
Empty-set effects in the comprehension and verification of quantifiers

Experimental results show that the monotonicity of a quantifier (Q) affects processing load. Monotone
decreasing Qs are inherently more complex than increasing Qs [2, 6, 4]. It is, however, poorly understood
how to account for monotonicity effects. In theoretical work on quantificational complexity in the tradition
of [12, 10] Qs such as less than/more than four are modeled with the same kind of semantic automata (see
also [9] for a generalization to iterated quantifiers with identical (minimal) automata for doubly quantified
every -some and no-no sentences). Our study aimed at testing the recent proposal by [1, 5] who put
forward a novel explanation of complexity differences between decreasing and increasing Qs based on the
property of having/not having the empty set ∅ as a witness set. They propose an algorithmic theory in the
sense of [8] according to which comprehension of a quantified sentence consists in specifying an algorithm
with which it can be verified. Its actual verification is the result of the execution of this algorithm. As in
[1], we measured quantificational complexity during comprehension and verification.

[1]’s basic claim is that Qs that do not have the empty set as a witness set such as most, every,
exactly five (henceforth non-∅-Qs) allow for a substantially simpler verification algorithm than Qs with
the empty set as a witness set such as no or less than half (henceforth ∅-Qs). Consider, for instance, the
proposed verification algorithm for more than five dots are blue. In order to verify this sentence it suffices
to check whether the instances of the predicate blue in the restrictor set are a witness set of the non-∅-Q
more than five and the tuple 〈more than five(dots) ,+〉 is added to the denotation of blue. [1] call this
operation simple expansion (s-exp). For an ∅-Q (e.g., less than five), however, s-exp is not sufficient
because it only considers (positive) instances of the predicate blue. Here, [1] distinguish two cases which
will both lead to a yes, true judgment. Expansion with 〈less than five(dots),+〉 is possible iff among the
blue entities there is a set of dots small enough to be a witness set of less than five, or, there are no
blue dots, i.e. an empty-set situation. The complex expansion operation (c-exp) needed to deal with
∅-Qs hence involves a distinction of cases, and, as [1] argue, it is the second condition that is difficult to
process, because it involves polarity reversal, i.e., the expansion operation adds positive information on
the basis of absent positive instances.

Experiment 1: We compared effects of quantificational complexity in monotone increasing, decreas-
ing, and non-monotone Qs in simply quantified sentences (36 German items of the kind more than/less
than/exactly five dots are blue). 48 participants read and evaluated simply quantified sentences and we
measured reading times before they went on to the picture verification stage. Besides monotonicity we
manipulated how many (n=0 to 11) out of a total of 11 objects of the relevant shape had the target
color in a 3 × 12 within design. The experimental results provide evidence for clear empty set effects
during comprehension and during verification. Less than sentences were read more slowly than more than
and exactly sentences, an effect consistent across all sentence regions (ANOVAs all p1,2 < .01). During
verification, the evaluation of empty set situations led to significant interactions of the form predicted by
[1] both in judgment RTs (ANOVAs p1,2 < .01) and in error rates (GLME p < .01). Evaluation of empty
set situations for less than led to 25% errors while all other conditions were judged correctly > 90%.
Testing the three quantifiers with all ratios of target:non-target objects allows us to rule out a pragmatic
alternative explanation of the observed empty set effect based on Gricean reasoning.

Experiment 2: The second experiment demonstrates empty set effects while keeping monotonicity
constant. We tested the non-monotone Boolean combinations of Qs none or three and one or three
with pictures showing 0,1,2 or 3 target objects in a 2 × 4 within design. 48 new participants read 32
sentences such as none/one or three of the dots are blue in a self-paced fashion and provided a truth
value judgment. The verification data again revealed clear empty set effects. The evaluation of empty
set situations for none or three was the only condition that led to a significant increase in judgment RT
(interaction: ANOVAs p1,2 < .01) and error rates (interaction: GLME p < .01) which reached 30% in this
condition. The results of the first two experiments thus confirm [1]’s claim that the empty set property -
beyond monotonicity - has a measurable impact on quantificational complexity.



What expansion operation is needed in iterated quantification with multiple Qs? A theorem of [1]
is that a multiply quantified statement can be evaluated by means of s-exp iff none of its Qs has the
empty-set as a witness set. We may thus assume that c-exp is used for doubly quantified sentences
whenever either Q has the empty-set property. This would predict the same amount of processing load
during comprehension whenever one of the Qs has the empty-set property. Difficulty during verification
should, however, depend on the rules actually used.

Alternatively, both the subject and the object position could be expanded by choosing the sim-
plest expansion operation for each Q. For example, in the sentence no boy tickled more than two
girls the object position may be expanded using simple expansion. That is, for every boy x, the tu-
ple 〈x,more than two(girls) ,+〉 is added iff the set {y|tickle(x, y)} is a witness set of more than two
girls. Otherwise the tuple 〈x,more than two(girls) ,−〉 is added. This would predict that both Qs may –
independently of each other – increase difficulty, depending on whether they are ∅-Qs or not.

Experiment 3: To test these predictions we had 72 new participants read 72 German sentences of
the form Q1 boys tickled Q2 girls (see [1] for a more detailled description of this experiment). Q1 was
either Aristotelian each (non-∅) or no (∅) or a superlative Q at least one (non-∅) or at most one (∅). Q2

was either more than two/three (non-∅) or less than two/three (∅). After each sentence, a set diagram
was displayed for which participants had to provide a truth-value judgment. We tested three types of
diagrams: 0-, 1- and 3-set diagrams which showed no, one or three boys tickling Q2 girls. Accordingly,
the experiment employed a factorial 2 (empty-set Q1) ×2 (type of Q1) ×2 (empty-set Q2) ×3 (diagram)
within design. On the object region, conditions with two non-∅-Qs were read faster than conditions
involving ∅-Qs (ANOVAs: empty-set Q1 × empty-set Q2, p1 < .05; p2 = .09). This is in line with the
hypothesis that participants chose c-exp whenever one of the two Qs had the empty-set property. In
both subject and object position, ∅-Qs led to a slowdown of judgments times as reflected by significant
main effects of empty-set Q1 (p1/2 < .01) and empty-set Q2 (p1/2 < .01) but no reliable interaction.
The empty set effects of the individual Qs thus added up. In particular, this pattern of results can be
explained if we assume that both Qs are expanded using the simplest possible algorithm, i.e. the second
theoretical alternative sketched above. Furthermore, consistent with recent proposals from the semantic
literature (e.g., [3]) superlative Qs were more difficult to process than Aristotelian Qs consistently across
the reading and verification stages (main effects of type of Q1, all p1/2 < .01) suggesting that they are
inherently more complex. As in Exps. 1 & 2, errors were limited to those conditions which required the
evaluation of a ∅-Q with an empty predicate. This time, polarity reversal led to performance below chance
level in sentences with the two ∅-Qs at most and less than (χ2(1) = 5.06; p < .05).

Conclusions: In line with [1] our experiments show that ∅-Qs are more difficult to comprehend and
to verify than non-∅-Qs and that this difficulty is limited to the the evaluation of empty set situations.
Exps. 1 & 2. investigated the online comprehension and verification of simply quantified sentences.
The cumulative increase of complexity caused by the empty set property of the individual Qs in the
verification data of Exp. 3 calls for an expansion operation that incorporates the simplest algorithm
for each quantifier. In general, our findings speak in favour of multiple factors independently affecting
quantificational complexity, among them the empty set property but also superlativity as well as others
known from experimental research on quantificational complexity [7, 11].
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