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Denotations vs. senses

1+1=2

e The two sides of the equality have the same denotation
e But they have different senses:

— 2 is the name of the number
— 1+ 1 1is a process whose result is the number

Denotations vs. senses

Similarly in natural language
(1) “Hesperus is Phosphorus”
is not necessarily a tautology:

(2) “Reza doesn’t believe Hesperus is Phosphorus”

Denotations vs. senses

Standard analysis:

o “Hesperus” and “Phosphorus” refer to the same entity (the planet
Venus)
e Their senses are different:

— “Hesperus” — the evening star
— “Phosphorus” — the morning star

e Two different descriptions (processes) that lead to the same entity



But. ..
In certain contexts an expression like (3)
(3) “Sandy is Sandy”

is also not a tautology. . .

Capgras syndrome
From Wikipedia:

“[Capgras syndrome] is a disorder in which a person holds a delusion
that a friend, spouse, parent, or other close family member has been
replaced by an identical-looking impostor.”

e Assume Kim suffers from Capgras syndrome
e The following sentence is not necessarily unsatisfiable:

(4) “Kim doesn’t believe Sandy is Sandy”

e Saying “Sandy” is ambiguous seems wrong

Capgras syndrome

e Kim’s model: two “Sandy” entities

— Sandy,
— ImpostorSandyxim

e Speaker’s model: one “Sandy” entity
— Sandy,
e ImpostorSandyyim 7 Sandy,

Capgras syndrome

(5) “Kim doesn’t believe Sandy is Sandy”



o At the time of the utterance, the name “Sandy” refers to ImpostorSandyim
for Kim

o For the speaker the name refers to Sandy,

¢ One instance of “Sandy” is interpreted from Kim’s persepective

e The other from the speaker’s perspective

(6) “Kim doesn’t believe I'mpostorSandy;m = Sandys”

Indiana Pi Bill

In 1897 Dr. Edwin J. Goodwin presented a bill to the Indiana General Assembly
for

“[...] introducing a new mathematical truth and offered as a contri-
bution to education to be used only by the State of Indiana free of
cost”

He had copyrighted that
(7) m=3.2
Thus

(8) “Edwin doesn’t believe 7 = 7”

Our approach in a nutshell
o Contentious expressions are given denotations that depend on an additional
interpretation index
e Perspectives rather than senses
e Default interpretation index = speaker’s index

e Verbs like “believe” can change the default index to another index (e.g. the
subject’s index)

e Ontology: real entities + mental entities (relative to interpretation indices)



Other opaque contexts

(9) “Reza doesn’t believe Hesperus is Phosphorus”

)

(10) “Mary Jane loves Peter Parker but she doesn’t love Spiderman’
but not in cases like (11)

(11) “Dr. Octopus killed Spiderman but he didn’t kill Peter Parker”
(compare with “murder”)

e Overlap with intensionality but not the same point of view

Outline of the talk

e Opacity
e Naive implementation of the idea
e 3 problems for simple type extension

« Monads as a solution

Naive implementation:New types

e A single new type i for interpretation indices

e Simplistically ¢ = e

Naive implementation:Contentious expressions
e Given an expression of type 7, we signal it is contentious by assigning it
the type ¢ — 7
e Example: “Kim doesn’t believe Sandy is Sandy”
e “Sandy” contentious, type assigned i — e
o« Example: “Reza doesn’t believe Jesus is Jesus”

e “Jesus” contentious, type assigned i — e



Naive implementation:Index switching

sions

e “love” : As.do.love(s)(o(s)):e— (i —>e) >t

o “believe” : As.Ac.believe(s)(c(s)):e— (i —t) =t

Grammatical infrastructure

« Applicable basically to any grammatical formalism

e We use a sort of soft LFG / Categorial grammar approach

e Linear logic as model for semantic composition
o Functional types become linear implications (—o)

e No generalized lifting in the lexicon

Problem 1:Only contradictory reading
(12) “Kim doesn’t believe Sandy is Sandy”

¢ Only reading available:

expres-

(13) “Kim doesn’t believe ImpostorSandyim = ImpostorSandyrim”

e “Sandy” always interpreted in the scope of “believe”

Problem 2:Implication linearity

T =0 —p, T, 1) F p
T—=0—p, T, d, F T p

T=>0—p, 1T, 1—=6 F i—i—p




Problem 3:Linearity again

What if the object of a verb like “love” is non contentious?
(14) e > (i —> e) > t,e,e?

a F i — a not a valid inference in linear logic

Problems

e Problem 1 is a scopal problem

e Problem 2 and 3 seem to stem from linearity of implication / function
type constructor

¢ Rejecting linearity seems too strong:

(15) John punches Bill
(16) punch(John)(John)

Solution

¢ Same pattern emerges (for problem 2 and 3) in unrelated contexts:

— Multidimensional semantics (e.g. conventional implicatures)
— Semantics of questions
— Optional arguments

e Monads as a generalized model for all these phenomena

Monads

* Monad = (M, n, ;)
e M is a functor, mapping between types: 7 — i — T

o 7 (“unit”) lifts object to the monadic type, solves problem 3:

17y n=Az X ix:T—=>i—>T

u (“join”) compresses multiple monadic layers into a single one, solves
problem 2:

(18) w=AfAi.f()@):(i—>i—>T)—=i—>T
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Figure 1: Sequent calculus for a fragment of multiplicative linear logic enriched
with a monadic modality, together with a Curry-Howard correspondence between
formulae and meaning terms.

Technical detail:x (“bind”) rather than p

e p impractical when writing lexical entries

* = dm Ak k(m(i))(0) :

(i—=71)=>(T—=(GE—9)—=(—9)

e x can be defined in terms of p
e * can be interpreted as sequencing too

e New “scope” mechanism, solves problem 1

Monads in the logic

¢ New unary connective ¢, but Qa # i — «

Online theorem prover

<http://lilab.carleton.ca/ giorgolo/tp.html>

Monads, intuitively

e Monads as a model of side effects: {7 computation that results in value of
type 7 possibly producing side effects



e 7 creates a trivial computation without side effects
e x combines computations and side effects, enforces order of evaluation

o In our case, side effect = dependency on context / environment

Capgras example

(19) “Kim doesn’t believe Sandy is Sandy”

Kim Kim e

not Ap.—p t—t

believe As.Ac.\i.believe(s)(c(s)) e— 0t = Ot

Sandy {Kim — Impostorkim,o — Sandy,} Qe

is AT \y.x =1y e—e—t
Readings

Satisfiable  reading [Sandy]xA\z.[believe] (Kim)([Sandy]*Ay.n(z =
y)) *x Aza(=2)

—believe( Kim)(Impostor gim = Sandy,)

Unsatisfiable readings [believe] (Kim)([Sandy]*Az.[Sandy]*xAy.n(x = y))*
Az.n(—z2)

—believe( Kim)(Impostor kim = Impostor i im )
[Sandy]*Az.[Sandy]*Ay.[believe] (Kim)(n(z = y)) x Az.n(—z)

—believe(Kim)(Sandy, = Sandy,)

“love” example

(20) “Mary Jane loves Peter Parker but she doesn’t love Spiderman”



Mary Jane
love

Peter Parker

MJ
As.ho.Ai.love(s)(o(s))
PP

e
e — Qe — Ot

€

not Ap.—p t—t
Spiderman {MJw— SMy;5,0 = PP} Qe
Readings

Satisfiable reading [love](MJ)(n(PP))  Ap.[love](MJ)([Spiderman]) *

Ag.n(p A —q)

love(M J)(PP) A =love(MJ)(SMysy)

Unsatisfiable reading [love] (M J)(n(PP))*Ap.[Spiderman]xAz.[love] (M J)(n(z))x

Ag.n(p A —q)

love(M J)(PP) A —love(MJ)(PP)

Beyond names

e Use the same approach with any possibly contentious expression

(21) “Tina believes Bob is a woodchuck but she doesn’t believe he is

a groundhog”

(22) “Tina thinks Flipper is a dolphin but she doesn’t think he is a

marine mammal”

Beyond names

dolphin {Flipper, Oscar, ...}

marinemammal {o — {Flipper, Oscar, MobyDick, ...}, Tina — {MobyDick, ...} }

e—1t

Ole = t)




To

sum up

Generalized approach to opacity based on interpretation indices, perspec-
tives
Not only traditional cases but also Capgras examples

Monads: weaken linearity of compositionality, additional scope mechanism

Not limited to synonyms but also applicable to more general entailments
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