| exical-Functional Grammar

Ash Asudeh
Carleton University

University of Iceland
July 3, 2009

Architecture and Structures

Basic Syntactic Architecture of LFG

e Two basic, simultaneous representations of syntax:

e C(onstituent)-structure: constituency, dominance, word order,
phrase structure
Annotated trees

e F(unctional)-structure: abstract grammatical relations/functions
(subject, object, etc.), tense, case, agreement, predication, local
and non-local dependencies
Feature structures/attribute-value matrices

e Kaplan & Bresnan (1982):

¢

constituent structure — functional structure

LFG’s Parallel Projection Architecture

e Kaplan (1987,1989):

anaphoric structure
[

Qo
Form ¢ / Nianing

o > @ > @ > ®

string c-structure f—structh SUV
0

discourse structure

LFG’s Parallel Projection Architecture

e Asudeh (2006):

1-structure

/) structure
Form %/ \\\\ - Meaning
- ~
° = -

TT ° vt ° o > @ A > e o ° ¢—>o

string c-structure m-structure a-structure f-structure s-structure model

Design Principles

* Principle I: Variability
External structures (modelled by LFG c-structures) vary across
languages.

* Principle II: Universality
Internal structures (modelled by LFG f-structures) are largely
iInvariant across languages.

e Principle llI: Monotonicity
The mapping from c-structure to f-structure is not one-to-one, but
it is monotonic (information-preserving).

Nonconfigurationality

e Two fundamental ways for language to realize underlying concepts:
® Phrase structure (groups)
* Morphology (shapes)

e Bresnan (1998, 2001): ‘Morphology competes with syntax’
e English: phrase structure strategy (configurational)

e Warlpiri: morphological strategy (nonconfigurational)

English

e Underlying meaning:
That of ‘the two small children are chasing that dog’

S

_ AN _
NP Aux VP

are V NP

the two small children | |

chasing that dog

English and Warlpiri

e English:
(1) The two small children are chasing that dog.

. * The two small are chasing that children dog.

* The two small are dog chasing children that.

. * Chasing are the two small that dog children.

* That are children chasing the two small dog.

© 00Ty

e Warlpiri:

e All of the permutations in (1) are grammatical ways to express the same
underlying concept of ‘the two small children are chasing that dog’

e Even more permutations than this are possible

e Only restriction: Aux must be in second position
(Note: this is a slight simplification)

Warlpiri

e Underlying meaning:
That of ‘the two small children are chasing that dog’

S
NP Aux \Y NP NP NP
wita-jarra-riu ka-pala wajili-pi-nyi yalumpu kurdu-jarra-rlu maliki
small-DUAL-ERG pres-3duSUBJ chase-NPAST that-ABS child-DUAL-ERG dog-ABS

10

Abstract Syntax

e Despite the striking structural differences between English and Warlpiri, there are nevertheless
common syntactic constraints on the two languages.

e Example: a subject can bind an object reflexive, but not vice versa

(1) a. Lucy is hitting herself.
b. * Herself is hitting Lucy.

(2) a. Napaljarri-rli ka-nyanu paka-rni
Napaljarri-ERG PRES-REFL hit-NONPAST
‘Napaljarri is hitting herself.’

b. " Napaljarri ka-nyanu paka-rni
Napaljarri.ABS PRES-REFL hit-NONPAST
‘Herself is hitting Napaljarri.’

= How should abstract grammatical relations be captured?
Transformational Grammar: configurationally, using a uniform syntactic representation

LFG: non-configurationally, using a separate syntactic representation

11

C-structure

¢ | anguage variation in phrasal expression:
e Basic word order:
e SVO (English), SOV (Japanese), VSO (Irish), VOS (Malagasy)
e Constituency:
e Grouping of verb and complements,
e Grouping of noun and modifiers
e Strict vs. free word order:

e configurational languages vs. case-marking languages

12

Constraints on C-structures:
Phrase Structure Rules

e | FG distinguishes between the objects in the model and
descriptions of those objects (i.e. constraints on the objects).

e C-structure trees are constrained by phrase structure rules.

IP — NPT IP

PN
NP I’

e Right-hand side of LFG phrase structure rules are regular
expressions:

= disjunction, optionality, arbitrary repetition (Kleene plus [+] and
star [*])

V' — (V) (NP) PP*

13

F-structures

e [-structures represent abstract grammatical functions (subject,
object, etc.), grammatical features (tense, case, person, number,
etc.), and grammatical dependencies (raising, control,
unbounded dependencies)

(1) David devoured a sandwich.

- PRED ‘DEVOUR(SUB]J, OBJ)
SUBJ :PRED ‘DAVID’]

'SPEC A
OB |pRED SANDWICH’

Anatomy of an F-structure

Feature: Value: complex (semantic form)

- Feature:

Value: simple (semantic form)
7

.......
.....
*

Value: complex
s | (feature structure)

.
.
......

R ey ' Value: complex
: (feature structure)

——

N

P

.
*
J
n
[
.
»
*
D
L]

Value: simple

3
e

*
%,
'
ngt

3

*
d
Ll
.
.

Value: simple (semantic form)

General Constraints on F-structures:
Completeness, Coherence, Uniqueness

e Completeness:
All the grammatical functions subcategorized by a predicate must be
present in the f-structure.

(1)* David devoured.
Devour <SUBJ, OBJ>

e Coherence:
Only the grammatical functions subcategorized by a predicate may be
present in the f-structure.

(2)* David devoured a sandwich that it was raining.

e Unigueness:
No attribute may have more than one value.

16

Unigueness and Semantic Forms

e Semantic forms (values of PRED features) are unique.

' PRED ‘DEVOUR;7(SUBJ,OBJY
SUB] | PRED °‘DAVID,,”

SPEC A
OBJ [PRED ‘SANDWICH,

=Multiple instances of semantic forms cannot unify, even if the
semantic forms are otherwise compatible.

(1) * David devoured a sandwich a sandwich.

Features and the Lexicon in LFG

Lexical Entries in LFG

—————————————————————————————————————

(1 PRED)=‘yawn(SUBJ)’
(T VFORM)=FINITE '

yawns Vi
(

(1 TENSE)=PRES
(
(

(T SUBJ PERS)=3
(T SUBJ NUM)=SG

e e e e e e e o e e o e o o - - - — — — — — — — — — —

F(unctional)-description,
made up of functional
schemata

wo Main Kinds of F-structure Constraints:
Defining Equations and Constraining Equations

e Functional schemata and functional descriptions are often referred to as
equations. This is a little inaccurate, because equality is not always the
relevant relation, but it is certainly the most common way of specifying
constraints on f-structures in LFG. So the term has stuck.

e There are two main classes of f-structure constraints in LFG:

1.Defining Equations
These equations define the f-structure by specifying which features

have which values. They ‘make it so’. Defining equations are stated
with a simple equality (or other relation symbol).

(f SUB] NUM) = SG

20

Defining

wo Main Kinds of

—quations and Constraining

--structure Constraints:

—guations

e There are two main classes of f-structure constraints in LFG:

2.Constraining Equations
These equations further constrain the f-structure once it has been
constructed.

In other words:
1. Satisfy defining equations, setting aside constraining equations, to get
minimal model.

2. Satisfy constraining equations.

There are a number of different kinds of constraining equations, but the
ones that check feature-value pairs are written with a subscript ¢ on the
equality like this:

(f SUB] NUM) =, SG

21

Other Kinds of Constraining Equations

Negative equation: (f TENSE) # PRESENT

Existential constraint: (f TENSE)

Negative existential constraint: —(f TENSE)

Optionality, Disjunction, Conjunction, Negation

sneeze (f PRED) = ‘SNEEZE(SUBJY COﬂJUﬂCthﬂ (|mp||C|’[)
((f VFORM) = BASE|

(f TENSE) = PRES Negation = Aor —{...}
—{(f SUBJ PERS) = 3

(f SUBJNUM) =SG}} Disjunction { A | B}

e The lexical entry for ‘sneeze’ (from Dalrymple 2001:87) says the following:
The PRED of ‘sneeze’ is ‘'SNEEZE<SUBJ>’. Also (conjunction): Either (disjunction) the
VFORM is BASE (i.e. it’s a non-finite form) or it has present tense and it is not the case
that (negation) its subject has third person singular agreement features (cf. She sneeze.)

((f SUBJI PRED) = ‘PRO’) Optionality (A)
Hint: ‘pro-drop’ in LFG!

23

Outside-In and Inside-Out equations

e Outside-in equations with respect to an f-structure f make
specifications about paths leading in from f:

(T COMP TENSE) = PRESENT

* |nside-out equations with respect to an f-structure f make
specifications about paths leading out from f:

(COMP T)

* The two kinds of equation can be combined:

((COMP T) TENSE) = PRESENT

24

Outside-In and Inside-Out equations

e Outside-in equations with respect to an f-structure f make
specifications about paths leading in from f:

(f COMP TENSE) = PRESENT

* |nside-out equations with respect to an f-structure f make
specifications about paths leading out from f:

(COMP f)

* The two kinds of equation can be combined:

((COMP f) TENSE) = PRESENT

25

Functional Uncertainty

e Simple or limited functional uncertainty can be expressed by
defining abbreviatory symbols disjunctively:

GF = { SUBJ | OBJ | OBJy | OBL | COMP | XCOMP | ADJ | XADJ }

e Unlimited functional uncertainty can be expressed with Kleene star
(*) or Kleene plus (*), where X* means ‘0O or more X’ and X* means
‘1 or more X’:

(T FOCUS) = (T {XCOMP | COMP}* GF)

(T INDEX) = ((GFT 1) SUBJ INDEX)

e Note that f-descriptions are therefore written in a regular language,
as is also the case for the right-hand side of
c-structure rules.

26

Functional Descriptions and Subsumption

e F-descriptions are true of not just the smallest, ‘intuitively intended’ f-structure, but also any
larger f-structure that contains the same information.”

* This relationship is called subsumption:
In general, a structure A subsumes a structure B if and only if A and B are identical or B
contains A and additional information not included in A.

SUBIJ [NUM SG]

PRED ‘GO{SUBJ)’
f[] g

PRED

SUBJ

‘GO(SUBJ)’
TENSE FUTURE

" PRED
CASE

| NUM

‘PRO’]

NOM
SG

f subsumes g

e An f-description is therefore true of not just the minimal f-structure that satisfies the
description: the f-description is also true of the infinitely many other f-structures that the

Intended, minimal f-structure subsumes.

27

Minimization

e There is a general requirement on LFG’s solution algorithm that it yield the minimal solution:

no features that are not mentioned in the f-description may be included.

e |et’slook at an example
(1)David sneezed.

e F-description:

from Dalrymple (2001).

(
(

. (fSUB])=¢
(

2"

"PRED ‘SNEEZE (SUBJY
£ | TENSE PAST

[PRED ‘SNEEZE (SUBJY

TENSE PAST
PRED ‘DAVID’
SUB] & [PERS 3]

(PRED ‘YESTERDAY’]

ADJ < [PRED ‘AT (OBJy

OB] [PRED <NOON’|

\—

SUB] g:[PRED ‘DAVID’]

N\

~N

/

28

| exical Generalizations in LFG

>

yawns V PRED)="‘yawn(SUBJ)’
VFORM)=FINITE
TENSE)=PRES

SUBJ PERS)=3

SUBJ NUM)=SG

>

>

>

/-\/-\/-;/-\/-\

A lot of this f-description
IS shared by other verbs.

29

LFG Templates: Relations between Descriptions

yawns " PRED)=‘yawn{SUBIJ)’
" VFORM)=FINITE PRESENT = (1 VFORM)=FINITE
" TENSE)=PRES (T TENSE)=PRES

" SUBJ PERS)=3

3SG = (1T SUBJ PERS)=3
" SUBJ NUM)=SG

(T SUBJ NUM)=SG

AN AN AN TN /N
N N\ A\ A\ N\

%

yawns (T PRED)=‘yawn{SUBIJ)’
@PRESENT
@3SG

30

Templates: Factorization and Hierarchies

FINITE = (T VFORM)=FINITE
PRES-TENSE = (1 TENSE)=PRES
PRESENT = @FINITE

@PRES-TENSE

%
PRES-TENSE FINITE
\/

PRESENT

3PERSONSUBJ = (1T SUBIJ PERS)=3
SINGSUBJ] = (1 SUBJ NUM)=SG
3S5G = @3PERSONSUBIJ
@ SINGSUBJ
3PERSONSUBJ SINGSUBJ
- 7=
3SG

31

Templates: Factorization and Hierarchies

yawns (T PRED)=‘yawn(SUBJ)’ PRES3SG = @PRESENT
@PRESENT @3SG
@3SG
v
yawns (1 PRED)=‘yawn{(SUBIJ)’
@PRES3SG

PRES-TENSE FINITE 3PERSONSUBJ SINGSUBJ

\/ \/
PRESENT 3SG
- =

PRES3SG

32

Templates: Boolean Operators

PRESNOT3SG = @PRESENT (T VFORM)=FINITE
@3SG C> (T TENSE)=PRES
—{(1 SUBJ PERS)=3
Negation (T SUBJ NUM)=SG}

PRES-TENSE FINITE 3PERSONSUBJ SINGSUBJ

\/ \/
PRESENT 3SG

PRESNOT3SG PRES3SG

33

Hierarchies: Templates vs. Types

* Type hierarchies are and/or lattices:

HEAD
e Motherhood: or —
NOUN RELATIONAL
. . /\/\
e Multiple Dominance: and C-NOUN GERUND VERB

e Type hierarchies encode inclusion/inheritance and place constraints on how the
Inheritance is interpreted.

e | FG template hierarchies encode only inclusion: multiple dominance not interpreted
as conjunction, no real status for motherhood.

e | FG hierarchies relate descriptions only: mode of combination (logical operators) is
determined contextually at invocation or is built into the template.

e HPSG hierarchies relate first-class ontological objects of the theory.

e | FG hierarchies are abbreviatory only and have no real ontological status.

34

Hierarchies: Templates vs. Types

HEAD

/\
HPSG NOUN RELATIONAL

/\/\
C-NOUN GERUND VERB

PRES-TENSE FINITE 3PERSONSUBJ SINGSUBIJ

\/ \/
LFG PRESENT 3SG
M

PRESNOT3SG PRES3SG

35

Parameterized Templates

yawns (T PRED)=‘yawn(SUBJ)’ INTRANSITIVE(P) =
@PRES3SG

%

yawns @INTRANSITIVE(yawn)
@PRES3SG

(1 PRED)=‘P{SUBJ)’

36

Parameterized Templates

TRANSITIVE(P) = (1 PRED)=‘P{SUBJ, OBJ)’

TRANS-OR-INTRANS(P) = @TRANSITIVE(P) V @INTRANSITIVE(P)

(T PRED)=‘eat{SUBJ, OBJ)’ V (1 PRED)="‘eat(SUBIJ)’

37

Temple Hierarchy with Lexical Leaves

3PERSONSUBIJ SINGSUBJ
PRESENT 3SG INTRANSITIVE TRANSITIVE

PRES3SG TRANS-OR-INTRANS

yawns eats cooked

38

Defaults in LFG

(T CASE) V (1T CASE)=NOM The f-structure must have case and

If nothing else provides its case,
then its case is nominative.

DEFAULT(D V) = DV D=v Paramerized template for defaults.

Also lllustrates that parameterized
templates can have multiple
arguments

%

@DEFAULT((T CASE) NOM)

39

C-structure Annotation of Templates

VP — V ADVP* ADJUNCT(P) = | € (T ADJUNCT)
r=] | € (+ ADJUNCT) @ADJUNCT-TYPE(P)
(} ADJUNCT-TYPE)=VP-ADJ ADJUNCT-TYPE(P) = (] ADJUNCT-TYPE)=P
VP — V ADVP*

T=l @ADIJUNCT(VP-ADJ)

40

Features In the Minimalist Program

Features and Explanation

e The sorts of features that are associated with functional heads in the
Minimalist Program are well-motivated morphosyntactically, although
other theories may not draw the conclusion that this merits phrase
structural representation (cf. Blevins 2008).

e Care must be taken to avoid circular reasoning in feature theory:

e The ‘strong’ meta-feature: “This thing has whatever property
makes things displace, as evidenced by its displacement.”

e The ‘weak’ meta-feature: “This thing lacks whatever property
makes things displace, as evidenced by its lack of displacement.”

e The EPP feature: “This thing has whatever property makes things
move to subject position, as evidenced by its occupying subject
position.”

42

Features and Simplicity

e Adger (2003, 2008) considers three kinds of basic features:
e Privative, e.g. [singular]
e Binary, e.g. [singular +]
e \alued, e.g. [number singular]
e Adger considers the privative kind the simplest in its own right.

e This may be true, but only if it does not introduce complexity
elsewhere in the system (Culicover & Jackendoff 2005: ‘honest
accounting’).

e Notice that only the final type of feature treats number features as
any kind of natural class within the theory (as opposed to meta-
theoretically).

43

Kinds of Feature-Value Combinations

e Adger (2003):
e Privative
e [singular], [V], ...
e Binary
e [singular: +] (?)
o Attribute-value

¢ [Tense: past]

44

Interpreted vs. Uninterpreted Features

¢ |nterpreted features:
* [F]
e Uninterpreted features:
* [uF]
e All uninterpreted features must be eliminated (‘checked’).
e |nterpreted features are interpreted by the semantics.

® Presupposes an interpretive (hon-combinatorial) semantics.

[Notation from Adger 2003]

45

Feature Strength

e Strong features must be checked locally:
Trigger Move/Internal Merge/Remerge

* [F

e \Weak features do not have to be checked locally:
Do not trigger Move

* [F]

[Notation from Adger 2003]

46

An Example: Auxiliaries

e Adger (2003:181)

“When [uInfl:] on Aux is valued by T, the value is strong;
when [ulnfl:] on v is valued by T, the value is weak.”

TP
/_

Subject T
/\
T[past] NegP
PN
Neg WP
— T
(Subject) v

/\
Verb + v[ulnfl]. ..

47

Locality of Feature Matching

e Adger (2003:218)

Locality of Matching
Agree holds between a feature F on X and a matching feature F
on Y if and only if there is no intervening Z[F].

Intervention
In a structure [X ... Z ... Y], Z intervenes between X and Y iff X c-
commands Z and Z c-commands .

48

Feature-Value Unrestrictiveness & Free Valuation

e Asudeh & Toivonen (2006) argue that the Minimalist feature system
of Adger (2003) has two undesirable properties.

Feature-value unrestrictiveness

Feature valuation is unrestricted with respect to what values a
valued feature may receive.

Free valuation
Feature valuation appears freely, subject to locality conditions.

e This results in a very unconstrained theory of features.

e This may sound good, because it’s less stipulative and hence more
Minimal, but from a theory perspective it is bad: unconstrained
theories are less predictive.

49

Example: English Subject Agreement

(1) Gilgamesh missed Enkidu

TP

T
T[past] P

/\
Gilgamesh v

V/\\/P
/\
missva (miss) NP

Enkidu

(2) Gilgamesh misses Enkidu

TP
T T~

T[singular] P

/\
Gilgamesh v

1% VP
/\
v[t#aft:singular]) (miss) NP

Enkidu

e Contrast with HPSG: MP has no typing of values (feature value unrestrictiveness)

e Contrast with LFG: MP has valuation without specification (free valuation)

50

wo Contrasting Feature Theories

e HPSG (Pollard & Sag 1994): features are not just valued, the values
are also typed

e |f two values can unify, they must be in a typing relation (one
must be a subtype of the other).

e Feature values in HPSG are thus tightly restricted by types.

e | FG (Kaplan & Bresnan 1982, Bresnan 2001): features are not
restricted, but there is no free valuation

e A feature cannot end up with a given value unless there is an
explicit equation in the system.

51

—eature Simplicity and Constraint Types

e | FG offers the opportunity to consider Adger’s three feature types in light
of a single feature type, with varying constraint types.

e | FG features are valued (f is an LFG f(unctional)-structure):

f [NUMBER singular}

e Types of LFG feature constraints.
 Defining equation: (f NUMBER) = singular
e Existential constraint: (f NUMBER)
* Negative existential constraint: —(f NUMBER)

e Constraining equation: Qf NUMBER) =, singular
* Negative constraining equation: (f NUMBER) # singular

52

Feature Simplicity and Constraint Types

e All features treated as valued features: no restriction on constraint
types

o All features treated as binary features: only positive and negative
constraining equations allowed

o All features treated as privative: only negative and existential
constraints allowed

e This understanding of privative features actually does treat
number as a natural class.

e This treats the notion of feature simplicity as a kind of meta-
theoretical statement in an explicit, non-ad-hoc feature theory.

53

Control and Raising

L exical Entries

tried V (T
(1

PRED) = ‘try(SUBJ,XCOMP)’
SUBJ) = (T XCOMP SUBJ)

seemed V (T PRED) = ‘seem(CF)SUBIJ’

{ (T SUBJ) = (T XCOMP SUBJ) |

¢
¢

" SUBJ PRONTYPE) = EXPLETIVE
" SUBJ FORM) = IT

¢

" COMP) }

Raising to Subject/Subject Control C-structure

IP
/\

(T sUBy) =| T=1
NP I

A

Gonzo

seemed|/tried T = T=1
A VP

56

F-structures

PRED

SUBIJ

XCOMP

PRED

SUBJ

XCOMP

‘seem((XCOMP))(SUBJ)

[PRED ‘Gonzo’}

'PRED ‘leave((SUBJ))”_

SUBJ

‘try ((SUBJ),(XCOMP))’

{PRED ‘Gonzo’}

PRED ‘leave ((SUBJ))’_

SUBJ

57

Copy Raising

Data

(1) Thora seems like she enjoys hot chocolate.
(2) Thora seems like Isak pinched her again.

(3) Thora seems like Isak ruined her book.

(4)* Thora seems like Isak enjoys hot chocolate.

(5)* Thora seems like Isak pinched Justin again.

(6)* Thora seems like Isak ruined Justin’s book.

59

Data

(7)1t seems like there is a problem here.

(8) It seems like Thora is upset.

(9) It seems like it rained last night.

(10) There seems like there’s a problem here.

(11) * There seems like it rained last night.

60

L exical Entries

likel

lik€2

PO

PO

(T PRED) = ‘like(SUBJ,COMP)’

(T PRED) = ‘like(CF)SUBJ’

{ (T SUBJ) = (T XCOMP SUB]J) |

¢
¢
¢

" SUBJ PRONTYPE) = EXPLETIVE
" SUBJ FORM) = IT
" COMP) }

61

C-structure

1P
/\
(T suB)) =] T=1
DP I
Richard r=l

VO PP
seems T=1
P/
/\
T=1 (T compP) = |
PO 1P
‘ _— T
like (T suBl =] T=1
DP I
A |
T=1
he VP

62

F-structure

PRED ‘geem ’

SUBJ .
PRED ‘like’
SUBJ {PRED ‘Richard’}—/
PRED ‘smoke’
XCOMP PRED ‘pro’
COMP PERS 3
SUBJ
NUM sg

GEND masc

C-structure

IP
/\
(T suBJ) = | =
DP I’
/AN
=
There VP
/\
T=1 (T xcomp) = |
VO PP
/\
‘ T=1 (1 xcomp) = |
seemed
po IP
‘ _— T
like (T suBl)) = | T=1
DP I’
AN

there was a problem

64

F-structure

PRED

SUBJ

XCOMP

‘seem’
PRED ‘like’
SUBIJ
PRED ‘be’
SUBJ [EXPL there}
XCOMP - -
PRED ‘problem’
OBJ
SPEC [PRED ‘a’}

65

Unbounded Dependencies

Filler-Gap Dependencies

Functional Uncertainty

e The syntactic relationship between the top and bottom of an
unbounded dependency is represented with a functional
uncertainty:

e Jop = MiddlePath-Func-Uncertainty Bottom-Func-Uncertainty

(1) [What] [did Kim claim that Sandy suspected that Robin knew] []
top middle bottom

(T FOCUS) = (]/COMP* {OBJ|OBJy|})

\

top middle bottom
(2) [What] [did Kim claim that Sandy suspected that Robin gave Bo] []

68

Wh-Questions: Example

NP C’
| /\
N C IP
Who does NP I’
| |
N VP
| |
David V

like

FOCUS

'PRED ‘PRO’

 PRONTYPE WH |

Q

PRED

SUBJ

OBlJ

‘LIKE(SUBJ,OBJ)’

[PRED ‘DAVID’]

69

Wh-Questions: Annotated PS Rule

CPp — QuesP
(T FOCUS) =
(T FocUus) = (T QFOCUSPATH)
(T Q) = (T FOCUS WHPATH)
(T Q PRONTYPE) =, WH

Wh-Questions: QuesP Metacategory

QuesP = {NP | PP | AdvP | AP}

1)NP: Who do you like?

2)PP: To whom did you give a book?

(1)
(2)
(3)AdvP: When did you yawn?
(4) AP: How tall is Chris?

Wh-Questions: Unbounded Dependency Equation

English QFOCUSPATH:

5k

{xcomp| comp | oBr }* {(aDJ €) (cF) | GF}
(— LDD)# — (— TENSE) —(— TENSE)

Wh-Questions: Pied Piping

English WHPATH:

{sPEC* |OBJ}

(1)[Whose book] did you read?

(2)[Whose brother’s book] did you read?

(3)[In which room] do you teach?

Relative Clauses: Example

a man who Chris saw
[PRED ‘MAN’
SPEC [PRED ‘A’}

r o -

TOPIC [

/

/ RELPRO

PRED ‘PRO’]
PRONTYPE REL |

ADJ ‘ ;
PRED ‘SEE(SUBJ,OBJ)

SUBJ [PRED ‘CHRls’}

)
A

Det N’ OBJ
| /\ \ | i
a N CP
|
N NP C’
| | |
man N 1P
| T
who NP I’
| |
N VP
| |
Chris V

Relative Clauses: Annotated PS Rule

cCPp — RelP
(T TOPIC) =
(T TOPIC) = (T RTOPICPATH)
(T RELPRO) = (T TOPIC RELPATH)
(T RELPRO PRONTYPE) =, REL

Relative Clauses: RelP Metacategory
RelP = {NP | PP | AP | AdvP}

(1)NP: a man who | selected

(2)PP: a man to whom | gave a book

(3)AP: the kind of person proud of whom | could never be

(4) AdvP: the city where | live

76

Relative Clauses: Unbounded Dependency

English RTOPICPATH:

{xcomp| comp | oB; }* {(ADJ c)
(— LDD)# — (— TENSE) —(— TENSE)

—quation

(c¥) | Gr)

77

Relative Clauses: Pied Piping

English RELPATH:

(1)the man
(2)the man

{spPEC* |[(0BLg)OBI]*} @reman

read

'who] | met

'whose book] | read

'whose brother’s book] |

(4)the report [the cover of which] |

designed

(5)the man [faster than whom] | can

run

(6) the kind of person [proud of
whom] | could never be

(7)the report [the height of the
lettering on the cover of which]
the government prescribes

78

Relative Clauses: Pied Piping Example

a man whose book Chris read
[PRED ‘MAN’
SPEC [PRED ‘A’]

4 B -] \
PRED ‘PRO’ '|

SPEC
TOPIC PRONTYPE REL | §

/ PRED ‘BOOK’ .
RELPRO

PRED ‘READ(SUBJ,OBJ)’

ADJ <

SUBJ [PRED ‘CHRIS’]

OBJ J
\ L . /

N NP C’
| S |
man Det N’ P
| | P

whose N NP I
book N VP

C hlris \|/
relad

Constraints on Extraction

Empty Category Principle/That-Trace

(1)Who do you think [__ left]?

(2)* Who do you think [that __ left]?

(3)* What do you wonder [if __ smells bad]?
(4)Who do you think [__ should be trusted]?

(5)* Who do you think [that __ should be trusted]?

(6) Who do you think [that, under no circumstances, __ should be
trusted]?

(7YWho do you wonder [if, under certain circumstances, __ could be
trusted]?

81

That-Trace In LFG

e | FG has a relation called f-precedence that uses the native
precedence of c-structure to talk about precedence between bits

of f-structure.

e [-precedence relies on LFG’s projection architecture and the
inverse of the c-structure—f-structure mapping function .

e The inverse is written ¢! and returns the set of c-structure nodes
that map to its argument f-structure node.

F-precedence
An f-structure f f-precedes an f-structure g (f <r g) if and only if

forallns e ¢(f) and for all n2 € (g), n1 c-precedes no.

82

That-Trace In LFG

e \We can leverage LFG’s projection architecture to capture the fact
that That-Trace is a ‘surfacy’ phenomenon (cf. ECP as a PF
constraint in recent Minimalism).

Form
o

string c-structure f-structure

N
> @ >

— = ¢ E—— —
- - =~
) e o o

T —> 0 =

83

That-Trace In LFG

e Assume a native precedence relation on strings, yielding a notion
of element that is string-adjacent to the right (‘next string
element’), which we define as Rightstring(t1(*)), where * designates

the current c-structure node in a phrase structure rule element or
lexical entry.

® Let’s abbreviate the right string-adjacent element to * as >.

e The semantics of > is ‘the string element that is right string-
adjacent to me’.

e Note that n'! returns string elements, not sets of string elements,
because = is bijective, since c-structures are trees.

84

That-Trace In LFG

e \We can use f-precedence and > to capture the surfacy nature of
That-Trace.

e Basically, English has a (somewhat arbitrary) constraint that the
right-adjacent string element to the complementizer must be
locally realized.

e This can be stated by requiring that any unbounded dependency
function in the f-structure corresponding to the element that
occurs in the string immediately after the complementizer should
not f-precede the complementizer’s f-structure.

85

L eft Branch Constraint

(1)Whose car did you drive __?
(2)* Whose did you drive [__ car]?

86

| eft Branch Constraint in LFG

e Do not include SPEC/POSS in GFs of possible extraction sites.

* Note that the equation we looked at previously already disallows
the extraction from passing through a SPEC in the first part.

¢ \We modify the equation as follows

{xcomp| comp | oBy }* {(aDJ €) (GF) | GF— sPEC}
(— LDD)# — (— TENSE) —(— TENSE)

87

Wh-Islands in LFG:; Off-Path Constraints

* The off-path metavariable « refers to the f-structure that contains
the attribute that the constraint is attached to.

e The off-path metavariable — refers to the f-structure that is the
value of the attribute that the constraint is attached to.

{xcomp| comp | oBy }* {(aDJ €) (GF) | GF— sPEC}
(— LDD)# — (— TENSE) —(— TENSE)

e Use +« to state the bottom cannot be in an f-structure that has an

unbounded dependency function UDF, where
UDF = {TOPIC | FOCUS}.

%

{xcomp| comp | oBr }* {(aDJ €) (GF) | GF— sPEC}
(— LDD)# — (— TENSE) —(— TENSE) —(+— UDF)

88

Successive Cyclic Effects

Successive Cyclicity

e Data from languages such as Irish and Chamorro, which show
successive marking along the extraction path, have motivated the
claim that extraction/movement is ‘cyclic’ (not all at once). Cf.
Phases in Minimalism.

e Of course, this data does not argue for movement per se, as some
have wrongly assumed, but rather that unbounded dependencies

should
1. Be made up of a series of local relations; or

2. Have a way to refer to their environments as the dependency is
constructed.

e HPSG has adopted the first approach, LFG the second.

90

Data: Irish

e Note: Date from McCloskey
via Bouma et al. (2001).

. an fear al. duirt mé al. shil mé al. bheadh

. Shil mé goN mbeadh sé ann

thought I ~ PRT would-be he there

I thought that he would be there.

. Duirt mé gurL shil mé goN mbeadh sé€ ann

said I goN+PAST thought I ~ PRT would-be he there

I said that I thought that he would be there.

. an fear al shil mé al. bheadh ann

[the man]; PRTthought I ~ PRTwould-be __; there

the man that I thought would be there

__ann

[the man]; PRTsaid I PRTthought I ~ PRTwould-be __; there

The man that I said I thought would be there

. an fear aL shil _ goN mbeadh sé ann

[the man]; PRT thought __; PRT would-be he there

the man that thought he would be there

91

Irish Successive Cyclicity in LFG

al. C (Tupp)=(CF* GF)
(— UDF) = (] UDF)

Note: UDF = {TOPIC | FOCUS}, CF = {(XCOMP | COMP}

A\

goN C (T TENSE)
—(T UDF)

Glue Semantics

93

Glue Semantics

e Glue Semantics is a type-logical semantics that can be tied to any
syntactic formalism that supports a notion of headedness.

¢ Glue Semantics can be thought of as categorial semantics without
categorial syntax.

e The independent syntax assumed in Glue Semantics means that the
logic of composition is commutative, unlike in Categorial Grammar.

e Selected works:
Dalrymple (1999, 2001), Crouch & van Genabith (2000),
Asudeh (2004, 2005a,b, in prep.), Lev 2007, Kokkonidis (in press)

94

Glue Semantics

o [exically-contributed meaning constructors :=

Meaning language term ,/\/l . G Composition language term

¢ Meaning language := some lambda calculus
e Model-theoretic

e Composition language := linear logic
e Proof-theoretic

e Curry Howard Isomorphism between formulas (meanings) and types
(proof terms)

e Successful Glue Semantics proof:

F"MIGt

95

Key Glue Proof Rules with Curry-Howard Terms
Application : Implication Elimination Abstraction : Implication Introduction
)) [+ A}
a:A f:A—oB :
°f . B
f(a) : B f °7.,1
Ae.f : A— B
Pairwise Conjunction
Substitution Elimination
z: A [y : B]? Beta reduction for let:
: leta xbbex xyin f =3 fla/x,b/y]
a: AR B f:C

letabex xyinf:C

Xe. 1,2

96

—xample: Mary laughed

1. mary : ..

2. laugh : (T SUBI),. — g,

1. mary : go.,

2" laugh : g5, —o f5,

Proof
1. mary : m Lex. Mary
2. laugh : m —o | Lex. laughed

3. laugh(mary) : 1 E—o, 1,2

'PRED ‘laugh(SUBJ)’

SUBJ g[PRED ‘Mary’}

1”. mary : m

2", laugh : m —o

Proof
mary

T m laugh : m —o |

laugh(mary) :

°E

97

—xample: Most presidents speak

1. ARAS.most(R,S):(v—or)—oVX.[(p—o0X)— X| Lex. most
2. president™ : v—or Lex. presidents
3. speak :p—os Lex. speak
ARMNS.most(R,S) : president™ :
(v—o71)—oVX.[(p—o0X)—oX] v—or
AS.most(president™, S) : speak :
VX.|(p—oX)—X] pD—oS§
og, [s/X]

most(president™, speak) : s

98

—Xample:
Most presidents speak at least one language

PRED ‘speak(SUBJ, OBJ>’ S|ng|e parse
PRED ‘president’]
SUBJ S -
SPEC [PRED most]
- - _ Multiple scope possibilities
0w | language (Underspecification through
SPEC [PRED ‘at—least—one’} quantifica’[ign)
1. ARAS.most(R,S) : Lex. most
(v1 —orl) —oVX.[(p—oX)— X]
2. president™ : vl —orl Lex. presidents
3. speak :p—ol—os Lex. speak
4. APXQ.at-least-one(P, Q) : Lex. at least one

(V2 —o1r2) —VY.[(l—-Y)—Y]
5. language : v2 —o 12 Lex. language

Most presidents speak at least one language
Subject wide scope

APAQ.a-1l-0(P, Q) : lang : Az Ay.speak(z,y) :
(V2 —o12) —oVY.[(l—Y)—oY] v2 —o 12 p—ol—os (2 : p]*
ARMAS.most(R,S) : president™ : AQ.a-l-o(lang, Q) : Ay.speak(z,y) :
(v —or1) —oVX.[(p—oX)—X] wvl-—orl VY.l oY) Y] [—os /Y]
\S.most (president*, §) : a-l-o(lang, \y.speak(z,y)) : s
’ ' —o7.1
VX.[(p—oX)— X] Az.a-l-o(lang, \y.speak(z,y)) : p—o s
[s/X]

most(president™, A\z.a-l-o(lang, \y.speak(z,y))) : s

100

Most presidents speak at least one language
Object wide scope

ARAS.most(R, S) : president™ : AyAzx.speak(z,y) :
(v —or1) = VX .[(p — X) — X] vl —orl |—op—os [z : 1"
APAQ.a-1-0(P, Q) : lang - AS.most(president™, S) : Az.speak(x, 2) :
(V2 —072) —oVY.[(l—0Y)— Y] 02 —or2 VX [(p — X) — X] p—s o/ X]
\Q.a-l-0(lang, Q) - most(president™, Ax.speak(z, z)) : s
VY. [(l—-Y)—oY] Az.most(president™, Ax.speak(z, z)) : | —o s .

— [s/Y]
a-l-o(lang, A\z.most(president™, \x.speak(z, 2))) : s

101

Anaphora in Glue Semantics
e \ariable-free: pronouns are functions on their antecedents
(Jacobson 1999, among others)

e Commutative logic of composition allows pronouns to compose
directly with their antecedents.

* No need for otherwise unmotivated additional type shifting (e.qg.
Jacobson’s z-shift)

102

Anaphora in Glue Semantics

1. Joe said he bowls.

e Pronominal meaning constructor:

Nz X 2z:A—o (AR P)

AuAg.say(u, q) : Av.bowl(v) :
2 5]’ j—ob—os [y« p]” p—ob
joe : A2.2 X 2 Aq.say(z, q) : bowl(y) :
J j— (i ®p) b—os b
joe X joe : j Qp say(x, bowl(y)) : s
Re,1,2

let joe X joe be x X y in say(z, bowl(y)) : s

=B
say(joe, bowl(joe)) : s

103

Further Points of Interest

e Glue Semantics can be understood as a representationalist theory,
picking up on a theme from Wednesday’s semantics workshop.

e Proofs can be reasoned about as representations (Asudeh &
Crouch 2002a,b).

 Proofs have strong identity criteria: normalization, comparison

e Glue Semantics allows recovery of a non-representationalist notion
of direct compositionality (Asudeh 2005, 20006).

= Flexible framework with lots of scope for exploration of
questions of compositionality and semantic representation

104

