
The process of evaluating comparative quantifiers

Introduction: Quantifiers are nowadays often treated as decomposable instead of atomic
expressions (overview: Szabolcsi 2010). Hackl (2002) analyzed comparative quantifiers
using lexemes originally proposed for comparatives with gradable adjectives. For sentence
(1-a), he proposed the LF in (1-b), where er compares the quantities denoted by n and
d-many(dots , blue).
(1) a. More than n dots are blue.

b. [er n ][[d-many dots ][blue ]]
Seuren-Rullmann ambiguities (Rullmann 1995, Heim 2006) and cross polar nomalies
(Büring 2007) motivated decomposition of ‘less than’ comparatives using er and the
antonymizer little . In these approaches, the meaning of ‘less’ cannot be expressed as a
semantic primitive but has to be derived from er and little (but see Beck, 2013; Doetjes
et al., 2011, for accounts without this kind of decomposition). Carrying this over to
quantifiers, the sentence in (2-a) receives the LF in (2-b).
(2) a. Less than n dots are blue.

b. [[little er ]n ][[d-many dots ][blue ]]
I present experimental evidence for these semantic representations from a picture verifica-
tion experiment. The dependent variables are response times and proportions of errors.
To make predictions about these, a processing theory for verification is derived from
the symbolic representations (1-b) and (2-b) by introducing a minimal set of processing
assumptions that are well-established in cognitive psychology.
Processing theory: Based on studies on the mental representations of numbers and nu-
merosities (Dehaene 2007), it is assumed that the quantities n and d-many(dots ,blue)
are represented as bell-shaped functions fX and fY , respectively. We think of these as
probability density functions of random variables X and Y (cf. Pietroski et al. 2009). X
is distributed normally with mean µX = n and very small standard deviation σX (almost
exact representation). In contrast, Y has a (right-skewed) log-normal distribution with
parameters µY and σY . The maximum of fY (see (3-a)) lies at m which is the number of
target objects (e.g., blue dots); and σY is considerably larger than 0.

Applied to its arguments, er computes a representation of the difference between
the compared quantities (cf. Link’s (1990) theory of relative judgment), i.e. the den-
sity function fX−Y of X − Y . This computation uses cross-correlation, (f ? g)(x) =∫∞
−∞ f(τ)g(x + τ)dτ , as in (3-b) and can be approximated using biologically plausible

algorithms (Deneve et al. 2001). Because σX is very small, er approximates a shift of fY
as in (3-c). For ‘less than n’, there is an additional computational step. The antonymizer
little reflects fX−Y at the origin as in (3-d).
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b. er(fX , fY )(x) = (fX ? fY )(x) = fX−Y (x)
c. limσX→0 fX−Y (x) = fY (x+ n)
d. (little(fX−Y ))(x) = fX−Y (−x)

The function fX−Y (or little(fX−Y ) for ‘less than’) feeds into the decision process.
The intuition is that the mean activities I1/2, specified in (4-a/b) (or I ′1/2 for ‘less than’),

of two neural populations (favoring the yes- and no-response, respectively, and subject
to random fluctuations) are accumulated over time until some confidence threshold is
reached (leaky competing accumulator model of Usher & McClelland 2001). Bogacz et
al. (2006) show that this closely approximates the classical drift diffusion model (DDM,
Ratcliff 1978; stochastic differential equation in (5)) with drift rate µ = (I1 − I2)/

√
2.

Intuitively, the drift rate is the mean step size towards one of the response alternatives
per time unit. Mean decision times and proportions of errors decrease when the absolute
value of µ is increased. The Wiener process W is scaled by c and represents white noise.
(4) a. I1 = P (X − Y ≥ 0.5) =

∫∞
0.5 fX−Y (x)dx, (I ′1 =

∫∞
0.5(little(fX−Y ))(x)dx)

b. I2 = P (X − Y < 0.5) = 1− I1 (I ′2 = 1− I ′1)
(5) dY = µdt+ cdW , Y0 = 0



Experimental design: 48 participants read German versions of sentences like (1-a) and
(2-a) with numerals ‘four’, ‘six’, ‘eight’ and ‘ten’ self-paced. Then, pictures of randomly
distributed shapes of two colors were presented. Participant had to provide a truth-
value judgment by pressing one of two buttons. The number of target objects was equal
to the number mentioned in the sentence. Thus, the correct response was always “no”.
Response key assignments were counterbalanced between participants. Every picture was
combined once with ‘more than n’ and once with ‘less than n’. Sentence-picture pairs were
distributed over eight experimental lists making sure that participants saw each picture
only once. Each participant provided ten judgments per condition. 343 fillers were added
to each list leading to a balanced proportion of expected yes/no-judgments. Response
times and proportions of errors and were recorded.
Predictions: Because of the skewness of fX−Y , drift rates are larger for the ‘less than’ as
compared to the ‘more than’ conditions. This predicts less errors for the former than for
the latter. Response times are the sum of non-decision times (including, e.g., information
encoding and motor response) and decision times (time needed for the decision process).
Due to larger drift rates, ‘less than’ conditions have shorter decision times, but the decision
process starts later due to the additional processing step for little (part of non-decision
time). This additional step prolongs response times for the ‘less than’ conditions by a
constant amount of time.
Results: The proportions of errors and response times for correct judgments are provided
in the table below. Mixed effects model analyses revealed significant main effects of
quantifier type (‘more than’ vs. ‘less than’) in the proportions of errors (p < .01) and
in the response times (p < .01). The ‘less than’ conditions led to less errors but longer
response times (even for correct judgments) than the ‘more than’ conditions. Apart from
these effects, the larger numerals led to more errors (p < .001) and longer response times
(p < .001) than smaller ones. Finally, there was a marginal interaction (p = .052) between
the quantifier type and the size of the numeral in the proportions of errors.

proportions of errors response times in ms
four six eight ten four six eight ten

more than 0.04 0.08 0.13 0.18 1345 2088 2890 3481
less than 0.04 0.10 0.07 0.13 1413 2132 2966 3571

Discussion: The experimental results are in line with the presented processing theory.
As predicted by the DDM, ‘less than’ led to fewer errors than the ‘more than’ condi-
tions. In addition, the prolonged response times of the former conditions are taken as
evidence for the additional processing step introduced by the antonymizer little . Since
the processing theory was derived from (1-b) and (2-b) via a minimal set of process-
ing assumptions, the results also provide evidence for these symbolic representations.
The strength of the present account is that it combines insights into the compositional
semantic representations of comparatives with insights into decision processes involved
in comparing quantities. Other theories have difficulty explaining the results. The au-
tomata model of quantifier verification predicts no differences between ‘more than n’ and
‘less than n’. Theories that assume negation in ‘less than’ quantifiers can explain their
prolonged response times, but their low proportions of errors remain unexplained.

As a further empirical test, I am currently conducting a speed accuracy trade-off
experiment, where participants provide judgments within certain time windows. The
dependent variable are proportions of errors. It is predicted that, early after the onset of
the (200ms) picture presentation, judgments are at chance because information encoding
is not finished and the decision process has not started, yet. For ‘less than’, this phase is
predicted to last longer than for ‘more than’ because an additional encoding step (little) is
involved. In later time windows, error rates for ‘less than’ should drop faster as compared
to ‘more than’ due to a larger drift rate (faster decision process).
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