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Goals

• Provide an overview of Lexical-Functional 
Grammar

• Provide an overview of Glue Semantics

• Provide an introduction to an approach to 
argument structure that builds on these 
two theories, part of what I call Flexible 
Composition 



Lexical-Functional Grammar



History

• LFG was developed by Joan Bresnan, a syntactician, and 
Ron Kaplan, a social psychologist by training but then a 
computational linguist, as a constraint-based/declarative 
alternative to transformational/procedural theories of the 
time. 

• Desiderata:

• Formal precision

• Psychological plausibility

• Computational tractability



Overview

• At the heart of LFG remain its two syntactic structures:

• C(onstituent)-structure

• ‘Concrete syntax’: Precedence, dominance, 
constituency 

• F(unctional)-structure

• ‘Abstract syntax’: Morphosyntactic features, 
grammatical functions, predication, subcategorization, 
local dependencies (agreement, control, raising), 
unbounded dependencies, anaphoric syntax (binding)



The ɸ correspondence function

• Elements of the c-structure are mapped to (put into correspondence with) elements of 
the f-structure by the ɸ correspondence function (sometimes called a projection function). 

• This is accomplished by adding functional descriptions to the nodes in the c-structure 
tree. 

• These equations use the ↑ (“up arrow”) and ↓ (“down arrow”) metavariables. 

• A ↑ on a c-structure node n refers to the f-structure of the (c-structure) mother of n.

• A ↓ on a c-structure node n refers to the f-structure of node n.

• Examples:

• ↑=↓ on n means that n and n’s mother map to the same f-structure.

• (↑ SUBJECT) =↓ on n means that the f-structure of n is the value of the SUBJECT 
attribute in the f-structure of n’s mother. 



Example:  
That kid is eating cake

Lexical information is mapped from terminal nodes in c-structure, which contain all of the information
lexically associated with the word. The annotations on c-structure nodes are functional constraints of
the kind discussed in the previous section.

The mapping is stated in terms of two metavariables over f-structure labels, as defined in (62).
These f-structure metavariables are defined in terms of a c-structure variable, *, which stands for ‘the
current node’, and the mother (i.e., immediate dominance) function on tree nodes,M, whereM(*) is
‘the node immediately dominating the current node’. It is a common LFG convention to write *̂ instead
ofM(*).

(62) ↓ ≡ φ(*)
i.e., ‘the f-structure of the current c-structure node’ or ‘my f-structure’

↑ ≡ φ(*̂)
i.e., ‘the f-structure of the node that immediately dominates the current c-structure node’ or
‘my mother’s f-structure’

The up and down arrows are meant to symbolize their meaning graphically: since the annotations on
non-terminals are typically written above the category label, the up arrow is pointing at the mother
and the down arrow is pointing at the current node. This is essentially the original formalization of
Kaplan and Bresnan (1982); see also Kaplan (1987, 1989). An alternative, strongly model-theoretic
specification of the metavariables and LFG grammars more generally is provided by Blackburn and
Gardent (1995).

The sample annotated phrase structure rule in (63) states that IP dominates a DP and an I′. The
annotations specify that the information in I′ maps to the same f-structure as the information of its
mother (the IP) and that the information contained in the DP maps into an f-structure that is the value
of the SUBJECT grammatical function in the f-structure of the IP.

(63) IP → DP
(↑ SUBJ) = ↓

I′
↑ = ↓

The annotated version of the c-structure in (2) above, which presupposes a number of additional an-
notated phrase structure rules like (63), is given in (64). For presentational purposes, we henceforth
suppress intermediate (bar-level) categories in non-branching sub-trees; this is common practice in the
LFG literature.

(64) IP

(↑ SUBJ) = ↓
DP

↑ = ↓
D′

↑ = ↓
D0

That

↑ = ↓
NP

↑ = ↓
N0

kid

↑ = ↓
I′

↑ = ↓
I0

is

↑ = ↓
VP

↑ = ↓
V′

↑ = ↓
V0

eating

(↑ OBJ) = ↓
DP

↑ = ↓
NP

↑ = ↓
N0

cake
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The terminal nodes in c-structure are lexical entries, which specify the form of the word, its syntactic
category, and a set of f-structure constraints (the lexical item’s f-description). It is more strictly cor-
rect to write the f-description of the lexical item immediately below the word form in the c-structure,
since the lexical item’s f-description is actually part of the terminal node’s information. However, for
presentational reasons, we instead specify the lexical entries separately in (65):

(65) that, D0 (↑ DEFINITE) = +
(↑ DEIXIS) = DISTAL
(↑ NUMBER) = SG
(↑ PERSON) = 3

kid, N0 (↑ PRED) = ‘kid’
(↑ NUMBER) = SG
(↑ PERSON) = 3

is, I0 (↑ SUBJ NUMBER ) = SG
(↑ SUBJ PERSON ) = 3
(↑ TENSE) = PRESENT
(↑ PARTICIPLE) =c PRESENT

eating, V0 (↑ PRED) = ‘eat⟨SUBJ,OBJ⟩’
(↑ ASPECT) = PROGRESSIVE
(↑ PARTICIPLE) = PRESENT

cake, N0 (↑ PRED) = ‘cake’
(↑ NUMBER) = SG
(↑ PERSON) = 3

The metavariables are instantiated as follows. Each c-structure node is assigned an arbitrary, unique
index. The c-structure variable * for each node is instantiated as the node’s index and the f-structure
metavariable is instantiated accordingly. Up arrow metavariables in lexical f-descriptions are instanti-
ated according to the label of the pre-terminal node that dominates the item in question. This should
be intuitively clear if one bears in mind that the f-description is actually part of the terminal node. The
instantiated version of (64) and its corresponding f-structure is shown in (66). Notice that we have
adopted a typical convention of writing f1 instead of φ(1) and so on.
(66) IP1

(f1 SUBJ) = f2
DP2

f2 = f3
D′

3

f3 = f4
D0

4

That

f3 = f5
NP5

f5 = f6
N0

6

kid

f1 = f7
I′7

f7 = f8
I08

is

f7 = f9
VP9

f9 = f10
V′

10

f10 = f11
V0

11

eating

(f10 OBJ) = f12
DP12

f12 = f13
NP13

f13 = f14
N0

14

cake

f1
f7
f8
f9
f10
f11

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

PRED ‘eat⟨SUBJ,OBJ⟩’

SUBJ

f2
f3
f4
f5
f6

⎡

⎢⎢⎢⎢⎢
⎣

PRED ‘kid’
DEIXIS DISTAL

DEFINITE +

NUMBER SG

PERSON 3

⎤

⎥⎥⎥⎥⎥
⎦

OBJ
f12
f13
f14

⎡

⎢
⎣
PRED ‘cake’
NUMBER SG

PERSON 3

⎤

⎥
⎦

TENSE PRESENT

ASPECT PROGRESSIVE

PARTICIPLE PRESENT

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦
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Flexibility in mapping

It should be noted that the features provided here reflect a specific analysis, and individual researchers
may disagree on what the best analysis of a given phenomenon is. For example, we have treated the
demonstrative that as just contributing features to the f-structure of the nominal head (kid). Others
might propose that that projects to a SPEC f-structure and contains its own PRED.

4.2 Flexibility in Mapping

The mappings between c-structure and f-structure and other structures are principled and unambigu-
ous, based on the mechanisms presented in section 4.1. However, there is cross-linguistic variation
in exponence of linguistic information. For example, many languages rely more on morphology than
hierarchical phrase structure in expressing syntactic information. This generalization is taken very seri-
ously in LFG and is encapsulated in the slogan “morphology competes with syntax” (Bresnan 2001b: 6).
Morphological information can be mapped directly into f-structure and there is thus no need to assume
that all languages have the same, or similar, c-structure at some underlying level. In order to posit a
highly articulated phrase structure for a given language, there must be evidence for such a structure.
If a language expresses a grammatical function with a bound morpheme, the information is mapped
directly from that morpheme onto the f-structure function: there is thus no need to posit an empty c-
structure node for the grammatical function. Similarly, morphosyntactic information that is contributed
by functional projections in other theories can be directly contributed morphologically in LFG.

Examples of cross-linguistic differences in c-structural expression abound. A pronominal subject
may be expressed as an independent DP in some languages and a bound morpheme in others. Tense
information is hosted by V0 in some languages and I0 in others, and in some languages it can be
hosted by either I0 or V0. There is nothing about the mapping algorithm or the theory of c-structure
that prohibits such c-structural differences between languages. Comparing two sentences with similar
meanings in two different languages, the f-structures will look similar or identical and the c-structures
may look radically different. Furthermore, f-structure information may be contributed simultaneously
from different nodes in c-structure. In (67) we see an illustration of these points: the Finnish c-structure
on the left side and the English c-structure on the right side map to the same f-structure:8

(67) IP

I′

I0

Joi- n⃝

VP

V′

DP

vettä

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

PRED ‘drink⟨SUBJ,OBJ⟩’
TENSE PAST

SUBJ

⎡

⎢
⎣
PRED ‘pro’
PERSON 1
NUMBER SG

⎤

⎥
⎦

OBJ

⎡

⎢
⎣
PRED ‘water’
PERSON 3
NUMBER SG

⎤

⎥
⎦

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

IP

DP

I

I′

VP

V′

V0

drank

DP

water

In sum, radically different c-structures may map to f-structures that are identical or near-identical.
A language often has more than one way to express the same function. For example, Finnish

has c-structurally independent subjects in addition to the morphologically bound pronominal subjects
(compare examples (9) and (67)). Also, compare the two English examples in (68):

(68) a. Hanna poured out the milk.
b. Hanna poured the milk out.

The word out has the same basic function in (68a) and (68b). However, the phrase structural realization
is different, as evidenced by the basic fact that the word order differs, but also by the observation that

8This is a slight oversimplification. F-structures expressing the same basic relations in two languages may contain certain
differences. For example, languages can differ in the tense and aspect distinctions they make, whether they mark evidentiality,
case marking, etc.
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the book that she likes
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(11) a. DP −→ D0

↑ = ↓
NP

↑ = ↓

b. NP −→ NP
↑ = ↓

CP
↓ ∈ (↑ ADJ)

c. NP −→ N′

↑ = ↓

d. N′ −→ N0

↑ = ↓

(12)

DP

D0

the

! = ¯! = ¯

! = ¯

! = ¯

! = ¯

NP

NP

N

N0

book

¯ Î (!ADJ)
CP

that she likes

ADJ
f

f

The f-description ↑ = ↓ indicates equality between two f-structures and
is how LFG expresses the notion of headedness at f-structure: all of the
c-structure nodes projecting from the head book map to the same f-structure,
as does the c-structure node projecting from the. The f-description ↓ ∈
(↑ ADJ) indicates that the f-structure contributed by the CP is a member of
the set that constitutes the NP’s ADJUNCT.

The rest of the information shown in the fuller f-structure (9) above comes
from the lexical entries in the structure, which also contribute f-descriptions:

(13) the, D0 (↑ SPEC PRED) = ‘the’
(↑ DEFINITE) = +

(14) book, N0 (↑ PRED) = ‘book’
(↑ NUMBER) = SINGULAR
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C-structure rules C-structure and corresponding f-structure



Example:
the book that she likes

Lexical entries C-structure with lexical information 
and instantiated f-structure
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(15) she, D0 (↑ PRED) = ‘pro’
(↑ PERSON) = 3
(↑ NUMBER) = SINGULAR
(↑ GENDER) = FEMININE

(16) likes, V0 (↑ PRED) = ‘like⟨SUBJ,OBJ⟩’
(↑ TENSE) = PRESENT
(↑ SUBJECT PERSON) = 3
(↑ SUBJECT NUMBER) = SINGULAR

I have assumed that the complementizer that makes no contribution to the
f-structure. This illustrates that there can be elements at one level of structure
that have no correspondent at another level. Another example of this is null
pronouns. These are represented at f-structure, but there is no null pronomi-
nal in the c-structure.

F-structures are constructed by instantiating the f-description metavari-
ables in the annotated tree to f-structure labels. The f-descriptions of the
terminal nodes of the tree are also instantiated. The instantiated version of
(12) is the following, where only the lexical information from the and book is
shown:

(17)

f1 = f2
D0f2

f1 = f3
NPf3

f3 = f4
NPf4

f4 = f5
N¢f5

f5 = f6
N0f6

f7 Î (f3 ADJ)
CPf7

DPf1

the
(f2  SPEC PRED) = ‘the’

(f2 def) = +

book
(f6 PRED) = ‘book’

(f6 NUM) = SG

that she likes

f1
f2
f3
f4
f5
f6 f7

PRED ‘book’

NUM SG

DEF +

SPEC PRED ‘the’

ADJ ...

Details of the instantiation mechanism for the c-structure to f-structure map-
ping can be found in Bresnan (2001: 56–60) and Dalrymple (2001: 122–125).
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Penultimate f-structure
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In the remainder of the book, the instantiation step will be skipped. I will
instead assume the convention that f-structures are labelled mnemonically
with the first letter of their PRED. I will also abbreviate features where there
is no danger of confusion; this includes leaving out the subcategorization
information in PRED values. The f-structure in (9), given these conventions,
would be as follows:

(18)

b

PRED ‘book’
NUM SG

DEF +

SPEC PRED ‘the’

ADJ l

PRED ‘like’

SUBJ p

PRED ‘pro’
PERS 3
NU M SG

GEND FEM

TENSE PRES

F-structure labels are arbitrary up to identity. If more than one f-structure
would get the same label, they are differentiated using numerals (e.g., p1 and
p2) or one is assigned an arbitrary distinct label.

Functional descriptions are a set of constraints, some members of which
are equations. There are two main kinds of functional equations: defining
equations and constraining equations. Defining equations, which are the sort
we have seen so far, add information to an f-structure. For example, suppose
a lexical entry for a verb has the following defining equation:

(19) (↑ SUBJ NUM) = SG

Whether the subject of the verb adds this information or not, the f-structure
will contain it, due to the verb’s defining equation. This contrasts with a
constraining equation, indicated with a subscript c on the equal sign. A con-
straining equation checks the f-structure to make sure the equation holds, but
does not itself add the information. For example, suppose the verb instead had
the following constraining equation:

(20) (↑ SUBJ NUM) =c SG

Now the verb itself does not add the information—it checks to see if it is has
been added by something else. The constraining equation cannot be satisfied
if the f-structure does not contain the information.

Notes:  
1. I often adopt the practice 
of labelling f-structures 
mnemonically with the first 
letter of the PRED value.  
2. I often leave the 
subcategorization out of the 
PRED. (There’s a principled 
reason for this; we can 
discuss it in question time.)



General wellformedness 
constraints on f-structures

• Completeness  
All subcategorized grammatical functions in a PRED 
feature must be present in the f-structure. 

• Coherence  
All grammatical functions that are present in the f-
structure must be subcategorized by a PRED feature. 

• Consistency (a.k.a. Uniqueness)  
Each f-structure attribute has one value.



Example:  
Violations of Completeness, Coherence, 

Consistency

"
NUM SG

NUM PL

#
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(29)
PRED ‘like SUBJ, OBJ ’

SUBJ

OBJ

OBL

The first f-structure is incomplete: it is missing a subcategorized OBJECT. The
second f-structure is incoherent: it contains an unsubcategorized OBLIQUE. As
mentioned above, I adopt the convention of abbreviating PRED features with-
out the subcategorized grammatical functions, on the assumption that the f-
structure is complete and coherent unless otherwise indicated. For example,
the PRED for likes would just be ‘like’. I also adopt the further convention of
abbreviating the information inside an f-structure using the word that con-
tributes the f-structure. For example, the f-structure to which like contributes
would be abbreviated as [“like”].

Consistency, or Uniqueness, is the requirement that each f-structure
attribute have at most one value, which ensures that f-structures are functions
from attributes to values. PRED features are special in this regard as semantic
forms. Semantic forms are always unique. This means that two f-structures
cannot be equated if they each have a PRED, even if the PRED values are
identical.

3.4 Semantic Structure

Semantic structure is projected from functional structure via the Û correspon-
dence function. Semantic structures are used as resources in linear logic proofs
in Glue Semantics. The level of semantic structure—as a representational
level, as opposed to as a resource pool for proofs in Glue Semantics—has
not received nearly as much attention as constituent structure and functional
structure. An exception to this is the LFG theory of anaphora, as initially
put forward by Dalrymple (1993). Dalrymple argues that binding relations
should be represented at semantic structure. Since semantic structure is
projected from f-structure, this allows a treatment of anaphora that takes both
syntactic and semantic factors into account. This approach has been pursued
in the Glue Semantics theory of anaphora, where binders are represented at
semantic structure using the feature ANTECEDENT (Dalrymple, 2001); this is
reviewed in the next chapter. The role of semantic structure in binding is
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These are f-descriptions which have one or more attributes before the
metavariable, e.g.:

(24) (SUBJ ↑)

This is an inside-out existential equation that states that the ↑ is the SUBJ
of some f-structure. Dalrymple (2001: 145) gives the following definitions for
inside-out functional uncertainty:

(25) (· f ) ≡ g if and only if g is an f-structure, · is a set of strings, and for
some s in the set of strings ·, (s f ) ≡ g.

(26) (Â f ) ≡ f , where Â is the empty string.
(s a f ) ≡ (s (· f )) for a symbol · and a (possibly empty) string of
symbols s .

One last feature of the regular language for f-descriptions should be men-
tioned. The set membership symbol ∈ can be used to state that a certain
f-structure is in a certain set, as we have already seen above, but it can also
be used as in attribute in a regular expression (Dalrymple, 2001: 154). For
example, the following f-description states that the f-structure ↑ is in some
adjunct set:

(27) (ADJUNCT ∈ ↑)

The set membership symbol thus serves two functions: it states membership
and it allows traversal in and out of sets in path descriptions. The interpreta-
tion is always contextually clear.

3.3.2 Well-Formedness Criteria

There are three principal well-formedness criteria for f-structures: Complete-
ness, Coherence, and Consistency (also known as Uniqueness). Completeness
requires that all subcategorized arguments represented in a PRED feature must
be present in the f-structure. Coherence requires that all arguments that are
present in the f-structure must be subcategorized by a PRED. Formal defi-
nitions of Completeness and Coherence can be found in Dalrymple (2001:
35–39) and in section 5.3.2 of chapter 5.

For example, consider the verb like in the following two f-structures:

(28)
PRED ‘like SUBJ, OBJ ’

SUBJ

Completeness Coherence Consistency

2

64
SUBJ

h
PRED ‘hello’

i

SUBJ

h
PRED ‘world’

i

3

75



Example:
the book that she likes

Penultimate f-structure
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In the remainder of the book, the instantiation step will be skipped. I will
instead assume the convention that f-structures are labelled mnemonically
with the first letter of their PRED. I will also abbreviate features where there
is no danger of confusion; this includes leaving out the subcategorization
information in PRED values. The f-structure in (9), given these conventions,
would be as follows:

(18)

b

PRED ‘book’
NUM SG

DEF +

SPEC PRED ‘the’

ADJ l

PRED ‘like’

SUBJ p

PRED ‘pro’
PERS 3
NU M SG

GEND FEM

TENSE PRES

F-structure labels are arbitrary up to identity. If more than one f-structure
would get the same label, they are differentiated using numerals (e.g., p1 and
p2) or one is assigned an arbitrary distinct label.

Functional descriptions are a set of constraints, some members of which
are equations. There are two main kinds of functional equations: defining
equations and constraining equations. Defining equations, which are the sort
we have seen so far, add information to an f-structure. For example, suppose
a lexical entry for a verb has the following defining equation:

(19) (↑ SUBJ NUM) = SG

Whether the subject of the verb adds this information or not, the f-structure
will contain it, due to the verb’s defining equation. This contrasts with a
constraining equation, indicated with a subscript c on the equal sign. A con-
straining equation checks the f-structure to make sure the equation holds, but
does not itself add the information. For example, suppose the verb instead had
the following constraining equation:

(20) (↑ SUBJ NUM) =c SG

Now the verb itself does not add the information—it checks to see if it is has
been added by something else. The constraining equation cannot be satisfied
if the f-structure does not contain the information.

Not complete:  
OBJ of ‘like’ missing



Unbounded dependencies

• Extended Coherence Condition  
An UNBOUNDED DEPENDENCY 
FUNCTION (UDF) must be linked 
to the semantic predicate 
argument structure of the 
sentence in which it occurs, 
either by functionally or by 
anaphorically binding an 
argument.   

 

(1) Who did you see? 

(2) Who did Kim say that you saw? 

(3) Who did Kim claim that Sandy 
alleged that you saw? 

(" UDFPATH) = (" COMP⇤ GF)
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The off-path metavariables refer to the f-structure that has the anno-
tated attribute as its value (←) or the f-structure that is the value of
the annotated attribute (→). For example, in the above expression, the
off-path constraint ¬ (→ TENSE) entails that there cannot be extrac-
tion from a tensed adjunct. The constraint blocks sentences such as the
following:

(50) *John is the man who we laughed when we saw.

The specification of the grammatical functions in the functional uncertainty
together with the off-path constraints constrain possible unbounded depen-
dencies and extraction sites. It may be that the unbounded dependency path
can be substantially simplified, given arguments that some constraints on
extraction are extra-grammatical (Cinque, 1990; Rizzi, 1990; Deane, 1991; Klu-
ender, 1991, 1998, 2004; Kluender and Kutas, 1993; Goodluck and Rochemont,
1992; Hofmeister and Sag, 2010; Sag, 2010).

I do not use complex functional uncertainties in much of what follows,
although off-path constraints will become relevant in some discussion of
constraints on extraction in subsequent chapters. The c-structure rule in (51)
for introducing unbounded dependency functions suffices. The unbounded
dependency path in the right-hand side of equation (47) is here abbreviated as
‘UDFPATH’.

(51) CP −→ { XP
(↑ UDF) = ↓

(↑ UDF) = (↑ UDFPATH)

| Â
(↑ UDF PRED) = ‘pro’

(↑ UDF) = (↑ UDFPATH)

} C′

↑ = ↓

This rule allows an XP to be generated in SpecCP that maps to UDF at
f-structure. It also allows for the generation of a relative clause without a
relative pronoun (e.g., a guy I know). This is accomplished by using the empty
string to introduce material into f-structure without anything being present
in c-structure. The material that is introduced is the specification that the
UDF’s PRED has the value ‘pro’, which is appropriate for a missing relative
pronoun. The rule is both unconstrained and not general enough, but rather
than adding details that would distract attention from more relevant points,
I just assume that the methods outlined by Dalrymple (2001: 400ff.) can be
applied appropriately.

The f-structure for the relative clause the book that she endorses, with the
unbounded dependency properly integrated, is shown in (52); the c-structure
is shown in (12) above.



Example:
the book that she likes

Final f-structure
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(52)

b

PRED ‘book’

DEF +

SPEC PRED ‘the’

ADJ l

PRED ‘like’

UDF p1 PRED ‘pro’

SUBJ p2

PRED ‘pro’
PERS 3

OBJ

NUM SG

NUM SG

GEND FEM

TENSE PRES

3.8 Raising

Raising is represented as functional equality between a grammatical function
of the raising verb and the subject of its open complement (Bresnan, 1982a),
which is a predicative or infinitival complement. An open complement is
represented as the grammatical function XCOMP and lacks a subject of its own.
The XCOMP must have its subject specified by the predicate that selects the
XCOMP, through a local functional equality called a ‘functional control’ equa-
tion (Bresnan, 1982a). The nomenclature is perhaps somewhat misleading,
because these equations are used in the analysis of both control and raising.
The raising equation for subject raising is:

(53) (↑ SUBJ) = (↑ XCOMP SUBJ)

The matrix and subordinate subjects are identified at f-structure and share a
single, token-identical value.

For example, the f-structure for (54) is shown in (55)

(54) Thora seems happy.

(55)
PRED ‘seem’

SUBJ PRED ‘Thora’

XCOMP
PRED ‘happy’

SUBJ
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Templates:  
Generalizations over named descriptions

• An LFG template is nothing more than a named functional description (i.e., a set of 
equations that describe linguistic structures). 

• For any LFG grammar defined in terms of templates, we could construct a 
completely equivalent grammar which does not use templates, simply by replacing 
each template with the description that it abbreviates. 

• The same grammatical descriptions would be associated with words and 
phrases in each of the two grammars, and the grammars would produce the 
same c-structures and f-structures for the words and phrases of the language. 

• However, the grammar without templates would lack the means of expressing 
generalizations across lexical entries and grammar rules which templates make 
available. 

• In sum: 

• Templates name LFG grammatical descriptions such that the same description 
can be used in different parts of the grammar. 

• The semantics of template calling/invocation is just substitution: The grammatical 
description that the template names is substituted where the template is called. 



Example:  
Present tense intransitive verbs

and/or caused motion constructions as phrasal constructions. As was ar-
gued in Müller (2006) this is incompatible with the assumption of Lexical
Integrity, that is, that word formation happens before syntax (Bresnan and
Mchombo, 1995).

Therefore, MW have either misconstrued or unwittingly misrepresented Asudeh et al.
(2008, 2013) with respect to Lexical Integrity.

In fact, the formulation of Bresnan and Mchombo (1995), referred to in the quote
from MW above, is one of three formulations that Asudeh et al. (2013) consider. It is
repeated here:

(1) Lexical Integrity Bresnan and Mchombo (1995: 181)
Words are built out of different structural elements and by different princi-
ples of composition than syntactic phrases.

The upshot of this formulation is that syntactic structure-building operations 1) do not
take as inputs the same elements as morphological structure-building operations and
2) are not the same operations as morphological structure-building operations. These
points are made plainer by the following subsequent version from Bresnan (2001),
which is cast in LFG-theoretic terms (Kaplan and Bresnan 1982, Bresnan 2001, Dal-
rymple 2001):

(2) Lexical Integrity Bresnan (2001: 93)
Morphologically complete words are leaves of the c[onstituent]-structure
tree and each leaf corresponds to one and only one c[onstituent]-structure
node.

In other words, the terminal nodes of syntactic trees are words, not morphemes, and
the internal structure of words is closed to syntactic processes. This entails that “word
formation happens before syntax”, as MW put it, although we prefer not to think of this
using a procedural metaphor. The analysis of Asudeh et al. (2008, 2013) is thus true to
standard LFG theory in adhering to the Strong Lexicalist Hypothesis (Lapointe 1980).

Asudeh, Dalrymple, and Toivonen’s analysis captures commonalities between lex-
ical items and phrase structure configurations without giving up Lexical Integrity and
without admitting constructions into the theory.2 In order to see why this is so, we first
need to illustrate how templates work in LFG.

2.1 Templates in LFG

A template in LFG is just a named lexical description: templates contain all and only
the sort of information that is encoded in LFG lexicons.3 For example, an agreement
template for third singular subject agreement, 3SG, can be defined as follows:

(3) 3SG = (" SUBJ NUM) = 3
(" SUBJ PERS) = SG

2In fact, it may also be possible for our theory to give up lexical rules, in which case it is clearly distinct
from the theory of MW and arguably simpler. However, this is a matter that requires further investigation.

3Templates are also part of the XLE grammar development suite for LFG (Crouch et al. 2011) and are
used in the ParGram project (http://pargram.b.uib.no).

2

As indicated by the equality, the semantics of template invocation (written @TEMPLATE)
is just substitution. Therefore, templates do not increase the expressive power of LFG
grammars, but allow certain generalizations about common uses of linguistics informa-
tion to be captured in ways that that the extensionally equivalent non-templatic gram-
mar would not.

The following partial lexical entries for the English intransitive verbs laughs and
laugh illustrate the use of the template:4

(4) a. laughs V (" PRED) = ‘laughhSUBJi’
(" TENSE) = PRESENT
@3SG

b. laugh V (" PRED) = ‘laughhSUBJi’
{ (" TENSE) = PRESENT
¬@3SG |
¬(" TENSE) }

The disjunction in the lexical entry for laugh states that it is either a present tense verb,
but not in the third person singular, or else not a tensed verb (as in It is fun to laugh.)

It is possible to generalize these lexical entries further, using other templates, in-
cluding templates that take arguments. This yields the following lexical entries which
have abstracted all non-idiosyncratic information away into templates:

(5) a. laughs V @INTRANSITIVE(laugh)
@TENSE(PRESENT)
@3SG

b. laugh V @INTRANSITIVE(laugh)
@BARE-V

The templates INTRANSITIVE and BARE-V can be defined as follows:

(6) INTRANSITIVE(X) = (" PRED) = ‘XhSUBJi’

(7) BARE-V = { @TENSE(PRESENT)
¬@3SG |
¬(" TENSE) }

The templates — TENSE, INTRANSITIVE, BARE-V, 3SG — thus capture cross-cutting
generalizations about laugh and other elements of the lexicon, including laughs. The
argument to the template TENSE, which is also invoked by BARE-V, captures that
laughs is necessarily present tense and that laugh can be. The argument to INTRANSI-
TIVE captures the fact that laugh and laughs are instances of the same lemma, while
the template itself relates these verbs to other intransitive verbs, which would also in-
voke this template. Similarly, the template BARE-V captures the relationship between
laugh and other uninflected regular verbs. Lastly, the negated invocation of 3SG within

4{ A | B } expresses a disjunction between the descriptions A and B; i.e. { A | B }⌘ A _ B. See Bresnan
(2001) or Dalrymple (2001) for further details of LFG’s description language.
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Templates:  
Lexical entries and phrasal configurations

• Templates can be associated with lexical entries, but as they are just named 
descriptions, they can also be associated with c-structure configurations by 
calling the template in the c-structure rule.

• Example: English relative clauses have bare and non-bare alternatives

(1) the book Kim read

(2) the book which Kim read

• Suppose we have a template REL that captures the relativizing information.

•  

• This template can now be associated with a relative pronoun or with the rule 
for a bare/reduced relative clause 

(3) 

(4) 

BARE-V captures the fact that no uninflected regular verbs in English are third per-
son singular. For further details on how templates work, see Dalrymple et al. (2004),
Asudeh et al. (2008, 2013), and Asudeh (2012).5

2.2 Templates: Lexical Entries and Phrasal Configurations

Now let us look at another phenomenon, English restrictive relatives, which illustrates
how templates can generalize not just across lexical items, but also across lexical items
and phrase-structural configurations. We will just zoom in on the distinction between
bare and non-bare relative clauses, as in the following examples:

(8) a. the book Kim read

b. the book which Kim read

The key point is that English relative clauses can contain a relative pronoun, but do not
necessarily have to.

It is well-known that c-structure rules in LFG are annotated with the same sorts of
descriptions that occur in LFG lexical entries. Now consider the template REL in (9).

(9) REL = �Q .�P .�x .P(x ) ^Q(x ) : clause ( nominal ( nominal

This template expresses the compositional semantics of restrictive relativization, us-
ing Glue Semantics. In LFG+Glue, meaning constructors of the form M : G are
added to LFG lexical entries, which captures their compositional semantics by relat-
ing a term in a meaning language M to a term in a logic of composition, G, which
“glues” meanings together. However, these meaning constructors can also be associ-
ated with c-structure rules, as per the analysis of English bare relatives in Dalrymple
(2001: 419) (also see Asudeh 2012). We have here abbreviated the glue logic term to
clause ( nominal ( nominal , which captures the fact that relativization is a mod-
ification of a nominal by an open clause; see Dalrymple (2001: 417) for the full term.
In the meaning language side, we see that this amounts to intersective modification of
the nominal predicate by the relative clause predicate.

The template REL, so defined, can be associated with a relative pronoun, as in (10),
or with a node in a c-structure rule, as in (11).

(10) which D @REL

(11) CP �!
✓

RelP
. . .

◆
C0

( @REL )

5Note that templates serve a similar role to types in HPSG (Pollard and Sag 1994), but the two systems
are not formally equivalent. This is already obvious from the example above, since it would not make sense
for both laugh and laughs to inherit from a 3sg type, such that laugh negates it, but they can both invoke
the 3SG template, such that laugh negates it. Moreover, it is also obvious that an HPSG grammar without
types is not extensionally equivalent to one with types, because types are intrinsic to HPSG grammars: the
one without types is in fact not an HPSG grammar. See Asudeh et al. (2013) for further discussion of the
distinction between templates and HPSG types.
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Template hierarchies &  
type hierarchies

• As we’ve seen, template definitions may contain reference to other templates. 

• This effectively creates a hierarchy of templates, similar to the type hierarchies of 
Head-Driven Phrase Structure Grammar.

• Differences:

1. Type hierarchies represent relations between structures, whereas template 
hierarchies represent relations between descriptions of structures: Templates do 
not appear in the actual structures of the theory, but only in descriptions that the 
structures must satisfy. 

2. Type hierarchies represent inheritance in an and/or semilattice. 

• The daughters of a type represent disjoint subtypes (or). 

• Multiple mothers for a type represent conjoined super- types (and). 



Template hierarchies &  
type hierarchies
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and Sign-Based Construction Grammar (SBCG; Michaelis, 2010; Sag,
2010; Boas and Sag, 2012). However, there are some noteworthy dif-
ferences between templates and types. First, type hierarchies represent
relations between structures, whereas template hierarchies represent
relations between descriptions of structures. This means that templates
do not appear in the actual structures of the theory, but only in de-
scriptions that the structures must satisfy. This contrasts with types in
HPSG, where each structure (a directed acyclic graph) is associated
with a type.

Second, type hierarchies in HPSG and SBCG represent inheritance
in an and/or semilattice. The daughters of a type represent disjoint
subtypes (or). Multiple mothers for a type represent conjoined super-
types (and). For example, consider the following type hierarchy from
Malouf (1998):
(26) substantive

noun relational

c-noun gerund verb
The type substantive is a subtype of the root type head (not shown here).
Its two daughters, noun and relational, disjointly partition the super-
type. Each of the types noun and relational in turn has two daughters
that disjointly partition the type. However, the type gerund is common
to both and constitutes a conjunction of the supertypes: a gerund object
is both a noun object and a relational object.

Template hierarchies do not represent inheritance, but rather in-
clusion. If a template A dominates a template B, then the description
that A labels appears in the description that B labels. The semantics of
template invocation, denoted by the prefix @ in a description, is just
substitution. For example, given the 3SG template in (27) below, the
lexical entries in (28a) and (28b) are strictly equivalent.
(27) 3SG := (↑ subj pers) = 3

(↑ subj num) = sg
(28) a. laughs (↑ pred) = ‘laugh〈subj〉’

(↑ subj pers) = 3
(↑ subj num) = sg

b. laughs (↑ pred) = ‘laugh〈subj〉’
@3SG

[ 18 ]
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Constructions with Lexical Integrity

It is clear from this example that a template is nothing more than
an abbreviation for an LFG description. Throughout this paper, we
use the term ‘hierarchy’ in reference to templates to mean ‘inclusion
hierarchy’, not ‘inheritance hierarchy’.

Descriptions in LFG support the boolean operations of conjunc-
tion, disjunction and negation. Templates therefore also support these
operations. For example, the 3SG template can be negated in a lexical
entry:
(29) laugh (↑ pred) = ‘laugh〈subj〉’

¬@3SG
The lexical entries for laughs and laughwould thus both be daughters of
the template 3SG in a template hierarchy, because both entries include
the template, even if one negates it and the other does not:
(30) 3SG

laugh laughs
This emphasizes the difference between a hierarchy that represents
inheritance, as in HPSG or SBCG type hierarchies, versus a network
that represents inclusion, as in LFG template hierarchies. It would not
make sense for both laugh and laughs to inherit from a 3SG type ob-
ject, but both words can nevertheless include the description (with or
without negation) that is labelled by the 3SG template.

Templates can also be parametrized, where the parameters are
stated as arguments to the template. For example, the template in (31)
could be used in the lexical entry for any intransitive verb, such that
the entry for laughs could be rewritten as in (32).
(31) INTRANS(P) := (↑ pred) = ‘P〈subj〉’
(32) laughs @INTRANS(laugh)

@3SG
The lexical entry for laughs in (32) is still strictly equivalent to the one
in (28b), but the templates bring to the fore the generalization that the
only idiosyncratic information is what is contributed by the verb root.
For example, the entry for yawns would differ only in the argument to
the parametrized INTRANS template (‘yawn’ instead of ‘laugh’).

The question potentially arises of where templatic information
is stored in an LFG grammar.6 Since templates are abbreviations for

6We thank one of our anonymous reviewers for raising this point.
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Template hierarchy: Inclusion



Glue Semantics



Overview

• Glue Semantics is a method of semantic composition in which a potentially 
representationally rich meaning language is paired with a very constrained logic of 
composition that ‘glues’ pieces of meaning together to obtain larger meanings. 

• You can think of the pieces of meaning like Lego pieces: They can only fit together in 
certain ways. 

• The meaning language is some logic that supports the lambda calculus and has a model-
theoretic interpretation.

• The glue logic is (a fragment of) Linear Logic, a logic originally developed for theoretical 
computer science. 

• Linear Logic, and hence the glue logic, is a resource logic: All meanings obtained through the 
syntactic parse must be used exactly once.

• It’s like you have to use all your Lego pieces to build something and, obviously, no piece 
may be used more than once.  



Meaning constructors

• Meaningful linguistic expressions, particularly but 
not necessarily lexical items, are associated with 
meaning constructors of the following form: 

 

• The expression on the left is a term from the 
meaning language. The expression on the right is 
the associated term from the glue logic. The 
colon is an uninterpreted pairing symbol. 
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=0

So, in this case, !laugh(x )"M ,g ′= 1 iff !laugh(robin)"M ,g= 1.

(19) For sandy inDe , f (sandy) = !laugh(x )"M ,g ′ , where g ′ is just like g , except that g ′(x ) = sandy ;
i.e. g ′ =
⎡

⎣

x −→ sandy
y −→ robin
z −→ sandy

⎤

⎦

In that case:
!laugh(x )"M ,g ′

=!laugh"M ,g ′(!x"M ,g ′)
=(V (laugh))(g ′(x ))

=

⎡

⎣

kim −→ 1
robin −→ 0
sandy −→ 1

⎤

⎦(sandy )

=1

So, in this case, !laugh(x )"M ,g ′= 1 iff !laugh(sandy)"M ,g= 1.

You can see that, for any entity in our model, !(λx .laugh(x ))"M ,g gives the same result as !laugh"M ,g .
This guarantees, then, that the interpretation of !(λx .laugh(x ))"M ,g is !laugh"M ,g .

3 Glue Semantics with Lλ′

3.1 Basic Glue Semantics

In Glue Semantics (Dalrymple et al., 1993; Dalrymple, 1999, 2001; Asudeh, 2012), meaningful linguistic
expressions, particularly lexical items, are associated with meaning constructors of the following form:

(20) M : G

M is an expression from a meaning language, in this case Lλ′ and G is an expression of linear logic
(Girard, 1987), which provides a specification of semantic composition (it “glues meanings together”),
based on a syntactic parse; the colon is an uninterpreted pairing symbol. Glue Semantics is related to
(Type-Logical) Categorial Grammar, but it assumes a separate syntactic representation for handling word
order, etc., so the terms of the linear logic specify just semantic composition and are not directly related
to word order constraints (see Asudeh 2012 for further discussion). Glue Semantics is therefore useful
in helping us focus on semantic composition in its own right.

3.2 Proof Rules for (Linear) Implication: !

(21) Functional application : Implication elimination (modus ponens)
f : A!B a : B

!E

f (a) : B

(22) Functional abstraction : Implication introduction (hypothetical reasoning)

[a : A]1
·
·
·

f : B
!I,1

λa.f : A!B



The logic of implication:  
Filling in missing pieces

• Linear implication is a cute lollipop. 

• We can define its logical behaviour in terms 
of two simple proof rules. 
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Example:  
Kim hugged Robin

• Meaning constructors from lexical entries 
 
 
 
 

• F-structure  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3.3 Examples

3.3.1 General Lexicon

Expression Type Meaning Constructor
Kim e kim : ↑σ
Robin e robin : ↑σ
hugged e → (e → t) λy .λx .hug(x , y) : (↑ OBJ)σ ! (↑ SUBJ)σ ! ↑σ
everybody (e → t) → t λP .∀y .[person(y) → P(y)] : ∀X .(↑σ ! X )! X

somebody (e → t) → t λP .∃x .[person(x ) ∧ P(x )] : ∀Y .(↑σ ! Y )! Y

3.3.2 Example I: Transitive with Proper Name Arguments

(23) Kim hugged Robin.

(24)

h

⎡

⎢

⎢

⎢

⎣

PRED ‘hug⟨SUBJ, OBJ⟩’

SUBJ k
[

PRED ‘Kim’
]

OBJ r
[

PRED ‘Robin’
]

⎤

⎥

⎥

⎥

⎦

Instantiated lexicon/premises for (23):
Kim e kim : kσ
Robin e robin : rσ
hugged e → (e → t) λy .λx .hug(x , y) : rσ ! kσ ! hσ

Full Proof for (23):
λy .λx .hug(x , y) : rσ ! kσ ! hσ robin : rσ

!E

(λy .λx .hug(x , y))(robin) : kσ ! hσ
⇒β

λx .hug(x , robin) : kσ ! hσ kim : kσ
!E

(λx .hug(x , robin))(kim) : hσ
⇒β

hug(kim, robin) : hσ
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Flexible Composition



Overview

• Flexible Composition is the name I’ve given to a theory of 
semantic composition, or more specifically how 
compositional meanings are packaged, that my collaborators 
(Mary Dalrymple, Gianluca Giorgolo, and Ida Toivonen) and I 
have been developing for a number of years. 

• Basic intuition: Templates can be used to factor out common 
meanings across lexical items, e.g. argument structure 
regularities, and across phrasal configurations, e.g. so-called 
“constructional meanings” (but without actual 
constructions).



Some features of Flexible Composition

1. The representation of core semantic information, such that the same lexical 
entry can be involved in a number of valency realizations

(1) The hamster ate a sheet of newspaper this morning. 

(2) The hamster ate this morning. 

(3) The hamster ate its way through a sheet of newspaper this morning. 

2. The representation of missing/understood arguments 

3. The representation of additional/derived arguments 

(4) * The performer laughed the children. 

(5)    The performer laughed a funny laugh. 

4. The possibility of associating meanings with syntactic configurations 

(6) The performer sang the children a song. 

5. Templates as generalizations over lexically encoded meaning 

6. Templates as the locus of specification of meanings which can be associated 
with lexical entries or c-structure rules 



Some templates for Flexible Composition

(43) ARG2 =
{ @MAP(MINUSR,ARG2) | @NOMAP(ARG2) }

(44) ARG3 =
{ @MAP(PLUSO,ARG3) | @NOMAP(ARG3) }

(45) ARG4 =
{ @MAP(MINUSO,ARG4) | @NOMAP(ARG4) }

The lexical entry for devour can now be rewritten in terms of LMTKF as follows:

(46) devoured V (↑ PRED) = DEVOUR

@PAST

@ARG1

@ARG2
...

Lastly, we add a template ADDMAP for monotonic addition of further mapping constraints, e.g. in

passive.

(47) ADDMAP(F,A) =
{ @MAP(F,A) | @NOMAP(A) }

This template simply calls the MAP and NOMAP templates to add another mapping constraint.

4 Analysis

We now demonstrate how the theory works by providing analyses for the phenomena in section 2. We

first specify the templates, which constitute the heart of the flexible composition approach (section 4.1).

We then use these templates along with lexical and c-structure specifications to analyses passives (sec-

tion 4.2), cognate objects (section 4.3), benefactives (section 4.4) and some interactions of these phe-

nomena (section 4.5).

4.1 Templates

We first define templates for agent arguments and patient arguments:

(48) AGENT =
@ARG1

λPλxλe.P(e) ∧ agent(e) = x :
[(↑σ EVENT)! ↑σ ]! (↑σ ARG1)! (↑σ EVENT)! ↑σ

(49) PATIENT =
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This template thus provides both the appropriate linking and interpretation for agent-patient verbs.

The template for passives is as follows:7

(51) PASSIVE =
(↑ VOICE) = PASSIVE

@ADDMAP(PLUSR,ARG1)

( λP∃x .[P(x )] : [(↑σ ARG1)! ↑σ ]! ↑σ )

This template does two things. First, it uses the ADDMAP template from section 3.4 to add a further

linking constraint, such that ARG1 is either a restricted grammatical function or else absent. The linking

theory will ensure that if it is present it corresponds to the restricted function OBL. Second, the template

provides an optional meaning constructor that must be selected for the short passive but cannot be

selected if there is a by-phrase, due to the resource sensitivity of the Glue logic, as discussed by Asudeh

and Giorgolo (2012).

The following template is used in cognate object cases:

(52) COGNATEOBJECT

λxλPλe.P(e) ∧ x = ε(e) :
(↑ OBJ)σ ! [(↑σ EVENT)! ↑σ]! (↑σ EVENT)! ↑σ

The template provides the capacity to deal with an OBJ in the verb’s f-structure, even if it would not

normally be licensed by the verb. The fact that it must be a cognate object is captured by the meaning

term. The function ε embeds the type of events into the types of individuals, i.e. it maps each event to

an individual that represents that event. Being an embedding, it is injective and can be made surjective

(and therefore a bijection) by restricting its codomain to the image of the set of events under ε. Since ε

is a bijection, it means we also have an inverse mapping ε−1 from individuals to events.

The following template handles double-object benefactives:8

(53) BENEFACTIVE =
@ARG3

λxλyλPλe.P(y)(e) ∧ beneficiary(e) = x :
(↑σ ARG2)! (↑σ ARG3)! [(↑σ ARG2)! (↑σ EVENT)! ↑σ ]! (↑σ EVENT)! ↑σ

Independent linking constraints will ensure that there is a correspondence between the OBJ of the verb

and its ARG2. The template also encodes a kind of formal trick: the dependency that the verb would

have otherwise discharged in terms of ARG2 is now discharged instead in terms of the OBJθ, which

corresponds to ARG3

Lastly, the following template is used to provide tense and to existentially close the event variable:

(54) PAST =
(↑ TENSE) = PAST

λP∃e.[P(e) ∧ past(e)] :
[(↑σ EVENT)! ↑σ ]! ↑σ

4.2 Passives

Let us consider the following two examples, respectively a short-passive and a by-passive:

(55) Kim was crushed last night.

(56) Kim was crushed by Godzilla last night.

The following lexical entry for crushed suffices for both examples:

7This template is adapted from Findlay (2014: 33).
8This template is from Findlay (2014: 37).
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Since laugh is a true cognate object verb, the templates COGNATEOBJECT and BENEFACTIVE both

place a requirement on the cognate object, but there is only a single object (a laugh), so resource sensi-

tivity blocks the derivation.

In contrast, since sing is a transitive verb it does not call the COGNATEOBJECT template and there is

no conflict with the BENEFACTIVE template. The optionality of sing’s object argument is instead han-

dled by the UNDERSTOODOBJECT template, which is the same template used for, e.g., the intransitive

use of eat (Asudeh and Giorgolo 2012):

(73) UNDERSTOODOBJECT =
λP∃x .[P(x )] : [(↑σ ARG2)! ↑σ ]! ↑σ

Thus the theory correctly predicts that an optional transitive like sing can occur in a double-object

benefactive, as in (66a), and in the passivized version of the double-object benefactive, as in (66b),

whereas a true cognate object verb like laugh cannot occur in either case, as shown in (67a) and (67b).

5 Conclusion

We have drawn together ideas from a number of recent proposals in the LFG literature for the encoding

of lexical information and the sharing of this information across valencies in a generalized fashion. This

can form the beginning of a theory of the representation and specification of information that sits at the

lexicon–syntax–semantics interface. Our formal ingredients were the following: 1. Templates; 2. As-

pects of the regular language of f-descriptions, particularly optionality; 3. Resource-sensitive semantic

composition, as captured by Glue Semantics. We provided analyses of passives, cognate objects and

benefactives, and demonstrated that the analyses of the various phenomena interact properly. We thus

derive a system in which composition is flexible and meaning emerges from the properly constrained

interaction of a variety of contributors.
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Figure 2: Relevant structures and correspondences for Kim was eaten last night.
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(57) crushed V (↑ PRED) = ‘crush’

@AGENT-PATIENT

{ @PAST | @PASSIVE }

λe.crush(e) : (↑σ EVENT)! ↑σ

The verb calls the AGENT-PATIENT which provides its function-argument linking. The lexical entry also

states that this morphological form of the verb is either a past tense verb or a passive participle, hence

the disjunction on calls to the @PAST template and the PASSIVE template; it is the latter that is relevant

here. Lastly, the verb provides its root meaning, a predicate on events. The relevant structures for this

example are in Figure 2 and the Glue proof is in Figure 7 in the appendix.

The following lexical entry for by covers its use in the passive:

(58) by P (↑ PRED) = ‘by’

((OBL ↑) VOICE) =c PASSIVE

(↑ OBJ)σ = ((OBL ↑)σ ARG1)

λxλP .[P(x )] : (↑σ ARG1)! [↑σ ! (OBL ↑)σ ]! (OBL ↑)σ

The constraining equation for VOICE ensures that this by must occur with a passive participle. The third

line maps the object of by to be the ARG1 of the passive predicate. Lastly, the meaning constructor

feeds the ARG1 to the passive predicate as an argument. The relevant structures for this example are in

Figure 3 and the Glue proof is in Figure 8 in the appendix.

4.3 Cognate Objects

We now turn to a cognate object example:

(59) Kim laughed a crazy laugh.
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(57) crushed V (↑ PRED) = ‘crush’

@AGENT-PATIENT

{ @PAST | @PASSIVE }

λe.crush(e) : (↑σ EVENT)! ↑σ

The verb calls the AGENT-PATIENT which provides its function-argument linking. The lexical entry also

states that this morphological form of the verb is either a past tense verb or a passive participle, hence

the disjunction on calls to the @PAST template and the PASSIVE template; it is the latter that is relevant

here. Lastly, the verb provides its root meaning, a predicate on events. The relevant structures for this

example are in Figure 2 and the Glue proof is in Figure 7 in the appendix.

The following lexical entry for by covers its use in the passive:

(58) by P (↑ PRED) = ‘by’

((OBL ↑) VOICE) =c PASSIVE

(↑ OBJ)σ = ((OBL ↑)σ ARG1)

λxλP .[P(x )] : (↑σ ARG1)! [↑σ ! (OBL ↑)σ ]! (OBL ↑)σ

The constraining equation for VOICE ensures that this by must occur with a passive participle. The third

line maps the object of by to be the ARG1 of the passive predicate. Lastly, the meaning constructor

feeds the ARG1 to the passive predicate as an argument. The relevant structures for this example are in

Figure 3 and the Glue proof is in Figure 8 in the appendix.

4.3 Cognate Objects

We now turn to a cognate object example:

(59) Kim laughed a crazy laugh.
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{ @PAST | @PASSIVE }

λe.crush(e) : (↑σ EVENT)! ↑σ

The verb calls the AGENT-PATIENT which provides its function-argument linking. The lexical entry also

states that this morphological form of the verb is either a past tense verb or a passive participle, hence

the disjunction on calls to the @PAST template and the PASSIVE template; it is the latter that is relevant

here. Lastly, the verb provides its root meaning, a predicate on events. The relevant structures for this

example are in Figure 2 and the Glue proof is in Figure 7 in the appendix.

The following lexical entry for by covers its use in the passive:

(58) by P (↑ PRED) = ‘by’

((OBL ↑) VOICE) =c PASSIVE

(↑ OBJ)σ = ((OBL ↑)σ ARG1)

λxλP .[P(x )] : (↑σ ARG1)! [↑σ ! (OBL ↑)σ ]! (OBL ↑)σ

The constraining equation for VOICE ensures that this by must occur with a passive participle. The third

line maps the object of by to be the ARG1 of the passive predicate. Lastly, the meaning constructor

feeds the ARG1 to the passive predicate as an argument. The relevant structures for this example are in

Figure 3 and the Glue proof is in Figure 8 in the appendix.

4.3 Cognate Objects

We now turn to a cognate object example:

(59) Kim laughed a crazy laugh.
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Example:  
Kim laughed a crazy laugh
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Figure 4: C-structure, f-structure, and semantic structure for Kim laughed a crazy laugh
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The lexical entry for laughed is shown in (60).9

(60) laughed V

(↑ PRED) = ‘laugh’

@PAST

@AGENT

( @COGNATEOBJECT )

λe.laugh(e) : (↑σ EVENT)! ↑σ

The cognate object is not obligatory, so the call to the COGNATEOBJECT template is optional. This

lexical entry is thus general and covers both intransitive and cognate object uses of laughed.

The structures for example (59) are in Figure 4. The cognate object is treated compositionally like

an adjunct (Sailer 2010), since it does not map to an argument in semantic structure and composes as

a modifier, but note that it is in fact an OBJ in f-structure. This accounts for the object-like syntactic

behaviour of the cognate object (Jones 1988), without forcing us to treat it as an underlying argument

or postulating a transitive version of laugh. The Glue proof for example (59) is shown in Figure 9 in

the appendix, assuming other standard premises as appropriate and with premises instantiated as per

Figure 4.

4.4 Benefactives

Next we consider the following two benefactive examples:

(61) Kim drew Godzilla for Sandy.

9Recall that wee assume that the predicate laugh, defined for events, is mirrored by a corresponding laughε predicate

defined for individuals. In general we assume that there are lexical axioms linking intransitive verbs extensions and the

extensions of their cognate objects. In the case of laugh we assume the following axiom:

(i) ∀e.laugh(e) ↔ laughε(ε(e))

Notice that this accounts for the redundancy of an expression such as Kim laughed a laugh, as the cognate object does not add

anything to the truth conditions of the sentence.
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(↑ PRED) = ‘laugh’

@PAST

@AGENT

( @COGNATEOBJECT )

λe.laugh(e) : (↑σ EVENT)! ↑σ

The cognate object is not obligatory, so the call to the COGNATEOBJECT template is optional. This

lexical entry is thus general and covers both intransitive and cognate object uses of laughed.

The structures for example (59) are in Figure 4. The cognate object is treated compositionally like

an adjunct (Sailer 2010), since it does not map to an argument in semantic structure and composes as

a modifier, but note that it is in fact an OBJ in f-structure. This accounts for the object-like syntactic

behaviour of the cognate object (Jones 1988), without forcing us to treat it as an underlying argument

or postulating a transitive version of laugh. The Glue proof for example (59) is shown in Figure 9 in

the appendix, assuming other standard premises as appropriate and with premises instantiated as per

Figure 4.

4.4 Benefactives

Next we consider the following two benefactive examples:

(61) Kim drew Godzilla for Sandy.

9Recall that wee assume that the predicate laugh, defined for events, is mirrored by a corresponding laughε predicate

defined for individuals. In general we assume that there are lexical axioms linking intransitive verbs extensions and the

extensions of their cognate objects. In the case of laugh we assume the following axiom:

(i) ∀e.laugh(e) ↔ laughε(ε(e))

Notice that this accounts for the redundancy of an expression such as Kim laughed a laugh, as the cognate object does not add

anything to the truth conditions of the sentence.
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Example:  
Kim drew Godzilla for Sandy
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Figure 5: Relevant structures and correspondences for Kim drew Godzilla for Sandy.
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(62) Kim drew Sandy Godzilla.

We assume the following lexical entry for drew:

(63) drew V

(↑ PRED) = ‘draw’

@PAST

@AGENT-PATIENT

λe.draw(e) : (↑σ EVENT)! ↑σ

The verb is just treated like a normal transitive and does not encode the benefactive in any way.

In the for-benefactive, (61), it is the preposition for that adds the benefactive meaning.

(64) for P

(↑ PRED) = ‘for’

(↑ OBJ)σ = ((OBL ↑)σ BENEFICIARY)

λyλPλe.[P(e) ∧ beneficiary(e) = y ] :
(↑σ BENEFICIARY)!

[((OBL ↑)σ EVENT)! (OBL ↑)σ ]!
((OBL ↑)σ EVENT)! (OBL ↑)σ

The preposition for, in this use, maps the OBJ of the predicate it modifies to a designated role

BENEFICIARY in semantic structure (see the treatment of instrumental with-phrases in Asudeh and Gior-

golo 2012). The relevant structures for example (61) are in Figure 5 and the Glue proof is in Figure 10

in the appendix.

For the double-object benefactive, (62), it is the configuration itself that encodes the benefactive

meaning, so we associate the c-structure rule for double-objects with the BENEFACTIVE template.

(65) V′ → V

↑ = ↓
( @BENEFACTIVE )

DP

(↑ OBJ) = ↓
DP

(↑ OBJθ) = ↓

The call to BENEFACTIVE is optional, such that the double-object rule is general and can also apply to

non-benefactive cases. However, if a non-ditransitive verb occurs in the c-structures described by this

rule, BENEFACTIVE must be selected in order for the meanings of both objects to be properly integrated,

given the resource sensitivity of the Glue logic. The relevant structures for example (62) are in Figure 6

and the Glue proof is in Figure 11 in the appendix.
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(62) Kim drew Sandy Godzilla.

We assume the following lexical entry for drew:

(63) drew V

(↑ PRED) = ‘draw’

@PAST

@AGENT-PATIENT

λe.draw(e) : (↑σ EVENT)! ↑σ

The verb is just treated like a normal transitive and does not encode the benefactive in any way.

In the for-benefactive, (61), it is the preposition for that adds the benefactive meaning.

(64) for P

(↑ PRED) = ‘for’

(↑ OBJ)σ = ((OBL ↑)σ BENEFICIARY)

λyλPλe.[P(e) ∧ beneficiary(e) = y ] :
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[((OBL ↑)σ EVENT)! (OBL ↑)σ ]!
((OBL ↑)σ EVENT)! (OBL ↑)σ

The preposition for, in this use, maps the OBJ of the predicate it modifies to a designated role

BENEFICIARY in semantic structure (see the treatment of instrumental with-phrases in Asudeh and Gior-

golo 2012). The relevant structures for example (61) are in Figure 5 and the Glue proof is in Figure 10

in the appendix.

For the double-object benefactive, (62), it is the configuration itself that encodes the benefactive

meaning, so we associate the c-structure rule for double-objects with the BENEFACTIVE template.

(65) V′ → V

↑ = ↓
( @BENEFACTIVE )

DP

(↑ OBJ) = ↓
DP

(↑ OBJθ) = ↓

The call to BENEFACTIVE is optional, such that the double-object rule is general and can also apply to

non-benefactive cases. However, if a non-ditransitive verb occurs in the c-structures described by this

rule, BENEFACTIVE must be selected in order for the meanings of both objects to be properly integrated,

given the resource sensitivity of the Glue logic. The relevant structures for example (62) are in Figure 6

and the Glue proof is in Figure 11 in the appendix.
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(62) Kim drew Sandy Godzilla.

We assume the following lexical entry for drew:

(63) drew V

(↑ PRED) = ‘draw’

@PAST

@AGENT-PATIENT

λe.draw(e) : (↑σ EVENT)! ↑σ

The verb is just treated like a normal transitive and does not encode the benefactive in any way.

In the for-benefactive, (61), it is the preposition for that adds the benefactive meaning.

(64) for P

(↑ PRED) = ‘for’

(↑ OBJ)σ = ((OBL ↑)σ BENEFICIARY)

λyλPλe.[P(e) ∧ beneficiary(e) = y ] :
(↑σ BENEFICIARY)!
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The preposition for, in this use, maps the OBJ of the predicate it modifies to a designated role

BENEFICIARY in semantic structure (see the treatment of instrumental with-phrases in Asudeh and Gior-

golo 2012). The relevant structures for example (61) are in Figure 5 and the Glue proof is in Figure 10

in the appendix.

For the double-object benefactive, (62), it is the configuration itself that encodes the benefactive

meaning, so we associate the c-structure rule for double-objects with the BENEFACTIVE template.

(65) V′ → V

↑ = ↓
( @BENEFACTIVE )

DP

(↑ OBJ) = ↓
DP

(↑ OBJθ) = ↓

The call to BENEFACTIVE is optional, such that the double-object rule is general and can also apply to

non-benefactive cases. However, if a non-ditransitive verb occurs in the c-structures described by this

rule, BENEFACTIVE must be selected in order for the meanings of both objects to be properly integrated,

given the resource sensitivity of the Glue logic. The relevant structures for example (62) are in Figure 6

and the Glue proof is in Figure 11 in the appendix.
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Example:  
Kim drew Sandy Godzilla
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Figure 6: Relevant structures and correspondences for Kim drew Sandy Godzilla.
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4.5 Interactions

We lastly consider interactions between the passive, cognate objects and the double-object benefactive,

as demonstrated by the contrast between the grammatical sing examples in (66) and the ungrammatical

laugh examples in (67):

(66) a. The performer sang the children a song.

b. The children were sung a song.

(67) a. *The clown laughed the children a laugh.

b. *The children were laughed a laugh.

These contrasts seem initially surprising, but fall into line if we assume that laugh is a true cognate

object verb, whereas sing is just a transitive verb that allows its object to be dropped, much like eat

(Asudeh and Giorgolo 2012).

There is independent evidence for this assumption. The verb sing allows its object to be an existential

quantifier, but the verb laugh does not:

(68) Kim sang something.

(69) *Kim laughed something.

The well-formedness of (68) is explained if sing is an optional transitive. In that case, (68) in fact

conveys exactly the same information as Kim sang, since the understood object of an optional transitive

is existentially closed (Asudeh and Giorgolo 2012).

Further evidence comes from extraction, which can target the object of sing but not that of laugh:

(70) What did Kim claim Sandy sang?

(71) *What did Kim claim Sandy laughed?

This is again explained if sang is a transitive verb.

The lexical entries for laughed and sang are contrasted in (72), where the entry for laughed is the

very same entry in (60) above.

(72) laughed V

(↑ PRED) = ‘laugh’

@PAST

@AGENT

( @COGNATEOBJECT )

λe.laugh(e) : (↑σ EVENT)! ↑σ

sang V

(↑ PRED) = ‘sing’

@PAST

@AGENT

@PATIENT

( @UNDERSTOODOBJECT )

λe.sing(e) : (↑σ EVENT)! ↑σ
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(62) Kim drew Sandy Godzilla.

We assume the following lexical entry for drew:

(63) drew V

(↑ PRED) = ‘draw’

@PAST

@AGENT-PATIENT

λe.draw(e) : (↑σ EVENT)! ↑σ

The verb is just treated like a normal transitive and does not encode the benefactive in any way.

In the for-benefactive, (61), it is the preposition for that adds the benefactive meaning.

(64) for P

(↑ PRED) = ‘for’

(↑ OBJ)σ = ((OBL ↑)σ BENEFICIARY)

λyλPλe.[P(e) ∧ beneficiary(e) = y ] :
(↑σ BENEFICIARY)!

[((OBL ↑)σ EVENT)! (OBL ↑)σ ]!
((OBL ↑)σ EVENT)! (OBL ↑)σ

The preposition for, in this use, maps the OBJ of the predicate it modifies to a designated role

BENEFICIARY in semantic structure (see the treatment of instrumental with-phrases in Asudeh and Gior-

golo 2012). The relevant structures for example (61) are in Figure 5 and the Glue proof is in Figure 10

in the appendix.

For the double-object benefactive, (62), it is the configuration itself that encodes the benefactive

meaning, so we associate the c-structure rule for double-objects with the BENEFACTIVE template.

(65) V′ → V

↑ = ↓
( @BENEFACTIVE )

DP

(↑ OBJ) = ↓
DP

(↑ OBJθ) = ↓

The call to BENEFACTIVE is optional, such that the double-object rule is general and can also apply to

non-benefactive cases. However, if a non-ditransitive verb occurs in the c-structures described by this

rule, BENEFACTIVE must be selected in order for the meanings of both objects to be properly integrated,

given the resource sensitivity of the Glue logic. The relevant structures for example (62) are in Figure 6

and the Glue proof is in Figure 11 in the appendix.
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Note: It is a normal assumption in LFG that elements of c-structure rules are optional.  
This rule therefore allows the passive verb to be inserted under V. (It would also have 
to have a PP node added for the oblique, but this is a trivial modification.)



Proof:  
Kim was crushed last nightA Appendix: Proofs

crush ′ =
@AGENT

λPλyλe.P(e) ∧ agent(e) = y :
(ev ! c)! a! ev ! c

@PATIENT

λPλxλe.P(e) ∧ patient(e) = x :
(ev ! c)! k ! ev ! c

crushed

λe.crush(e) :
ev ! c

λxλe.crush(e) ∧ patient(e) = x : k ! ev ! c [x : k ]1

λe.crush(e) ∧ patient(e) = x : ev ! c

λyλe.crush(e) ∧ patient(e) = x ∧ agent(e) = y : a! ev ! c
!I,1

λxλyλe.crush(e) ∧ patient(e) = x ∧ agent(e) = y : k ! a! ev ! c

was

λP∃e.[P(e) ∧ past(e)] :
(ev ! c)! c

last night

λPλe ′′.[P(e ′′) ∧ last .night(e ′′)] :
(ev ! c)! (ev ! c)

@PASSIVE

λP∃x .[P(x )] :
(a! c)! c

crush ′

Kim

kim :
k

crush ′(kim) : a! ev ! c [y : a]2

crush ′(kim)(y) : ev ! c [e ′ : ev ]3

crush ′(kim)(y)(e ′) : c
!I,2

λy .crush ′(kim)(y)(e ′) : a! c

∃x .[crush ′(kim)(x )(e ′)] : c
!I,3

λe ′∃x .[crush ′(kim)(x )(e ′)] : ev ! c

λe ′′∃x .[crush ′(kim)(x )(e ′′) ∧ last .night(e ′′)] : ev ! c

∃e∃x .[crush ′(kim)(x )(e) ∧ last .night(e) ∧ past(e)] : c
⇒β

∃e∃x .[crush(e) ∧ patient(e) = kim ∧ agent(e) = x ∧ last .night(e) ∧ past(e)] : c

Figure 7: Proof for Kim was crushed last night.

crush ′ =
@AGENT

λPλyλe.P(e) ∧ agent(e) = y :
(ev ! c)! g ! ev ! c

@PATIENT

λPλxλe.P(e) ∧ patient(e) = x :
(ev ! c)! k ! ev ! c

crushed

λe.crush(e) :
ev ! c

λxλe.crush(e) ∧ patient(e) = x : k ! ev ! c [x : k ]1

λe.crush(e) ∧ patient(e) = x : ev ! c

λyλe.crush(e) ∧ patient(e) = x ∧ agent(e) = y : g ! ev ! c
!I,1

λxλyλe.crush(e) ∧ patient(e) = x ∧ agent(e) = y : k ! g ! ev ! c

was

λP∃e.[P(e) ∧ past(e)] :
(ev ! c)! c

last night

λPλe ′′.[P(e ′′) ∧ last .night(e ′′)] :
(ev ! c)! (ev ! c)

by

λxλP .[P(x )] :
g ! (g ! c)! c

Godzilla

godzilla :
g

λP .[P(godzilla)] : (g ! c)! c

crush ′

Kim

kim :
k

crush ′(kim) : g ! ev ! c [y : g ]2

crush ′(kim)(y) : ev ! c [e ′ : ev ]3

crush ′(kim)(y)(e ′) : c
!I,2

λy .crush ′(kim)(y)(e ′) : g ! c

crush ′(kim)(godzilla)(e ′) : c
!I,3

λe ′.[crush ′(kim)(godzilla)(e ′)] : ev ! c

λe ′′.[crush ′(kim)(godzilla)(e ′′) ∧ last .night(e ′′)] : ev ! c

∃e.[crush ′(kim)(godzilla)(e) ∧ last .night(e) ∧ past(e)] : c
⇒β

∃e.[crush(e) ∧ patient(e) = kim ∧ agent(e) = godzilla ∧ last .night(e) ∧ past(e)] : c

Figure 8: Proof for Kim was crushed by Godzilla last night.
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What just happened?

• Overview of Lexical-Functional Grammar

• Overview of Glue Semantics

• Introduction to Flexible Composition as an 
approach to argument structure 



Thank you
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