Asudeh & Siddiqi

- The grammatical features expressed by a word-form can be fewer than those associated with the context
 - i.e. morphology can be inherently *underspecified* for the environments it appears in.
- o Realizational models come in two varieties:
 - Word & Paradigm
 - Realizational listemes are entire word-forms, typically generated in a paradigm.
 - PFM (Stump 2001) is the dominant model
 - Morpheme-based
 - Listemes are morphemes: minimal form to feature correspondences.
 - DM is the dominant model.
- $\circ~$ The work so far in attempting to get LFG to be realizational has been about interfacing it with PFM.
 - Spencer 2003, 2006
 - Luis & Sadler 2003
 - Sadler & Spencer 2004
 - Sadler & Norlinger 2004, 2006
 - Luis & Otoguro 2004
 - Spencer & Sadler 2001
 - Dalrymple 2015

o Nearly all these models make shared assumptions.

- Realization is a mapping from f-structure to m-structure to PFM.
 - Avoiding c-structure mappings preserves the Lexical Integrity Hypothesis.
 - Mapping to intermediate level preserves the morphome hypothesis (Aronoff 1994)
- Why would LFG want DM, though?
 - The FIRST big question of the day.
 - Formal linguistic theory is overwhelmingly sorted into "camps" of shared assumptions and hypotheses.
 - Realizational morphologists who work with LFG tend to be those that subscribe to the word-based approach.
 - This makes intuitive sense because LFG takes as one of its core assumptions the Lexical Integrity Hypothesis (Aronoff 1976, DiScullo & Williams 1985, LaPointe 1980, Bresnan et al 2016).
 - HOWEVER, in the context of a realizational MSI, You can give up the strictest version of the LIH without giving up much of the motivation for the LIH

Distributed Lexical Functional Grammar

MOTH 2016 UT Mississauga April 15th, 2016

Ash Asudeh & Daniel Siddiqi Oxford University & Carleton University

Abbreviations:

- DM: Distributed Morphology (Halle & Marantz 1993)
- LFG: Lexical Functional Grammar (Kaplan & Bresnan 1982)
- MPP: Minimalist Principles & Parameters (Chomsky 1995)
- PFM: Paradigm-Function Morphology (Stump 2001, Stump 2016)
- MSI: Morphology-Syntax Interface
- LIH: Lexical Integrity Hypothesis
- OT: Optimality Theory (Prince & Smolensky 2004)

0. Purpose of the talk

- Argue for the benefits of a DM interface with LFG.
- Propose an architecture for such an interface.
- Discuss the strengths of such a model.

1. Why would LFG want an interface with DM?

- > LFG typically assumes an incremental approach to morphology (Bresnan et al 2016).
 - Words are generated in the lexicon via lexical rules which in essence add morphology to add the featural content of the word.
 - These words then form the atoms of the c-structure and supply the f-structure with its crucial elements.
 - Morphology is *information-increasing* (Stump 2001)
- At the same time, most models of morphology have abandoned the incremental approach to morphology over the course of the last two decades.
 - o Contemporary morphology is typically realizational (Beard 1995)
 - a. Morphology expresses syntactic information.
 - b. Morphology is associative (Stump 2001).
 - c. Some prevalent realizational models: Anderson (1982, 1992), Halle & Marantz (1993, 1994), Stump (2001, 2016), Starke (2005, 2009), Wunderlich 1996, Ackema & Neelemn 2004.
 - o Key reasons to prefer realizational approaches (see Stump 2001):
 - a. Multiple exponence.
 - A given grammatical feature has more than one morphological reflex.
 - b. Underdetermination.

The gramma

- o What does LFG gain by countenancing two alternative theories of the MSI?
 - LFG-internal reason:
 - Extant realizational LFG models typically assume that f-structure is the syntactic level that interfaces with morphology (via m-structure).
 - HOWEVER, f-structure does not make the right structural distinctions to facilitate realization of forms.
 - e.g. agreement information is contributed to the f-structure from many places in the c-structure.
 - WHERE it comes from in the c-structure is important to the morphology, not just that it is there
 - (which is all the f-structure knows).
 - Does not require m-structure
 - o Outside of the morphome hypothesis, m-structure is unparsimonious.
 - LFG-external reason:
 - The LFG "camp" excludes a bunch of morphologists or morphosyntacticians who might otherwise be interested in LFG:
 - o Supporters of the morpheme-based hypothesis.
 - o Supporters of the Mirror Principle.
 - This is significant because early standard incremental LFG is really good at the Mirror Principle
 - o Practitioners seeking syntactocentric explanation.
- Why would DM want LFG?
 - o The OTHER big question of the day!
 - o DM doesn't have to be married to MPP.
 - There is no reason to exclude the many syntacticians who reject tenets of MPP but would not necessarily reject the tenets of DM.

- Asudeh & Siddiqi
 - o DM doesn't need to be derivational:
 - Declarative models have their appeal!
 - Almost every other model of syntax other than MPP.
 - A syntactic model that is more surface-true is in some ways easier to interface with a realizational model.
 - DM is in the midst of suffering from a glut of post syntactic operations
 - many of which can be alleviated by a spanning account for morphosyntax (Ramchand 2008, Svenonius 2009, Merchant 2013, Haugen & Siddiqi 2016)
 - Spanning approaches are inherently *declarative* (which makes them compatible with declarative models such as LFG).
 - Many others can be alleviated by OT accounts of morphophonology. (Bye & Svenonius 2014, Haugen 2013, Haugen & Siddiqi 2016)
 - OT accounts are also fundamentally declarative!
 - These alternative models of DM that are inherently declarative largely aim to account for particular classes of phenomena:
 - o Long distance morphophonological relationships.
 - $\circ \quad {\rm Stem \, Allomorphy}.$
 - Root Suppletion.

Distributed Lexical Functional Grammar (DLFG)

- Step 1: Abandon the hypothesis that C-structure contains phonological strings at all.
- Step 2: Assume that C-structure contains f-descriptions that are NOT linked to words.
 - Not a novel proposal.
 - o Asudeh et al 2013, Asudeh & Toivonen 2014
 - F-descriptions for "constructional" meanings are introduced directly into the cstructure (which means constructions do not have to be adopted as theoretical primitives).
- Step 3: New Proposal:
 - o All there is in the c-structure is these independent f-descriptions.
 - o No "words"
 - Depending on your model of morphology, you might also assume:
 - Lexical Identifier
 - Meaning Constructor
 - (个PRED) = 'Sandy', etc., is minimally sufficient though.

1) Traditional LFG c-structure and f-structure for "Sandy says stuff"

2) Revised c-structure for "Sandy says stuff".

- This hypothesis enables ANY realizational model to be read directly off the c-structure.
 O Avoids the f-structure mapping problem.
- To get a morpheme-based model, we need to split off the individual f-descriptions into smaller "morpheme" sized nodes.
- 3) DLFG c-structure "Sandy says stuff"

 Without further architecture this model inherits all DM's problems of dealing with words with stem allomorphy, portmanteau, etc, that require derivational mechanisms.

DLFG

- We need to enable a spanning account.
- Here we adopt a post-linearization spanning account for the reasons given in Haugen & Siddiqi (2016) and Merchant (2013).
- Step 4: New Proposal:

Asudeh & Siddiqi

- "Flattening" operates on c-structure and maps c-structure to an ordered list of (sets of) the terminal f-descriptions.
 - Flattening is just the standard tree-theoretic operation of taking the yield of the tree, where the yield is the information in the terminal nodes, preserving their order in the tree.
 - So the yield of a standard vanilla phrase-structure tree would be the string that the tree parses.
 - In our case, as the terminals are sets of f-descriptions, the yield that results from the FLATTEN function is not a string, but an order-preserving list of sets of f-descriptions
- Stating constraints and operations on the yield of a tree in LFG has been independently motivated prior to this proposal. See Asudeh (2009).
- Predicts realizational forms can be dependent on linear precedence, not (necessarily) hierarchical relations.
 - English Nominative Case

4) English nominative case.

- a. Me and Jack went to the store.
- b. *I and Jack went to the store.
- c. Jack and me went to the store.
- d. Jack and I went to the store.
- e. Us linguists hate pedants.
- f. %We linguists hate pedants.
- g. Me kicking a desk shocked the audience.
- h. *I kicking a desk shocked the audience
- GENERALIZATION: English nominative case is sensitive to linear precedence (in additional structural conditions; adverbs present the usual problems).
- Realizational morphology can't be sensitive to this type of condition unless it acts on a linearized or flattened structure.

-

• Step 5: New Proposal:

REALIZE! Maps flattened structure to phonological forms.

5) "Sandy says stuff".

 $\begin{array}{c} \text{REALIZE}\left(\left[1, 2, 3, 4, 5\right]\right) \\ \downarrow \\ \text{sændij} \\ \text{særd istrikt} \\ \end{array}\right)$

- This mapping is subject to constraints.
 - o Will be familiar to practitioners of DM or Nanosyntax

6) Constraints on realization (i.e., the function REALIZE).

- a. Use the fewest listemes you can for the job. (Minimize Exponence: Siddiqi 2009)
- Use the listeme that expones the most amount of information in the X⁰ it expones. (Subset Principle, Halle & Marantz 1994)
- c. REALIZE may expone multiple adjacent X⁰s provided that the f-descriptions exponed by the inserted listeme are as large a subset of the string of adjacent X⁰s than that which could otherwise be expressed by separate listemes at the contained X⁰s. (Post-linearization Spanning; Haugen & Siddiqi 2016)

3. Stem Allomorphy in DLFG

Compare derivation of "Sandy says stuff" with "Sandy kicks stuff"

7) Sandy kicks stuff.

- Says expresses 2, 3, and 4 because says is a suppletive portmanteau form of [say+s] (despite its transparent spelling)
- Kick expresses 2 while -s expresses 3 and 4 because while -s is a portmanteau, kick is the regular
 expression of 2.
- In this way, DLFG accounts for stem allomorphy with a listing account but accounts for regular morphology with a morpheme-based account.

• See Haugen & Siddiqi (2016) for details

- Hybrid model.
 - o Strengths of both morpheme-based model and word-based models.

4. Conclusions

- > Argued that DM need not and ought not exclude LFG.
- Argued that LFG need not and ought not exclude DM.
- > Argued that both benefit from bridge-building (i.e. a DM interface with LFG)
- > Proposed a possible architecture for such a DM-LFG interface.
- > Showed the strengths of this model (hybrid word/morphology declarative model)

References available upon request as a separate attachment.