP ↑) TENSE) = PRESENT

GF = { SUBJ | OBJ | OBJθ | OBL | COMP | XCOMP | ADJ | XADJ }

(↑ FOCUS) = (↑ {XCOMP | COMP}∗ GF)

(↑ INDEX) = ((GF+ ↑) SUBJ INDEX)

1

lexeme

HEAD ARGUMENT STRUCTURE AGREEMENT

agreeing non-agreeing

verb noun . . . intrans trans . . . person number gender

pers-1-2 pers-3 sing plur masc fem

1 2

intr-verb-lxm 3-sing-lxm

walks yawns . . .

verb⇒




HEAD

[
verb

PRD −

]

INDEX ref





intrans⇒
[
ARG-ST 〈[]〉

]

pers-3⇒



INDEX
[
index

PERS 3

]



sing⇒



INDEX
[
index

NUM sing

]



((↑ COMP) TENSE) = PRESENT

((COMP ↑) TENSE) = PRESENT

GF = { SUBJ | OBJ | OBJθ | OBL | COMP | XCOMP | ADJ | XADJ }

(↑ FOCUS) = (↑ {XCOMP | COMP}∗ GF)

(↑ INDEX) = ((GF+ ↑) SUBJ INDEX)

1

26



Functional Descriptions and Subsumption

• F-descriptions are true of not just the smallest, ‘intuitively intended’ f-structure, but also any 
larger f-structure that contains the same information.*

* This relationship is called subsumption:
In general, a structure A subsumes a structure B if and only if A and B are identical or B 
contains A and additional information not included in A.

• An f-description is therefore true of not just the minimal f-structure that satisfies the 
description: the f-description is also true of the infinitely many other f-structures that the 
intended, minimal f-structure subsumes. 

160 6. Syntactic Relations and Syntactic Constraints

of a reflexive pronoun like himself must f-command the pronoun. The contrast

in acceptability between examples (67a) and (67b) is due to the fact that in ex-

ample (67a), the antecedent of the reflexive pronoun himself f-commands the

f-structure of the pronoun, while the f-command relation does not hold in (67b):

(67) a. David saw himself .

PRED ‘SEE SUBJ,OBJ ’

SUBJ PRED ‘DAVID’

OBJ

PRED ‘PRO’

PRONTYPE REFL

b. *David ’s mother saw himself .

PRED ‘SEE SUBJ,OBJ ’

SUBJ

PRED ‘MOTHER’

SPEC PRED ‘DAVID’

OBJ

PRED ‘PRO’

PRONTYPE REFL

Chapter 11 provides a fuller discussion of constraints on anaphoric binding; there,

we will see that the f-command condition for antecedents of reflexive pronouns

follows as a corollary from the binding requirements for reflexives, along the lines

of the definition in (66).

3.2. Subsumption

Subsumption is a relation that holds between two f-structures and if is

compatible with but perhaps has more structure than . In other words, sub-

sumes if and are the same, or if is the same as except that it contains

some additional structure that does not appear in . For example, the f-structure

labeled in (68) subsumes the f-structure labeled :

(68) subsumes :

PRED ‘GO SUBJ ’

SUBJ NUM SG

PRED ‘GO SUBJ ’

TENSE FUTURE

SUBJ

PRED ‘PRO’

CASE NOM

NUM SG

f subsumes g

27



Minimization

• There is a general requirement on LFG’s solution algorithm that it yield the minimal solution: 
no features that are not mentioned in the f-description may be included.

• Let’s look at an example from Dalrymple (2001).

(1)David sneezed.

• F-description:

Because the ADJ function can be multiply filled, its
value is a set of f-structures:

(14) David devoured a sandwich at noon yesterday.

The same is true of XADJ; more than one XADJ
phrase can appear in a single sentence:

(15) Having opened the window, David ate the
celery naked.

Hence, the value of the XADJ feature is also a set
of f-structures.
The f-structures that have been presented so far

have included only a subset of their functional fea-
tures. In fact, it is common in LFG literature to display
only those features that are relevant to the analysis
under discussion because a full representation is often
too unwieldy. A full f-structure for these sentences
contains at least the features and values listed in
Table 2 and probably other language-specific features
and values as well. The values given in this chart are
the ones that are most often assumed, but some
authors have argued for a different representation of
the values of some features. For example, Dalrymple
and Kaplan (2000) argue for a set-based representa-
tion of the PERS and GEND features to allow for an
account of feature resolution in coordination and of

the CASE feature to allow for case indeterminacy.
Some studies assume a PCASE feature whose value
specifies the grammatical function of its phrase. In
more recent work, Nordlinger (1998) provided a
theory of constructive case, according to which a
case marked phrase places constraints on its
f-structure environment that determine its grammati-
cal function in the sentence. This treatment supplants
the traditional treatment of obliques in terms of the
PCASE feature.

Functional Descriptions

As with c-structures, we draw a sharp distinction
between f-structures and their descriptions. The set
of f-structure constraints associated with the analysis
of some sentence is called a functional description or
f-description.

To refer to the value of a feature, say, TENSE, in
some f-structure, we use an expression like the
following:

(16) (f TENSE)

This expression refers to the value of the TENSE
feature in the f-structure f. If we want to specify the
value of that feature, we use an expression such as:

(17) (f TENSE)¼ PAST

This defining equation specifies that the feature
TENSE in the f-structure f has the value PAST.

We can also specify that an feature has a particu-
lar f-structure as its value. The expression in (18)
specifies that the value of the SUBJ feature in f is the
f-structure g:

(18) (f SUBJ)¼ g

Some features take as their value a set of functional
structures. For example, because any number of
adjuncts can appear in a sentence, the value of the
feature ADJ is a set. We can specify that an f-structure
h is a member of the ADJ set with the following
constraint, using the set-membership symbol 2:

(19) h 2 (f ADJ)

The constraints discussed so far are called defining
constraints because they define the required properties
of a functional structure. An abbreviated f-description
for a sentence such asDavid sneezed is:

(20) (f PRED)¼ ‘SNEEZEhSUBJi’
(f TENSE)¼ PAST
(f SUBJ)¼ g
(g PRED)¼ ‘DAVID’

This f-description holds of the following f-structure,
where the f-structures are annotated with the names
used in the f-description (20):

Table 2 f-Structure features

Feature Value

Person PERS 1, 2, 3
Gender GEND MASC, FEM, . . .
Number NUM SG, DUAL, PL, . . .
Case CASE NOM, ACC, . . .
Surface form FORM Surface word form
Verb form VFORM PASTPART, PRESPART, . . .
Complementizer

form
COMPFORM Surface form of

complementizer: THAT,
WHETHER, . . .

Tense TENSE PRES, PAST, . . .
Aspect ASPECT F-structure representing

complex description of
sentential aspect;
sometimes abbreviated,
e.g., PRES.IMPERFECT

Pronoun type PRONTYPE REL, WH, PERS, . . .

86 Lexical Functional Grammar

(21) David sneezed

Notice, however, that the f-description also holds of
the f-structure in (22), which also contains all the
attributes and values that are mentioned in the
f-description in (20):

However, the f-structure in (22) is not the minimal
or smallest solution to the f-description in (20) be-
cause it contains additional attributes and values
that do not appear in the f-description. We require
the f-structure solution for a particular f-description
to be the minimal solution to the f-description:
no additional attributes or values that are not men-
tioned in the f-description are included. Thus, the
correct solution to the f-description in (20) is the
f-structure in (21), not the larger one in (22). Formally,
the solution to an f-description is the most general
f-structure that satisfies the f-description, which sub-
sumes all other (larger) f-structures that satisfy the
f-description.
In addition to the defining constraints just de-

scribed, LFG also allows elements of the f-description
to check the properties of the minimal solution to the
defining equations. The expression in (23) is a con-
straining equation, distinguished from a defining
equation by the c subscript on the equals sign in the
expression:

(23) (f SUBJ NUM)¼ c SG

When this expression appears, the f-structure f that is
the minimal solution to the defining equations must
contain the feature SUBJ whose value has an feature
NUM with value SG. The constraining equation in
(23) does not hold of the f-structure in (21) because in
that f-structure the value of the NUM feature has
been left unspecified and the SUBJ of f does not
have a NUM feature with value SG.
In contrast, the functional description in (24a)

for the sentence David sneezes has a well-formed
solution, the f-structure in (24b):

(24a) (f PRED)¼ ‘SNEEZEhSUBJi’
(f TENSE)¼ PRES
(f SUBJ)¼ g
(g PRED)¼ ‘DAVID’
(g NUM)¼ SG
(f SUBJ NUM)¼ c SG

(24b)

Here, the value SG for the NUM feature for g is
specified in the second-to-last line of the functional
description. Thus, the f-structure in (24b) satisfies the
defining constraints given in the first five lines of
(24a). Moreover, it satisfies the constraining equation
given in the last line of (24a).

We can also place other requirements on the mini-
mal solution to the defining equations in some
f-description. The expression in (25a) requires f not
to have the value PRESENT for the feature TENSE,
which can happen if f has no TENSE feature or if f
has a TENSE feature with some value other than
PRESENT. When it appears in a functional descrip-
tion, the expression in (25b) is an existential con-
straint, requiring f to contain the feature TENSE,
but not requiring any particular value for this feature.
We can also use a negative existential constraint to
require an f-structure not to contain an feature, as in
(25c), which requires f not to contain the feature
TENSE with any value whatsoever.

(25a) Negative equation: (f TENSE) 6¼ PRESENT
(25b) Existential constraint: (f TENSE)
(25c) Negative existential constraint: :(f TENSE)

Functional descriptions can also be stated in terms
of the Boolean operations of conjunction, disjunction,
and negation. In the f-descriptions just given, we im-
plicitly assume that the constraints in the f-description
are interpreted conjunctively; if an f-description con-
tains more than one requirement, each requirement
must hold. LFG also allows disjunctions and negations
of sets of requirements. For example, a verb like
sneeze contributes the following f-description:

(26) sneeze

Disjunction is indicated by curly brackets, with the
alternatives separated by a vertical bar |. Negation for
a set of requirements is represented by prefixing :, and
the scope of negation is indicated by curly brackets.

Lexical Functional Grammar 87
(21) David sneezed

Notice, however, that the f-description also holds of
the f-structure in (22), which also contains all the
attributes and values that are mentioned in the
f-description in (20):

However, the f-structure in (22) is not the minimal
or smallest solution to the f-description in (20) be-
cause it contains additional attributes and values
that do not appear in the f-description. We require
the f-structure solution for a particular f-description
to be the minimal solution to the f-description:
no additional attributes or values that are not men-
tioned in the f-description are included. Thus, the
correct solution to the f-description in (20) is the
f-structure in (21), not the larger one in (22). Formally,
the solution to an f-description is the most general
f-structure that satisfies the f-description, which sub-
sumes all other (larger) f-structures that satisfy the
f-description.
In addition to the defining constraints just de-

scribed, LFG also allows elements of the f-description
to check the properties of the minimal solution to the
defining equations. The expression in (23) is a con-
straining equation, distinguished from a defining
equation by the c subscript on the equals sign in the
expression:

(23) (f SUBJ NUM)¼ c SG

When this expression appears, the f-structure f that is
the minimal solution to the defining equations must
contain the feature SUBJ whose value has an feature
NUM with value SG. The constraining equation in
(23) does not hold of the f-structure in (21) because in
that f-structure the value of the NUM feature has
been left unspecified and the SUBJ of f does not
have a NUM feature with value SG.
In contrast, the functional description in (24a)

for the sentence David sneezes has a well-formed
solution, the f-structure in (24b):

(24a) (f PRED)¼ ‘SNEEZEhSUBJi’
(f TENSE)¼ PRES
(f SUBJ)¼ g
(g PRED)¼ ‘DAVID’
(g NUM)¼ SG
(f SUBJ NUM)¼ c SG

(24b)

Here, the value SG for the NUM feature for g is
specified in the second-to-last line of the functional
description. Thus, the f-structure in (24b) satisfies the
defining constraints given in the first five lines of
(24a). Moreover, it satisfies the constraining equation
given in the last line of (24a).

We can also place other requirements on the mini-
mal solution to the defining equations in some
f-description. The expression in (25a) requires f not
to have the value PRESENT for the feature TENSE,
which can happen if f has no TENSE feature or if f
has a TENSE feature with some value other than
PRESENT. When it appears in a functional descrip-
tion, the expression in (25b) is an existential con-
straint, requiring f to contain the feature TENSE,
but not requiring any particular value for this feature.
We can also use a negative existential constraint to
require an f-structure not to contain an feature, as in
(25c), which requires f not to contain the feature
TENSE with any value whatsoever.

(25a) Negative equation: (f TENSE) 6¼ PRESENT
(25b) Existential constraint: (f TENSE)
(25c) Negative existential constraint: :(f TENSE)

Functional descriptions can also be stated in terms
of the Boolean operations of conjunction, disjunction,
and negation. In the f-descriptions just given, we im-
plicitly assume that the constraints in the f-description
are interpreted conjunctively; if an f-description con-
tains more than one requirement, each requirement
must hold. LFG also allows disjunctions and negations
of sets of requirements. For example, a verb like
sneeze contributes the following f-description:

(26) sneeze

Disjunction is indicated by curly brackets, with the
alternatives separated by a vertical bar |. Negation for
a set of requirements is represented by prefixing :, and
the scope of negation is indicated by curly brackets.

Lexical Functional Grammar 87

Consistent but non-minimal f-structure

subsum
es

Minimal consistent f-structure

28



Lexical Generalizations in LFG

Subsequent work within HPSG has built on this view. Linguistic generalizations in

HPSG are captured by a type hierarchy, with more specific types inheriting information

from less specific but related types. Construction Grammar (Kay, 1998) assumes a sim-

ilar hierarchy, the constructional hierarchy. On the HPSG view, lexical generalizations

are statable as relations between elements in the type lattice, where different subtypes

represent alternatives, and a type can belong to multiple supertypes. For example, Mal-

ouf (1998) provides the following depiction of a partial type hierarchy of HEAD values:

(1) HEAD

NOUN

C-NOUN GERUND

RELATIONAL

VERB

This diagram represents an AND/OR lattice: the alternative types NOUN and RELATIONAL

are disjunctively specified as different subtypes of the type HEAD. The type GERUND

inherits from two supertypes, NOUN and RELATIONAL, and the information inherited

from all supertypes is conjoined.

Work within LFG, on the other hand, has not appealed to typed feature structures

to encode linguistic generalizations. Instead, LFG encodes lexical generalizations not

in terms of formal inheritance relations between types, but in terms of inclusion rela-

tions between descriptions of structures. An LFG functional description – a collection

of equations – can be given a name, and this name can be used to stand for those equa-

tions in other linguistic descriptions. In computational treatments, these named descrip-

tions are referred to as templates. A description containing a reference to a template is

equivalent to that same description with the named equations, the template’s definition,

substituted for the template reference.

Template definitions can refer to other templates; thus, a template hierarchy similar

to the type hierarchy of HPSG or Construction Grammar can be drawn to represent the

inclusion relations between these named LFG descriptions. Importantly, however, the

relation depicted in such a diagram shows only how pieces of descriptions are factored

into patterns that recur across the lexicon and does not indicate the formal mode of com-

bination of those pieces. The context of the template reference is what determines how

the template definition combines with other parts of a larger description.

In the following, we will present several small template hierarchies and show how

they can be used in the definition of linguistic constraints. For more discussion of com-

putational issues related to the use of templates in grammatical description, see King

et al. (2004).

2 Template defi nitions

We begin with a simple lexical entry for the verb yawns:

(2) yawns ( PRED)=‘yawn SUBJ ’

( VFORM)=FINITE

( TENSE)=PRES

( SUBJ PERS)=3

( SUBJ NUM)=SG

201

Subsequent work within HPSG has built on this view. Linguistic generalizations in

HPSG are captured by a type hierarchy, with more specific types inheriting information

from less specific but related types. Construction Grammar (Kay, 1998) assumes a sim-

ilar hierarchy, the constructional hierarchy. On the HPSG view, lexical generalizations

are statable as relations between elements in the type lattice, where different subtypes

represent alternatives, and a type can belong to multiple supertypes. For example, Mal-

ouf (1998) provides the following depiction of a partial type hierarchy of HEAD values:

(1) HEAD

NOUN

C-NOUN GERUND

RELATIONAL

VERB

This diagram represents an AND/OR lattice: the alternative types NOUN and RELATIONAL

are disjunctively specified as different subtypes of the type HEAD. The type GERUND

inherits from two supertypes, NOUN and RELATIONAL, and the information inherited

from all supertypes is conjoined.

Work within LFG, on the other hand, has not appealed to typed feature structures

to encode linguistic generalizations. Instead, LFG encodes lexical generalizations not

in terms of formal inheritance relations between types, but in terms of inclusion rela-

tions between descriptions of structures. An LFG functional description – a collection

of equations – can be given a name, and this name can be used to stand for those equa-

tions in other linguistic descriptions. In computational treatments, these named descrip-

tions are referred to as templates. A description containing a reference to a template is

equivalent to that same description with the named equations, the template’s definition,

substituted for the template reference.

Template definitions can refer to other templates; thus, a template hierarchy similar

to the type hierarchy of HPSG or Construction Grammar can be drawn to represent the

inclusion relations between these named LFG descriptions. Importantly, however, the

relation depicted in such a diagram shows only how pieces of descriptions are factored

into patterns that recur across the lexicon and does not indicate the formal mode of com-

bination of those pieces. The context of the template reference is what determines how

the template definition combines with other parts of a larger description.

In the following, we will present several small template hierarchies and show how

they can be used in the definition of linguistic constraints. For more discussion of com-

putational issues related to the use of templates in grammatical description, see King

et al. (2004).

2 Template defi nitions

We begin with a simple lexical entry for the verb yawns:

(2) yawns ( PRED)=‘yawn SUBJ ’

( VFORM)=FINITE

( TENSE)=PRES

( SUBJ PERS)=3

( SUBJ NUM)=SG

201

V

A lot of this f-description 
is shared by other verbs.

29



This lexical entry contains information that is shared by other verbs. We can define the

templates PRESENT and 3SG to encode this common information:

(3) PRESENT = ( VFORM)=FINITE

( TENSE)=PRES

3SG = ( SUBJ PERS)=3

( SUBJ NUM)=SG

The template name PRESENT names the functional description consisting of the two

equations ( VFORM)=FINITE and ( TENSE)=PRES, and similarly for 3SG. With these

definitions the entry for yawns can be rewritten as

(4) yawns ( PRED)=‘yawn SUBJ ’

@PRESENT

@3SG

A template reference (or invocation) in a lexical entry or in the definition of another

template, as in ((5) below), is marked by a preceding at-sign “@”. The present-tense

and third-singular templates will be invoked by all similarly inflected verbs, so that the

details of these subdescriptions are specified in one place but effective in many.

We can further subdivide the functional description named by PRESENT into two

more primitive template definitions:

(5) FINITE = ( VFORM)=FINITE

PRES-TENSE = ( TENSE)=PRES

PRESENT = @FINITE

@PRES-TENSE

These template definitions can be arranged in a simple hierarchy that indicates their in-

terdependencies:

(6) PRES-TENSE FINITE

PRESENT

This diagram records the fact that the PRES-TENSE and FINITE templates are both refer-

enced in (or inherited by) the definition of PRESENT. Similarly, we can also subdivide

the 3SG template as follows:

(7) 3PERSONSUBJ = ( SUBJ PERS)=3

SINGSUBJ = ( SUBJ NUM)=SG

3SG = @3PERSONSUBJ

@SINGSUBJ

This information can also be represented as a template hierarchy:

202

This lexical entry contains information that is shared by other verbs. We can define the

templates PRESENT and 3SG to encode this common information:

(3) PRESENT = ( VFORM)=FINITE

( TENSE)=PRES

3SG = ( SUBJ PERS)=3

( SUBJ NUM)=SG

The template name PRESENT names the functional description consisting of the two

equations ( VFORM)=FINITE and ( TENSE)=PRES, and similarly for 3SG. With these

definitions the entry for yawns can be rewritten as

(4) yawns ( PRED)=‘yawn SUBJ ’

@PRESENT

@3SG

A template reference (or invocation) in a lexical entry or in the definition of another

template, as in ((5) below), is marked by a preceding at-sign “@”. The present-tense

and third-singular templates will be invoked by all similarly inflected verbs, so that the

details of these subdescriptions are specified in one place but effective in many.

We can further subdivide the functional description named by PRESENT into two

more primitive template definitions:

(5) FINITE = ( VFORM)=FINITE

PRES-TENSE = ( TENSE)=PRES

PRESENT = @FINITE

@PRES-TENSE

These template definitions can be arranged in a simple hierarchy that indicates their in-

terdependencies:

(6) PRES-TENSE FINITE

PRESENT

This diagram records the fact that the PRES-TENSE and FINITE templates are both refer-

enced in (or inherited by) the definition of PRESENT. Similarly, we can also subdivide

the 3SG template as follows:

(7) 3PERSONSUBJ = ( SUBJ PERS)=3

SINGSUBJ = ( SUBJ NUM)=SG

3SG = @3PERSONSUBJ

@SINGSUBJ

This information can also be represented as a template hierarchy:

202

Subsequent work within HPSG has built on this view. Linguistic generalizations in

HPSG are captured by a type hierarchy, with more specific types inheriting information

from less specific but related types. Construction Grammar (Kay, 1998) assumes a sim-

ilar hierarchy, the constructional hierarchy. On the HPSG view, lexical generalizations

are statable as relations between elements in the type lattice, where different subtypes

represent alternatives, and a type can belong to multiple supertypes. For example, Mal-

ouf (1998) provides the following depiction of a partial type hierarchy of HEAD values:

(1) HEAD

NOUN

C-NOUN GERUND

RELATIONAL

VERB

This diagram represents an AND/OR lattice: the alternative types NOUN and RELATIONAL

are disjunctively specified as different subtypes of the type HEAD. The type GERUND

inherits from two supertypes, NOUN and RELATIONAL, and the information inherited

from all supertypes is conjoined.

Work within LFG, on the other hand, has not appealed to typed feature structures

to encode linguistic generalizations. Instead, LFG encodes lexical generalizations not

in terms of formal inheritance relations between types, but in terms of inclusion rela-

tions between descriptions of structures. An LFG functional description – a collection

of equations – can be given a name, and this name can be used to stand for those equa-

tions in other linguistic descriptions. In computational treatments, these named descrip-

tions are referred to as templates. A description containing a reference to a template is

equivalent to that same description with the named equations, the template’s definition,

substituted for the template reference.

Template definitions can refer to other templates; thus, a template hierarchy similar

to the type hierarchy of HPSG or Construction Grammar can be drawn to represent the

inclusion relations between these named LFG descriptions. Importantly, however, the

relation depicted in such a diagram shows only how pieces of descriptions are factored

into patterns that recur across the lexicon and does not indicate the formal mode of com-

bination of those pieces. The context of the template reference is what determines how

the template definition combines with other parts of a larger description.

In the following, we will present several small template hierarchies and show how

they can be used in the definition of linguistic constraints. For more discussion of com-

putational issues related to the use of templates in grammatical description, see King

et al. (2004).

2 Template defi nitions

We begin with a simple lexical entry for the verb yawns:

(2) yawns ( PRED)=‘yawn SUBJ ’

( VFORM)=FINITE

( TENSE)=PRES

( SUBJ PERS)=3

( SUBJ NUM)=SG

201

This lexical entry contains information that is shared by other verbs. We can define the

templates PRESENT and 3SG to encode this common information:

(3) PRESENT = ( VFORM)=FINITE

( TENSE)=PRES

3SG = ( SUBJ PERS)=3

( SUBJ NUM)=SG

The template name PRESENT names the functional description consisting of the two

equations ( VFORM)=FINITE and ( TENSE)=PRES, and similarly for 3SG. With these

definitions the entry for yawns can be rewritten as

(4) yawns ( PRED)=‘yawn SUBJ ’

@PRESENT

@3SG

A template reference (or invocation) in a lexical entry or in the definition of another

template, as in ((5) below), is marked by a preceding at-sign “@”. The present-tense

and third-singular templates will be invoked by all similarly inflected verbs, so that the

details of these subdescriptions are specified in one place but effective in many.

We can further subdivide the functional description named by PRESENT into two

more primitive template definitions:

(5) FINITE = ( VFORM)=FINITE

PRES-TENSE = ( TENSE)=PRES

PRESENT = @FINITE

@PRES-TENSE

These template definitions can be arranged in a simple hierarchy that indicates their in-

terdependencies:

(6) PRES-TENSE FINITE

PRESENT

This diagram records the fact that the PRES-TENSE and FINITE templates are both refer-

enced in (or inherited by) the definition of PRESENT. Similarly, we can also subdivide

the 3SG template as follows:

(7) 3PERSONSUBJ = ( SUBJ PERS)=3

SINGSUBJ = ( SUBJ NUM)=SG

3SG = @3PERSONSUBJ

@SINGSUBJ

This information can also be represented as a template hierarchy:

202

LFG Templates: Relations between Descriptions

⇧

30



This lexical entry contains information that is shared by other verbs. We can define the

templates PRESENT and 3SG to encode this common information:

(3) PRESENT = ( VFORM)=FINITE

( TENSE)=PRES

3SG = ( SUBJ PERS)=3

( SUBJ NUM)=SG

The template name PRESENT names the functional description consisting of the two

equations ( VFORM)=FINITE and ( TENSE)=PRES, and similarly for 3SG. With these

definitions the entry for yawns can be rewritten as

(4) yawns ( PRED)=‘yawn SUBJ ’

@PRESENT

@3SG

A template reference (or invocation) in a lexical entry or in the definition of another

template, as in ((5) below), is marked by a preceding at-sign “@”. The present-tense

and third-singular templates will be invoked by all similarly inflected verbs, so that the

details of these subdescriptions are specified in one place but effective in many.

We can further subdivide the functional description named by PRESENT into two

more primitive template definitions:

(5) FINITE = ( VFORM)=FINITE

PRES-TENSE = ( TENSE)=PRES

PRESENT = @FINITE

@PRES-TENSE

These template definitions can be arranged in a simple hierarchy that indicates their in-

terdependencies:

(6) PRES-TENSE FINITE

PRESENT

This diagram records the fact that the PRES-TENSE and FINITE templates are both refer-

enced in (or inherited by) the definition of PRESENT. Similarly, we can also subdivide

the 3SG template as follows:

(7) 3PERSONSUBJ = ( SUBJ PERS)=3

SINGSUBJ = ( SUBJ NUM)=SG

3SG = @3PERSONSUBJ

@SINGSUBJ

This information can also be represented as a template hierarchy:

202

This lexical entry contains information that is shared by other verbs. We can define the

templates PRESENT and 3SG to encode this common information:

(3) PRESENT = ( VFORM)=FINITE

( TENSE)=PRES

3SG = ( SUBJ PERS)=3

( SUBJ NUM)=SG

The template name PRESENT names the functional description consisting of the two

equations ( VFORM)=FINITE and ( TENSE)=PRES, and similarly for 3SG. With these

definitions the entry for yawns can be rewritten as

(4) yawns ( PRED)=‘yawn SUBJ ’

@PRESENT

@3SG

A template reference (or invocation) in a lexical entry or in the definition of another

template, as in ((5) below), is marked by a preceding at-sign “@”. The present-tense

and third-singular templates will be invoked by all similarly inflected verbs, so that the

details of these subdescriptions are specified in one place but effective in many.

We can further subdivide the functional description named by PRESENT into two

more primitive template definitions:

(5) FINITE = ( VFORM)=FINITE

PRES-TENSE = ( TENSE)=PRES

PRESENT = @FINITE

@PRES-TENSE

These template definitions can be arranged in a simple hierarchy that indicates their in-

terdependencies:

(6) PRES-TENSE FINITE

PRESENT

This diagram records the fact that the PRES-TENSE and FINITE templates are both refer-

enced in (or inherited by) the definition of PRESENT. Similarly, we can also subdivide

the 3SG template as follows:

(7) 3PERSONSUBJ = ( SUBJ PERS)=3

SINGSUBJ = ( SUBJ NUM)=SG

3SG = @3PERSONSUBJ

@SINGSUBJ

This information can also be represented as a template hierarchy:

202

This lexical entry contains information that is shared by other verbs. We can define the

templates PRESENT and 3SG to encode this common information:

(3) PRESENT = ( VFORM)=FINITE

( TENSE)=PRES

3SG = ( SUBJ PERS)=3

( SUBJ NUM)=SG

The template name PRESENT names the functional description consisting of the two

equations ( VFORM)=FINITE and ( TENSE)=PRES, and similarly for 3SG. With these

definitions the entry for yawns can be rewritten as

(4) yawns ( PRED)=‘yawn SUBJ ’

@PRESENT

@3SG

A template reference (or invocation) in a lexical entry or in the definition of another

template, as in ((5) below), is marked by a preceding at-sign “@”. The present-tense

and third-singular templates will be invoked by all similarly inflected verbs, so that the

details of these subdescriptions are specified in one place but effective in many.

We can further subdivide the functional description named by PRESENT into two

more primitive template definitions:

(5) FINITE = ( VFORM)=FINITE

PRES-TENSE = ( TENSE)=PRES

PRESENT = @FINITE

@PRES-TENSE

These template definitions can be arranged in a simple hierarchy that indicates their in-

terdependencies:

(6) PRES-TENSE FINITE

PRESENT

This diagram records the fact that the PRES-TENSE and FINITE templates are both refer-

enced in (or inherited by) the definition of PRESENT. Similarly, we can also subdivide

the 3SG template as follows:

(7) 3PERSONSUBJ = ( SUBJ PERS)=3

SINGSUBJ = ( SUBJ NUM)=SG

3SG = @3PERSONSUBJ

@SINGSUBJ

This information can also be represented as a template hierarchy:

202

(8) 3PERSONSUBJ SINGSUBJ

3SG

Finally, we can define a template PRES3SG that combines both tense and agreement

features:

(9) PRES3SG = @PRESENT

@3SG

Putting all these definitions together, our template hierarchy becomes

(10) PRES-TENSE FINITE 3PERSONSUBJ SINGSUBJ

PRESENT 3SG

PRES3SG

and the lexical entry for yawns further reduces to

(11) yawns ( PRED)=‘yawn SUBJ ’

@PRES3SG

Thus we see that a number of hierarchically arranged generalizations can be ex-

pressed through a simple set of template definitions. The use of parameterized templates

allows for further generalizations to be captured by factoring out information provided

as an argument to the template. These are discussed next.

3 Parameterized templates

All intransitive verbs in LFG carry a semantic form that indicates the relation denoted

by the verb and also the fact that the verb must appear in f-structures containing the

single governable grammatical function SUBJ. The predicate, of course, differs from

verb to verb, but the SUBJ subcategorization frame is common to all intransitives. We

can define INTRANSITIVE as a parameterized template that expresses the common sub-

categorization. The predicate itself can be provided as an argument that is specified

differently in different lexical entries. This template can be used with all intransitive

verbs:

(12) INTRANSITIVE(P) = ( PRED)=‘P SUBJ ’

Whatever argument is provided in an invocation of this template will be substituted for

the parameter to create the description that replaces the template reference. Thus the

description in the original entry for the verb yawns can be equivalently specified as fol-

lows:

(13) yawns @INTRANSITIVE(yawn)

@PRES3SG

203

Templates: Factorization and Hierarchies

⇧ ⇧

31



(8) 3PERSONSUBJ SINGSUBJ

3SG

Finally, we can define a template PRES3SG that combines both tense and agreement

features:

(9) PRES3SG = @PRESENT

@3SG

Putting all these definitions together, our template hierarchy becomes

(10) PRES-TENSE FINITE 3PERSONSUBJ SINGSUBJ

PRESENT 3SG

PRES3SG

and the lexical entry for yawns further reduces to

(11) yawns ( PRED)=‘yawn SUBJ ’

@PRES3SG

Thus we see that a number of hierarchically arranged generalizations can be ex-

pressed through a simple set of template definitions. The use of parameterized templates

allows for further generalizations to be captured by factoring out information provided

as an argument to the template. These are discussed next.

3 Parameterized templates

All intransitive verbs in LFG carry a semantic form that indicates the relation denoted

by the verb and also the fact that the verb must appear in f-structures containing the

single governable grammatical function SUBJ. The predicate, of course, differs from

verb to verb, but the SUBJ subcategorization frame is common to all intransitives. We

can define INTRANSITIVE as a parameterized template that expresses the common sub-

categorization. The predicate itself can be provided as an argument that is specified

differently in different lexical entries. This template can be used with all intransitive

verbs:

(12) INTRANSITIVE(P) = ( PRED)=‘P SUBJ ’

Whatever argument is provided in an invocation of this template will be substituted for

the parameter to create the description that replaces the template reference. Thus the

description in the original entry for the verb yawns can be equivalently specified as fol-

lows:

(13) yawns @INTRANSITIVE(yawn)

@PRES3SG

203

(8) 3PERSONSUBJ SINGSUBJ

3SG

Finally, we can define a template PRES3SG that combines both tense and agreement

features:

(9) PRES3SG = @PRESENT

@3SG

Putting all these definitions together, our template hierarchy becomes

(10) PRES-TENSE FINITE 3PERSONSUBJ SINGSUBJ

PRESENT 3SG

PRES3SG

and the lexical entry for yawns further reduces to

(11) yawns ( PRED)=‘yawn SUBJ ’

@PRES3SG

Thus we see that a number of hierarchically arranged generalizations can be ex-

pressed through a simple set of template definitions. The use of parameterized templates

allows for further generalizations to be captured by factoring out information provided

as an argument to the template. These are discussed next.

3 Parameterized templates

All intransitive verbs in LFG carry a semantic form that indicates the relation denoted

by the verb and also the fact that the verb must appear in f-structures containing the

single governable grammatical function SUBJ. The predicate, of course, differs from

verb to verb, but the SUBJ subcategorization frame is common to all intransitives. We

can define INTRANSITIVE as a parameterized template that expresses the common sub-

categorization. The predicate itself can be provided as an argument that is specified

differently in different lexical entries. This template can be used with all intransitive

verbs:

(12) INTRANSITIVE(P) = ( PRED)=‘P SUBJ ’

Whatever argument is provided in an invocation of this template will be substituted for

the parameter to create the description that replaces the template reference. Thus the

description in the original entry for the verb yawns can be equivalently specified as fol-

lows:

(13) yawns @INTRANSITIVE(yawn)

@PRES3SG

203

Templates: Factorization and Hierarchies

This lexical entry contains information that is shared by other verbs. We can define the

templates PRESENT and 3SG to encode this common information:

(3) PRESENT = ( VFORM)=FINITE

( TENSE)=PRES

3SG = ( SUBJ PERS)=3

( SUBJ NUM)=SG

The template name PRESENT names the functional description consisting of the two

equations ( VFORM)=FINITE and ( TENSE)=PRES, and similarly for 3SG. With these

definitions the entry for yawns can be rewritten as

(4) yawns ( PRED)=‘yawn SUBJ ’

@PRESENT

@3SG

A template reference (or invocation) in a lexical entry or in the definition of another

template, as in ((5) below), is marked by a preceding at-sign “@”. The present-tense

and third-singular templates will be invoked by all similarly inflected verbs, so that the

details of these subdescriptions are specified in one place but effective in many.

We can further subdivide the functional description named by PRESENT into two

more primitive template definitions:

(5) FINITE = ( VFORM)=FINITE

PRES-TENSE = ( TENSE)=PRES

PRESENT = @FINITE

@PRES-TENSE

These template definitions can be arranged in a simple hierarchy that indicates their in-

terdependencies:

(6) PRES-TENSE FINITE

PRESENT

This diagram records the fact that the PRES-TENSE and FINITE templates are both refer-

enced in (or inherited by) the definition of PRESENT. Similarly, we can also subdivide

the 3SG template as follows:

(7) 3PERSONSUBJ = ( SUBJ PERS)=3

SINGSUBJ = ( SUBJ NUM)=SG

3SG = @3PERSONSUBJ

@SINGSUBJ

This information can also be represented as a template hierarchy:

202

⇧

(8) 3PERSONSUBJ SINGSUBJ

3SG

Finally, we can define a template PRES3SG that combines both tense and agreement

features:

(9) PRES3SG = @PRESENT

@3SG

Putting all these definitions together, our template hierarchy becomes

(10) PRES-TENSE FINITE 3PERSONSUBJ SINGSUBJ

PRESENT 3SG

PRES3SG

and the lexical entry for yawns further reduces to

(11) yawns ( PRED)=‘yawn SUBJ ’

@PRES3SG

Thus we see that a number of hierarchically arranged generalizations can be ex-

pressed through a simple set of template definitions. The use of parameterized templates

allows for further generalizations to be captured by factoring out information provided

as an argument to the template. These are discussed next.

3 Parameterized templates

All intransitive verbs in LFG carry a semantic form that indicates the relation denoted

by the verb and also the fact that the verb must appear in f-structures containing the

single governable grammatical function SUBJ. The predicate, of course, differs from

verb to verb, but the SUBJ subcategorization frame is common to all intransitives. We

can define INTRANSITIVE as a parameterized template that expresses the common sub-

categorization. The predicate itself can be provided as an argument that is specified

differently in different lexical entries. This template can be used with all intransitive

verbs:

(12) INTRANSITIVE(P) = ( PRED)=‘P SUBJ ’

Whatever argument is provided in an invocation of this template will be substituted for

the parameter to create the description that replaces the template reference. Thus the

description in the original entry for the verb yawns can be equivalently specified as fol-

lows:

(13) yawns @INTRANSITIVE(yawn)

@PRES3SG

203

32



Arguments to parameterized templates can represent any part of an f-structure descrip-

tion: attributes as well as values and even whole subdescriptions can be parameterized.

Templates can also take multiple arguments. For example, the template for a particle

verb might take the verbal predicate as one argument and the form of the particle as

another:

(14) VERB-PRT(P PRT) = ( PRED)=‘P SUBJ, OBJ ’

( PRT-FORM)=c PRT

The few templates we have defined serve to demonstrate the point that templates

interpreted only by simple substitution allow commonalities between lexical entries to

be represented succinctly and for linguistic generalizations to be expressed in a theoret-

ically motivated manner. The parameterized template INTRANSITIVE(P) is shared by

verbs like sneeze, arrive, and many others. The PRES3SG template is shared by verbs

like appears, goes, cooks, and many others. The template PRESENT, used in defining

the PRES3SG template, is also used by verbs like bake, are, and many others.

4 Templates and Boolean operators

In LFG, complex descriptions can be conjoined, disjoined, or negated. Since templates

are just names for descriptions, we can also use these operators with templates. For

instance, we could define a template PRESNOT3SG by negating the 3SG template, as

follows:

(15) PRESNOT3SG = @PRESENT

@3SG

The substitutions specified by these invocations produce the following description:

(16) ( VFORM)=FINITE

( TENSE)=PRES

( SUBJ PERS)=3

( SUBJ NUM)=SG

The first two lines are the result of expanding the PRESENT template, and the third and

fourth lines are the negation of the expansion of the 3SG template. This template can be

used in the lexical entry of verbs which are present tense but whose subject is not third

person singular (yawn, bake, appear, etc.).

With this addition we have the following template hierarchy:

(17) PRES-TENSE FINITE 3PERSONSUBJ SINGSUBJ

PRESENT 3SG

PRESNOT3SG PRES3SG

This indicates that PRESNOT3SG includes (“inherits”) descriptions from both of its an-

cestors. However, unlike an HPSG type hierarchy, this does not entail that the inherited

204

Negation

Arguments to parameterized templates can represent any part of an f-structure descrip-

tion: attributes as well as values and even whole subdescriptions can be parameterized.

Templates can also take multiple arguments. For example, the template for a particle

verb might take the verbal predicate as one argument and the form of the particle as

another:

(14) VERB-PRT(P PRT) = ( PRED)=‘P SUBJ, OBJ ’

( PRT-FORM)=c PRT

The few templates we have defined serve to demonstrate the point that templates

interpreted only by simple substitution allow commonalities between lexical entries to

be represented succinctly and for linguistic generalizations to be expressed in a theoret-

ically motivated manner. The parameterized template INTRANSITIVE(P) is shared by

verbs like sneeze, arrive, and many others. The PRES3SG template is shared by verbs

like appears, goes, cooks, and many others. The template PRESENT, used in defining

the PRES3SG template, is also used by verbs like bake, are, and many others.

4 Templates and Boolean operators

In LFG, complex descriptions can be conjoined, disjoined, or negated. Since templates

are just names for descriptions, we can also use these operators with templates. For

instance, we could define a template PRESNOT3SG by negating the 3SG template, as

follows:

(15) PRESNOT3SG = @PRESENT

@3SG

The substitutions specified by these invocations produce the following description:

(16) ( VFORM)=FINITE

( TENSE)=PRES

( SUBJ PERS)=3

( SUBJ NUM)=SG

The first two lines are the result of expanding the PRESENT template, and the third and

fourth lines are the negation of the expansion of the 3SG template. This template can be

used in the lexical entry of verbs which are present tense but whose subject is not third

person singular (yawn, bake, appear, etc.).

With this addition we have the following template hierarchy:

(17) PRES-TENSE FINITE 3PERSONSUBJ SINGSUBJ

PRESENT 3SG

PRESNOT3SG PRES3SG

This indicates that PRESNOT3SG includes (“inherits”) descriptions from both of its an-

cestors. However, unlike an HPSG type hierarchy, this does not entail that the inherited

204

Arguments to parameterized templates can represent any part of an f-structure descrip-

tion: attributes as well as values and even whole subdescriptions can be parameterized.

Templates can also take multiple arguments. For example, the template for a particle

verb might take the verbal predicate as one argument and the form of the particle as

another:

(14) VERB-PRT(P PRT) = ( PRED)=‘P SUBJ, OBJ ’

( PRT-FORM)=c PRT

The few templates we have defined serve to demonstrate the point that templates

interpreted only by simple substitution allow commonalities between lexical entries to

be represented succinctly and for linguistic generalizations to be expressed in a theoret-

ically motivated manner. The parameterized template INTRANSITIVE(P) is shared by

verbs like sneeze, arrive, and many others. The PRES3SG template is shared by verbs

like appears, goes, cooks, and many others. The template PRESENT, used in defining

the PRES3SG template, is also used by verbs like bake, are, and many others.

4 Templates and Boolean operators

In LFG, complex descriptions can be conjoined, disjoined, or negated. Since templates

are just names for descriptions, we can also use these operators with templates. For

instance, we could define a template PRESNOT3SG by negating the 3SG template, as

follows:

(15) PRESNOT3SG = @PRESENT

@3SG

The substitutions specified by these invocations produce the following description:

(16) ( VFORM)=FINITE

( TENSE)=PRES

( SUBJ PERS)=3

( SUBJ NUM)=SG

The first two lines are the result of expanding the PRESENT template, and the third and

fourth lines are the negation of the expansion of the 3SG template. This template can be

used in the lexical entry of verbs which are present tense but whose subject is not third

person singular (yawn, bake, appear, etc.).

With this addition we have the following template hierarchy:

(17) PRES-TENSE FINITE 3PERSONSUBJ SINGSUBJ

PRESENT 3SG

PRESNOT3SG PRES3SG

This indicates that PRESNOT3SG includes (“inherits”) descriptions from both of its an-

cestors. However, unlike an HPSG type hierarchy, this does not entail that the inherited

204

Templates: Boolean Operators

⇧

33



Hierarchies: Templates vs. Types

• Type hierarchies are and/or lattices:

• Motherhood: or

• Multiple Dominance: and

• Type hierarchies encode inclusion/inheritance and place constraints on how the 
inheritance is interpreted.

• LFG template hierarchies encode only inclusion: multiple dominance not interpreted 
as conjunction, no real status for motherhood.

• LFG hierarchies relate descriptions only: mode of combination (logical operators) is 
determined contextually at invocation or is built into the template.

• HPSG hierarchies relate first-class ontological objects of the theory.

• LFG hierarchies are abbreviatory only and have no real ontological status.

Subsequent work within HPSG has built on this view. Linguistic generalizations in

HPSG are captured by a type hierarchy, with more specific types inheriting information

from less specific but related types. Construction Grammar (Kay, 1998) assumes a sim-

ilar hierarchy, the constructional hierarchy. On the HPSG view, lexical generalizations

are statable as relations between elements in the type lattice, where different subtypes

represent alternatives, and a type can belong to multiple supertypes. For example, Mal-

ouf (1998) provides the following depiction of a partial type hierarchy of HEAD values:

(1) HEAD

NOUN

C-NOUN GERUND

RELATIONAL

VERB

This diagram represents an AND/OR lattice: the alternative types NOUN and RELATIONAL

are disjunctively specified as different subtypes of the type HEAD. The type GERUND

inherits from two supertypes, NOUN and RELATIONAL, and the information inherited

from all supertypes is conjoined.

Work within LFG, on the other hand, has not appealed to typed feature structures

to encode linguistic generalizations. Instead, LFG encodes lexical generalizations not

in terms of formal inheritance relations between types, but in terms of inclusion rela-

tions between descriptions of structures. An LFG functional description – a collection

of equations – can be given a name, and this name can be used to stand for those equa-

tions in other linguistic descriptions. In computational treatments, these named descrip-

tions are referred to as templates. A description containing a reference to a template is

equivalent to that same description with the named equations, the template’s definition,

substituted for the template reference.

Template definitions can refer to other templates; thus, a template hierarchy similar

to the type hierarchy of HPSG or Construction Grammar can be drawn to represent the

inclusion relations between these named LFG descriptions. Importantly, however, the

relation depicted in such a diagram shows only how pieces of descriptions are factored

into patterns that recur across the lexicon and does not indicate the formal mode of com-

bination of those pieces. The context of the template reference is what determines how

the template definition combines with other parts of a larger description.

In the following, we will present several small template hierarchies and show how

they can be used in the definition of linguistic constraints. For more discussion of com-

putational issues related to the use of templates in grammatical description, see King

et al. (2004).

2 Template defi nitions

We begin with a simple lexical entry for the verb yawns:

(2) yawns ( PRED)=‘yawn SUBJ ’

( VFORM)=FINITE

( TENSE)=PRES

( SUBJ PERS)=3

( SUBJ NUM)=SG

201

34



Hierarchies: Templates vs. Types

Subsequent work within HPSG has built on this view. Linguistic generalizations in

HPSG are captured by a type hierarchy, with more specific types inheriting information

from less specific but related types. Construction Grammar (Kay, 1998) assumes a sim-

ilar hierarchy, the constructional hierarchy. On the HPSG view, lexical generalizations

are statable as relations between elements in the type lattice, where different subtypes

represent alternatives, and a type can belong to multiple supertypes. For example, Mal-

ouf (1998) provides the following depiction of a partial type hierarchy of HEAD values:

(1) HEAD

NOUN

C-NOUN GERUND

RELATIONAL

VERB

This diagram represents an AND/OR lattice: the alternative types NOUN and RELATIONAL

are disjunctively specified as different subtypes of the type HEAD. The type GERUND

inherits from two supertypes, NOUN and RELATIONAL, and the information inherited

from all supertypes is conjoined.

Work within LFG, on the other hand, has not appealed to typed feature structures

to encode linguistic generalizations. Instead, LFG encodes lexical generalizations not

in terms of formal inheritance relations between types, but in terms of inclusion rela-

tions between descriptions of structures. An LFG functional description – a collection

of equations – can be given a name, and this name can be used to stand for those equa-

tions in other linguistic descriptions. In computational treatments, these named descrip-

tions are referred to as templates. A description containing a reference to a template is

equivalent to that same description with the named equations, the template’s definition,

substituted for the template reference.

Template definitions can refer to other templates; thus, a template hierarchy similar

to the type hierarchy of HPSG or Construction Grammar can be drawn to represent the

inclusion relations between these named LFG descriptions. Importantly, however, the

relation depicted in such a diagram shows only how pieces of descriptions are factored

into patterns that recur across the lexicon and does not indicate the formal mode of com-

bination of those pieces. The context of the template reference is what determines how

the template definition combines with other parts of a larger description.

In the following, we will present several small template hierarchies and show how

they can be used in the definition of linguistic constraints. For more discussion of com-

putational issues related to the use of templates in grammatical description, see King

et al. (2004).

2 Template defi nitions

We begin with a simple lexical entry for the verb yawns:

(2) yawns ( PRED)=‘yawn SUBJ ’

( VFORM)=FINITE

( TENSE)=PRES

( SUBJ PERS)=3

( SUBJ NUM)=SG

201

Arguments to parameterized templates can represent any part of an f-structure descrip-

tion: attributes as well as values and even whole subdescriptions can be parameterized.

Templates can also take multiple arguments. For example, the template for a particle

verb might take the verbal predicate as one argument and the form of the particle as

another:

(14) VERB-PRT(P PRT) = ( PRED)=‘P SUBJ, OBJ ’

( PRT-FORM)=c PRT

The few templates we have defined serve to demonstrate the point that templates

interpreted only by simple substitution allow commonalities between lexical entries to

be represented succinctly and for linguistic generalizations to be expressed in a theoret-

ically motivated manner. The parameterized template INTRANSITIVE(P) is shared by

verbs like sneeze, arrive, and many others. The PRES3SG template is shared by verbs

like appears, goes, cooks, and many others. The template PRESENT, used in defining

the PRES3SG template, is also used by verbs like bake, are, and many others.

4 Templates and Boolean operators

In LFG, complex descriptions can be conjoined, disjoined, or negated. Since templates

are just names for descriptions, we can also use these operators with templates. For

instance, we could define a template PRESNOT3SG by negating the 3SG template, as

follows:

(15) PRESNOT3SG = @PRESENT

@3SG

The substitutions specified by these invocations produce the following description:

(16) ( VFORM)=FINITE

( TENSE)=PRES

( SUBJ PERS)=3

( SUBJ NUM)=SG

The first two lines are the result of expanding the PRESENT template, and the third and

fourth lines are the negation of the expansion of the 3SG template. This template can be

used in the lexical entry of verbs which are present tense but whose subject is not third

person singular (yawn, bake, appear, etc.).

With this addition we have the following template hierarchy:

(17) PRES-TENSE FINITE 3PERSONSUBJ SINGSUBJ

PRESENT 3SG

PRESNOT3SG PRES3SG

This indicates that PRESNOT3SG includes (“inherits”) descriptions from both of its an-

cestors. However, unlike an HPSG type hierarchy, this does not entail that the inherited

204

HPSG

LFG

35



(8) 3PERSONSUBJ SINGSUBJ

3SG

Finally, we can define a template PRES3SG that combines both tense and agreement

features:

(9) PRES3SG = @PRESENT

@3SG

Putting all these definitions together, our template hierarchy becomes

(10) PRES-TENSE FINITE 3PERSONSUBJ SINGSUBJ

PRESENT 3SG

PRES3SG

and the lexical entry for yawns further reduces to

(11) yawns ( PRED)=‘yawn SUBJ ’

@PRES3SG

Thus we see that a number of hierarchically arranged generalizations can be ex-

pressed through a simple set of template definitions. The use of parameterized templates

allows for further generalizations to be captured by factoring out information provided

as an argument to the template. These are discussed next.

3 Parameterized templates

All intransitive verbs in LFG carry a semantic form that indicates the relation denoted

by the verb and also the fact that the verb must appear in f-structures containing the

single governable grammatical function SUBJ. The predicate, of course, differs from

verb to verb, but the SUBJ subcategorization frame is common to all intransitives. We

can define INTRANSITIVE as a parameterized template that expresses the common sub-

categorization. The predicate itself can be provided as an argument that is specified

differently in different lexical entries. This template can be used with all intransitive

verbs:

(12) INTRANSITIVE(P) = ( PRED)=‘P SUBJ ’

Whatever argument is provided in an invocation of this template will be substituted for

the parameter to create the description that replaces the template reference. Thus the

description in the original entry for the verb yawns can be equivalently specified as fol-

lows:

(13) yawns @INTRANSITIVE(yawn)

@PRES3SG

203

(8) 3PERSONSUBJ SINGSUBJ

3SG

Finally, we can define a template PRES3SG that combines both tense and agreement

features:

(9) PRES3SG = @PRESENT

@3SG

Putting all these definitions together, our template hierarchy becomes

(10) PRES-TENSE FINITE 3PERSONSUBJ SINGSUBJ

PRESENT 3SG

PRES3SG

and the lexical entry for yawns further reduces to

(11) yawns ( PRED)=‘yawn SUBJ ’

@PRES3SG

Thus we see that a number of hierarchically arranged generalizations can be ex-

pressed through a simple set of template definitions. The use of parameterized templates

allows for further generalizations to be captured by factoring out information provided

as an argument to the template. These are discussed next.

3 Parameterized templates

All intransitive verbs in LFG carry a semantic form that indicates the relation denoted

by the verb and also the fact that the verb must appear in f-structures containing the

single governable grammatical function SUBJ. The predicate, of course, differs from

verb to verb, but the SUBJ subcategorization frame is common to all intransitives. We

can define INTRANSITIVE as a parameterized template that expresses the common sub-

categorization. The predicate itself can be provided as an argument that is specified

differently in different lexical entries. This template can be used with all intransitive

verbs:

(12) INTRANSITIVE(P) = ( PRED)=‘P SUBJ ’

Whatever argument is provided in an invocation of this template will be substituted for

the parameter to create the description that replaces the template reference. Thus the

description in the original entry for the verb yawns can be equivalently specified as fol-

lows:

(13) yawns @INTRANSITIVE(yawn)

@PRES3SG

203

Parameterized Templates

(8) 3PERSONSUBJ SINGSUBJ

3SG

Finally, we can define a template PRES3SG that combines both tense and agreement

features:

(9) PRES3SG = @PRESENT

@3SG

Putting all these definitions together, our template hierarchy becomes

(10) PRES-TENSE FINITE 3PERSONSUBJ SINGSUBJ

PRESENT 3SG

PRES3SG

and the lexical entry for yawns further reduces to

(11) yawns ( PRED)=‘yawn SUBJ ’

@PRES3SG

Thus we see that a number of hierarchically arranged generalizations can be ex-

pressed through a simple set of template definitions. The use of parameterized templates

allows for further generalizations to be captured by factoring out information provided

as an argument to the template. These are discussed next.

3 Parameterized templates

All intransitive verbs in LFG carry a semantic form that indicates the relation denoted

by the verb and also the fact that the verb must appear in f-structures containing the

single governable grammatical function SUBJ. The predicate, of course, differs from

verb to verb, but the SUBJ subcategorization frame is common to all intransitives. We

can define INTRANSITIVE as a parameterized template that expresses the common sub-

categorization. The predicate itself can be provided as an argument that is specified

differently in different lexical entries. This template can be used with all intransitive

verbs:

(12) INTRANSITIVE(P) = ( PRED)=‘P SUBJ ’

Whatever argument is provided in an invocation of this template will be substituted for

the parameter to create the description that replaces the template reference. Thus the

description in the original entry for the verb yawns can be equivalently specified as fol-

lows:

(13) yawns @INTRANSITIVE(yawn)

@PRES3SG

203

⇧

36



information is conjoined. For example, in (15) PRESNOT3SG invokes 3SG via nega-

tion. Template sharing is distinct from the mode of combination, which is determined

by the context of the invocation.

For another illustration of this point, suppose that we have defined a parameterized

TRANSITIVE template to be used for verbs like devour:

(18) TRANSITIVE(P) = ( PRED)=‘P SUBJ, OBJ ’

This can be combined disjunctively with the INTRANSITIVE template to define a sub-

categorization template for verbs that can appear either with or without an object (eat,

cook, bake, etc.):

(19) TRANS-OR-INTRANS(P) = @TRANSITIVE(P) @INTRANSITIVE(P)

Notice that the parameter for TRANS-OR-INTRANS appears as an argument in the invo-

cations of both INTRANSITIVE and TRANSITIVE. The reference@TRANS-OR-INTRANS(eat)

thus expands ultimately to the disjunction

(20) ( PRED)=‘eat SUBJ, OBJ ’ ( PRED)=‘eat SUBJ ’

Finally, we can extend the hierarchical template inclusion diagram so that it bottoms

out in particular lexical items, thus showing how generalizations are captured not only

among the templates but also across the lexicon:

(21) 3PERSONSUBJ SINGSUBJ

PRESENT 3SG INTRANSITIVE TRANSITIVE

PRES3SG TRANS-OR-INTRANS

falls bakes cooked

5 Expressing defaults

Default values can be expressed in LFG bymeans of existential constraints and disjunc-

tion. An existential constraint asserts that a feature must be present in an f-structure but

it does not define the value that the feature must have. Thus the existential constraint

in (22) is satisfied only if the f-structure denoted by has some value for the feature

CASE:

(22) ( CASE)

This asserts that some (unspecified) value must be provided by a defining equation for

the f-structure . Otherwise, the existential constraint is not satisfied.

We can disjunctively combine this specification with a defining equation stating that

the f-structure has the feature CASE with value NOM:

(23) ( CASE) ( CASE)=NOM

205

information is conjoined. For example, in (15) PRESNOT3SG invokes 3SG via nega-

tion. Template sharing is distinct from the mode of combination, which is determined

by the context of the invocation.

For another illustration of this point, suppose that we have defined a parameterized

TRANSITIVE template to be used for verbs like devour:

(18) TRANSITIVE(P) = ( PRED)=‘P SUBJ, OBJ ’

This can be combined disjunctively with the INTRANSITIVE template to define a sub-

categorization template for verbs that can appear either with or without an object (eat,

cook, bake, etc.):

(19) TRANS-OR-INTRANS(P) = @TRANSITIVE(P) @INTRANSITIVE(P)

Notice that the parameter for TRANS-OR-INTRANS appears as an argument in the invo-

cations of both INTRANSITIVE and TRANSITIVE. The reference@TRANS-OR-INTRANS(eat)

thus expands ultimately to the disjunction

(20) ( PRED)=‘eat SUBJ, OBJ ’ ( PRED)=‘eat SUBJ ’

Finally, we can extend the hierarchical template inclusion diagram so that it bottoms

out in particular lexical items, thus showing how generalizations are captured not only

among the templates but also across the lexicon:

(21) 3PERSONSUBJ SINGSUBJ

PRESENT 3SG INTRANSITIVE TRANSITIVE

PRES3SG TRANS-OR-INTRANS

falls bakes cooked

5 Expressing defaults

Default values can be expressed in LFG bymeans of existential constraints and disjunc-

tion. An existential constraint asserts that a feature must be present in an f-structure but

it does not define the value that the feature must have. Thus the existential constraint

in (22) is satisfied only if the f-structure denoted by has some value for the feature

CASE:

(22) ( CASE)

This asserts that some (unspecified) value must be provided by a defining equation for

the f-structure . Otherwise, the existential constraint is not satisfied.

We can disjunctively combine this specification with a defining equation stating that

the f-structure has the feature CASE with value NOM:

(23) ( CASE) ( CASE)=NOM

205

information is conjoined. For example, in (15) PRESNOT3SG invokes 3SG via nega-

tion. Template sharing is distinct from the mode of combination, which is determined

by the context of the invocation.

For another illustration of this point, suppose that we have defined a parameterized

TRANSITIVE template to be used for verbs like devour:

(18) TRANSITIVE(P) = ( PRED)=‘P SUBJ, OBJ ’

This can be combined disjunctively with the INTRANSITIVE template to define a sub-

categorization template for verbs that can appear either with or without an object (eat,

cook, bake, etc.):

(19) TRANS-OR-INTRANS(P) = @TRANSITIVE(P) @INTRANSITIVE(P)

Notice that the parameter for TRANS-OR-INTRANS appears as an argument in the invo-

cations of both INTRANSITIVE and TRANSITIVE. The reference@TRANS-OR-INTRANS(eat)

thus expands ultimately to the disjunction

(20) ( PRED)=‘eat SUBJ, OBJ ’ ( PRED)=‘eat SUBJ ’

Finally, we can extend the hierarchical template inclusion diagram so that it bottoms

out in particular lexical items, thus showing how generalizations are captured not only

among the templates but also across the lexicon:

(21) 3PERSONSUBJ SINGSUBJ

PRESENT 3SG INTRANSITIVE TRANSITIVE

PRES3SG TRANS-OR-INTRANS

falls bakes cooked

5 Expressing defaults

Default values can be expressed in LFG bymeans of existential constraints and disjunc-

tion. An existential constraint asserts that a feature must be present in an f-structure but

it does not define the value that the feature must have. Thus the existential constraint

in (22) is satisfied only if the f-structure denoted by has some value for the feature

CASE:

(22) ( CASE)

This asserts that some (unspecified) value must be provided by a defining equation for

the f-structure . Otherwise, the existential constraint is not satisfied.

We can disjunctively combine this specification with a defining equation stating that

the f-structure has the feature CASE with value NOM:

(23) ( CASE) ( CASE)=NOM

205

Parameterized Templates

37



Temple Hierarchy with Lexical Leaves

information is conjoined. For example, in (15) PRESNOT3SG invokes 3SG via nega-

tion. Template sharing is distinct from the mode of combination, which is determined

by the context of the invocation.

For another illustration of this point, suppose that we have defined a parameterized

TRANSITIVE template to be used for verbs like devour:

(18) TRANSITIVE(P) = ( PRED)=‘P SUBJ, OBJ ’

This can be combined disjunctively with the INTRANSITIVE template to define a sub-

categorization template for verbs that can appear either with or without an object (eat,

cook, bake, etc.):

(19) TRANS-OR-INTRANS(P) = @TRANSITIVE(P) @INTRANSITIVE(P)

Notice that the parameter for TRANS-OR-INTRANS appears as an argument in the invo-

cations of both INTRANSITIVE and TRANSITIVE. The reference@TRANS-OR-INTRANS(eat)

thus expands ultimately to the disjunction

(20) ( PRED)=‘eat SUBJ, OBJ ’ ( PRED)=‘eat SUBJ ’

Finally, we can extend the hierarchical template inclusion diagram so that it bottoms

out in particular lexical items, thus showing how generalizations are captured not only

among the templates but also across the lexicon:

(21) 3PERSONSUBJ SINGSUBJ

PRESENT 3SG INTRANSITIVE TRANSITIVE

PRES3SG TRANS-OR-INTRANS

falls bakes cooked

5 Expressing defaults

Default values can be expressed in LFG bymeans of existential constraints and disjunc-

tion. An existential constraint asserts that a feature must be present in an f-structure but

it does not define the value that the feature must have. Thus the existential constraint

in (22) is satisfied only if the f-structure denoted by has some value for the feature

CASE:

(22) ( CASE)

This asserts that some (unspecified) value must be provided by a defining equation for

the f-structure . Otherwise, the existential constraint is not satisfied.

We can disjunctively combine this specification with a defining equation stating that

the f-structure has the feature CASE with value NOM:

(23) ( CASE) ( CASE)=NOM

205

eatsyawns

38



information is conjoined. For example, in (15) PRESNOT3SG invokes 3SG via nega-

tion. Template sharing is distinct from the mode of combination, which is determined

by the context of the invocation.

For another illustration of this point, suppose that we have defined a parameterized

TRANSITIVE template to be used for verbs like devour:

(18) TRANSITIVE(P) = ( PRED)=‘P SUBJ, OBJ ’

This can be combined disjunctively with the INTRANSITIVE template to define a sub-

categorization template for verbs that can appear either with or without an object (eat,

cook, bake, etc.):

(19) TRANS-OR-INTRANS(P) = @TRANSITIVE(P) @INTRANSITIVE(P)

Notice that the parameter for TRANS-OR-INTRANS appears as an argument in the invo-

cations of both INTRANSITIVE and TRANSITIVE. The reference@TRANS-OR-INTRANS(eat)

thus expands ultimately to the disjunction

(20) ( PRED)=‘eat SUBJ, OBJ ’ ( PRED)=‘eat SUBJ ’

Finally, we can extend the hierarchical template inclusion diagram so that it bottoms

out in particular lexical items, thus showing how generalizations are captured not only

among the templates but also across the lexicon:

(21) 3PERSONSUBJ SINGSUBJ

PRESENT 3SG INTRANSITIVE TRANSITIVE

PRES3SG TRANS-OR-INTRANS

falls bakes cooked

5 Expressing defaults

Default values can be expressed in LFG bymeans of existential constraints and disjunc-

tion. An existential constraint asserts that a feature must be present in an f-structure but

it does not define the value that the feature must have. Thus the existential constraint

in (22) is satisfied only if the f-structure denoted by has some value for the feature

CASE:

(22) ( CASE)

This asserts that some (unspecified) value must be provided by a defining equation for

the f-structure . Otherwise, the existential constraint is not satisfied.

We can disjunctively combine this specification with a defining equation stating that

the f-structure has the feature CASE with value NOM:

(23) ( CASE) ( CASE)=NOM

205

The first part of the disjunction is satisfied if has some value for CASE provided by

a defining equation elsewhere in the functional description (the existential constraint in

the left disjunct is satisfied). The second part of the disjunction is satisfied if has the

value NOM for CASE (the defining equation in the right disjunct is satisfied). The effect

is that NOM is the default value for CASE: if no other value is defined for that feature,

the value NOM will be installed.

This technique for specifying a default value V for a designator D can be encapsu-

lated in a parameterized template:

(24) DEFAULT(D V) = D D=V

andwe can use this tomakemore obvious the fact that NOM is the default value of CASE:

(25) @DEFAULT(( CASE) NOM)

An invocation of this default CASE assignment template could then be a part of the lex-

ical description for a noun in a language with case clitics. If there is no case clitic to

specify a particular case for the noun, the default NOM case will appear.

6 Templates and Phrase Structure Annotations

Since templates simply stand for pieces of functional descriptions, it is also possible

to use templates in annotations on phrase structure rules, to capture recurring gener-

alizations in the specification of the relation between c-structure configurations and f-

structures. There is no difference in the way templates are defined or invoked when they

are used in phrase structure rules; functional annotations in phrase structure rules can

simply be replaced with a template reference.

To take an example, suppose that every adjunct in the grammar must be annotated

with both its grammatical function and an ADJUNCT-TYPE feature, e.g., (26).

(26) VP V ADVP*

= ( ADJUNCT)

( ADJUNCT-TYPE)=VP-ADJ

This can be rewritten using a parameterized template:

(27) VP V ADVP*

= @ADJUNCT(VP-ADJ)

where the ADJUNCT template expands to:

(28) a. ADJUNCT(P) = ( ADJUNCT)

@ADJUNCT-TYPE(P)

b. ADJUNCT-TYPE(P) = ( ADJUNCT-TYPE)=P

206

The first part of the disjunction is satisfied if has some value for CASE provided by

a defining equation elsewhere in the functional description (the existential constraint in

the left disjunct is satisfied). The second part of the disjunction is satisfied if has the

value NOM for CASE (the defining equation in the right disjunct is satisfied). The effect

is that NOM is the default value for CASE: if no other value is defined for that feature,

the value NOM will be installed.

This technique for specifying a default value V for a designator D can be encapsu-

lated in a parameterized template:

(24) DEFAULT(D V) = D D=V

andwe can use this tomakemore obvious the fact that NOM is the default value of CASE:

(25) @DEFAULT(( CASE) NOM)

An invocation of this default CASE assignment template could then be a part of the lex-

ical description for a noun in a language with case clitics. If there is no case clitic to

specify a particular case for the noun, the default NOM case will appear.

6 Templates and Phrase Structure Annotations

Since templates simply stand for pieces of functional descriptions, it is also possible

to use templates in annotations on phrase structure rules, to capture recurring gener-

alizations in the specification of the relation between c-structure configurations and f-

structures. There is no difference in the way templates are defined or invoked when they

are used in phrase structure rules; functional annotations in phrase structure rules can

simply be replaced with a template reference.

To take an example, suppose that every adjunct in the grammar must be annotated

with both its grammatical function and an ADJUNCT-TYPE feature, e.g., (26).

(26) VP V ADVP*

= ( ADJUNCT)

( ADJUNCT-TYPE)=VP-ADJ

This can be rewritten using a parameterized template:

(27) VP V ADVP*

= @ADJUNCT(VP-ADJ)

where the ADJUNCT template expands to:

(28) a. ADJUNCT(P) = ( ADJUNCT)

@ADJUNCT-TYPE(P)

b. ADJUNCT-TYPE(P) = ( ADJUNCT-TYPE)=P

206

Defaults in LFG

The f-structure must have case and 
if nothing else provides its case, 
then its case is nominative.

Paramerized template for defaults. 

Also illustrates that parameterized 
templates can have multiple 
arguments

⇧

39



The first part of the disjunction is satisfied if has some value for CASE provided by

a defining equation elsewhere in the functional description (the existential constraint in

the left disjunct is satisfied). The second part of the disjunction is satisfied if has the

value NOM for CASE (the defining equation in the right disjunct is satisfied). The effect

is that NOM is the default value for CASE: if no other value is defined for that feature,

the value NOM will be installed.

This technique for specifying a default value V for a designator D can be encapsu-

lated in a parameterized template:

(24) DEFAULT(D V) = D D=V

andwe can use this tomakemore obvious the fact that NOM is the default value of CASE:

(25) @DEFAULT(( CASE) NOM)

An invocation of this default CASE assignment template could then be a part of the lex-

ical description for a noun in a language with case clitics. If there is no case clitic to

specify a particular case for the noun, the default NOM case will appear.

6 Templates and Phrase Structure Annotations

Since templates simply stand for pieces of functional descriptions, it is also possible

to use templates in annotations on phrase structure rules, to capture recurring gener-

alizations in the specification of the relation between c-structure configurations and f-

structures. There is no difference in the way templates are defined or invoked when they

are used in phrase structure rules; functional annotations in phrase structure rules can

simply be replaced with a template reference.

To take an example, suppose that every adjunct in the grammar must be annotated

with both its grammatical function and an ADJUNCT-TYPE feature, e.g., (26).

(26) VP V ADVP*

= ( ADJUNCT)

( ADJUNCT-TYPE)=VP-ADJ

This can be rewritten using a parameterized template:

(27) VP V ADVP*

= @ADJUNCT(VP-ADJ)

where the ADJUNCT template expands to:

(28) a. ADJUNCT(P) = ( ADJUNCT)

@ADJUNCT-TYPE(P)

b. ADJUNCT-TYPE(P) = ( ADJUNCT-TYPE)=P

206

The first part of the disjunction is satisfied if has some value for CASE provided by

a defining equation elsewhere in the functional description (the existential constraint in

the left disjunct is satisfied). The second part of the disjunction is satisfied if has the

value NOM for CASE (the defining equation in the right disjunct is satisfied). The effect

is that NOM is the default value for CASE: if no other value is defined for that feature,

the value NOM will be installed.

This technique for specifying a default value V for a designator D can be encapsu-

lated in a parameterized template:

(24) DEFAULT(D V) = D D=V

andwe can use this tomakemore obvious the fact that NOM is the default value of CASE:

(25) @DEFAULT(( CASE) NOM)

An invocation of this default CASE assignment template could then be a part of the lex-

ical description for a noun in a language with case clitics. If there is no case clitic to

specify a particular case for the noun, the default NOM case will appear.

6 Templates and Phrase Structure Annotations

Since templates simply stand for pieces of functional descriptions, it is also possible

to use templates in annotations on phrase structure rules, to capture recurring gener-

alizations in the specification of the relation between c-structure configurations and f-

structures. There is no difference in the way templates are defined or invoked when they

are used in phrase structure rules; functional annotations in phrase structure rules can

simply be replaced with a template reference.

To take an example, suppose that every adjunct in the grammar must be annotated

with both its grammatical function and an ADJUNCT-TYPE feature, e.g., (26).

(26) VP V ADVP*

= ( ADJUNCT)

( ADJUNCT-TYPE)=VP-ADJ

This can be rewritten using a parameterized template:

(27) VP V ADVP*

= @ADJUNCT(VP-ADJ)

where the ADJUNCT template expands to:

(28) a. ADJUNCT(P) = ( ADJUNCT)

@ADJUNCT-TYPE(P)

b. ADJUNCT-TYPE(P) = ( ADJUNCT-TYPE)=P

206

C-structure Annotation of Templates

⇧

The first part of the disjunction is satisfied if has some value for CASE provided by

a defining equation elsewhere in the functional description (the existential constraint in

the left disjunct is satisfied). The second part of the disjunction is satisfied if has the

value NOM for CASE (the defining equation in the right disjunct is satisfied). The effect

is that NOM is the default value for CASE: if no other value is defined for that feature,

the value NOM will be installed.

This technique for specifying a default value V for a designator D can be encapsu-

lated in a parameterized template:

(24) DEFAULT(D V) = D D=V

andwe can use this tomakemore obvious the fact that NOM is the default value of CASE:

(25) @DEFAULT(( CASE) NOM)

An invocation of this default CASE assignment template could then be a part of the lex-

ical description for a noun in a language with case clitics. If there is no case clitic to

specify a particular case for the noun, the default NOM case will appear.

6 Templates and Phrase Structure Annotations

Since templates simply stand for pieces of functional descriptions, it is also possible

to use templates in annotations on phrase structure rules, to capture recurring gener-

alizations in the specification of the relation between c-structure configurations and f-

structures. There is no difference in the way templates are defined or invoked when they

are used in phrase structure rules; functional annotations in phrase structure rules can

simply be replaced with a template reference.

To take an example, suppose that every adjunct in the grammar must be annotated

with both its grammatical function and an ADJUNCT-TYPE feature, e.g., (26).

(26) VP V ADVP*

= ( ADJUNCT)

( ADJUNCT-TYPE)=VP-ADJ

This can be rewritten using a parameterized template:

(27) VP V ADVP*

= @ADJUNCT(VP-ADJ)

where the ADJUNCT template expands to:

(28) a. ADJUNCT(P) = ( ADJUNCT)

@ADJUNCT-TYPE(P)

b. ADJUNCT-TYPE(P) = ( ADJUNCT-TYPE)=P

206

40



Features in the Minimalist Program

41



Features and Explanation

• The sorts of features that are associated with functional heads in the 
Minimalist Program are well-motivated morphosyntactically, although 
other theories may not draw the conclusion that this merits phrase 
structural representation (cf. Blevins 2008). 

• Care must be taken to avoid circular reasoning in feature theory:

• The ‘strong’ meta-feature: “This thing has whatever property 
makes things displace, as evidenced by its displacement.”

• The ‘weak’ meta-feature: “This thing lacks whatever property 
makes things displace, as evidenced by its lack of displacement.”

• The EPP feature: “This thing has whatever property makes things 
move to subject position, as evidenced by its occupying subject 
position.”

42



Features and Simplicity

• Adger (2003, 2008) considers three kinds of basic features:

• Privative, e.g. [singular]

• Binary, e.g. [singular  +]

• Valued, e.g. [number   singular]

• Adger considers the privative kind the simplest in its own right.

• This may be true, but only if it does not introduce complexity 
elsewhere in the system (Culicover & Jackendoff 2005: ‘honest 
accounting’).

• Notice that only the final type of feature treats number features as 
any kind of natural class within the theory (as opposed to meta-
theoretically).

43



Kinds of Feature-Value Combinations

• Adger (2003):

• Privative

• [singular], [V], ...

• Binary

• [singular: +] (?)

• Attribute-value

• [Tense: past]

44



Interpreted vs. Uninterpreted Features

• Interpreted features:

• [F]

• Uninterpreted features:

• [uF]

• All uninterpreted features must be eliminated (‘checked’).

• Interpreted features are interpreted by the semantics.

• Presupposes an interpretive (non-combinatorial) semantics.

[Notation from Adger 2003]

45



Feature Strength

• Strong features must be checked locally:
Trigger Move/Internal Merge/Remerge

• [F*]

• Weak features do not have to be checked locally:
Do not trigger Move

• [F]

[Notation from Adger 2003]

46



An Example: Auxiliaries

• Adger (2003:181)

“When [uInfl: ] on Aux is valued by T, the value is strong; 
when [uInfl: ] on v is valued by T, the value is weak.”

TP

Subject T

T[past] NegP

Neg vP

〈Subject〉 v

Verb + v[uInfl]. . .

47



Locality of Feature Matching

• Adger (2003:218)

Locality of Matching
Agree holds between a feature F on X and a matching feature F 
on Y if and only if there is no intervening Z[F].

Intervention
In a structure [X ... Z ... Y], Z intervenes between X and Y iff X c-
commands Z and Z c-commands Y.

48



Feature-Value Unrestrictiveness & Free Valuation

• Asudeh & Toivonen (2006) argue that the Minimalist feature system 
of Adger (2003) has two undesirable properties.

Feature-value unrestrictiveness
Feature valuation is unrestricted with respect to what values a 
valued feature may receive.

Free valuation
Feature valuation appears freely, subject to locality conditions.

• This results in a very unconstrained theory of features.

• This may sound good, because it’s less stipulative and hence more 
Minimal, but from a theory perspective it is bad: unconstrained 
theories are less predictive.

49



TP

T[singular] vP

Gilgamesh v

v

miss v[uInfl:singular]

VP

〈miss〉 NP

Enkidu

Example: English Subject Agreement

TP

T[past] vP

Gilgamesh v

v

miss v[uInfl:past]

VP

〈miss〉 NP

Enkidu

(1) Gilgamesh missed Enkidu (2) Gilgamesh misses Enkidu

• Contrast with HPSG: MP has no typing of values (feature value unrestrictiveness)

• Contrast with LFG: MP has valuation without specification (free valuation)

50



Two Contrasting Feature Theories

• HPSG (Pollard & Sag 1994): features are not just valued, the values 
are also typed

• If two values can unify, they must be in a typing relation (one 
must be a subtype of the other). 

• Feature values in HPSG are thus tightly restricted by types.

• LFG (Kaplan & Bresnan 1982, Bresnan 2001): features are not 
restricted, but there is no free valuation

• A feature cannot end up with a given value unless there is an 
explicit equation in the system. 

51



Feature Simplicity and Constraint Types

• LFG offers the opportunity to consider Adger’s three feature types in light 
of a single feature type, with varying constraint types.

• LFG features are valued (f is an LFG f(unctional)-structure):

• Types of LFG feature constraints.

• Defining equation: 

• Existential constraint: 

• Negative existential constraint:  

• Constraining equation: 

• Negative constraining equation:  

f
[
NUMBER singular

]

(f NUMBER) = singular

(f NUMBER)

¬(f NUMBER)
(f NUMBER) =c singular

(f NUMBER) != singular

52



Feature Simplicity and Constraint Types

• All features treated as valued features: no restriction on constraint 
types

• All features treated as binary features: only positive and negative 
constraining equations allowed

• All features treated as privative: only negative and existential 
constraints allowed

• This understanding of privative features actually does treat 
number as a natural class.

• This treats the notion of feature simplicity as a kind of meta-
theoretical statement in an explicit, non-ad-hoc feature theory.

53



Control and Raising

54



tried V (↑ PRED) = ‘try〈SUBJ,XCOMP〉’
(↑ SUBJ) = (↑ XCOMP SUBJ)

seemed V (↑ PRED) = ‘seem〈CF〉SUBJ’
{ (↑ SUBJ) = (↑ XCOMP SUBJ) |
(↑ SUBJ PRONTYPE) = EXPLETIVE

(↑ SUBJ FORM) = IT

(↑ COMP) }

Lexical Entries

55



Raising to Subject/Subject Control C-structure
IP

(↑ SUBJ) =↓
NP

Gonzo

↑ = ↓
I
′

↑ = ↓
VP

↑ = ↓
V

0

seemed/tried

↑ = ↓
VP

↑ = ↓
V

0

to

↑ = ↓
VP

↑ = ↓
V

0

leave

56



(7)

(8)

In summary, the only syntactic difference between a control verb and
a raising verb on this theory is that the former takes a thematic subject
(i.e. non-expletive subject), while the latter takes a non-thematic subject (i.e.
raised or expletive subject). Dalrymple (2001) has recently proposed that
obligatory control in English should be modelled with anaphoric control
rather than with functional control. I will assume the standard functional-
control treatment of obligatory control and return to a discussion of
Dalrymple (2001) in section 9.

3. GLUE SEMANT IC S

3.1 Glue and the parallel projection architecture of LFG

Although Glue does not necessarily have to be coupled with LFG, most
work in Glue Semantics has been done with an LFG syntax (Dalrymple et al.
1993; Dalrymple 1999, 2001 ; Asudeh 2004). The more important architectural
point is that Glue is coupled to an independent level of syntax, unlike
Categorial Grammar, which makes no distinction between syntax proper
and the syntax of semantic composition. Glue Semantics is thus a general
theory of the syntax–semantics interface and semantic composition that as-
sumes a separate level of syntax in which lexically contributed Glue premises
are instantiated.

LFG has a parallel-projection architecture. This means that there are
various levels of linguistic representation, called PROJECTIONS, which are
present in PARALLEL, and these projections are related by functional corre-
spondences (also known as projection functions) which map elements of one
projection onto elements of another (Kaplan 1987, 1989; Halvorsen &
Kaplan 1988). This is a generalisation of the original notion of functional
correspondence in which the w-function maps c(onstituent)-structures onto

ASH ASUDEH

474

F-structures

57



Copy Raising

58



Data

(1)Thora seems like she enjoys hot chocolate.

(2)Thora seems like Isak pinched her again.

(3)Thora seems like Isak ruined her book.

(4)* Thora seems like Isak enjoys hot chocolate.

(5)* Thora seems like Isak pinched Justin again.

(6)* Thora seems like Isak ruined Justin’s book.

59



Data

(7) It seems like there is a problem here.

(8) It seems like Thora is upset.

(9) It seems like it rained last night.

(10) There seems like there’s a problem here.

(11) * There seems like it rained last night.

60



like1 P0 (↑ PRED) = ‘like〈SUBJ,COMP〉’

like2 P0 (↑ PRED) = ‘like〈CF〉SUBJ’
{ (↑ SUBJ) = (↑ XCOMP SUBJ) |
(↑ SUBJ PRONTYPE) = EXPLETIVE

(↑ SUBJ FORM) = IT

(↑ COMP) }

Lexical Entries

61



C-structure

376 CHAPTER 9. COPY RAISING IN ENGLISH

resemblance verbs also have an alternant that is not a raising verb and that can take a thematic

subject. Recall the CRV and PRV examples (9.5a) and (9.6a); as we observed for raising verbs and

PRVs with AP complements, (9.5a) and (9.6a) have identical c-structures and f-structures, modulo

relevant lexical substitutions:

(9.54) a. IP

(↑ SUBJ) = ↓

DP

Richard

↑ = ↓

I′

↑ = ↓

VP

↑ = ↓

V0

seems / smells

(↑ XCOMP) = ↓

PP

↑ = ↓

P′

↑ = ↓

P0

like

(↑ COMP) = ↓

IP

(↑ SUBJ) = ↓

DP

he

↑ = ↓

I′

↑ = ↓

VP

smokes

376 CHAPTER 9. COPY RAISING IN ENGLISH

resemblance verbs also have an alternant that is not a raising verb and that can take a thematic

subject. Recall the CRV and PRV examples (9.5a) and (9.6a); as we observed for raising verbs and

PRVs with AP complements, (9.5a) and (9.6a) have identical c-structures and f-structures, modulo

relevant lexical substitutions:

(9.54) a. IP

(↑ SUBJ) = ↓

DP

Richard

↑ = ↓

I′

↑ = ↓

VP

↑ = ↓

V0

seems / smells

(↑ XCOMP) = ↓

PP

↑ = ↓

P′

↑ = ↓

P0

like

(↑ COMP) = ↓

IP

(↑ SUBJ) = ↓

DP

he

↑ = ↓

I′

↑ = ↓

VP

smokes
62



F-structure
9.3. SIMILARITIES BETWEEN CRVS AND PRVS ARE SYNTACTIC 377

b.





















































PRED ‘seem/smell’

SUBJ

XCOMP







































PRED ‘like’

SUBJ

[

PRED ‘Richard’

]

COMP

























PRED ‘smoke’

SUBJ

















PRED ‘pro’

PERS 3

NUM sg

GEND masc



































































































































The f-structure in (9.54) is essentially the same as the f-structure in (9.23) for the adjectival com-

plement. The only added complication is that the preposition like takes a clausal argument as well

as a SUBJ. It is the like-complement that licenses the subject; the functional control equation in the

lexical entry for the CRV / PRV raises the subject to be the matrix subject, too. Importantly, since

the PP lacks a c-structural position to host a subject, the shared subject is realized in the matrix

subject position and not in the PP (see page 379 below).

I have thus far accounted for the following similarities between copy raising verbs and percep-

tual resemblance verbs: 1) PRVs and raising verbs take predicative complements; 2) CRVs and

PRVs take like-complements. Next I turn to an account of their behaviour with expletives.

9.3.3 Expletives

Copy raising verbs and perceptual resemblance verbs have interesting behaviour with respect to

expletives:

(9.55) a. It seemed / looked / smelled like Richard was drunk.

b. It seemed / looked / smelled like it rained.

c. It seemed / looked / smelled like there was a problem.

d. %There seemed / looked / smelled like there was a problem.

e. *There seemed / looked / smelled like it rained.

There are two noteworthy aspects here. First, as shown in examples (9.55a–9.55c), CRVs and

PRVs can take expletive subjects and the expletive is it , as we would expect. Second, and more

9.3. SIMILARITIES BETWEEN CRVS AND PRVS ARE SYNTACTIC 377

b.





















































PRED ‘seem/smell’

SUBJ

XCOMP







































PRED ‘like’

SUBJ

[

PRED ‘Richard’

]

COMP

























PRED ‘smoke’

SUBJ

















PRED ‘pro’

PERS 3

NUM sg

GEND masc



































































































































The f-structure in (9.54) is essentially the same as the f-structure in (9.23) for the adjectival com-

plement. The only added complication is that the preposition like takes a clausal argument as well

as a SUBJ. It is the like-complement that licenses the subject; the functional control equation in the

lexical entry for the CRV / PRV raises the subject to be the matrix subject, too. Importantly, since

the PP lacks a c-structural position to host a subject, the shared subject is realized in the matrix

subject position and not in the PP (see page 379 below).

I have thus far accounted for the following similarities between copy raising verbs and percep-

tual resemblance verbs: 1) PRVs and raising verbs take predicative complements; 2) CRVs and

PRVs take like-complements. Next I turn to an account of their behaviour with expletives.

9.3.3 Expletives

Copy raising verbs and perceptual resemblance verbs have interesting behaviour with respect to

expletives:

(9.55) a. It seemed / looked / smelled like Richard was drunk.

b. It seemed / looked / smelled like it rained.

c. It seemed / looked / smelled like there was a problem.

d. %There seemed / looked / smelled like there was a problem.

e. *There seemed / looked / smelled like it rained.

There are two noteworthy aspects here. First, as shown in examples (9.55a–9.55c), CRVs and

PRVs can take expletive subjects and the expletive is it , as we would expect. Second, and more

9.3. SIMILARITIES BETWEEN CRVS AND PRVS ARE SYNTACTIC 377

b.





















































PRED ‘seem/smell’

SUBJ

XCOMP







































PRED ‘like’

SUBJ

[

PRED ‘Richard’

]

COMP

























PRED ‘smoke’

SUBJ

















PRED ‘pro’

PERS 3

NUM sg

GEND masc



































































































































The f-structure in (9.54) is essentially the same as the f-structure in (9.23) for the adjectival com-

plement. The only added complication is that the preposition like takes a clausal argument as well

as a SUBJ. It is the like-complement that licenses the subject; the functional control equation in the

lexical entry for the CRV / PRV raises the subject to be the matrix subject, too. Importantly, since

the PP lacks a c-structural position to host a subject, the shared subject is realized in the matrix

subject position and not in the PP (see page 379 below).

I have thus far accounted for the following similarities between copy raising verbs and percep-

tual resemblance verbs: 1) PRVs and raising verbs take predicative complements; 2) CRVs and

PRVs take like-complements. Next I turn to an account of their behaviour with expletives.

9.3.3 Expletives

Copy raising verbs and perceptual resemblance verbs have interesting behaviour with respect to

expletives:

(9.55) a. It seemed / looked / smelled like Richard was drunk.

b. It seemed / looked / smelled like it rained.

c. It seemed / looked / smelled like there was a problem.

d. %There seemed / looked / smelled like there was a problem.

e. *There seemed / looked / smelled like it rained.

There are two noteworthy aspects here. First, as shown in examples (9.55a–9.55c), CRVs and

PRVs can take expletive subjects and the expletive is it , as we would expect. Second, and more

63



380 CHAPTER 9. COPY RAISING IN ENGLISH

2001). The key point is that the criterial difference between a COMP and an XCOMP is that the latter

lacks a c-structural position to host a subject, while the former does not.

However, the complement of like / as is always an IP or CP, even when it is an XCOMP. The

alternative would be for it to be a COMP and for the functional control equation in like2 to read

(↑ SUBJ) = (↑ COMP SUBJ). But, this effectively removes the distinction between open and closed

complement functions at f-structure, despite the fact that grammatical functions in general are f-

structural entities. Arguably, it is better to remove the c-structural requirement that an XCOMP

always corresponds to a lexical projection. Under the modification to LFG theory proposed here,

the defining property of XCOMP is not its c-structural category, but rather whether it contains a

grammatical function that is the target of a functional control equation.

The following c-structure and f-structure for (9.55d) illustrate the proposal:

(9.59) a. IP

(↑ SUBJ) = ↓

DP

There

↑ = ↓

I′

↑ = ↓

VP

↑ = ↓

V0

seemed

(↑ XCOMP) = ↓

PP

↑ = ↓

P0

like

(↑ XCOMP) = ↓

IP

(↑ SUBJ) = ↓

DP

there

↑ = ↓

I′

was a problem

C-structure

64



9.3. SIMILARITIES BETWEEN CRVS AND PRVS ARE SYNTACTIC 381

(9.60)

















































PRED ‘seem’

SUBJ

XCOMP



































PRED ‘like’

SUBJ

XCOMP





















PRED ‘be’

SUBJ

[

EXPL there

]

OBJ







PRED ‘problem’

SPEC

[

PRED ‘a’

]













































































































The verb was subcategorizes for a there expletive subject. This subject is raised to be the subject of

the like-complement via the functional control equation in the entry for like2. The matrix raising

verb or PRV raises the same expletive again to matrix subject position. Each raising step is entirely

local, from complement’s subject to own subject, resulting in the same expletive filling three SUBJ

values. Given that there are three f-structural subject positions, why do only two expletives occur in

the c-structure? That is, what prevents the occurrence of sentences such as:

(9.61) *There seemed there like there was a problem

Sentences like this are blocked because the like-complement, being a PP headed by the lexical

category P0, cannot host a subject in its specifier.

I have thus far accounted for example (9.55d), the puzzling case of long distance there-raising.

We have seen that we can maintain the locality of raising if we assume that like / as have rais-

ing alternants. Yet we noted that not all dialects have the possibility of there-raising with like-

complements. Horn (1981) argues that these dialects nevertheless have expletive raising with it

expletives, as in sentence (9.55c) above. Horn notes that the Richard sentence (9.62) below is non-

contradictory, even though the closely related extraposition sentence (9.63) is contradictory.

(9.62) It seems like it’s raining harder than it is.

(9.63) #It seems that it’s raining harder than it is.

Since (9.62) patterns like raising sentences, Horn argues that there is it -raising through like-com-

plements, even in dialects without there-raising. However, in the present analysis there would still

be raising from the subject of like in (9.62) to the matrix subject, which may in fact be the crucial

F-structure

65



Unbounded Dependencies

66



Filler-Gap Dependencies

67



Functional Uncertainty

• The syntactic relationship between the top and bottom of an 
unbounded dependency is represented with a functional 
uncertainty:

• Top = MiddlePath-Func-Uncertainty   Bottom-Func-Uncertainty

(1)  [What] [did Kim claim that Sandy suspected that Robin knew]     [ ]  
   top                                    middle                                            bottom

 

       top                                    middle                                         bottom
(2) [What] [did Kim claim that Sandy suspected that Robin gave Bo]     [ ] 

(↑ FOCUS) = (↑ COMP∗ {OBJ|OBJθ})

68



406 14. Long-Distance Dependencies

(42) Who does David like?

CP

NP

N

Who

C

C

does

IP

NP

N

David

I

VP

V

like

FOCUS
PRED ‘PRO’

PRONTYPE WH

Q

PRED ‘LIKE SUBJ,OBJ ’

SUBJ PRED ‘DAVID’

OBJ

To analyze constructions like (42), the following simplified rule was proposed in

Chapter 6, Section 1.1:

(43) CP XP

( FOCUS) =

( FOCUS) = ( COMP GF)

C

=

This rule ensures that the phrase in the specifier position of CP bears the FOCUS

function and also fills a grammatical function within the utterance. We now re-

fine this rule to take into account constraints on the phrase structure category

of the fronted phrase and to give a more complete characterization of the path

to its within-clause function. We also introduce the Q attribute, whose value is

the f-structure of the possibly embedded interrogative pronoun within the fronted

FOCUS phrase; see Kaplan and Bresnan (1982) for more discussion of this at-

tribute.

We use the constituent structure metacategory QuesP and the functional abbre-

viations QFOCUSPATH and WHPATH in the following reformulation of rule (43):

(44) CP QuesP

( FOCUS) =

( FOCUS) = ( QFOCUSPATH)

( Q) = ( FOCUS WHPATH)

( Q PRONTYPE) WH

C

=

The first issue is the correct definition of QuesP: which phrasal categories can

appear as the FOCUS constituent in the specifier of CP? All of the examples in (45)

are wellformed:

(45) a. NP:Who do you like?

b. PP: To whom did you give a book?

c. AdvP: When did you yawn?

Wh-Questions: Example

69



406 14. Long-Distance Dependencies

(42) Who does David like?

CP

NP

N

Who

C

C

does

IP

NP

N

David

I

VP

V

like

FOCUS
PRED ‘PRO’

PRONTYPE WH

Q

PRED ‘LIKE SUBJ,OBJ ’

SUBJ PRED ‘DAVID’

OBJ

To analyze constructions like (42), the following simplified rule was proposed in

Chapter 6, Section 1.1:

(43) CP XP

( FOCUS) =

( FOCUS) = ( COMP GF)

C

=

This rule ensures that the phrase in the specifier position of CP bears the FOCUS

function and also fills a grammatical function within the utterance. We now re-

fine this rule to take into account constraints on the phrase structure category

of the fronted phrase and to give a more complete characterization of the path

to its within-clause function. We also introduce the Q attribute, whose value is

the f-structure of the possibly embedded interrogative pronoun within the fronted

FOCUS phrase; see Kaplan and Bresnan (1982) for more discussion of this at-

tribute.

We use the constituent structure metacategory QuesP and the functional abbre-

viations QFOCUSPATH and WHPATH in the following reformulation of rule (43):

(44) CP QuesP

( FOCUS) =

( FOCUS) = ( QFOCUSPATH)

( Q) = ( FOCUS WHPATH)

( Q PRONTYPE) WH

C

=

The first issue is the correct definition of QuesP: which phrasal categories can

appear as the FOCUS constituent in the specifier of CP? All of the examples in (45)

are wellformed:

(45) a. NP:Who do you like?

b. PP: To whom did you give a book?

c. AdvP: When did you yawn?

Wh-Questions: Annotated PS Rule

70



Syntax of Long-Distance Dependencies 407

d. AP: How tall is Chris?

Thus, we define QuesP in (44) above as the following disjunction of categories:

(46) QuesP NP PP AdvP AP

The annotations on the QuesP node in rule (44) are similar to those on the rel-

ative clause rule in (29) of this chapter. The first two annotations require the

f-structure corresponding to the QuesP node to fill the FOCUS role and also to bear

some grammatical function defined by the long-distance path QFOCUSPATH; the

correct definition of QFOCUSPATH will be our first topic of discussion in the fol-

lowing. The third annotation requires the value of the Q attribute to appear at the

end of the long-distance path WHPATH within the FOCUS f-structure; we discuss

constraints on WHPATH below. The fourth annotation requires the PRONTYPE at-

tribute of the Q f-structure to bear the value WH, ensuring that an interrogative

pronoun plays the Q role.

Our first task is to define QFOCUSPATH, the long-distance path involved in ques-

tion formation. Constraints on QFOCUSPATH appear to be largely similar to those

defined for TOPICPATH in (16) of this chapter (though see Postal 1998 for a dis-

cussion of differences between the two types of paths):

(47) a. Chris, we like.

b. Who do you like?

(48) a. Chris, we think that David saw.

b. Who do you think that David saw?

(49) a. *Chris, we whispered that David saw.

b. *Who did you whisper that David saw?

(50) a. *Chris, [that David saw ] surprised me.

b. *Who did [that David saw ] surprise you?

(51) a. This hammer, we smashed the vase with.

b. What did you smash the vase with?

(52) a. *Chris, we think that David laughed when we selected.

b. *Who did you think that David laughed when we selected?

Therefore, we provisionally provide the same definition for QFOCUSPATH as we

gave for TOPICPATH in (16) of this chapter. Future research may reveal various

additional refinements:

(53) English QFOCUSPATH:

XCOMP COMP

( LDD)
OBJ

( TENSE)
ADJ

( TENSE)
GF GF

Wh-Questions: QuesP Metacategory

(1)NP: Who do you like?

(2)PP: To whom did you give a book?

(3)AdvP: When did you yawn?

(4)AP: How tall is Chris?

71



Syntax of Long-Distance Dependencies 407

d. AP: How tall is Chris?

Thus, we define QuesP in (44) above as the following disjunction of categories:

(46) QuesP NP PP AdvP AP

The annotations on the QuesP node in rule (44) are similar to those on the rel-

ative clause rule in (29) of this chapter. The first two annotations require the

f-structure corresponding to the QuesP node to fill the FOCUS role and also to bear

some grammatical function defined by the long-distance path QFOCUSPATH; the

correct definition of QFOCUSPATH will be our first topic of discussion in the fol-

lowing. The third annotation requires the value of the Q attribute to appear at the

end of the long-distance path WHPATH within the FOCUS f-structure; we discuss

constraints on WHPATH below. The fourth annotation requires the PRONTYPE at-

tribute of the Q f-structure to bear the value WH, ensuring that an interrogative

pronoun plays the Q role.

Our first task is to define QFOCUSPATH, the long-distance path involved in ques-

tion formation. Constraints on QFOCUSPATH appear to be largely similar to those

defined for TOPICPATH in (16) of this chapter (though see Postal 1998 for a dis-

cussion of differences between the two types of paths):

(47) a. Chris, we like.

b. Who do you like?

(48) a. Chris, we think that David saw.

b. Who do you think that David saw?

(49) a. *Chris, we whispered that David saw.

b. *Who did you whisper that David saw?

(50) a. *Chris, [that David saw ] surprised me.

b. *Who did [that David saw ] surprise you?

(51) a. This hammer, we smashed the vase with.

b. What did you smash the vase with?

(52) a. *Chris, we think that David laughed when we selected.

b. *Who did you think that David laughed when we selected?

Therefore, we provisionally provide the same definition for QFOCUSPATH as we

gave for TOPICPATH in (16) of this chapter. Future research may reveal various

additional refinements:

(53) English QFOCUSPATH:

XCOMP COMP

( LDD)
OBJ

( TENSE)
ADJ

( TENSE)
GF GF

Wh-Questions: Unbounded Dependency Equation

72



408 14. Long-Distance Dependencies

In (41), we provided a constraint on RELPATH, the path to the relative pronoun

within the fronted TOPIC phrase in a relative clause. Similarly, we must define

WHPATH, the path to the interrogative pronoun in the fronted FOCUS phrase in a

wh-question. Like the relative pronoun, the interrogative pronoun may be em-

bedded inside the fronted phrase, appearing as a possessor or the possessor of a

possessor and bearing the SPEC role, or as the OBJ of the fronted argument:

(54) a. [Whose book] did you read?

b. [Whose brother’s book] did you read?

c. [In which room] do you teach?

However,WHPATH is more constrained than RELPATH, as the examples in (55–57)

show:

(55) a. *[The cover of which report] did you design?

b. (cf. Which report did you design the cover of?)

c. the report [the cover of which] I designed

(56) a. *[The height of the lettering on the cover of which report] does the

government prescribe?

b. the report [the height of the lettering on the cover of which] the gov-

ernment prescribes

(57) a. *[Faster than whom] can you run?

b. the man [faster than whom] I can run

(58) a. *[Proud of whom] are you?

b. the kind of person [proud of whom] I could never be

Therefore, we propose the following definition of WHPATH in English:

(59) English WHPATH:

SPEC OBJ

Webelhuth (1992) provides more discussion of constraints on pied piping in Ger-

manic languages, showing that pied piping constraints in English wh-questions

are the same as in other Germanic languages.

2. MORPHOLOGICAL SIGNALING

Some languages signal long-distance dependency constructions by means of

special morphological or phonological forms, as noted by Clements and Ford

Wh-Questions: Pied Piping

(1) [Whose book] did you read?

(2)[Whose brother’s book] did you read?

(3)[In which room] do you teach?

73



Relative Clauses: Example
Syntax of Long-Distance Dependencies 401

(26) a man who Chris saw

PRED ‘MAN’

SPEC PRED ‘A’

ADJ

TOPIC

PRED ‘PRO’

PRONTYPE REL

RELPRO

PRED ‘SEE SUBJ,OBJ ’

SUBJ PRED ‘CHRIS’

OBJ

NP

Det

a

N

N

N

man

CP

NP

N

who

C

IP

NP

N

Chris

I

VP

V

saw

In (26), the relative pronoun appears in initial position in the relative clause, and

its f-structure is both the TOPIC and the RELPRO of the relative clause.

Example (27) shows that the relative pronoun can also appear as a subcon-

stituent of the initial phrase. Here the relative pronoun whose is a subconstituent

of the fronted phrase whose book:

74



Syntax of Long-Distance Dependencies 403

(29) CP RelP

( TOPIC) =

( TOPIC) = ( RTOPICPATH)

( RELPRO) = ( TOPIC RELPATH)

( RELPRO PRONTYPE) REL

C

=

The constituent structure metacategoryRelP in (29) represents the phrase structure

categories that can appear in initial position in a CP relative clause. The phrases

in (30) exemplify the possible instantiations of RelP in English:3

(30) a. NP: a man who I selected

b. PP: a man to whom I gave a book

c. AP: the kind of person proud of whom I could never be

d. AdvP: the city where I live

Therefore, we define RelP for English in the rule in (29) as the following disjunc-

tion of categories:

(31) RelP NP PP AP AdvP

The first two annotations on the RelP daughter in rule (29) are similar to the

annotations on the TOPIC rule in (14) of this chapter. The constraint ( TOPIC) =

requires the f-structure corresponding to the RelP node to fill the TOPIC role in the

f-structure. The constraint ( TOPIC) = ( RTOPICPATH) ensures that the TOPIC f-

structure also fills a grammatical function within the clause, constrained by the

long-distance path RTOPICPATH; we define RTOPICPATH below.

The third and fourth annotations require the f-structure for the relative pronoun

to appear as the value of the RELPRO attribute in the relative clause f-structure. The

constraint in the third line, ( RELPRO) = ( TOPIC RELPATH), requires the value

of the RELPRO attribute to appear at the end of the path RELPATHwithin the TOPIC f-

structure. Below, we provide a definition of RELPATH that properly constrains the

role of the relative pronounwithin the fronted TOPIC phrase. Finally, the constraint

( RELPRO PRONTYPE) REL is a constraining equation (Chapter 5, Section 2.8)

requiring the value of the RELPRO attribute to have a PRONTYPE feature with value

REL: the value of the RELPRO attribute must be a relative pronoun.

We first discuss the definition of RTOPICPATH, the path relating the fronted con-

stituent in a relative clause to its within-clause grammatical function. Constraints

on RTOPICPATH are very similar to constraints on TOPICPATH, defined in (16) of

this chapter:

(32) a. Chris, we like.

b. a man who we like

3Example (30c) is due to Webelhuth (1992).

Relative Clauses: Annotated PS Rule

75



(1)NP: a man who I selected

(2)PP: a man to whom I gave a book 

(3)AP: the kind of person proud of whom I could never be 

(4)AdvP: the city where I live 

Relative Clauses: RelP Metacategory

Syntax of Long-Distance Dependencies 403

(29) CP RelP

( TOPIC) =

( TOPIC) = ( RTOPICPATH)

( RELPRO) = ( TOPIC RELPATH)

( RELPRO PRONTYPE) REL

C

=

The constituent structure metacategoryRelP in (29) represents the phrase structure

categories that can appear in initial position in a CP relative clause. The phrases

in (30) exemplify the possible instantiations of RelP in English:3

(30) a. NP: a man who I selected

b. PP: a man to whom I gave a book

c. AP: the kind of person proud of whom I could never be

d. AdvP: the city where I live

Therefore, we define RelP for English in the rule in (29) as the following disjunc-

tion of categories:

(31) RelP NP PP AP AdvP

The first two annotations on the RelP daughter in rule (29) are similar to the

annotations on the TOPIC rule in (14) of this chapter. The constraint ( TOPIC) =

requires the f-structure corresponding to the RelP node to fill the TOPIC role in the

f-structure. The constraint ( TOPIC) = ( RTOPICPATH) ensures that the TOPIC f-

structure also fills a grammatical function within the clause, constrained by the

long-distance path RTOPICPATH; we define RTOPICPATH below.

The third and fourth annotations require the f-structure for the relative pronoun

to appear as the value of the RELPRO attribute in the relative clause f-structure. The

constraint in the third line, ( RELPRO) = ( TOPIC RELPATH), requires the value

of the RELPRO attribute to appear at the end of the path RELPATHwithin the TOPIC f-

structure. Below, we provide a definition of RELPATH that properly constrains the

role of the relative pronounwithin the fronted TOPIC phrase. Finally, the constraint

( RELPRO PRONTYPE) REL is a constraining equation (Chapter 5, Section 2.8)

requiring the value of the RELPRO attribute to have a PRONTYPE feature with value

REL: the value of the RELPRO attribute must be a relative pronoun.

We first discuss the definition of RTOPICPATH, the path relating the fronted con-

stituent in a relative clause to its within-clause grammatical function. Constraints

on RTOPICPATH are very similar to constraints on TOPICPATH, defined in (16) of

this chapter:

(32) a. Chris, we like.

b. a man who we like

3Example (30c) is due to Webelhuth (1992).

76



404 14. Long-Distance Dependencies

(33) a. Chris, we think that David saw.

b. a man who you think that David saw

(34) a. *Chris, we whispered that David saw.

b. *a man who you whispered that David saw

(35) a. *Chris, [that David saw ] surprised me.

b. *a man who [that David saw ] surprised me

(36) a. This hammer, we smashed the vase with.

b. the hammer which you smashed the vase with

(37) a. *Chris, we think that David laughed when we selected.

b. *a man who we think that David laughed when we selected

We therefore propose the same constraints on the English RTOPICPATH as in (16)

of this chapter, which constrains the long-distance path in topicalization construc-

tions. The expressions in (16) and (38) are exactly the same:

(38) English RTOPICPATH:

XCOMP COMP

( LDD)
OBJ

( TENSE)
ADJ

( TENSE)
GF GF

Examination of other languages reveals different constraints on RTOPICPATH. As

noted earlier, Kroeger (1993, Chapter 7) shows that RTOPICPATH in Tagalog is

SUBJ , paths consisting only of SUBJ. Saiki (1985) discusses the definition of

RTOPICPATH in Japanese, exploring constraints on RTOPICPATH in the causative

and passive constructions.

Finally, we must define RELPATH so as to appropriately constrain the grammat-

ical function of the relative pronoun within the fronted TOPIC f-structure. As orig-

inally noted by Ross (1967) and explored in detail by Bresnan (1976), Webelhuth

(1992), Falk (2001), and many others, the relative pronoun may be embedded in-

side the fronted phrase. Ross (1967) provides this example of a deeply embedded

relative pronoun:

(39) [Reports [[the height of the lettering on the cover of which] the government

prescribes ]] should be abolished.

Ross (1967) originally used the term pied piping in the transformational analysis

of these constructions: in moving to the front of the sentence, the relative pronoun

lures some additional material along with it, like the Pied Piper of Hamelin lured

rats and children along with him as he left Hamelin.

Research on pied piping has revealed a range of constraints on the long-distance

path RELPATH to the relative pronoun in the fronted TOPIC phrase:

Relative Clauses: Unbounded Dependency Equation

77



(1) the man [who] I met 

(2) the man [whose book] I read 

(3) the man [whose brother’s book] I 
read 

(4) the report [the cover of which] I 
designed 

(5) the man [faster than whom] I can 
run 

(6) the kind of person [proud of 
whom] I could never be 

(7) the report [the height of the 
lettering on the cover of which] 
the government prescribes 

Relative Clauses: Pied Piping

Syntax of Long-Distance Dependencies 405

(40) a. the man [who] I met

b. the man [whose book] I read

c. the man [whose brother’s book] I read

d. the report [the cover of which] I designed

e. the man [faster than whom] I can run

f. the kind of person [proud of whom] I could never be

g. the report [the height of the lettering on the cover of which] the gov-

ernment prescribes

h. *the man [a friend of whose brother] I met

i. the room [in which] I teach

j. *the man [the woman next to whom] I met

In all of these examples, the phrase structure category of the fronted phrase is

one of the categories defined by RelP, and no constraints on RTOPICPATH are vio-

lated. Example (40a) shows that the relative pronoun can itself appear in fronted

position; in such a case, RELPATH is the empty path. Examples (40b–c) indicate

that the relative pronoun can appear as a possessor phrase, filling the SPEC role

in the TOPIC f-structure, or as the possessor of a possessor. It can also appear as

the object of an oblique argument, as in (40d–f), or embedded inside an oblique

argument, as in (40g), though it may not fill the SPEC role inside an oblique phrase

(40h). It can appear as the object of a fronted adjunct phrase (40i), though it may

not appear as an adjunct inside the fronted phrase (40f).

Given these facts, we propose the following definition of RELPATH in English:

(41) English RELPATH:

SPEC OBL OBJ

In other languages the definition of RELPATH differs. Webelhuth (1992) provides

a thorough discussion of pied piping in Germanic, showing that constraints on

pied piping in English relative clauses are different from the constraints that hold

in German, Dutch, Swedish, and other Germanic languages.

1.3. Wh-Questions

In Chapter 4, Section 2.2.2, we noted that the question word in an English wh-

question appears in initial position in the sentence, in the specifier position of

CP:

78



Relative Clauses: Pied Piping Example402 14. Long-Distance Dependencies

(27) a man whose book Chris read

PRED ‘MAN’

SPEC PRED ‘A’

ADJ

TOPIC

SPEC

PRED ‘PRO’

PRONTYPE REL

PRED ‘BOOK’

RELPRO

PRED ‘READ SUBJ,OBJ ’

SUBJ PRED ‘CHRIS’

OBJ

NP

Det

a

N

N

N

man

CP

NP

Det

whose

N

N

book

C

IP

NP

N

Chris

I

VP

V

read

In (27), the value of the TOPIC attribute is the f-structure of the fronted phrase

whose book, and the value of the RELPRO attribute is the f-structure of the relative

pronoun whose. We examine syntactic constraints on both of these dependencies

in the following.

We propose the phrase structure rules in (28–29) for the analysis of these ex-

amples:

(28) N N

=

CP

( ADJ)

79



Constraints on Extraction

80



Empty Category Principle/That-Trace

(1)Who do you think [__ left]?

(2)* Who do you think [that __ left]?

(3)* What do you wonder [if __ smells bad]?

(4)Who do you think [__ should be trusted]?

(5)* Who do you think [that __ should be trusted]?

(6)Who do you think [that, under no circumstances, __ should be 
trusted]?

(7)Who do you wonder [if, under certain circumstances, __ could be 
trusted]?

81



That-Trace in LFG

• LFG has a relation called f-precedence that uses the native 
precedence of c-structure to talk about precedence between bits 
of f-structure.

• F-precedence relies on LFG’s projection architecture and the 
inverse of the c-structure–f-structure mapping function ϕ. 

• The inverse is written ϕ-1 and returns the set of c-structure nodes 
that map to its argument f-structure node.

F-precedence
An f-structure f f-precedes an f-structure g (f ＜f  g) if and only if

for all n1 ∈ ϕ-1( f ) and for all n2 ∈ ϕ-1( g ), n1 c-precedes n2.

82



That-Trace in LFG

• We can leverage LFG’s projection architecture to capture the fact 
that That-Trace is a ‘surfacy’ phenomenon (cf. ECP as a PF 
constraint in recent Minimalism).

Form

• • . . . • . . .

string c-structure f-structure

π
φ

83



That-Trace in LFG

• Assume a native precedence relation on strings, yielding a notion 
of element that is string-adjacent to the right (‘next string 
element’), which we define as Rightstring(π-1(*)), where * designates 
the current c-structure node in a phrase structure rule element or 
lexical entry.

• Let’s abbreviate the right string-adjacent element to * as ≻.

• The semantics of ≻ is ‘the string element that is right string-
adjacent to me’.

• Note that π-1 returns string elements, not sets of string elements, 
because π is bijective, since c-structures are trees. 

84



That-Trace in LFG

• We can use f-precedence and ≻ to capture the surfacy nature of 
That-Trace.

• Basically, English has a (somewhat arbitrary) constraint that the 
right-adjacent string element to the complementizer must be 
locally realized.

• This can be stated by requiring that any unbounded dependency 
function in the f-structure corresponding to the element that 
occurs in the string immediately after the complementizer should 
not f-precede the complementizer’s f-structure.

85



Left Branch Constraint

(1)Whose car did you drive __?

(2)* Whose did you drive [__ car]?

86



Syntax of Long-Distance Dependencies 407

d. AP: How tall is Chris?

Thus, we define QuesP in (44) above as the following disjunction of categories:

(46) QuesP NP PP AdvP AP

The annotations on the QuesP node in rule (44) are similar to those on the rel-

ative clause rule in (29) of this chapter. The first two annotations require the

f-structure corresponding to the QuesP node to fill the FOCUS role and also to bear

some grammatical function defined by the long-distance path QFOCUSPATH; the

correct definition of QFOCUSPATH will be our first topic of discussion in the fol-

lowing. The third annotation requires the value of the Q attribute to appear at the

end of the long-distance path WHPATH within the FOCUS f-structure; we discuss

constraints on WHPATH below. The fourth annotation requires the PRONTYPE at-

tribute of the Q f-structure to bear the value WH, ensuring that an interrogative

pronoun plays the Q role.

Our first task is to define QFOCUSPATH, the long-distance path involved in ques-

tion formation. Constraints on QFOCUSPATH appear to be largely similar to those

defined for TOPICPATH in (16) of this chapter (though see Postal 1998 for a dis-

cussion of differences between the two types of paths):

(47) a. Chris, we like.

b. Who do you like?

(48) a. Chris, we think that David saw.

b. Who do you think that David saw?

(49) a. *Chris, we whispered that David saw.

b. *Who did you whisper that David saw?

(50) a. *Chris, [that David saw ] surprised me.

b. *Who did [that David saw ] surprise you?

(51) a. This hammer, we smashed the vase with.

b. What did you smash the vase with?

(52) a. *Chris, we think that David laughed when we selected.

b. *Who did you think that David laughed when we selected?

Therefore, we provisionally provide the same definition for QFOCUSPATH as we

gave for TOPICPATH in (16) of this chapter. Future research may reveal various

additional refinements:

(53) English QFOCUSPATH:

XCOMP COMP

( LDD)
OBJ

( TENSE)
ADJ

( TENSE)
GF GF− SPEC}

Left Branch Constraint in LFG

• Do not include SPEC/POSS in GFs of possible extraction sites.

• Note that the equation we looked at previously already disallows 
the extraction from passing through a SPEC in the first part.

• We modify the equation as follows

87



Wh-Islands in LFG: Off-Path Constraints

Syntax of Long-Distance Dependencies 407

d. AP: How tall is Chris?

Thus, we define QuesP in (44) above as the following disjunction of categories:

(46) QuesP NP PP AdvP AP

The annotations on the QuesP node in rule (44) are similar to those on the rel-

ative clause rule in (29) of this chapter. The first two annotations require the

f-structure corresponding to the QuesP node to fill the FOCUS role and also to bear

some grammatical function defined by the long-distance path QFOCUSPATH; the

correct definition of QFOCUSPATH will be our first topic of discussion in the fol-

lowing. The third annotation requires the value of the Q attribute to appear at the

end of the long-distance path WHPATH within the FOCUS f-structure; we discuss

constraints on WHPATH below. The fourth annotation requires the PRONTYPE at-

tribute of the Q f-structure to bear the value WH, ensuring that an interrogative

pronoun plays the Q role.

Our first task is to define QFOCUSPATH, the long-distance path involved in ques-

tion formation. Constraints on QFOCUSPATH appear to be largely similar to those

defined for TOPICPATH in (16) of this chapter (though see Postal 1998 for a dis-

cussion of differences between the two types of paths):

(47) a. Chris, we like.

b. Who do you like?

(48) a. Chris, we think that David saw.

b. Who do you think that David saw?

(49) a. *Chris, we whispered that David saw.

b. *Who did you whisper that David saw?

(50) a. *Chris, [that David saw ] surprised me.

b. *Who did [that David saw ] surprise you?

(51) a. This hammer, we smashed the vase with.

b. What did you smash the vase with?

(52) a. *Chris, we think that David laughed when we selected.

b. *Who did you think that David laughed when we selected?

Therefore, we provisionally provide the same definition for QFOCUSPATH as we

gave for TOPICPATH in (16) of this chapter. Future research may reveal various

additional refinements:

(53) English QFOCUSPATH:

XCOMP COMP

( LDD)
OBJ

( TENSE)
ADJ

( TENSE)
GF GF− SPEC}

Syntax of Long-Distance Dependencies 407

d. AP: How tall is Chris?

Thus, we define QuesP in (44) above as the following disjunction of categories:

(46) QuesP NP PP AdvP AP

The annotations on the QuesP node in rule (44) are similar to those on the rel-

ative clause rule in (29) of this chapter. The first two annotations require the

f-structure corresponding to the QuesP node to fill the FOCUS role and also to bear

some grammatical function defined by the long-distance path QFOCUSPATH; the

correct definition of QFOCUSPATH will be our first topic of discussion in the fol-

lowing. The third annotation requires the value of the Q attribute to appear at the

end of the long-distance path WHPATH within the FOCUS f-structure; we discuss

constraints on WHPATH below. The fourth annotation requires the PRONTYPE at-

tribute of the Q f-structure to bear the value WH, ensuring that an interrogative

pronoun plays the Q role.

Our first task is to define QFOCUSPATH, the long-distance path involved in ques-

tion formation. Constraints on QFOCUSPATH appear to be largely similar to those

defined for TOPICPATH in (16) of this chapter (though see Postal 1998 for a dis-

cussion of differences between the two types of paths):

(47) a. Chris, we like.

b. Who do you like?

(48) a. Chris, we think that David saw.

b. Who do you think that David saw?

(49) a. *Chris, we whispered that David saw.

b. *Who did you whisper that David saw?

(50) a. *Chris, [that David saw ] surprised me.

b. *Who did [that David saw ] surprise you?

(51) a. This hammer, we smashed the vase with.

b. What did you smash the vase with?

(52) a. *Chris, we think that David laughed when we selected.

b. *Who did you think that David laughed when we selected?

Therefore, we provisionally provide the same definition for QFOCUSPATH as we

gave for TOPICPATH in (16) of this chapter. Future research may reveal various

additional refinements:

(53) English QFOCUSPATH:

XCOMP COMP

( LDD)
OBJ

( TENSE)
ADJ

( TENSE)
GF GF− SPEC}

¬(← UDF)

• The off-path metavariable ← refers to the f-structure that contains 
the attribute that the constraint is attached to.

• The off-path metavariable → refers to the f-structure that is the 
value of the attribute that the constraint is attached to.

• Use ← to state the bottom cannot be in an f-structure that has an 
unbounded dependency function UDF, where 
UDF = {TOPIC | FOCUS}.

88



Successive Cyclic Effects

89



Successive Cyclicity

• Data from languages such as Irish and Chamorro, which show 
successive marking along the extraction path, have motivated the 
claim that extraction/movement is ‘cyclic’ (not all at once). Cf. 
Phases in Minimalism. 

• Of course, this data does not argue for movement per se, as some 
have wrongly assumed, but rather that unbounded dependencies 
should 

1. Be made up of a series of local relations; or

2. Have a way to refer to their environments as the dependency is 
constructed.

• HPSG has adopted the first approach, LFG the second.

90



Data: Irish

26 GOSSE BOUMA ET AL.

(34)
sgap-ss ⇒

[
LOC NP

SLASH {S}

]

So, the additional flexibility introduced by the constraints on gaps allows

us to account for examples of limited connectivity between fillers and gaps

that provide a serious challenge to standard movement-based treatments of

extraction.13

3.2. Cross-linguistic Support

As a further illustration of our approach, consider how it might account

for one of the phenomena mentioned in the introduction. As McCloskey

(1979, 1989) notes, Irish has two different complementizer particles, goN

and aL. The only difference between the two is that the former cannot

appear in a clause out of which something has been extracted, whereas

the latter can only appear in a clause out of which something has been

extracted. The pattern is illustrated in (35):

(35) a. Shíl

thought

mé

I

goN

PRT

mbeadh

would-be

sé

he

ann

there

I thought that he would be there.

b. Dúirt

said

mé

I

gurL

goN+PAST

shíl

thought

mé

I

goN

PRT

mbeadh

would-be

sé

he

ann

there

I said that I thought that he would be there.

c. an fear

[the man] j

aL

PRT

shíl

thought

mé

I

aL

PRT

bheadh

would-be j

ann

there

the man that I thought would be there

d. an fear

[the man] j

aL

PRT

dúirt

said

mé

I

aL

PRT

shíl

thought

mé

I

aL

PRT

bheadh

would-be j

ann

there

The man that I said I thought would be there

e. an fear

[the man] j

aL

PRT

shíl

thought j

goN

PRT

mbeadh

would-be

sé

he

ann

there

the man that thought he would be there

13 See Bresnan (2000) for more discussion of mismatches between elements that are

related via grammatical dependency.

• Note: Date from McCloskey 
via Bouma et al. (2001).

91



goN Ĉ (↑ TENSE)
¬(↑ UDF)

Irish Successive Cyclicity in LFG

Note: UDF = {TOPIC | FOCUS}, CF = {XCOMP | COMP}

aL Ĉ (↑ UDF) = (↑ CF
∗

(→ UDF) = (↑ UDF)
GF)

92



Glue Semantics

93



Glue Semantics

• Glue Semantics is a type-logical semantics that can be tied to any 
syntactic formalism that supports a notion of headedness.

• Glue Semantics can be thought of as categorial semantics without 
categorial syntax.

• The independent syntax assumed in Glue Semantics means that the 
logic of composition is commutative, unlike in Categorial Grammar.

• Selected works:
Dalrymple (1999, 2001), Crouch & van Genabith (2000), 
Asudeh (2004, 2005a,b, in prep.), Lev 2007, Kokkonidis (in press)

94



Glue Semantics

• Lexically-contributed meaning constructors := 

• Meaning language := some lambda calculus

• Model-theoretic

• Composition language := linear logic

• Proof-theoretic

• Curry Howard Isomorphism between formulas (meanings) and types 
(proof terms)

• Successful Glue Semantics proof:

Copy Raising and Perception June 9, 2007 32

copy raising is like a case of resumption, where resumptive pronouns can also be understood essentially as a

problem of semantic composition. In both cases, there is a pronoun saturating a semantic argument position that

must be left open in order to properly compose the subject (for copy raising) or the top of the resumptive long-

distance dependencies (for resumptive pronouns in unbounded dependencies). The removal of the pronoun from

semantic composition is carried out by a lexically specified manager resource. Thus, both types of resumption

are licensed through lexical specification. In the case of copy raising, it is the specification of a manager resource

that licenses the copy raising subject and the copy raising relation. Anaphoric binding of the copy pronoun by the

subject syntactically identifies the pronoun that is causing the saturation problem for semantic composition and

the manager resource effects its removal during composition. The key difference between copy raising verbs and

perceptual resemblance verbs is then reduced to a simple lexical difference: copy raising verbs contribute manager

resources, perceptual resemblance verbs do not.

The term manager resource itself stems fromGlue Semantics (Dalrymple 1999, 2001), a theory of the syntax–

semantics interface and semantic composition. In Glue Semantics, the logic of semantic composition is linear

logic (Girard 1987), which is a resource logic, as discussed in more detail below. Each lexically contributed

meaning consists of a term from a meaning language associated with a term of linear logic. These paired terms

are called meaning constructors and are represented as follows:

(127) M : G

M is the meaning language term and G is the linear logic term (the colon is an uninterpreted pairing symbol).

The linear logic serves as a ‘glue language’ that relates syntax to semantics and specifies how semantic terms are

to be composed. The meaning constructors are used as premises in a (linear logic) proof that consumes the lexical

premises to produce a sentential meaning. A successful Glue proof proves a conclusion of the following form

(following Crouch and van Genabith 2000: 117), where Gt is a term of type t :18

(128) Γ ! M : Gt

Each step in the linear logic proof of semantics corresponds to an operation in the meaning language via the

Curry-Howard isomorphism between formulas and types (Curry and Feys 1958, Howard 1980). This means that

the syntactic well-formedness of the proof can be calculated using standard proof-theoretic methods on G while

simultaneously constructing meaning terms in the meaning language M. The meaning language M itself is

standardly interpreted model-theoretically, as is the case in this paper. Thus, although semantic composition is

driven proof-theoretically, interpretation is model-theoretic. This has the advantage that meaning construction

is sensitive only to the linear logic types of the meaning constructors and not to the actual meanings in M.

Compositionality is therefore guaranteed, since no assumptions are made about the content of meaning terms

in assembling meanings (Dalrymple et al. 1999a: 262–263). The linear logic proof thus serves as the syntax

of semantic composition, which reveals a clear relationship between linear logic terms in Glue Semantics and

categories in Categorial Grammar (Ajdukiewicz 1935, Bar-Hillel 1953, Lambek 1958, Ades and Steedman 1982,

Steedman 1996, 2000, Buszkowski et al. 1988, Oehrle et al. 1988, Morrill 1994, Carpenter 1997, Moortgat 1997),

as discussed in detail by Dalrymple et al. (1999a). Another perspective on this relationship is that linear logic

is essentially equivalent to the commutative Lambek Calculus (Moortgat 1997, Asudeh 2004, Jäger 2005). In

his discussion of desirable properties of “Lambek-style Categorial Grammar”, Jäger (2005: ix) notes that “[T]he

Curry-Howard correspondence . . . supplies the type logical syntax with an extremely elegant and independently

motivated interface to model-theoretic semantics.” This comment equally applies to Glue Semantics.

Let us consider a simple Glue derivation. Syntactic analysis of the sentence in (129) yields the meaning

constructors in (130). Note that we assign the linear logic terms in the meaning constructors mnemonic names,

18The typing in the linear logic side G is independent of, but related to, the typing in the meaning language M. The relationship can be

stated simply: type t in G corresponds to the propositional type t inM; type e in G corresponds to the individual type e inM; type ε in G

corresponds to the eventuality type ε inM (see section 6.4 for typing ofM).

Meaning language term Composition language term

Copy Raising and Perception June 9, 2007 32

copy raising is like a case of resumption, where resumptive pronouns can also be understood essentially as a

problem of semantic composition. In both cases, there is a pronoun saturating a semantic argument position that

must be left open in order to properly compose the subject (for copy raising) or the top of the resumptive long-

distance dependencies (for resumptive pronouns in unbounded dependencies). The removal of the pronoun from

semantic composition is carried out by a lexically specified manager resource. Thus, both types of resumption

are licensed through lexical specification. In the case of copy raising, it is the specification of a manager resource

that licenses the copy raising subject and the copy raising relation. Anaphoric binding of the copy pronoun by the

subject syntactically identifies the pronoun that is causing the saturation problem for semantic composition and

the manager resource effects its removal during composition. The key difference between copy raising verbs and

perceptual resemblance verbs is then reduced to a simple lexical difference: copy raising verbs contribute manager

resources, perceptual resemblance verbs do not.

The term manager resource itself stems fromGlue Semantics (Dalrymple 1999, 2001), a theory of the syntax–

semantics interface and semantic composition. In Glue Semantics, the logic of semantic composition is linear

logic (Girard 1987), which is a resource logic, as discussed in more detail below. Each lexically contributed

meaning consists of a term from a meaning language associated with a term of linear logic. These paired terms

are called meaning constructors and are represented as follows:

(127) M : G

M is the meaning language term and G is the linear logic term (the colon is an uninterpreted pairing symbol).

The linear logic serves as a ‘glue language’ that relates syntax to semantics and specifies how semantic terms are

to be composed. The meaning constructors are used as premises in a (linear logic) proof that consumes the lexical

premises to produce a sentential meaning. A successful Glue proof proves a conclusion of the following form

(following Crouch and van Genabith 2000: 117), where Gt is a term of type t :18

(128) Γ ! M : Gt

Each step in the linear logic proof of semantics corresponds to an operation in the meaning language via the

Curry-Howard isomorphism between formulas and types (Curry and Feys 1958, Howard 1980). This means that

the syntactic well-formedness of the proof can be calculated using standard proof-theoretic methods on G while

simultaneously constructing meaning terms in the meaning language M. The meaning language M itself is

standardly interpreted model-theoretically, as is the case in this paper. Thus, although semantic composition is

driven proof-theoretically, interpretation is model-theoretic. This has the advantage that meaning construction

is sensitive only to the linear logic types of the meaning constructors and not to the actual meanings in M.

Compositionality is therefore guaranteed, since no assumptions are made about the content of meaning terms

in assembling meanings (Dalrymple et al. 1999a: 262–263). The linear logic proof thus serves as the syntax

of semantic composition, which reveals a clear relationship between linear logic terms in Glue Semantics and

categories in Categorial Grammar (Ajdukiewicz 1935, Bar-Hillel 1953, Lambek 1958, Ades and Steedman 1982,

Steedman 1996, 2000, Buszkowski et al. 1988, Oehrle et al. 1988, Morrill 1994, Carpenter 1997, Moortgat 1997),

as discussed in detail by Dalrymple et al. (1999a). Another perspective on this relationship is that linear logic

is essentially equivalent to the commutative Lambek Calculus (Moortgat 1997, Asudeh 2004, Jäger 2005). In

his discussion of desirable properties of “Lambek-style Categorial Grammar”, Jäger (2005: ix) notes that “[T]he

Curry-Howard correspondence . . . supplies the type logical syntax with an extremely elegant and independently

motivated interface to model-theoretic semantics.” This comment equally applies to Glue Semantics.

Let us consider a simple Glue derivation. Syntactic analysis of the sentence in (129) yields the meaning

constructors in (130). Note that we assign the linear logic terms in the meaning constructors mnemonic names,

18The typing in the linear logic side G is independent of, but related to, the typing in the meaning language M. The relationship can be

stated simply: type t in G corresponds to the propositional type t inM; type e in G corresponds to the individual type e inM; type ε in G

corresponds to the eventuality type ε inM (see section 6.4 for typing ofM).

95



56 CHAPTER 2. AN OVERVIEW OF LFG AND GLUE SEMANTICS

(2.56) a. Application : Implication Elimination

···
a : A

···
f : A!B

!E

f (a) : B

b. Abstraction : Implication Introduction

[x : A]1
···

f : B
!I,1

λx .f : A!B

c. Pairwise substitution : Conjunction Elimination

···
a : A⊗B

[x : A]1 [y : B ]2
···

f : C
⊗E,1,2

let a be x × y in f : C

As noted above, implication elimination corresponds to functional application, and implication in-

troduction corresponds to abstraction. The assumed premise in the introduction rule is associated

with a variable that is abstracted over when the assumption is discharged. The term constructor let

is possibly less familiar. A multiplicative conjunction A⊗B corresponds to a tensor product a × b,

where a is the proof term ofA and b is the proof term of B (see the rule for conjunction introduction

(⊗I) in (2.62) below). However, let prevents projection into the individual elements of the tensor

pair and therefore enforces pairwise substitution (Abramsky 1993, Benton et al. 1993, Crouch and

van Genabith 2000:88), such that a let expression β-reduces as follows:

(2.57) let a × b be x × y in f ⇒β f [a/x , b/y ]

The substitution of the pair is simultaneous and does not involve projection into the members. So

let is not forbidding and is just a slightly more structured form of functional application.

It is the Curry-Howard term assignments that determine operations in the meaning language.

I use the locution “operations in the meaning language” purposefully. The term assignments con-

structed by rules of proof for linear logic result in linear lambdas (Abramsky 1993); these are

lambda terms in which every lambda-bound variable occurs exactly once (i.e. no vacuous abstrac-

tion and no multiple abstraction). The proof terms therefore satisfy resource sensitivity. However,

lexically contributed meanings need not contain only linear lambdas (for a similar point about the

56 CHAPTER 2. AN OVERVIEW OF LFG AND GLUE SEMANTICS

(2.56) a. Application : Implication Elimination

···
a : A

···
f : A!B

!E

f (a) : B

b. Abstraction : Implication Introduction

[x : A]1
···

f : B
!I,1

λx .f : A!B

c. Pairwise substitution : Conjunction Elimination

···
a : A⊗B

[x : A]1 [y : B ]2
···

f : C
⊗E,1,2

let a be x × y in f : C

As noted above, implication elimination corresponds to functional application, and implication in-

troduction corresponds to abstraction. The assumed premise in the introduction rule is associated

with a variable that is abstracted over when the assumption is discharged. The term constructor let

is possibly less familiar. A multiplicative conjunction A⊗B corresponds to a tensor product a × b,

where a is the proof term ofA and b is the proof term of B (see the rule for conjunction introduction

(⊗I) in (2.62) below). However, let prevents projection into the individual elements of the tensor

pair and therefore enforces pairwise substitution (Abramsky 1993, Benton et al. 1993, Crouch and

van Genabith 2000:88), such that a let expression β-reduces as follows:

(2.57) let a × b be x × y in f ⇒β f [a/x , b/y ]

The substitution of the pair is simultaneous and does not involve projection into the members. So

let is not forbidding and is just a slightly more structured form of functional application.

It is the Curry-Howard term assignments that determine operations in the meaning language.

I use the locution “operations in the meaning language” purposefully. The term assignments con-

structed by rules of proof for linear logic result in linear lambdas (Abramsky 1993); these are

lambda terms in which every lambda-bound variable occurs exactly once (i.e. no vacuous abstrac-

tion and no multiple abstraction). The proof terms therefore satisfy resource sensitivity. However,

lexically contributed meanings need not contain only linear lambdas (for a similar point about the

Pairwise Conjunction

Substitution : Elimination

···
a : A⊗B

[x : A]1 [y : B ]2
···

f : C
⊗E,1,2

let a be x × y in f : C

Beta reduction for let:

let a× b be x× y in f ⇒β f [a/x , b/y]

Key Glue Proof Rules with Curry-Howard Terms

96



1
′
. mary : gσe

2
′
. laugh : gσe ! fσt

1
′′
. mary : m

2
′′
. laugh : m ! l

Proof

1. mary : m Lex.Mary

2. laugh : m ! l Lex. laughed

3. laugh(mary) : l E!, 1, 2

Proof

mary : m laugh : m ! l
!E

laugh(mary) : l

Example: Mary laughed

≡

1. mary : ↑σe

2. laugh : (↑ SUBJ)σe ! ↑σt
f




PRED ‘laugh〈SUBJ〉’

SUBJ g

[
PRED ‘Mary’

]




97



1. λRλS .most(R,S ) : (v ! r)!∀X .[(p !X )!X ] Lex.most

2. president∗ : v ! r Lex. presidents

3. speak : p ! s Lex. speak

λRλS .most(R,S ) :
(v ! r)!∀X .[(p !X )!X ]

president∗ :
v ! r

λS .most(president∗,S ) :
∀X .[(p !X )!X ]

speak :
p ! s

!E , [s/X ]
most(president∗, speak) : s

Example: Most presidents speak

98







PRED ‘speak〈SUBJ, OBJ〉’

SUBJ




PRED ‘president’

SPEC

[
PRED ‘most’

]




OBJ




PRED ‘language’

SPEC

[
PRED ‘at-least-one’

]








Example: 
Most presidents speak at least one language

1. λRλS .most(R,S ) :
(v1 ! r1 )! ∀X .[(p !X )!X ]

Lex.most

2. president∗ : v1 ! r1 Lex. presidents

3. speak : p ! l ! s Lex. speak

4. λPλQ .at -least -one(P ,Q) :
(v2 ! r2 )! ∀Y .[(l !Y )!Y ]

Lex. at least one

5. language : v2 ! r2 Lex. language

Single parse 

➡

Multiple scope possibilities
(Underspecification through 

quantification)

99



λRλS .most(R,S ) :
(v1 ! r1 )! ∀X .[(p !X )!X ]

president∗ :
v1 ! r1

λS .most(president∗,S ) :
∀X .[(p !X )!X ]

λPλQ .a-l -o(P ,Q) :
(v2 ! r2 )! ∀Y .[(l !Y )!Y ]

lang :
v2 ! r2

λQ .a-l -o(lang,Q) :
∀Y .[(l !Y )!Y ]

λxλy.speak(x , y) :
p ! l ! s [z : p]1

λy.speak(z , y) :
l ! s

[s/Y ]
a-l -o(lang, λy.speak(z , y)) : s

!I,1
λz .a-l -o(lang, λy.speak(z , y)) : p ! s

[s/X ]
most(president∗, λz .a-l -o(lang, λy.speak(z , y))) : s

Most presidents speak at least one language
Subject wide scope

100



λPλQ .a-l -o(P ,Q) :
(v2 ! r2 )! ∀Y .[(l !Y )!Y ]

lang :
v2 ! r2

λQ .a-l -o(lang,Q) :
∀Y .[(l !Y )!Y ]

λRλS .most(R,S ) :
(v1 ! r1 )! ∀X .[(p !X )!X ]

president∗ :
v1 ! r1

λS .most(president∗,S ) :
∀X .[(p !X )!X ]

λyλx .speak(x , y) :
l ! p ! s [z : l ]1

λx .speak(x , z ) :
p ! s

[s/X ]
most(president∗, λx .speak(x , z )) : s

!I,1
λz .most(president∗, λx .speak(x , z )) : l ! s

[s/Y ]
a-l -o(lang, λz .most(president∗ , λx .speak(x , z ))) : s

Most presidents speak at least one language
Object wide scope

101



Anaphora in Glue Semantics

• Variable-free: pronouns are functions on their antecedents
(Jacobson 1999, among others)

• Commutative logic of composition allows pronouns to compose 
directly with their antecedents.

• No need for otherwise unmotivated additional type shifting (e.g. 
Jacobson’s z-shift)

102



Anaphora in Glue Semantics

1. Joe said he bowls.

• Pronominal meaning constructor:

λz .z × z : A! (A⊗P)

joe :
j

λz .z × z :
j ! (j ⊗ p)

joe × joe : j ⊗ p

[x : j ]1
λuλq.say(u, q) :
j ! b ! s

λq.say(x , q) :
b ! s

[y : p]2
λv .bowl(v) :
p ! b

bowl(y) :
b

say(x , bowl(y)) : s
⊗E,1,2

let joe × joe be x × y in say(x , bowl(y)) : s
⇒β

say(joe, bowl(joe)) : s

103



Further Points of Interest

• Glue Semantics can be understood as a representationalist theory, 
picking up on a theme from Wednesday’s semantics workshop.

• Proofs can be reasoned about as representations (Asudeh & 
Crouch 2002a,b).

• Proofs have strong identity criteria: normalization, comparison

• Glue Semantics allows recovery of a non-representationalist notion 
of direct compositionality (Asudeh 2005, 2006).

➡Flexible framework with lots of scope for exploration of 
questions of compositionality and semantic representation

104


