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Abstract

There is a long history of using logic to
model the interpretation of indirect speech
acts. Classical logical inference, how-
ever, is unable to deal with the combina-
tions of disparate, conflicting, uncertain
evidence that shape such speech acts in
discourse. We propose to address this by
combining logical inference with proba-
bilistic methods. We focus on responses
to polar questions with the following prop-
erty: they are neither yes nor no, but
they convey information that can be used
to infer such an answer with some de-
gree of confidence, though often not with
enough confidence to count as resolving.
We present a novel corpus study and asso-
ciated typology that aims to situate these
responses in the broader class of indirect
question–answer pairs (IQAPs). We then
model the different types of IQAPs using
Markov logic networks, which combine
first-order logic with probabilities, empha-
sizing the ways in which this approach al-
lows us to model inferential uncertainty
about both the context of utterance and in-
tended meanings.

1 Introduction

Clark (1979), Perrault and Allen (1980), and Allen
and Perrault (1980) study indirect speech acts,
identifying a wide range of factors that govern how
speakers convey their intended messages and how
hearers seek to uncover those messages. Prior dis-
course conditions, the relationship between the lit-
eral meaning and the common ground, and spe-
cific lexical, constructional, and intonational cues

all play a role. Green and Carberry (1992, 1994)
provide an extensive computational model that in-
terprets and generates indirect answers to polar
questions. Their model focuses on inferring cat-
egorical answers, making use of discourse plans
and coherence relations.

This paper extends such work by recasting the
problem in terms of probabilistic modeling. We
focus on the interpretation of indirect answers
where the respondent does not answer with yes or
no, but rather gives information that can be used
by the hearer to infer such an answer only with
some degree of certainty, as in (1).

(1) A: Is Sue at work?
B: She is sick with the flu.

In this case, whether one can move from the re-
sponse to a yes or no is uncertain. Based on typical
assumptions about work and illness, A might take
B’s response as indicating that Sue is at home, but
B’s response could be taken differently depending
on Sue’s character — B could be reproaching Sue
for her workaholic tendencies, which risk infect-
ing the office, or B could be admiring Sue’s stead-
fast character. What A actually concludes about
B’s indirect reply will be based on some combi-
nation of this disparate, partially conflicting, un-
certain evidence. The plan and logical inference
model of Green and Carberry falters in the face of
such collections of uncertain evidence. However,
natural dialogues are often interpreted in the midst
of uncertain and conflicting signals. We therefore
propose to enrich a logical inference model with
probabilistic methods to deal with such cases.

This study addresses the phenomenon of indi-
rect question–answer pairs (IQAP), such as in (1),
from both empirical and engineering perspectives.



First, we undertake a corpus study of polar ques-
tions in dialogue to gather naturally occurring in-
stances and to determine how pervasive indirect
answers that indicate uncertainty are in a natu-
ral setting (section 2). From this empirical base,
we provide a classification of IQAPs which makes
a new distinction between fully- and partially-
resolving answers (section 3). We then show how
inference in Markov logic networks can success-
fully model the reasoning involved in both types
of IQAPs (section 4).

2 Corpus study

Previous corpus studies looked at how pervasive
indirect answers to yes/no questions are in dia-
logue. Stenström (1984) analyzed 25 face-to-face
and telephone conversations and found that 13%
of answers to polar questions do not contain an
explicit yes or no term. In a task dialogue, Hockey
et al. (1997) found 38% of the responses were
IQAPs. (This higher percentage might reflect the
genre difference in the corpora used: task dialogue
vs. casual conversations.) These studies, how-
ever, were not concerned with how confidently one
could infer a yes or no from the response given.

We therefore conducted a corpus study to ana-
lyze the types of indirect answers. We used the
Switchboard Dialog Act Corpus (Jurafsky et al.,
1997) which has been annotated for approximately
60 basic dialog acts, clustered into 42 tags. We
are concerned only with direct yes/no questions,
and not with indirect ones such as “May I remind
you to take out the garbage?” (Clark, 1979; Per-
rault and Allen, 1980). From 200 5-minute con-
versations, we extracted yes/no questions (tagged
“qy”) and their answers, but discarded tag ques-
tions as well as disjunctive questions, such as in
(2), since these do not necessarily call for a yes
or no response. We also did not take into account
questions that were lost in the dialogue, nor ques-
tions that did not really require an answer (3). This
yielded a total of 623 yes/no questions.

(2) [sw 0018 4082]

A: Do you, by mistakes, do you mean just
like honest mistakes

A: or do you think they are deliberate sorts
of things?

B: Uh, I think both.

(3) [sw 0070 3435]

A: How do you feel about your game?
A: I guess that’s a good question?
B: Uh, well, I mean I’m not a serious

golfer at all.

To identify indirect answers, we looked at the
answer tags. The distribution of answers is given
in Table 1. We collapsed the tags into 6 categories.
Category I contains direct yes/no answers as well
as “agree” answers (e.g., That’s exactly it.). Cate-
gory II includes statement–opinion and statement–
non-opinion: e.g., I think it’s great, Me I’m in the
legal department, respectively. Affirmative non-
yes answers and negative non-no answers form
category III. Other answers such as I don’t know
are in category IV. In category V, we put utterances
that avoid answering the question: by holding (I’m
drawing a blank), by returning the question — wh-
question or rhetorical question (Who would steal
a newspaper?) — or by using a backchannel in
question form (Is that right?). Finally, category
VI contains dispreferred answers (Schegloff et al.,
1977; Pomerantz, 1984).

We hypothesized that the phenomenon we are
studying would appear in categories II, III and VI.
However, some of the “na/ng” answers are dis-
guised yes/no answers, such as Right, I think so,
or Not really, and as such do not interest us. In the
case of “sv/sd” and “nd” answers, many answers
include reformulation, question avoidance (see 4),
or a change of framing (5). All these cases are not
really at issue for the question we are addressing.

(4) [sw 0177 2759]

A: Have you ever been drug tested?
B: Um, that’s a good question.

(5) [sw 0046 4316]

A: Is he the guy wants to, like, deregulate
heroin, or something?

B: Well, what he wants to do is take all the
money that, uh, he gets for drug
enforcement and use it for, uh, drug
education.

A: Uh-huh.
B: And basically, just, just attack the

problem at the demand side.



Definition Tag Total
I yes/no answers ny/nn/aa 341
II statements sv/sd 143
III affirmative/negative non-yes/no answers na/ng 91
IV other answers no 21
V avoid answering ˆh/qw/qh/bh 18
VI dispreferred answers nd 9
Total 623

Table 1: Distribution of answer tags to yes/no questions.

(6) [sw 0046 4316]

A: That was also civil?
B: The other case was just traffic, and you

know, it was seat belt law.

We examined by hand all yes/no questions for
IQAPs and found 88 examples (such as (6), and
(7)–(11)), which constitutes thus 14% of the total
answers to direct yes/no questions, a figure simi-
lar to those of Stenström (1984). The next section
introduces our classification of answers.

3 Typology of indirect answers

We can adduce the general space of IQAPs from
the data assembled in section 2 (see also Bolinger,
1978; Clark, 1979). One point of departure is that,
in cooperative dialogues, a response to a ques-
tion counts as an answer only when some relation
holds between the content of the response and the
semantic desiderata of the question. This is suc-
cinctly formulated in the relation IQAP proposed
by Asher and Lascarides (2003), p. 403:

IQAP(α,β) holds only if there is a true
direct answer p to the question JαK, and
the questioner can infer p from JβK in
the utterance context.

The apparent emphasis on truth can be set aside
for present purposes; Asher and Lascarides’s no-
tions of truth are heavily relativized to the current
discourse conditions. This principle hints at two
dimensions of IQAPs which must be considered,
and upon which we can establish a classification:
(i) the type of answer which the proffered response
provides, and (ii) the basis on which the inferences
are performed. The typology established here ad-
heres to this, distinguishing between fully- and
partially-resolving answers as well as between the
types of knowledge used in the inference (logical,
linguistic, common ground/world).

3.1 Fully-resolving responses
An indirect answer can fully resolve a question
by conveying information that stands in an inclu-
sion relation to the direct answer: if q ⊆ p (or
¬p), then updating with the response q also re-
solves the question with p (or ¬p), assuming the
questioner knows that the inclusion relation holds
between q and p. The inclusion relation can be
based on logical relations, as in (7), where the re-
sponse is an “over-answer”, i.e., a response where
more information is given than is strictly neces-
sary to resolve the question. Hearers supply more
information than strictly asked for when they rec-
ognize that the speaker’s intentions are more gen-
eral than the question posed might suggest. In (7),
the most plausible intention behind the query is
to know more about B’s family. The hearer can
also identify the speaker’s plan and any necessary
information for its completion, which he then pro-
vides (Allen and Perrault, 1980).

(7) [sw 0001 4325]

A: Do you have kids?
B: I have three.

While logical relations between the content of
the question and the response suffice to treat exam-
ples such as (7), other over-answers often require
substantial amounts of linguistic and/or world-
knowledge to allow the inference to go through,
as in (8) and (9).

(8) [sw 0069 3144]

A: Was that good?
B: Hysterical. We laughed so hard.

(9) [sw 0057 3506]

A: Is it in Dallas?
B: Uh, it’s in Lewisville.



In the case of (8), a system must recognize
that hysterical is semantically stronger than good.
Similarly, to recognize the implicit no of (9), a sys-
tem must recognize that Lewisville is a distinct
location from Dallas, rather than, say, contained
in Dallas, and it must include more general con-
straints as well (e.g., an entity cannot be in two
physical locations at once). Once the necessary
knowledge is in place, however, the inferences are
properly licensed.

3.2 Partially-resolving responses
A second class of IQAPs, where the content of
the answer itself does not fully resolve the ques-
tion, known as partially-resolved questions (Groe-
nendijk and Stokhof, 1984; Zeevat, 1994; Roberts,
1996; van Rooy, 2003), is less straightforward.
One instance is shown in (10), where the gradable
adjective little is the source of difficulty.

(10) [sw 0160 3467]

A: Are they [your kids] little?
B: I have a seven-year-old and a

ten-year-old.
A: Yeah, they’re pretty young.

The response, while an answer, does not, in and
of itself, resolve whether the children should be
considered little. The predicate little is a grad-
able adjective, which inherently possesses a de-
gree of vagueness: such adjectives contextually
vary in truth conditions and admit borderline cases
(Kennedy, 2007). In the case of little, while some
children are clearly little, e.g., ages 2–3, and some
clearly are not, e.g., ages 14–15, there is another
class in between for which it is difficult to as-
sess whether little can be truthfully ascribed to
them. Due to the slippery nature of these predi-
cates, there is no hard-and-fast way to resolve such
questions in all cases. In (10), it is the questioner
who resolves the question by accepting the infor-
mation proffered in the response as sufficient to
count as little.

The dialogue in (11) shows a second example of
an answer which is not fully-resolving, and inten-
tionally so.

(11) [sw 0103 4074]

A: Did he raise him [the cat] or
something1?

1The disjunct or something may indicate that A is open

B: We bought the cat for him and so he’s
been the one that you know spent the
most time with him.

Speaker B quibbles with whether the relation
his son has to the cat is one of raising, instead cit-
ing two attributes that go along with, but do not
determine, raising. Raising an animal is a com-
posite relation, which typically includes the rela-
tions owning and spending time with. However,
satisfying these two sub-relations does not strictly
entail satisfying the raising relation as well. It
is not obvious whether a system would be mis-
taken in attributing a fully positive response to the
question, although it is certainly a partially posi-
tive response. Similarly, it seems that attributing
a negative response would be misguided, though
the answer is partly negative. The rest of the dia-
logue does not determine whetherA considers this
equivalent to raising, and the dialogue proceeds
happily without this resolution.

The preceding examples have primarily hinged
upon conventionalized linguistic knowledge, viz.
what it means to raise X or for X to be little. A
further class of partially-resolving answers relies
on knowledge present in the common ground. Our
initial example (1) illustrates a situation where dif-
ferent resolutions of the question were possible de-
pending on the respondent’s intentions: no if sym-
pathetic, yes if reproachful or admiring.

The relationship between the response and
question is not secured by any objective world
facts or conventionalized meaning, but rather
is variable — contingent on specialized world
knowledge concerning the dialogue participants
and their beliefs. Resolving such IQAPs positively
or negatively is achieved only at the cost of a de-
gree of uncertainty: for resolution occurs against
the backdrop of a set of defeasible assumptions.

3.3 IQAP classification
Table 2 is a cross-classification of the examples
discussed by whether the responses are fully- or
partially-resolving answers and by the types of
knowledge used in the inference (logical, linguis-
tic, world). It gives, for each category, the counts
of examples we found in the corpus. The partially-
resolved class contains more than a third of the an-
swers.
to hearing about alternatives to raise. We abstract away from
this issue for present purposes and treat the more general case
by assuming A’s contribution is simply equivalent to “Did he
raise him?”



Logic Linguistic World Total
Fully-Resolved 27 (Ex. 7) 18 (Ex. 8) 11 (Ex. 9) 56
Partially-Resolved – 20 (Ex. 10;11) 12 (Ex. 1) 32

Table 2: Classification of IQAPs by knowledge type and resolvedness: counts and examples.

The examples given in (7)–(9) are fully resolv-
able via inferences grounded in logical relations,
linguistic convention or objective facts: the an-
swer provides enough information to fully resolve
the question, and the modeling challenge is secur-
ing and making available the correct information.
The partially-resolved pairs are, however, qualita-
tively different. They involve a degree of uncer-
tainty that classical inference models do not ac-
commodate in a natural way.

4 Towards modeling IQAP resolution

To model the reasoning involved in all types of
IQAPs, we can use a relational representation, but
we need to be able to deal with uncertainty, as
highlighted in section 3. Markov logic networks
(MLNs; Richardson and Domingos, 2006) exactly
suit these needs: they allow rich inferential reason-
ing on relations by combining the power of first-
order logic and probabilities to cope with uncer-
tainty. A logical knowledge-base is a set of hard
constraints on the set of possible worlds (set of
constants and grounded predicates). In Markov
logic, the constraints are “soft”: when a world vi-
olates a relation, it becomes less probable, but not
impossible. A Markov logic network encodes a
set of weighted first-order logic constraints, such
that a higher weight implies a stronger constraint.
Given constants in the world, the MLN creates a
network of grounded predicates which applies the
constraints to these constants. The network con-
tains one feature fj for each possible grounding of
each constraint, with a value of 1 if the grounded
constraint is true, and 0 otherwise. The probability
of a world x is thus defined in terms of the con-
straints j satisfied by that world and the weights w
associated with each constraint (Z being the parti-
tion function):

P (X = x) =
1
Z

∑
j

wjfj(x)

In practice, we use the Alchemy implemen-
tation of Markov logic networks (Kok et al.,
2009). Weights on the relations can be hand-set
or learned. Currently, we use weights set by hand,

which suffices to demonstrate that an MLN han-
dles the pragmatic reasoning we want to model,
but ultimately we would like to learn the weights.

In this section, we show by means of a few
examples how MLNs give a simple and elegant
way of modeling the reasoning involved in both
partially- and fully-resolved IQAPs.

4.1 Fully-resolved IQAPs
While the use of MLNs is motivated by partially-
resolved IQAPs, to develop the intuitions behind
MLNs, we show how they model fully-resolved
cases, such as in (9). We define two distinct places,
Dallas and Lewisville, a relation linking a per-
son to a place, and the fact that person K is in
Lewisville. We also add the general constraint that
an individual can be in only one place at a time,
to which we assign a very high weight. Markov
logic allows for infinite weights, which Alchemy
denotes by a closing period. We also assume that
there is another person L, whose location is un-
known.

Constants and facts:
Place = {Dallas, Lewisville}
Person = {K,L}
BeIn(Person,Place)
BeIn(K,Lewisville)

Constraints:
// “If you are in one place, you are not in another.”
(BeIn(x,y) ∧ (y != z))⇒ !BeIn(x,z).

Figure 1 represents the grounded Markov network
obtained by applying the constraint to the con-
stants K, L, Dallas and Lewisville. The graph
contains a node for each predicate grounding, and
an arc between each pair of nodes that appear to-
gether in some grounding of the constraint. Given
that input, the MLN samples over possible worlds,
and infers probabilities for the predicate BeIn,
based on the constraints satisfied by each world
and their weights. The MLN returns a very low
probability for K being in Dallas, meaning that the
answer to the question Is it in Dallas? is no:

BeIn(K,Dallas): 4.9995e-05



BeIn(K, Dallas) BeIn(K, Lewisville)

BeIn(L, Lewisville)BeIn(L, Dallas)

Figure 1: Grounded Markov network obtained by applying the constraints to the constants K, L, Dallas
and Lewisville.

Since no information about L’s location has been
given, the probabilities of L being in Dallas or
Lewisville will be equal and low (0.3), which is
exactly what one would hope for. The probabili-
ties returned for each location will depend on the
number of locations specified in the input.

4.2 Partially-resolved IQAPs
To model partially-resolved IQAPs appropriately,
we need probabilities, since such IQAPs feature
reasoning patterns that involve uncertainty. We
now show how we can handle three examples of
partially-resolved IQAPs.

Gradable adjectives. Example (10) is a bor-
derline case of gradable adjectives: the question
bears on the predicate be little for two children of
ages 7 and 10. We first define the constants and
facts about the world, which take into account the
relations under consideration, “BeLittle(X)” and
“Age(X, i)”, and specify which individuals we are
talking about, K and L, as well as their ages.

Constants and facts:
age = {0 . . . 120}
Person = {K, L}
Age(Person,age)
BeLittle(Person)
Age(K,7)
Age(L,10)

The relation between age and being little involves
some uncertainty, which we can model using a lo-
gistic curve. We assume that a 12-year-old child
lies in the vague region for determining “little-
ness” and therefore 12 will be used as the center
of the logistic curve.

Constraints:
// “If you are under 12, you are little.”
1.0 (Age(x,y) ∧ y < 12)⇒ BeLittle(x)
// “If you are above 12, you are not little.”

1.0 (Age(x,y) ∧ y > 12)⇒ !BeLittle(x)
// The constraint below links two instances of Be-
Little.
(Age(x,u)∧Age(y,v)∧ v>u∧BeLittle(y))⇒Be-
Little(x).

Asking the network about K being little and L
being little, we obtain the following results, which
lead us to conclude that K and L are indeed little
with a reasonably high degree of confidence, and
that the indirect answer to the question is heavily
biased towards yes.

BeLittle(K): 0.92
BeLittle(L): 0.68

If we now change the facts, and say that K and L
are respectively 12 and 16 years old (instead of 7
and 10), we see an appropriate change in the prob-
abilities:

BeLittle(K): 0.58
BeLittle(L): 0.16

L, the 16-year-old, is certainly not to be consid-
ered “little” anymore, whereas the situation is less
clear-cut for K, the 12-year-old (who lies in the
vague region of “littleness” that we assumed).

Ideally, we would have information about the
speaker’s beliefs, which we could use to update
the constraints’ weights. Absent such information,
we could use general knowledge from the Web to
learn appropriate weights. In this specific case, we
could find age ranges appearing with “little kids”
in data, and fit the logistic curve to these.

This probabilistic model adapts well to cases
where categorical beliefs fit uneasily: for border-
line cases of vague predicates (whose interpreta-
tion varies by participant), there is no determinis-
tic yes or no answer.



Composite relations. In example (11), we want
to know whether the speaker’s son raised the cat
inasmuch as he owned and spent time with him.
We noted that raise is a composite relation, which
entails simpler relations, in this case spend time
with and own, although satisfying any one of the
simpler relations does not suffice to guarantee the
truth of raise itself. We model the constants, facts,
and constraints as follows:

Constants and Facts:
Person = {K}
Animal = {Cat}
Raise(Person,Animal)
SpendTime(Person,Animal)
Own(Person,Animal)
SpendTime(K,Cat)
Own(K,Cat)

Constraints:
// “If you spend time with an animal, you help
raise it.”
1.0 SpendTime(x,y)⇒ Raise(x,y)
// “If you own an animal, you help raise it.”
1.0 Own(x,y)⇒ Raise(x,y)

The weights on the relations reflect how central we
judge them to be in defining raise. For simplicity,
here we let the weights be identical. Clearly, the
greater number of relevant relations a pair of en-
tities fulfills, the greater the probability that the
composite relation holds of them. Considering
two scenarios helps illustrate this. First, suppose,
as in the example, that both relations hold. We will
then have a good indication that by owning and
spending time with the cat, the son helped raise
him:

Raise(K,Cat): 0.88

Second, suppose that the example is different in
that only one of the relations holds, for instance,
that the son only spent time with the cat, but did
not own it, and accordingly the facts in the net-
work do not contain Own(K,Cat). The probability
that the son raised the cat decreases:

Raise(K,Cat): 0.78

Again this can easily be adapted depending on the
centrality of the simpler relations to the composite
relation, as well as on the world-knowledge con-
cerning the (un)certainty of the constraints.

Speaker beliefs and common ground knowl-
edge. The constructed question–answer pair
given in (1), concerning whether Sue is at work,
demonstrated that how an indirect answer is mod-
eled depends on different and uncertain evidence.
The following constraints are intended to capture
some background assumptions about how we re-
gard working, being sick, and the connections be-
tween those properties:

// “If you are sick, you are not coming to work.”
Sick(x)⇒ !AtWork(x)
// “If you are hardworking, you are at work.”
HardWorking(x)⇒ AtWork(x)
// “If you are malicious and sick, you come to
work.”
(Malicious(x) ∧ Sick(x))⇒ AtWork(x)
// “If you are at work and sick, you are malicious
or thoughtless.”
(AtWork(x) ∧ Sick(x)) ⇒ (Malicious(x) ∨
Thoughtless(x))

These constraints provide different answers about
Sue being at work depending on how they are
weighted, even while the facts remain the same
in each instance. If the first constraint is heavily
weighted, we get a high probability for Sue not
being at work, whereas if we evenly weight all the
constraints, Sue’s quality of being a hard-worker
dramatically raises the probability that she is at
work. Thus, MLNs permit modeling inferences
that hinge upon highly variable common ground
and speaker beliefs.

Besides offering an accurate treatment of fully-
resolved inferences, MLNs have the ability to deal
with degrees of certitude. This power is required
if one wants an adequate model of the reasoning
involved in partially-resolved inferences. Indeed,
for the successful modeling of such inferences, it
is essential to have a mechanism for adding facts
about the world that are accepted to various de-
grees, rather than categorically, as well as for up-
dating these facts with speakers’ beliefs if such in-
formation is available.

5 Conclusions

We have provided an empirical analysis and ini-
tial treatment of indirect answers to polar ques-
tions. The empirical analysis led to a catego-
rization of IQAPs according to whether their an-
swers are fully- or partially-resolving and accord-
ing to the types of knowledge used in resolving



the question by inference (logical, linguistic, com-
mon ground/world). The partially-resolving indi-
rect answers injected a degree of uncertainty into
the resolution of the predicate at issue in the ques-
tion. Such examples highlight the limits of tradi-
tional logical inference and call for probabilistic
methods. We therefore modeled these exchanges
with Markov logic networks, which combine the
power of first-order logic and probabilities. As
a result, we were able to provide a robust model
of question–answer resolution in dialogue, one
which can assimilate information which is not cat-
egorical, but rather known only to a degree of cer-
titude.
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