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Introduction 
Kemmerer’s target article points to the necessity of conducting 
cognitive neuroscience research cross-linguistically, particularly 
considering languages with nominal classification systems (Kemmerer, 
2016). The particulars of focusing on this type of research points to a 
larger idea that needs emphasis: linguistics and cognitive neuroscience 
need to work together more in interdisciplinary teams to understand 
language, and its connection to the brain, fully. 

This type of collaboration, supported by Kemmerer (2016), has the 
potential to provide fruitful avenues for language research. We are 
currently working in one such collaboration, and there are several 
difficulties that can arise, likely leading to the current fragmentation of 
these two areas of language science. In the following sections, we will 
discuss some of these challenges in collaborating, ways to connect 
these two fields, and some tractable problems in which this 
methodology allows for exploration.  

Difficulties in collaboration between linguistics 
and cognitive neuroscience 
Poeppel and Embick (2005) described two overarching problems of 
collaborating between linguistics and cognitive neuroscience. The first 
of these is the problem that linguistics and neuroscience work at 
different levels of granularity. More specifically, they mention that 
linguistics has many fine-grained distinctions and explicit 
computations. Cognitive neuroscience, on the other hand, deals with 
broader conceptual differences. The other challenge the researchers 
focus on is the ontological incommensurability problem: the units used 
in the two fields are not the same. For instance, they describe 
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linguistics as working in distinctive features, syllables, morphemes, 
noun phrases, and clauses, whereas neuroscience works in dendrites 
and spines, neurons, cell-assembly or ensembles, populations, and 
cortical columns. Determining the mapping between these two sets of 
units is difficult. We add to this that the two fields also differ as to the 
units of language that they examine. Linguistics can much more easily, 
and frequently does, look at full utterances or even large spans of 
discourse. Cognitive neuroscience is just now starting to look at these 
questions and primarily focusing on single words or perhaps short 
phrases. 

Another challenge within collaborations between cognitive 
neuroscience and linguistics is the difference in focus on aspects of the 
same problem. Both fields are interested in questions related to 
semantic representations, but this typically means different things to 
researchers from the two fields. Cognitive neuroscience often equates 
semantics with determining the contents of a concept in terms of 
activated brain regions. For instance, the popular embodied cognition 
framework (e.g. Pulvermüller and Fadiga, 2010) examines the 
perceptual and sensory-motor regions that are activated when thinking 
about the meaning of certain words. In linguistics, by contrast, 
semantic representations, at least in the dominant tradition of truth-
conditional model-theoretic semantics, are founded upon referents, 
viz. actual things in the world, and the combination of meanings in 
terms of referents which form sentences which can be evaluated as 
either true or false (e.g. the work of Frege, Montague, and others. See 
Dowty et al. (1981) for a classic textbook introduction).  

In neither tradition is the relation between referent and concept 
well-articulated: model-theoretic semantics focuses on representations 
based on referents at the expense of representing concepts, whereas 
cognitive neuroscience tends to have a bias in the opposite direction. 
Thus, while both fields legitimately investigate “meaning”, the 
meaning of “meaning” differs in the two fields, one of many 
terminological challenges facing interdisciplinary teams of linguistics 
and cognitive neuroscience that must be navigated. This is a tension 
that appears in Kemmerer (2016), which focuses on the relevance of 
classifiers for objects concepts, in contrast to most of the linguistics 
literature which focuses on classifiers, in terms of their semantics, as 
applying to referents or, as a formal grammatical device, applying to 
nouns, but not to object concepts per se (see discussion in Contini-
Morava and Kilarski (2013)). 

A final difference we will discuss here between linguistics and 
cognitive neuroscience is that the two fields work at two different Marr 
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levels (Marr, 1982). Linguistics focuses on the computational level, 
considering possible ways we could “solve” language, with little or no 
consideration about how this might actually work in humans. Cognitive 
neuroscience works at the implementational level, considering how the 
brain deals with small chunks of language with, too often, little or no 
consideration about how this might fit into the larger language picture 
across all of a single language, let alone cross-linguistically. 

Bridging the gap: studying representations 
instead of activations 
We wish to argue here that the core of this granularity problem has 
been the question of studying representations. Until recently, human 
neuroimaging studies were restricted solely to measuring activation, 
and could only make broad-brush statements about the overall sort of 
information that was being represented. For example, studies might 
make statements of the sort “The ventral temporal cortex is involved in 
representing semantic information about objects”. More recently, 
however, fMRI studies have been able to probe much finer-grained 
aspects of neural representational structure, e.g. measuring the pattern 
similarities between the neural representations of specific individual 
words (Mitchell et al., 2008; Anderson et al., 2016b) or, more recently, 
full sentences (Anderson et al., 2016a). By studying representations of 
linguistic meaning, cognitive neuroscience can now engage much more 
directly with linguistics, as both disciplines are now at last able to study 
the same subject matter. 

The previous inability of cognitive neuroscience to address this 
representational level was a contributing factor to differences in the 
way the two fields would talk about a given topic. For example, when 
papers in cognitive neuroscience referred to “semantic processing”, 
they typically meant “the brain areas that are active during a semantic 
task”, whereas when linguistics papers talked about semantic 
processing they typically meant “semantic representations and the 
information processing operations that are applied to them.” 

The key bridge between semantics and cognitive neuroscience has 
been to relate structure in a semantic space to structure in a space of 
multivoxel neural activation patterns. This work was initiated in the 
seminal paper by Mitchell et al. (2008), who used linear regression to 
learn a mapping between a vector space model of meaning and fMRI 
activation patterns. 

In such work, the semantic information that is being related to brain 
activation patterns is that of vector space semantics (e.g. Turney and 
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Pantel, 2010), in which word meanings are represented as vectors of 
numbers. In corpus-based distributional semantics, those numbers are 
statistics, typically word co-occurrence frequencies, extracted from 
large bodies of text. These approaches instantiate the well-known 
saying of Firth (1957) “You shall know a word by the company it 
keeps”. A different approach is behavioural (e.g., McRae et al., 2005; 
Binder et al., 2016), and is often known as feature norming or 
sometimes as experiential semantics: people are asked to make rating 
judgments about the degrees to which individual words have various 
featural properties, such as size, shape, being man-made and so on. The 
word meanings are then represented in terms of those behavioural 
features. 

A crucial characteristic of a semantic vector space is that it has 
structure. Some meanings are closer together in semantic space, i.e. 
they have similar meanings, whereas others are further apart. For 
example, such a model would capture the fact that the word ‘apple’ is 
closer in meaning to ‘pear’ than it is to ‘truck’. The locations of points 
in a space can be represented in many different coordinate systems. 
One powerful framework is that of a similarity space, i.e. representing 
items in terms of their similarities to each other, which has proven to be 
a powerful modeling tool across multiple areas of cognitive science and 
machine learning. 

Just as meanings can be considered as situated in semantic 
similarity space, multivoxel fMRI activation patterns can be viewed as 
forming a neural similarity space. Individual fMRI voxel activations 
can only go up and down, but the activation across multiple voxels 
forms patterns, and those patterns can have varying degrees of 
similarity to each other. Moreover, mappings can be learned between 
one set of vectors and another, in this case between vectors 
representing word meanings in a semantic model, and vectors of 
multivoxel brain activation patterns (e.g. Mitchell et al., 2008). 

Thus, recent work in the cognitive neuroscience of language, 
including work from our own group, has taken the approach of using 
vector space semantic models to decode vectors spaces of multivoxel 
neural activation patterns. This constitutes a substantive and new 
bridge between linguistics and cognitive neuroscience, but it still has 
many current limitations. For example, it interfaces with only one 
approach to semantics, namely the vector space approach. That 
approach has been popular in computational linguistics, but it does not 
(as yet) have a clear relation to the tradition in the formal semantics 
branch of linguistics of truth-conditional model-theoretic semantics 
(e.g. Dowty et al., 1981) (although see Baroni, Bernardi, and 
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Zamparelli (2014) among others for initial attempts at combining 
formal and distributional semantics). Indeed, representing linguistic 
sentential structure is a challenging problem for vector space semantics 
and for cognitive neuroscience work based upon it, although a few 
recent studies have started to make initial forays in this direction. For 
example, Frankland and Greene (2015) found neural activation patterns 
that were sensitive to agent-patient relationships in sentences, and in 
our own work (Anderson et al., 2016a) we were able to perform neural 
decoding of entire sentences. However, that sentence-level decoding is 
just an initial step with much future work to do, as it uses a “bag of 
words” modeling approach that is insensitive to word order within a 
sentence. 

Approaches to relating linguistics to cognitive 
neuroscience: classifiers and beyond 
Kemmerer’s (2016) target article illustrates one way in which 
linguistics and cognitive neuroscience could conduct interdisciplinary 
research. Using the nominal classification system details of any 
particular language, as described by linguists, cognitive neuroscientists 
could get a more complete picture of the cross-linguistic variation in 
regions that activate for animacy, size, and other important aspects of 
nouns. 

A second question Kemmerer (2016) considers is how “two 
explicitly coded levels of object categorization”, a noun and its 
classifier, are “coordinated”, in more traditional linguistics terminology 
how the meanings compose. This is a much more difficult problem 
than might first appear. The framing of the problem limits nominal 
classifiers to referencing superordinate information, but the use and 
meaning of classifiers within a language is far more complex. In fact, it 
has long been recognized that from a strictly semantic viewpoint the 
superordinate information referenced by classifiers is non-informative 
since, e.g., the concept horse entails animal, thus to have a classifier 
specifying that the horse is animate is redundant. Instead, research on 
classifiers has adduced evidence that classifiers often serve on the one 
hand as a derivation device and/or as part of a language’s reference 
tracking systems, e.g. performing tasks similar to what definite or 
indefinite determiners (the, a) do in English (Aikhenvald (2000); 
Contini-Morava and Kilarski (2013)). Neither function is 
straightforward to examine in terms of how meanings compose. 
Derivational uses are parade cases of non-compositional behavior, 
while when used as reference tracking device, then understanding how 
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a noun and its classifier are coordinated may involve understanding 
how the referent is integrated into the sentence or discourse, and as 
pointed out, cognitive neuroscience approaches to meaning are just 
beginning to venture to exploring meaning on the sentential level. 

Some interesting recent behavioural work (Speed et al., 2016) 
suggests that, although a language’s use of classifiers may indeed be 
related to the conceptual structure of that language’s speakers, the 
direction of causality may flow from from conceptual structure to 
classifier systems, rather than the other way around. Those authors 
asked people to rate the similarity of a variety of objects, with those 
people either being native speakers of a language that does not use 
classifiers, namely Dutch, or native speakers of a language that does 
use classifiers, namely Chinese. The experimenters asked their 
participants to compare some sample objects to a target object, and 
they designed their experiment such that one of the sample objects 
shared the same classifier (in Chinese) with the target, whereas the 
others did not. If the presence of this classifier were to influence 
judgments of similarity, then the Chinese speakers should have rated 
that classifier-sharing object as more similar to the target than the 
Dutch speakers did. However, no difference between the two language 
groups was observed. As the authors write: “This suggests that 
classifier systems reflect, rather than affect, conceptual structure.” 

We close by suggesting some tractable questions linguists and 
cognitive neuroscientists may focus on instead of or in addition to the 
questions raised by Kemmerer (2016). 

Despite the difficulties examining how classifiers compose with 
nominals, we believe one tractable area for connection between 
linguistics and cognitive neuroscience is in semantic composition, in 
particular Shay and Raizada (2015) have done some work looking at 
basic composition functions over sensory-motor features. These 
sensory-motor features were developed from a meta-analysis of 
cognitive neuroscience studies and an additional neuroimaging study, 
suggesting that these particular attributes are highly associated with 
particular regions of the brain (Fernandino et al., 2015).  

They found that addition of these sensory-motor feature vectors did 
remarkably well at predicting the correct phrase sensory-motor vector 
(Shay and Raizada, 2015). Ongoing research is connecting these 
findings with fMRI research on these same individual words and 
phrases. Based on the vector research and the neurobiological basis of 
these features, it should be expected that adding together the brain 
representations could make a reasonable approximation of the phrase 
activation patterns. 
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Thus, this ongoing line of our research allows us to relate semantic 
composition functions from linguistics to functions that are 
hypothesized to be acting upon the corresponding multivoxel neural 
activation patterns. Furthermore, the sensory-motor feature vectors can 
be used to probe other composition functions that are used within 
linguistics to get a more complete picture of this process. 

A very valuable and central aspect of Kemmerer (2016) is that it 
highlights the importance of carrying out cross-linguistic studies in the 
cognitive neuroscience of language. Such studies may seek, as 
Kemmerer suggests, to reveal how differences between languages may 
be reflected in differences between the neural representations of those 
languages’ speakers. Another approach, which we recently followed in 
Zinszer et al. (2016), is to examine semantic commonalities across 
languages which differ greatly in their surface characteristics. In that 
paper, we investigated Chinese and English: native Chinese-speakers 
were presented with words in Chinese, and native English speakers 
read the corresponding English-translation words (a set of seven 
concrete nouns). The only content in common across the two language 
groups was purely semantic, as the two languages are as 
orthographically and phonologically different as can be: Chinese words 
neither look, nor sound, at all like their English counterparts. We found 
that by matching the neural similarity structure of elicited brain 
activation across the two groups we were able to deduce the 
corresponding semantic matches. In other words, we could translate 
between English and Chinese words using only neural activation as our 
guide. Thus, the semantic structure that was shared across the 
languages was reflected in a shared neural representational structure 
across those languages’ speakers. 

Given these promising results in comparing semantic 
representations of nouns across languages, we see great potential to 
generalize this technique to address questions relating to semantic 
typology in the future. In particular, focusing on semantic 
representations brings us one step closer to being able to match the 
methodology of semantic typology in the fMRI lab. The central 
methodological tool in semantic typology is the ‘etic grid’: a 
constructed space of possible values for a semantic domain established 
along one or more different dimensions. In the literature on color 
categorization, different points in the space differ in their values along 
the dimensions of hue and brightness. In elicitation sessions, speakers 
are presented with a set of Munsell chips which code points in the color 
space. By naming each color chip with a color term, speakers establish 
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the reference of a color category in a language with respect to a set of 
hues (Berlin and Kay, 1991).  

In the study of spatial semantic categories, such as those referenced 
by prepositions, the stimuli set consists of a set of pictures 
demonstrating spatial relations objects may stand in, such as an apple 
resting on a table (Bowerman, 1996), where the points on the etic grid 
are pictures of particular spatial scenes which vary along dimensions of 
spatial relation types, e.g. in or under. A common technique in 
semantic typology is to take this etic grad as the basis for a similarity 
space in which different language’s semantic categories can be plotted 
and compared through multidimensional scale or other modeling 
techniques (Levinson et al., 2003; Bohnemeyer and Stolz, 2006). These 
methodologies cannot be implemented in the fMRI lab as of yet, since 
at the time of current writing, detecting subtle changes in brain activity 
as, e.g., speakers name different shades of blue, is likely to be too fine-
grained. Despite current limitations, using model-based fMRI decoding 
to construct a similarity space of semantic representations provides the 
first steps towards this goal. A straightforward hypothesis would be 
that one could establish a correlation between the semantic space of, 
say, color space and the semantic space of color concepts derived from 
model-based fMRI decoding. As research builds on the results of 
Zinszer et al. (2016) on ways semantic representations of nominal 
concepts can remain constant or vary across languages, we may make 
further progress towards this goal.  

Overall, it is clear that there are several tractable questions within 
linguistics and cognitive neuroscience that can best be answered 
through interdisciplinary collaboration between the fields. Kemmerer’s 
(2016) topic of nominal classification systems is one such area. 
Semantic composition (e.g. Shay and Raizada (2015) and Fyshe et al. 
(2014)), neural decoding Anderson et al. (e.g. 2016a); Zinszer et al. 
(e.g. 2016), and semantic typology are other feasible areas of research. 
Importantly, all of these questions would benefit from an increase in 
the level of interdisciplinary contact between linguistics and cognitive 
neuroscience. Each field can contribute unique knowledge to the 
complete understanding of language. Linguistics can provide a deep 
understanding of complete languages, cross-linguistic similarities and 
differences, and computational-level models of how language may 
work. Cognitive neuroscience can provide a deep understanding of how 
to probe questions about what the human brain can actually do in 
language, getting at the implementational level. Neither field can 
answer all questions related to language alone, but combined the fields 
can develop a more complete, interdisciplinary understanding. 



9 

References 
Aikhenvald, A. Y. (2000). Classifiers: A Typology of Noun Categorization 
Devices: A Typology of Noun Categorization Devices. OUP Oxford. 
 
Anderson, A. J., Binder, J. R., Fernandino, L., Humphries, C. J., Conant, L. L., 
Aguilar, M., Wang, X., Doko, D., and Raizada, R. D. S. (2016a). Predicting 
neural activity patterns associated with sentences using a neurobiologically 
motivated model of semantic representation. Cereb Cortex. 
http://dx.doi.org/10.1093/cercor/bhw240 
 
Anderson, A. J., Zinszer, B. D., and Raizada, R. D. S. (2016b). Representational 
similarity encoding for fMRI: Pattern-based synthesis to predict brain activity 
using stimulus-model-similarities. NeuroImage, 128:44–53. 
http://dx.doi.org/10.1016/j.neuroimage.2015.12.035 
 
Baroni, M., Bernardi, R., & Zamparelli R. (2014). Frege in space: A program 
for compositional distributional semantics. In C. Condoravdi, V. de Paiva, & A 
Zaenen (Eds.), Linguistic Issues in Language Technology, 9, 5-110. 
 
Berlin, B. and Kay, P. (1991). Basic color terms: Their universality and 
evolution. Univ of California Press. 
 
Binder, J. R., Conant, L. L., Humphries, C. J., Fernandino, L., Simons, S. B., 
Aguilar, M., and Desai, R. H. (2016). Toward a brain-based componential 
semantic representation. Cogn Neuropsychol. Advance Online Publication. 
http://dx.doi.org/10.1080/02643294.2016.1147426. 
 
Bohnemeyer, J. and Stolz, C. (2006). Spatial reference in Yukatek Maya: A 
survey. In Levinson, S. C. and Wilkins, D. P., editors, Grammars of space, 
pages 273–310. 
 
Bowerman, M. (1996). The origins of children’s spatial semantic categories: 
Cognitive versus linguistic determinants. In Gumperz, J. J. and Levinson, S. C., 
editors, Rethinking linguistic relativity, pages 145–176. Cambridge University 
Press, Cambridge, UK. 
 
Contini-Morava, E. and Kilarski, M. (2013). Functions of nominal 
classification. Language Sciences, 40:263–299. 
http://dx.doi.org/10.1016/j.langsci.2013.03.002 
 
Dowty, D. R., Wall, R. E., and Peters, S. (1981). Introduction to Montague 
semantics, volume v. 11. D. Reidel Pub. Co., Dordrecht, Holland. 
 
Fernandino, L., Binder, J. R., Desai, R. H., Pendl, S. L., Humphries, C. J., 
Gross, W. L., Conant, L. L., and Seidenberg, M. S. (2015). Concept 
representation reflects multimodal abstraction: A framework for embodied 
semantics. Cereb Cortex. http://dx.doi.org/10.1093/cercor/bhv020 
 



10 

Firth, J. R. (1957). A synopsis of linguistic theory, 1930-1955. In Studies in 
Linguistic Analysis. Blackwell, Oxford. 
 
Frankland, S. M. and Greene, J. D. (2015). An architecture for encoding 
sentence meaning in left mid-superior temporal cortex. Proceedings of the 
National Academy of Sciences, 112 VN -(37):11732–11737. 
http://dx.doi.org/10.1073/pnas.142136112 
 
Fyshe, A., Talukdar, P. P., Murphy, B., and Mitchell, T. M. (2014). 
Interpretable semantic vectors from a joint model of brain- and text-based 
meaning. Proc Conf Assoc Comput Linguist Meet, 2014:489–499. 
 
Kemmerer, D. (2016). Categories of object concepts across languages and 
brains: The relevance of nominal classification systems to cognitive 
neuroscience. Language, Cognition & Neuroscience. 
http://dx.doi.org/10.1080/23273798.2016.1198819 
 
Levinson, S., Meira, S., Language, T., and Group, C. (2003). ‘Natural concepts’ 
in the spatial topological domain-adpositional meanings in crosslinguistic 
perspective: An exercise in semantic typology. Language, pages 485–516. 
 
Marr, D. (1982). Vision: a computational investigation into the human 
representation and processing of visual information. W.H. Freeman, San 
Francisco. 
 
McRae, K., Cree, G. S., Seidenberg, M. S., and McNorgan, C. (2005). Semantic 
feature production norms for a large set of living and nonliving things. Behavior 
Research Methods, 37(4):547–559. http://dx.doi.org/10.3758/BF03192726 
 
Mitchell, T. M., Shinkareva, S. V., Carlson, A., Chang, K.-M., Malave, V. L., 
Mason, R. A., and Just, M. A. (2008). Predicting human brain activity 
associated with the meanings of nouns. Science, 320(5880):1191–1195. 
http://dx.doi.org/10.1126/science.1152876 
 
Poeppel, D. and Embick, D. (2005). Defining the relation between linguistics 
and neuroscience. In Cutler, A., editor, Twenty-First Century Psycholinguistics: 
Four Cornerstones, chapter 6, pages 103–118. Psychology Press. 
 
Pulvermüller, F. and Fadiga, L. (2010). Active perception: sensorimotor circuits 
as a cortical basis for language. Nature Reviews Neuroscience, 11(5), 351–60. 
http://dx.doi.org/10.1038/nrn2811 
 
Shay, E. A. and Raizada, R. D. S. (2015). Using neurobiologically-motivated 
features to investigate the semantic composition of adjectives with nouns. 
Society for Computers in Psychology. 
 
Speed, L., Chen, J., Huettig, F., and Majid, A. (2016). Do classifier categories 
affect or reflect object concepts?  38th Annual Meeting of the Cognitive Science 
Society, page 393. 
 



11 

Turney, P. D. and Pantel, P. (2010). From frequency to meaning: Vector space 
models of semantics. Journal of Artificial Intelligence Research, 37(1):141–
188. 
 
Zinszer, B. D., Anderson, A. J., Kang, O., Wheatley, T., and Raizada, R. D. S. 
(2016). Semantic structural alignment of neural representational spaces enables 
translation between English and Chinese words. J Cogn Neurosci. Advance 
Online Publication. http://dx.doi.org/10.1162/jocn_a_01000 


