A statistical model of grammatical choices in children’s productions of dative sentences

Marie-Catherine de Marneffe
Scott Grimm
Uriel Cohen Priva
Sander Lestrade
Gorkem Ozbek
Tyler Schnoebelen

Susannah Kirby
Misha Becker
Vivienne Fong
Joan Bresnan
Do children follow the same production pattern as adults?

Children’s production seems to differ from adult speech.

It is an open question how to exactly characterize the differences.

Recent research has shown that syntactic alternation in adult speech is influenced by multiple cues.

Do the same factors affect child production?
Case study: dative alternation

NP NP I gonna show you something.
 RECIPIENT THEME

NP PP Show it to her.
 THEME RECIPIENT

Our models measure the probability of selecting a NP PP construction.
1. Modeling adult production of the dative alternation
 - Motivations behind this approach
 - Logistic regression model

2. Building a model for child production
 - CHILDES database
 - Methodology and annotation
 - Resultant model and discussion

3. Model comparison between adult and child production
Variation in the dative construction has proven puzzling.

Various forces have been held responsible:

- lexical verb meaning
 [Gropen 89, Green 71]

- constructional differences
 [Goldberg 95]

- usage trends (e.g., phonological factors)

Detailed studies of actual usage show a more complicated picture.
Multiple factors affect dative construction choice

Statistical models allow one to investigate and predict factors influencing production. [Arnold 00, Szmrecsányi 05, Becker 06, Bresnan et al. 07]

E.g., the influence of animacy and definiteness can be compared.

This was shown in the model of Bresnan et al. [Bresnan et al. 07]
Modeling adult production of the dative alternation

Adult data comes from Switchboard

2360 dative observations from the 3 million word Switchboard collection of recorded telephone conversations.

Annotated for: animacy, givenness, pronominality, length, person, number, verb and verb semantic class, persistence, ...

This data set is publicly available for download as part of the languageR package.
Persistence

Persistence is a measure of production priming: speakers reuse what they have just heard or just used.

Szmrecsányi found persistence to play a highly significant role in linguistic choice for different English alternations.
[Szmrecsányi 05]

Syntactic priming effects have also been reported in young children.
[Savage et al. 03, Huttenlocher et al. 04, Conwell and Demuth 07]
Modeling adult production of the dative alternation

Logistic regression model

Logistic regression model controls simultaneously for multiple factors giving a binary response.

\[P(\text{Response} = \text{NP PP}|X) = \frac{1}{1+e^{\exp(-\alpha+\beta_1 x_1+\beta_2 x_2+\ldots)}} \]

where \(X \) is the model matrix of independent variables \([x_1, x_2, \ldots] \) and \(\beta \)s are their coefficients.
Modeling adult production of the dative alternation

Adult model shows harmonic alignment

Harmonic alignment of prominence scales with syntactic position:

- shorter > longer
- discourse given > not given
- animate > inanimate
- definite > indefinite
- pronoun > non-pronoun

V NP NP V recipient theme
V NP PP V theme recipient
Building a model for child production

Previous studies of child acquisition of datives emphasized lexical verb meaning. [Pinker 89, Tomasello 01]

Given the adult model just shown, it’s natural to question whether similar factors are in play for children.

We follow the approach of Bresnan et al. [Bresnan et al. 07] and build a logistic regression model.
Building a model for child production

Child data comes from CHILDES

We used a subset of the CHILDES database [MacWhinney 00]

7 children selected based on the amount of data available
(both total utterances and utterances containing a dative construction)

538 utterances annotated for animacy
givenness
pronominality
length
persistence
age
MLU
Building a model for child production

Annotation: animacy

It is not clear how children perceive animacy.

We therefore used two different coding schemes for this factor:
- standardly assumed definition: humans and animals
- hypothetical over-generalization by children: the above plus toys

The results of the two coding schemes were not significantly different from each other.
Building a model for child production

Annotation: givenness

The theme/recipient is considered given if it has been mentioned in the previous 10 speaker turns.

If so, we also coded the speaker of this previous mention (child vs. adult).
Building a model for child production

Annotation: pronominality

definite pronoun

demonstrative pronoun

personal pronoun

reflexive pronoun

personal pronoun followed by a lexical NP

she gave them all her children a spanking.
Building a model for child production

Annotation: length

The number of space-delimited words encodes the length.
We coded for α persistence (exact match), whereby we located the first previous dative construction within a range of 10 speaker turns:

NP = previous NP NP in a dative construction

PP = previous NP PP in a dative construction

0 = no previous dative construction

We also took into account the distance (in number of clauses), as well as the speaker uttering the previous construction (adult vs. child).
Annotation: MLU

Mean Length Utterance measured in morphemes, as computed by the CLAN program.
Logistic regression model for child production

Probability \{\text{Response} = \text{NP PP}\} \quad \text{given} \quad \text{animacy}
\text{givenness}
pronominality
length
persistence
age
MLU

Following standard methods, we use backward elimination to extract the most significant factors, i.e., those which account for the greatest amount of the variation in the data without overfitting the model.
Building a model for child production

Logistic regression model

\[P(\text{Response} = \text{NP PP}|X) = \frac{1}{1 + exp(-(\alpha + \beta_1 x_1 + \beta_2 x_2 + \ldots))} \]

where \(\alpha \) is
- 0.27

and \(\beta_i x_i \) are

+ 2.36 \{theme type = pronoun\}
- 1.59 \{recipient type = pronoun\}
- 0.72 \{theme length\}
- 1.45 \{previous dative = NP\}
+ 1.81 \{previous dative = PP\}
The quality of the obtained model is high:

\[C = 90.9 \]

Nagelkerke \(R^2 = 56.9 \) (56.2 with bootstrap validation)

4 factors are independently significant (no collinearity, \(p < .05 \)):

<table>
<thead>
<tr>
<th>Factor</th>
<th>Odds</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>theme type=pronoun</td>
<td>10.57</td>
<td>0.0000</td>
</tr>
<tr>
<td>recipient type=pronoun</td>
<td>0.20</td>
<td>0.0000</td>
</tr>
<tr>
<td>theme length</td>
<td>0.49</td>
<td>0.0061</td>
</tr>
<tr>
<td>previous dative=NP</td>
<td>0.24</td>
<td>0.0002</td>
</tr>
<tr>
<td>previous dative=PP</td>
<td>6.10</td>
<td>0.0000</td>
</tr>
</tbody>
</table>
Building a model for child production

Previous construction tends to persist
Building a model for child production

Decrease in theme length favors NP PP
Building a model for child production

Pronominal theme favors NP PP
Building a model for child production

Lexical recipient favors NP PP
As in the adult data, the child data show a qualitative picture of a quantitative harmonic alignment.

- shorter > longer
- pronoun > non-pronoun

V NP NP V recipient theme
V NP PP V theme recipient
Building a model for child production

There is no speaker effect

Given that the children vary a lot in their individual developmental trajectories [Clark 03], we must control for whether the speaker is a significant factor, which data pooling has obscured.

Using “child” as a random effect in a mixed effect model didn’t lead to a significant result:

surprisingly the global trends hold locally.
There is no speaker effect

Coefficients of both models are very similar:

<table>
<thead>
<tr>
<th>Factor</th>
<th>Fixed effect model coefficients</th>
<th>Mixed effect model coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>theme type=pronoun</td>
<td>+ 2.36</td>
<td>+ 2.35</td>
</tr>
<tr>
<td>recipient type=pronoun</td>
<td>− 1.59</td>
<td>− 1.60</td>
</tr>
<tr>
<td>theme length</td>
<td>− 0.72</td>
<td>− 0.73</td>
</tr>
<tr>
<td>previous dative=NP</td>
<td>− 1.45</td>
<td>− 1.46</td>
</tr>
<tr>
<td>previous dative=PP</td>
<td>+ 1.81</td>
<td>+ 1.80</td>
</tr>
</tbody>
</table>
Building a model for child production

Length of theme effect by child

![Graph showing the length of theme effect by child, with log odds on the y-axis and length of theme in syllables on the x-axis.](image)
Proportion NP PPs by Theme Type

<table>
<thead>
<tr>
<th>Theme Type</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>trevor</td>
<td></td>
</tr>
<tr>
<td>nina</td>
<td></td>
</tr>
<tr>
<td>sarah</td>
<td></td>
</tr>
<tr>
<td>shem</td>
<td></td>
</tr>
<tr>
<td>abe</td>
<td></td>
</tr>
<tr>
<td>adam</td>
<td></td>
</tr>
<tr>
<td>naomi</td>
<td></td>
</tr>
<tr>
<td>lexical</td>
<td></td>
</tr>
<tr>
<td>pronoun</td>
<td></td>
</tr>
<tr>
<td>lexical</td>
<td></td>
</tr>
<tr>
<td>pronoun</td>
<td></td>
</tr>
<tr>
<td>lexical</td>
<td></td>
</tr>
<tr>
<td>pronoun</td>
<td></td>
</tr>
</tbody>
</table>

Building a model for child production

Theme type effect by child
Building a model for child production

Recipient type effect by child

Proportion NP PPs by Recipient Type

<table>
<thead>
<tr>
<th>Recipient Type</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>trevor</td>
<td></td>
</tr>
<tr>
<td>nina</td>
<td></td>
</tr>
<tr>
<td>sarah</td>
<td></td>
</tr>
<tr>
<td>shem</td>
<td></td>
</tr>
<tr>
<td>abe</td>
<td></td>
</tr>
<tr>
<td>adam</td>
<td></td>
</tr>
<tr>
<td>naomi</td>
<td></td>
</tr>
</tbody>
</table>

Lexical vs. Pronoun
Building a model for child production

Persistence effect by child

Proportion NP PPs by Persistence Level

<table>
<thead>
<tr>
<th>Persistence Level</th>
<th>Proportion</th>
<th>NP</th>
<th>PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.2</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.4</td>
<td>0.4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.6</td>
<td>0.6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The overall picture of Bresnan et al. [Bresnan et al. 07] is much the same in child production of dative sentences: construction choice is governed by multiple factors, which align harmonically.
Building a model for child production

Differences from the adult model

Number of factors
Overall there were fewer significant factors in the child model.

Animacy
Despite our expectations, animacy was not found to be a significant factor in the child model.

The two models suggest that there might be a difference between children and adults in the relation of animacy to construction choice.
Building a model for child production

Differences from the adult model

The factors differ in magnitude:

<table>
<thead>
<tr>
<th>Factor</th>
<th>Child AIC</th>
<th>Adult AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>verb</td>
<td>-1.95</td>
<td></td>
</tr>
<tr>
<td>previous dative</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>recipient animacy</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>theme length</td>
<td>5.53</td>
<td>4.30</td>
</tr>
<tr>
<td>recipient length</td>
<td></td>
<td>7.76</td>
</tr>
<tr>
<td>theme animacy</td>
<td></td>
<td>12.79</td>
</tr>
<tr>
<td>recipient type</td>
<td>28.65</td>
<td>26.77</td>
</tr>
<tr>
<td>previous dative</td>
<td>57.49</td>
<td></td>
</tr>
<tr>
<td>theme type</td>
<td>114.75</td>
<td>46.57</td>
</tr>
</tbody>
</table>
Building a model for child production

Differences from the adult model

We cannot infer such differences directly from two independent models.

To fully assess similarities and differences between children and adults, one must analyze these factors across the data in a conjoined model.
Model comparison between adults and children

We limited the adult model to the verbs *give* and *show*. This gives 611 data points, comparable to the 538 occurrences for the child data.

We refitted the adult model to this restricted data set, and found no differences in main effects, e.g., animacy remains significant.

We re-coded persistence in the adult data to approximate the 10 speaker turn range used in the child data.
Model comparison between adults and children

The conjoined model attains high quality

The conjoined model demonstrates that the following factors remain significant across data sets:

\[C = 95.7 \]

Nagelkerke \(R^2 = 70.3 \) (69.2 with bootstrap validation)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Odds</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>intercept</td>
<td>0.284</td>
<td>0.0824</td>
</tr>
<tr>
<td>recipient type=pronoun</td>
<td>0.021</td>
<td>0.0000</td>
</tr>
<tr>
<td>theme type=pronoun</td>
<td>1536.0</td>
<td>0.0000</td>
</tr>
<tr>
<td>recipient length</td>
<td>2.6</td>
<td>0.0021</td>
</tr>
<tr>
<td>theme length</td>
<td>0.646</td>
<td>0.0008</td>
</tr>
<tr>
<td>previous dative=NP</td>
<td>0.240</td>
<td>0.0000</td>
</tr>
<tr>
<td>previous dative=PP</td>
<td>5.5</td>
<td>0.0000</td>
</tr>
<tr>
<td>group=child * recipient type=pronoun</td>
<td>11.0</td>
<td>0.0073</td>
</tr>
<tr>
<td>group=child * theme type=pronoun</td>
<td>0.008</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Main effects

Interactions
Model comparison between adults and children

Persistence plays a role

![Diagram showing model comparison between adults and children, with a focus on the role of persistence. The x-axis represents the variable 'prev_dative', and the y-axis represents log odds. The diagram includes points labeled 'NP' and 'PP', indicating comparison points. The visual representation illustrates the comparison between the two groups.]
Model comparison between adults and children

Length of recipient and theme matters

Increase in recipient length favors NP PP

Decrease in theme length favors NP PP
Model comparison between adults and children

Type of recipient and theme

Lexical recipient
favors NP PP

Pronominal theme
favors NP PP
Harmonic alignment is a significant main effect across both groups

The children’s and the adults’ construction choices show a consistent statistical pattern of harmonic alignment.

All of the measured harmonic alignment effects (except the animacy effect) are significant across both groups.
Model comparison between adults and children

Interaction: recipient and theme types

For adults the type of NPs has greater influence on the production choice.
The interaction effects show that the two groups differ in their sensitivity to the shared factors.

Child and adult productions demonstrate the same general behavior, which corresponds to a shared harmonic alignment pattern.

The differences in the interactions are a matter of degree, not direction.
Conclusion

We have demonstrated the feasibility of comparing child and adult speech, and shown that statistical modeling techniques can yield insight into the factors at play in children’s speech production.

Given the size of the corpus, our results are promising rather than definitive. Further research may shed light upon why the differences between these patterns of production were observed (input children receive, resource limitations).

The production choices made by children and adults are neither identical nor radically different: a core set of factors are shared.
There are no collinearities between co-variates

VIF measures (the closer to 1 the better)

<table>
<thead>
<tr>
<th>Feature</th>
<th>VIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>theme type = pronoun</td>
<td>1.30</td>
</tr>
<tr>
<td>recipient type = pronoun</td>
<td>1.02</td>
</tr>
<tr>
<td>previous dative = NP</td>
<td>1.06</td>
</tr>
<tr>
<td>previous dative = PP</td>
<td>1.08</td>
</tr>
<tr>
<td>theme length</td>
<td>1.27</td>
</tr>
</tbody>
</table>