Monads as a Solution for Generalized Opacity

Gianluca Giorgolo & Ash Asudeh

April 27, 2014 - TTNLS 2014

Denotations vs. senses

1+1=2

e The two sides of the equality have the same denotation
e But they have different senses:

— 2 is the name of the number
— 1+ 1 1is a process whose result is the number

Denotations vs. senses

Similarly in natural language
(1) “Hesperus is Phosphorus”
is not necessarily a tautology:

(2) “Reza doesn’t believe Hesperus is Phosphorus”

Denotations vs. senses

Standard analysis:

o “Hesperus” and “Phosphorus” refer to the same entity (the planet
Venus)
e Their senses are different:

— “Hesperus” — the evening star
— “Phosphorus” — the morning star

e Two different descriptions (processes) that lead to the same entity

But. ..
In certain contexts an expression like (3)
(3) “Sandy is Sandy”

is also not a tautology. . .

Capgras syndrome
From Wikipedia:

“[Capgras syndrome] is a disorder in which a person holds a delusion
that a friend, spouse, parent, or other close family member has been
replaced by an identical-looking impostor.”

e Assume Kim suffers from Capgras syndrome
e The following sentence is not necessarily unsatisfiable:

(4) “Kim doesn’t believe Sandy is Sandy”

e Saying “Sandy” is ambiguous seems wrong

Capgras syndrome

e Kim’s model: two “Sandy” entities

— Sandy,
— ImpostorSandyxim

e Speaker’s model: one “Sandy” entity
— Sandy,
e ImpostorSandyyim 7 Sandy,

Capgras syndrome

(5) “Kim doesn’t believe Sandy is Sandy”

o At the time of the utterance, the name “Sandy” refers to ImpostorSandyim
for Kim

o For the speaker the name refers to Sandy,

¢ One instance of “Sandy” is interpreted from Kim’s persepective

e The other from the speaker’s perspective

(6) “Kim doesn’t believe I'mpostorSandy;m = Sandys”

Indiana Pi Bill

In 1897 Dr. Edwin J. Goodwin presented a bill to the Indiana General Assembly
for

“[...] introducing a new mathematical truth and offered as a contri-
bution to education to be used only by the State of Indiana free of
cost”

He had copyrighted that
(7) m=3.2
Thus

(8) “Edwin doesn’t believe 7 = 7”

Our approach in a nutshell
o Contentious expressions are given denotations that depend on an additional
interpretation index
e Perspectives rather than senses
e Default interpretation index = speaker’s index

e Verbs like “believe” can change the default index to another index (e.g. the
subject’s index)

e Ontology: real entities + mental entities (relative to interpretation indices)

Other opaque contexts

(9) “Reza doesn’t believe Hesperus is Phosphorus”

)

(10) “Mary Jane loves Peter Parker but she doesn’t love Spiderman’
but not in cases like (11)

(11) “Dr. Octopus killed Spiderman but he didn’t kill Peter Parker”
(compare with “murder”)

e Overlap with intensionality but not the same point of view

Outline of the talk

e Opacity
e Naive implementation of the idea
e 3 problems for simple type extension

« Monads as a solution

Naive implementation:New types

e A single new type i for interpretation indices

e Simplistically ¢ = e

Naive implementation:Contentious expressions
e Given an expression of type 7, we signal it is contentious by assigning it
the type ¢ — 7
e Example: “Kim doesn’t believe Sandy is Sandy”
e “Sandy” contentious, type assigned i — e
o« Example: “Reza doesn’t believe Jesus is Jesus”

e “Jesus” contentious, type assigned i — e

Naive implementation:Index switching

sions

e “love” : As.do.love(s)(o(s)):e— (i —>e) >t

o “believe” : As.Ac.believe(s)(c(s)):e— (i —t) =t

Grammatical infrastructure

« Applicable basically to any grammatical formalism

e We use a sort of soft LFG / Categorial grammar approach

e Linear logic as model for semantic composition
o Functional types become linear implications (—o)

e No generalized lifting in the lexicon

Problem 1:Only contradictory reading
(12) “Kim doesn’t believe Sandy is Sandy”

¢ Only reading available:

expres-

(13) “Kim doesn’t believe ImpostorSandyim = ImpostorSandyrim”

e “Sandy” always interpreted in the scope of “believe”

Problem 2:Implication linearity

T =0 —p, T, 1) F p
T—=0—p, T, d, F T p

T=>0—p, 1T, 1—=6 F i—i—p

Problem 3:Linearity again

What if the object of a verb like “love” is non contentious?
(14) e > (i —> e) > t,e,e?

a F i — a not a valid inference in linear logic

Problems

e Problem 1 is a scopal problem

e Problem 2 and 3 seem to stem from linearity of implication / function
type constructor

¢ Rejecting linearity seems too strong:

(15) John punches Bill
(16) punch(John)(John)

Solution

¢ Same pattern emerges (for problem 2 and 3) in unrelated contexts:

— Multidimensional semantics (e.g. conventional implicatures)
— Semantics of questions
— Optional arguments

e Monads as a generalized model for all these phenomena

Monads

* Monad = (M, n, ;)
e M is a functor, mapping between types: 7 — i — T

o 7 (“unit”) lifts object to the monadic type, solves problem 3:

17y n=Az X ix:T—=>i—>T

u (“join”) compresses multiple monadic layers into a single one, solves
problem 2:

(18) w=AfAi.f()@):(i—>i—>T)—=i—>T

id I'B BAFC
I,AFC

z:AFx: A ut

Te:A+t: B R AFt: A T'z:BFu:C
TFAxt:A—B F,A,y:A%>BFu[y(t)/9:}:C’Hj

L

I'Hx: A OR I'z:A+t:0B
Ltnz): 0A Ly: 0AFyxAz.t: OB

OL

Figure 1: Sequent calculus for a fragment of multiplicative linear logic enriched
with a monadic modality, together with a Curry-Howard correspondence between
formulae and meaning terms.

Technical detail:x (“bind”) rather than p

e p impractical when writing lexical entries

* = dm Ak k(m(i))(0) :

(i—=71)=>(T—=(GE—9)—=(—9)

e x can be defined in terms of p
e * can be interpreted as sequencing too

e New “scope” mechanism, solves problem 1

Monads in the logic

¢ New unary connective ¢, but Qa # i — «

Online theorem prover

<http://lilab.carleton.ca/ giorgolo/tp.html>

Monads, intuitively

e Monads as a model of side effects: {7 computation that results in value of
type 7 possibly producing side effects

e 7 creates a trivial computation without side effects
e x combines computations and side effects, enforces order of evaluation

o In our case, side effect = dependency on context / environment

Capgras example

(19) “Kim doesn’t believe Sandy is Sandy”

Kim Kim e

not Ap.—p t—t

believe As.Ac.\i.believe(s)(c(s)) e— 0t = Ot

Sandy {Kim — Impostorkim,o — Sandy,} Qe

is AT \y.x =1y e—e—t
Readings

Satisfiable reading [Sandy]xA\z.[believe] (Kim)([Sandy]*Ay.n(z =
y)) *x Aza(=2)

—believe(Kim)(Impostor gim = Sandy,)

Unsatisfiable readings [believe] (Kim)([Sandy]*Az.[Sandy]*xAy.n(x = y))*
Az.n(—z2)

—believe(Kim)(Impostor kim = Impostor i im)
[Sandy]*Az.[Sandy]*Ay.[believe] (Kim)(n(z = y)) x Az.n(—z)

—believe(Kim)(Sandy, = Sandy,)

“love” example

(20) “Mary Jane loves Peter Parker but she doesn’t love Spiderman”

Mary Jane
love

Peter Parker

MJ
As.ho.Ai.love(s)(o(s))
PP

e
e — Qe — Ot

€

not Ap.—p t—t
Spiderman {MJw— SMy;5,0 = PP} Qe
Readings

Satisfiable reading [love](MJ)(n(PP)) Ap.[love](MJ)([Spiderman]) *

Ag.n(p A —q)

love(M J)(PP) A =love(MJ)(SMysy)

Unsatisfiable reading [love] (M J)(n(PP))*Ap.[Spiderman]xAz.[love] (M J)(n(z))x

Ag.n(p A —q)

love(M J)(PP) A —love(MJ)(PP)

Beyond names

e Use the same approach with any possibly contentious expression

(21) “Tina believes Bob is a woodchuck but she doesn’t believe he is

a groundhog”

(22) “Tina thinks Flipper is a dolphin but she doesn’t think he is a

marine mammal”

Beyond names

dolphin {Flipper, Oscar, ...}

marinemammal {o — {Flipper, Oscar, MobyDick, ...}, Tina — {MobyDick, ...} }

e—1t

Ole = t)

To

sum up

Generalized approach to opacity based on interpretation indices, perspec-
tives
Not only traditional cases but also Capgras examples

Monads: weaken linearity of compositionality, additional scope mechanism

Not limited to synonyms but also applicable to more general entailments

10

	Denotations vs. senses
	Denotations vs. senses
	Denotations vs. senses
	But…
	Capgras syndrome
	Capgras syndrome
	Capgras syndrome
	Indiana Pi Bill
	Our approach in a nutshell
	Other opaque contexts
	Outline of the talk
	Naive implementation:New types
	Naive implementation:Contentious expressions
	Naive implementation:Index switching expressions
	Grammatical infrastructure
	Problem 1:Only contradictory reading
	Problem 2:Implication linearity
	Problem 3:Linearity again
	Problems
	Solution
	Monads
	Technical detail: (``bind'') rather than
	Monads in the logic
	Online theorem prover
	Monads, intuitively
	Capgras example
	Readings
	``love'' example
	Readings
	Beyond names
	Beyond names
	To sum up

