| exical-Functional Grammar
&

Flexible Composition

Ash Asudeh
Oxford University & Carleton University

Goals

® Provide an overview of Lexical-Functional
Grammar

® Provide an overview of Glue Semantics

® Provide an introduction to an approach to
argument structure that builds on these
two theories, part of what | call Flexible
Composition

| exical-Functional Grammar

History

® LFG was developed by Joan Bresnan, a syntactician, and

Ron Kaplan, a social psychologist by training but then a
computational linguist, as a constraint-based/declarative

alternative to transformational/procedural theories of the
time.

® Desiderata:
® Formal precision
® Psychological plausibility

e Computational tractability

Overview

® At the heart of LFG remain its two syntactic structures:
® ((onstituent)-structure

® ‘Concrete syntax’: Precedence, dominance,
constituency

® F(unctional)-structure

® ‘Abstract syntax’: Morphosyntactic features,
grammatical functions, predication, subcategorization,
local dependencies (agreement, control, raising),
unbounded dependencies, anaphoric syntax (binding)

The @ correspondence function

® Elements of the c-structure are mapped to (put into correspondence with) elements of
the f-structure by the ¢ correspondence function (sometimes called a projection function).

® This is accomplished by adding functional descriptions to the nodes in the c-structure
tree.

® These equations use the T (“up arrow”) and | (“down arrow’’) metavariables.
® A T ona c-structure node n refers to the f-structure of the (c-structure) mother of n.
® Al onac-structure node n refers to the f-structure of node n.
® Examples:
e T=] on n means that n and n’s mother map to the same f-structure.

® (T suBECT) =! on n means that the f-structure of n is the value of the SUBJECT
attribute in the f-structure of n’'s mother.

Example:

That kid is eating cake

C-structure [p

/\
(T suBJ) = | T=1
DP I
| /\
T=1 T=1 T=1
D’ 10 VP
T=1 T=1 18 T=1
DY NP v/
| | T
That T=1 T=1 (ToB)) =]
NV VY DP
| | |
kid eating T=1
NP
|
T=1
NO

L exical entries

that, DY

kid, NV

is, IV

eating, V°

cake, N©

(T DEFINITE) = +

(T DEIXIS) = DISTAL
(T NUMBER) = SG

(T PERSON) = 3

(T PRED) = ‘kid’
(T NUMBER) = SG
(T PERSON) =3

(T SUBJ NUMBER) = SG

(T SUBJ PERSON) = 3

(T TENSE) = PRESENT

(T PARTICIPLE) =, PRESENT

(T PRED) = ‘eat(SUBJ,OBJ)’
(T ASPECT) = PROGRESSIVE
(T PARTICIPLE) = PRESENT

(T PRED) = ‘cake’
(T NUMBER) = SG
(T PERSON) =3

Example:
That kid is eating cake

IP
/\
(f1 SUBJ) = f» f1=1f
DP, r,
l /\
fo = /s J7 jfs Jr=1o
/
D/,) VPy
s :0f4 fs =15 18 fo = fi0
/
DY NP 0
| | ———
That f5 :Of6’ f10 jfzz (f10 OBJ) = f12
N6 VZZ DP]Q
| | |
kid eating f12 = f13
NP ;9
|
f1s = f14
0
N,

|
cake

f1
fr
fs
fo
f1o
f11

PRED

SUBJ

OBJ

TENSE
ASPECT

(4

f
f3
y
fs
fo

f12
f1s
f14

eat(SUBJ,0BJ)’

PRED ‘kid’
DEIXIS DISTAL
DEFINITE +
NUMBER SG
| PERSON 3
[PRED ‘cake’ |
NUMBER SG
PERSON 3
PRESENT
PROGRESSIVE

PARTICIPLE PRESENT

Flexibility in mapping

Finnish Common (subsumptive) f-structure English
I|P PRED ‘drink(SUBJ,OBJ)" | /IP\
I TENSE PAST DP T
TN 'PRED ‘pro’ A |
°__ VP VP
T "|suBl |PERSON 1 _ L
Joi-m) V' _— |NUMBER SG A
\J : - _ /\
DP PRED “water’ VO DP
A\ OBJ PERSON 3 _ /y/ii
vettd ' |NUMBER SG drank

Example:
the book that she likes

C-structure rules C-structure and corresponding f-structure
DPp — DY NP

T=y =l
NP — NP CP

=4 | et an)

V€ (TAD))

NP — N o

T B \L that she likes
N — N

Example:
the book that she likes

L exical entries

she, DY

likes, V°

the, D°

book, NY

(1 PRED) = ‘pro’

(1 PERSON) =3

(1 NUMBER) = SINGULAR
(1 GENDER) = FEMININE

(1 PprED) = ‘like(suBj,0BJ)’

(1 TENSE) = PRESENT

(1 SUBJECT PERSON) =3

(1 SUBJECT NUMBER) = SINGULAR

(1 sPEC PRED) = ‘the’
(1 DEFINITE) = +

(1 PRED) = ‘book’

(1 NUMBER) = SINGULAR

C-structure with lexical information
and instantiated f-structure

DPf
fl - f2 fl ~ f3
DY P
f, N,
| /\
the f =f f e (f, ADy)
(f, spec PRED) = ‘the’ fqp f4 ’ CP3 fi
(f, DEF) =+ | 4 7
£, =1,
N’fs that she likes
|
f5 =f,
NO
6
|
book

(fg PRED) = ‘book’
(fg NUM) = sG

SR ORI S T

PRED

‘book’

NUM G

DEF

‘the’}

o {5}

S
|
SPEC [PRED

Example:
the book that she likes

Penultimate f-structure

PRED ‘book’
NUM SG
DEF +

SPEC {PRED ‘the’ }

- -
h PRED ‘like’ \ Notes:
B ¢ >] |. | often adopt the practice
FRED pro of labelling f-structures
PERS 3 mnemonically with the first
ADJ Q llsupp P > letter of the PRED value.
NUM 5G 2.1 often leave the
GEND FEM subcategorization out of the
- - PRED. (There’s a principled
TENSE PRES ; reason for this; we can
\ L i

- - discuss it in question time.)

General wellformedness
constraints on f-structures

® Completeness
All subcategorized grammatical functions in a PRED
feature must be present in the f-structure.

® Coherence
All grammatical functions that are present in the f-
structure must be subcategorized by a PRED feature.

® Consistency (a.k.a. Uniqueness)
Each f-structure attribute has one value.

Example:

Violations of Completeness, Coherence,

Completeness

PRED ‘like <SUB], OBJ>’

N

SUBJ

Consistency

Coherence

PRED like <SUBJ, OBJ>’

SUBJ
OB]J

OBL

Consistency

NUM SG
NUM PL

SUBJ |PRED ‘hello’}

SUBJ

PRED ‘world’}

Example:
the book that she likes

Penultimate f-structure

PRED ‘book’
NUM SG
DEF +
SPEC {PRED ‘the’}
- - Not complete:
like’) ey e
b PRED 1KC OB of ‘like’ missing
PRED pro’
PERS 3
AD] < Ilsuy P
NUM SG
GEND FEM
— =
TENSE PRES
b \ —

Unbounded dependencies

® [Extended Coherence Condition
An UNBOUNDED DEPENDENCY
FUNCTION (UDF) must be linked
to the semantic predicate
argument structure of the
sentence in which it occurs,
either by functionally or by
anaphorically binding an
argument.

CP — | XP
(1 upE) = |

(1 upr) = (1 UDFPATH)

(1 UDFPATH) = (T COMP* GF)

(1) Who did you see!?
(2) Who did Kim say that you saw?

(3) Who did Kim claim that Sandy
alleged that you saw!?

€ } C
(1 UDF PRED) = ‘pro’ 0
(1 upFk) = (1 UDFPATH)

|l
e

Example:
the book that she likes

Final f-structure

PRED ‘book’
NUM SG
DEF +

SPEC [PRED ‘the’}

(-)

[PRED ‘like’
b UDF pl [PRED ‘pro’} N
(PRED ‘pro’
ADJ 0] U p2 PERS 3 \
NUM SG
GEND FEM

OBJ /

TENSE PRES

Language as a form—meaning mapping:
The Correspondence Architecture

'=wotocoloaxopouon -

—
—
-_—
-

— - =~ ~
-~ - ~ ~
~ - ~ ~
_ _ ~ =~ ~ ~
7 - \A
Form ,/—"P‘*\\ ,/”w‘“~\Meaning
-~ . Pl N
° T > @ U > ® P >0 o > ® A > ® (0] > ® l > @ 0 > ®
phonological ~ morphological prosodic constituent argument functional semantic information model

string structure structure structure structure structure structure structure

Templates:
Generalizations over named descriptions

® An LFG template is nothing more than a named functional description (i.e., a set of
equations that describe linguistic structures).

® For any LFG grammar defined in terms of templates, we could construct a
completely equivalent grammar which does not use templates, simply by replacing
each template with the description that it abbreviates.

® The same grammatical descriptions would be associated with words and
phrases in each of the two grammars, and the grammars would produce the
same c-structures and f-structures for the words and phrases of the language.

® However, the grammar without templates would lack the means of expressing
generalizations across lexical entries and grammar rules which templates make
available.

® |nsum:

® Templates name LFG grammatical descriptions such that the same description
can be used in different parts of the grammar.

® The semantics of template calling/invocation is just substitution: The grammatical
description that the template names is substituted where the template is called.

Example:
Present tense intransitive verbs

3SG = (1T SUBJNUM) =3
(T SUBJ PERS) = SG

INTRANSITIVE(X) = (1 PRED) = ‘X(SUBJ)’

BARE-V = { @TENSE(PRESENT)
—@3SG |
—(1 TENSE) }

laughs 'V (1 PRED) = ‘laugh(SUBJ)’
(T TENSE) = PRESENT
@3SG

laugh 'V (1 PRED) = ‘laugh(SUBJ)’
{ (T TENSE) = PRESENT
—@35G |
—(1 TENSE) }

laughs V @INTRANSITIVE(laugh)
@TENSE(PRESENT)
@3SG

laugh V @INTRANSITIVE(laugh)
@BARE-V

Templates:
Lexical entries and phrasal configurations

® Templates can be associated with lexical entries, but as they are just named
descriptions, they can also be associated with c-structure configurations by
calling the template in the c-structure rule.

® Example: English relative clauses have bare and non-bare alternatives
(1) the book Kim read

(2) the book which Kim read

® Suppose we have a template REL that captures the relativizing information.
¢ REL= AQ.AP.\z.P(x) A Q(x) : clause — nominal — nominal

® This template can now be associated with a relative pronoun or with the rule
for a bare/reduced relative clause

(3) which D @REL

RelP C’
#) CP — () (@REL)

Template hierarchies &
type hierarchies

As we've seen, template definitions may contain reference to other templates.

This effectively creates a hierarchy of templates, similar to the type hierarchies of
Head-Driven Phrase Structure Grammar.

Differences:

|. Type hierarchies represent relations between structures, whereas template
hierarchies represent relations between descriptions of structures: Templates do

not appear in the actual structures of the theory, but only in descriptions that the
structures must satisfy.

2. Type hierarchies represent inheritance in an and/or semilattice.
® The daughters of a type represent disjoint subtypes (or).

® Multiple mothers for a type represent conjoined super- types (and).

Template hierarchies &
type hierarchies

Type hierarchy: Inheritance

substantive
/ \
noun relational
c-noun gerund verb

Template hierarchy: Inclusion

3SG laughs (7 PRED) = ‘laugh(suBJ)’
3SG
/\ @
laugh laughs laugh (1 PRED) = ‘laugh(SUBJ)’

—@3SG

Glue Semantics

Overview

Glue Semantics is a method of semantic composition in which a potentially
representationally rich meaning language is paired with a very constrained logic of
composition that ‘glues’ pieces of meaning together to obtain larger meanings.

® You can think of the pieces of meaning like Lego pieces:They can only fit together in
certain ways.

The meaning language is some logic that supports the lambda calculus and has a model-
theoretic interpretation.

The glue logic is (a fragment of) Linear Logic, a logic originally developed for theoretical
computer science.

Linear Logic, and hence the glue logic, is a resource logic: All meanings obtained through the
syntactic parse must be used exactly once.

® It’s like you have to use all your Lego pieces to build something and, obviously, no piece
may be used more than once.

Meaning constructors

® Meaningful linguistic expressions, particularly but
not necessarily lexical items, are associated with
meaning constructors of the following form:

M: G

® The expression on the left is a term from the
meaning language. The expression on the right is
the associated term from the glue logic. The
colon is an uninterpreted pairing symbol.

The logic of implication:
Filling in missing pieces

® |inear implication is a cute lollipop.

® We can define its logical behaviour in terms
of two simple proof rules.
Functional application : Implication elimination (modus ponens)
f:A—oB a: A
f(a): B

_Og

Functional abstraction : Implication introduction (hypothetical reasoning)
la: A]l
f . B

Ma.f : A— B

—07.1

Example:
Kim hugged Robin

® Meaning constructors from lexical entries

Kim € kim : 1,

Robin e robin : 1,

hugged e~ (e —=1t) Ay z.hug(x,y): (1 OBJ), — (1 SUBJ), — 1,

® F-structure
PRED ‘hug(SUBJ, OBJI) |

;| SUBJ k| PRED ‘Kim’}

OBJ r|PRED ‘Robin’}

Example:
Kim hugged Robin

® |[nstantiated meaning constructors

Kim e kim : kg
Robin e robin : r,
hugged e — (e —>t) Ay Ar.hug(z,y):rs —o ks —o hg

® Proof
Ay Ax.hug(x,y) : ry — kg —o hy r10bIN @ T4
(Ay. Ax.hug(z,y))(robin) : ks —o hg

_Og

=B

Ax.hug(x, robin) : ky, —o hy kim :

(Az.hug(x, robin))(kim) : he

P
hug(kim, robin) : h,

Flexible Composition

Overview

® Flexible Composition is the name |'ve given to a theory of
semantic composition, or more specifically how
compositional meanings are packaged, that my collaborators
(Mary Dalrymple, Gianluca Giorgolo, and Ida Toivonen) and |
have been developing for a number of years.

® Basic intuition: Templates can be used to factor out common
meanings across lexical items, e.g. argument structure
regularities, and across phrasal configurations, e.g. so-called
“constructional meanings” (but without actual
constructions).

Some features of Flexible Composition

|. The representation of core semantic information, such that the same lexical
entry can be involved in a number of valency realizations

(1) The hamster ate a sheet of newspaper this morning.
(2) The hamster ate this morning.
(3) The hamster ate its way through a sheet of newspaper this morning.
2. The representation of missing/understood arguments
3. The representation of additional/derived arguments
(4) *The performer laughed the children.
(5) The performer laughed a funny laugh.
4. The possibility of associating meanings with syntactic configurations
(6) The performer sang the children a song.
5. Templates as generalizations over lexically encoded meaning

6. Templates as the locus of specification of meanings which can be associated
with lexical entries or c-structure rules

Some templates for Flexible Composition

AGENT = COGNATEOBIJECT
@ARGI AzAPXe.P(e) Nz =c¢(e):
APXzXe.P(e) N agent(e) = x : (1 OBJ); —o [(14 EVENT) — 1] —o (15 EVENT) —o 1,

[(1, EVENT) — 1,] —o (1, ARG1) — (1, EVENT) — 1,

PATIENT = BENEFACTIVE =
@ARG?2 @ARG3
APAz)e.P(e) A patient(e) = x : AzAYAPXe.P(y)(e) N beneficiary(e) = x :

[(fo EVENT) —o 1,] —o (1y ARG) —o (1, EVENT) o T, (T ARG2)—= (1o ARGS) ~= [(To ARG2) o (1o EVENT) = To] ~ (1, EVENT) = T,

AGENT-PATIENT = UNDERSTOODOBJECT =
@AGENT AP3z.[P(z)] : [(15 ARGy) —0 15| — 14
@PATIENT

PASSIVE = PAST =
(1 VOICE) = PASSIVE (T TENSE) = PAST
@ADDMAP(PLUSR,ARG1) AP3e.[P(e) N past(e)] :

(AP3z.[P(z)] : [(T5 ARG1) — 15| — 15) [(To EVENT) — 15] — 15

Example:
Kim was crushed last night

PRED ‘crush’ REL crush |
SUBJ {PRED ‘Kim’ EVENT ev{ }
. _\ C
ADJ < [“last night”} > ARG a[}
o)
TENSE PAST \W{ }
VOICE PASSIVE

crushed V (1T PRED) = ‘crush’
@ AGENT-PATIENT
{ @PAST | @PASSIVE }

Ae.crush(e) : (1, EVENT) —o 1,

Example:
Kim was crushed by Godzilla last night

PRED ‘crush’

SUBJ [PRED ‘Kim’]

\ REL

crush

o EVENT ev{]

3 T
PRED ‘by’
OBL .
OBJ [PRED ‘Godzilla’ }
NI [“last night”}}

TENSE PAST
VOICE PASSIVE

by P (T PRED) = ‘by’
((OBL T) VOICE) =, PASSIVE
(T OBJ); = ((OBL 1), ARG1)

N e o]

\/k{ /.

AZAP.[P(z)] : (1, ARG1) —o [ty —o (OBL 1)y] — (OBL 1),

Example:
Kim laughed a crazy laugh

IP laughed V

; SUBJ):¢/\T: . (1 PRED) = ‘laugh’

A | @AGENT

Cim T =1 (@COGNATEOBIECT)

VP , .
S Ae.laugh(e) : (1o EVENT) —o 1y,
b T=1 (t oBI) =
y -V DP
K

¢ laughed a crazy laugh

‘laugh’ 'REL laugh |
[ST 2 mn \ o)
PRED ‘Kim } ~/|EVENT ev{ }
OBJ < crazy laugh”}\\ o ARGl/]f[}
_TENSE PAST \ o)

~— |

PRED

SUBJ

OBJ

OBL

drew V

‘draw’

PRED

PRED

PRED

OBJ

TENSE PAST

Example:
Kim drew Godzilla for Sandy

_—\U REL draw
‘Kim’}\ N\ | EVENT ev{ }
Godila’|— £
Godzilla }’_\g] gh -~
e S
[PRED ‘SandY’}\ BENEFICIARY S{ }

N O

for P

(T PRED) = ‘draw’

@PAST

@ AGENT-PATIENT
Ae.draw(e) : (T4 EVENT) —o 7,

(T PRED) = ‘for’

(1T OBJ), = ((OBL 1), BENEFICIARY)
AyAPAe.[P(e) N beneficiary(e) = y] :

(T BENEFICIARY) —o

[((OBL 1) EVENT) —o (OBL T)5] —
((OBL 1)s EVENT) — (OBL 1),

Example:

Kim drew Sandy Godzilla

PRED ‘draw’ — REL draw
SUBJ PRED ‘Kim’}\ \/ EVENT ev{ }
i ; S il }
OBJ :PRED Sandy }, o \ ARGl/,:
¢ . o S
OBJy PRED Godzilla }\ ARG2 2 _ }
TENSE PAST ARG g[}
- - i / 1
v/ Vv DP
t=1 (toBN=] (toBlg) =1

(@ BENEFACTIVE)

Note: It is a normal assumption in LFG that elements of c-structure rules are optional.
This rule therefore allows the passive verb to be inserted under V. (It would also have
to have a PP node added for the oblique, but this is a trivial modification.)

Proof:
Kim was crushed last night

@PATIENT crushed
APXz)Ae.P(e) A patient(e) = x : Ae.crush(e) :
(ev—oc¢c)—ok— ev—oc ev —o ¢
@AGENT , _ o
crush! — APAyAe.P(e) A agent(e) = y - Az Ae.crush(e) N patient(e) = x : k—oev—oc [z : k]
(ev—oc)—oa— ev—ocC Ae.crush(e) A patient(e) =z : ev—o ¢
AyAe.crush(e) A patient(e) = x A agent(e) =y : a—oev—oc
—oT1,
Az AyNe.crush(e) A patient(e) = x A agent(e) =y : k—oa—oev—oc 1
Kim
kim :
crush’ k
crush’(kim) : a — ev —o ¢ [y : a]?
crush’ (kim)(y) : ev —o ¢ e’ : ev]S
@PASSIVE o p
AP3z.[P(z)] : crush’ (kim)(y)(e’) : ¢
(a—oc)—oc \y.crush' (kim)(y)(e’) : a —o ¢ e
last night T p
, APXe".[P(e") A last.night(e")] - dz.[crush' (kim)(z)(e")] : ¢
w , —o73
AP3e.[P(e) A past(e)] : (ev —o ¢) —o (ev —o ¢) Ne'3z.[crush’ (kim)(z)(e)] : ev—o ¢
(ev—oc)—oc e 3z [erush’ (kim)(z) (") A last.night(e”)] : ev —o ¢

Jdedxz.[crush’ (kim)(z)(e) A last.night(e) A past(e)] : ¢

=
dedx.[crush(e) A patient(e) = kim A agent(e) = z A last.night(e) A past(e)] : ¢ o

What just happened!?

® QOverview of Lexical-Functional Grammar
® QOverview of Glue Semantics

® |ntroduction to Flexible Composition as an
approach to argument structure

Thank you

Some key references

Asudeh, Ash. 2012. The Logic of Pronominal Resumption. Oxford: Oxford University Press.

Asudeh, Ash, Mary Dalrymple, and Ida Toivonen. 2008. Constructions with Lexical Integrity: Templates as the Lexicon-Syntax Interface. In Miriam
Butt and Tracy Holloway King, eds., Proceedings of the LFGO8 Conference, 68—88. Stanford, CA: CSLI Publications.

Asudeh, Ash, Mary Dalrymple, and Ida Toivonen. 2013. Constructions with Lexical Integrity. Journal of Language Modelling 1(1): 1-54.

Asudeh, Ash, and Gianluca Giorgolo. 2012. Flexible Composition for Optional and Derived Arguments. In Miriam Butt and Tracy Holloway King,
eds., Proceedings of the LFG |2 Conference, 64—84. Stanford, CA: CSLI Publications.

Asudeh, Ash, Gianluca Giorgolo, and Ida Toivonen. 2014. Meaning and Valency. In Miriam Butt and Tracy Holloway King, eds., Proceedings of the
LFG14 Conference. Stanford, CA: CSLI Publications.

Asudeh, Ash, and Ida Toivonen. 2014. With Lexical Integrity. Theoretical Linguistics 40(1-2): 175—186.

Asudeh, Ash, and Ida Toivonen. 2015. Lexical-Functional Grammar. In Bernd Heine and Heiko Narrog, eds.,The Oxford Handbook of Linguistic
Analysis, 373—406. Oxford: Oxford Uni- versity Press, 2nd edn.

Bresnan, Joan, Ash Asudeh, Ida Toivonen, and Stephen Wechsler. 2016. Lexical-Functional Syntax. Malden, MA:Wiley-Blackwell, 2nd edn.
Dalrymple, Mary, ed. 1999. Semantics and Syntax in Lexical Functional Grammar:The Resource Logic Approach. Cambridge, MA: MIT Press.
Dalrymple, Mary. 2001. Lexical Functional Grammar. San Diego, CA: Academic Press.

Dalrymple, Mary, Ronald M. Kaplan, John T. Maxwell Ill, and Annie Zaenen, eds. 1995. Formal Issues in Lexical-Functional Grammar. Stanford, CA:
CSLI Publications.

Kaplan, Ronald M., and Joan Bresnan. 1982. Lexical-Functional Grammar:A Formal System for Grammatical Representation. In Joan Bresnan, ed.,
The Mental Representation of Grammatical Relations, 173—-281. Cambridge, MA: MIT Press. Reprinted in Dalrymple et al. (1995:29-135).

