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Abstract— Neural information for encoding and processing 
temporal information in speech sounds occurs over different 
time-courses. We are interested in temporal mechanisms for 
neural coding of both pitch and formant frequencies of voiced 
sounds such as vowels. In particular, in this study we will 
describe a strategy for quantifying the ability to discriminate 
changes in spectral peaks, or formant frequencies, based on the 
responses of neural models. Previous studies have explored this 
question based on responses of computational models for the 
auditory periphery, that is, responses of the population of 
auditory-nerve (AN) fibers (e.g. [1]-[2]). In this study we quantify 
formant-frequency discrimination based on the responses of 
models for auditory midbrain neurons at the level of the inferior 
colliculus (IC). These neurons are tuned to both audio frequency 
and to low-frequency amplitude modulations, such as those 
associated with pitch. 

 
 

Index Terms— Auditory midbrain, computational 
neuroscience, neural coding, statistical decision theory. 
 

I. 0B5BINTRODUCTION 
tudies of temporal mechanisms for neural processing of 
speech have traditionally focused on phase-locking (or 

synchronization) of neural discharges to the stimulus fine-
structure as a mechanism for coding spectral features 
(reviewed in [3]). A beneficial feature of phase-locking as a 
coding mechanism is that it is robust across a wide range of 
sound levels and it is also robust in noise.  AN fibers are each 
tuned to a narrow band of frequencies, and their discharges 
synchronize to the fine-structure of the stimulus frequencies in 
that band (Fig. 1). However, AN discharges simultaneously 
synchronize to large, relatively slow fluctuations of the 
stimulus envelope (Fig. 1). For voiced sounds, these 
fluctuations are associated with the pitch period. This feature 
of the AN responses is of interest because the majority of  
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Fig. 1.  Response of a population of model AN fibers tuned to frequencies 
from 300 to 5000 Hz to the vowel /a/. The detailed timing of responses to the 
fine structure of the stimulus components near formants is apparent, as well as 
the more global phase-locking to the pitch period, which stretches across the 
entire population of response fibers. The Zilany et al. AN model [4] was used 
to compute these responses. 
 
midbrain neurons are tuned to sounds with low-frequency 
amplitude modulations that have modulation frequencies in 
the range of voice pitch. 

The relative strength of phase-locking to the pitch period 
vs. phase-locking to higher frequency harmonics varies in an 
interesting manner across the AN population. In each AN 
fiber’s response, the dominance of the phase-locking to the 
pitch period depends upon the relative magnitudes of the 
frequency components that fall within that fiber’s frequency 
range (or bandwidth). For fibers tuned near a spectral peak, 
the responses to harmonics near the spectral peak are 
relatively sustained throughout each pitch period (Fig. 1), and 
the energy in the response that is phase-locked to the pitch-
related periodicity is relatively weak (Fig. 2A, left). For fibers 
tuned to frequency channels away from spectral peaks, in 
which the spectral components are similar in amplitude, 
responses are strongly periodic at the fundamental frequency 
(Fig. 1 and Fig. 2A, right). In these frequency channels, AN 
responses to harmonics with similar amplitudes result in 
“beats” at the frequency difference of the components; for 
voiced speech sounds, the difference frequency is the 
fundamental frequency (F0) which is the voice pitch.  

 Many auditory neurons in the midbrain (inferior colliculus, 
IC) and cortex are tuned to low-frequency amplitude 
modulations or periodicities ([5]-[7]). Each IC cell has a best 
audio frequency that is inherited from the tuning of its neural 
inputs and a best modulation frequency that arises at the level 
of the IC itself, presumably due to neural circuitry, such as  
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Fig. 2.  A) Illustration of two model AN fiber responses to a vowel 
sound. One fiber (left) is tuned to a frequency near a spectral peak, resulting in 
a response that is dominated by the frequency associated with that peak. The 
other fiber (right) is tuned to a frequency between formant peaks; this fiber’s 
response has a strong component that is phase-locked to the pitch, which is the 
frequency difference between the frequency components to which this fiber 
responds. B) The spectrum of the vowel /a/ (top) and responses of model 
midbrain responses (bottom). Decreases in average rate occur for model 
neurons tuned near formant peaks in the speech stimulus. The AN responses 
were simulated using the Zilany et al. AN model [4]. Midbrain responses were 
computed using the model of Nelson and Carney [8]. 

  
interactions between inhibitory and excitatory inputs. Thus, a 
midbrain neuron may receive inputs that are tuned to a best 
audio frequency of 3 kHz, but it will respond best when those 
inputs are temporal modulated at a particular low-frequency 
(e.g. 100 Hz, as in Fig. 2A, right). Several computational 
models have been proposed for AM tuning at the level of the 
IC (e.g. [8]-[12]; see [13] for a review). The low-frequency 
periodicity, or temporal modulation frequency, that elicits the 
best response in a midbrain cell is referred to as its best 
modulation frequency (BMF). The majority of tuned IC cells 
have BMFs in the voice pitch range [7]. Voiced sounds elicit 
strong periodicities in many frequency channels, with the 
degree of modulation varying depending upon proximity to 
formants (Fig. 2A). The pitch of a voiced sound determines 
the subset of midbrain neurons that respond most strongly, 
and fluctuations in pitch over time will result in dynamic 
shifts in the response across the population of these neurons. 

The strength of temporal fluctuations within a narrow audio 
frequency band is the essential stimulus for many central 
auditory neurons (as opposed to just the presence of energy 
within the frequency band.)  The brain apparently parses 
sound into a two-dimensional representation (at least), with 
best audio frequency being one frequency dimension, and best 
modulation frequency another. There’s some evidence that 
both of these frequency axes are represented topographically 
in the brain, in orthogonal dimensions [14]. 

Changes in discharge rate across the group of central 
neurons that respond to a given voiced sound encode the 

frequencies of formant peaks. As illustrated above (Figs. 1, 
2A), frequency channels near formants have responses that are 
more weakly modulated at the fundamental frequency than 
frequency channels away from formants. Thus, periodicity-
tuned midbrain neurons with BFs near formants will have 
weaker responses than midbrain neurons with BFs between 
formants.  These response properties of midbrain neurons 
suggest a counter-intuitive drop in rate for midbrain cells 
tuned near formant frequencies (Fig. 2B). This prediction, 
based on neural model responses, is consistent with 
preliminary physiological recordings (not shown). The 
prediction is also consistent with the established phenomenon 
of “locking suppression” that has been illustrated in central 
auditory neurons with stimuli that included narrowband peaks 
in the context of a wideband background [15]. 

 
 

II. 1B6BPREDICTING THE ABILITY TO DISCRIMINATE FORMANT 

FREQUENCIES 

    In order to better understand neural mechanisms for 
processing temporal aspects of speech, we must understand 
how the brain responds to not only the energy vs. frequency 
(i.e. classical spectral energy), but also to temporal 
fluctuations in energy within each frequency channel. We are 
exploring how these temporal fluctuations vary with spectral 
features and how they interact with the two-dimensional 
frequency tuning of auditory neurons, in which each neuron is 
characterized by both its best audio frequency and by its best 
modulation frequency.  

A. Stimuli 

The goal of this study is to quantify the ability to detect a 
change in formant frequency based on changes in the 
responses of neurons that are tuned to the frequency of 
amplitude modulations. Predictions for just-noticeable-
differences (jnd’s) in formant frequency can be directly 
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compared to experimental results for human listeners [16]. In 
order to make this comparison, the stimuli used in the results 
presented here were matched to one of the sets of stimuli used 
in the comprehensive study of Lyzenga and Horst [16]. The 
results here are based on responses to a voiced sound (F0 = 
100 Hz) with a single formant at 2000 Hz, created using a 
triangular spectral envelope with slopes of 200 Hz/octave 
(Fig. 3). Lyzenga and Horst results showed that listeners had 
patterns of discrimination thresholds for stimuli with simple 
triangular spectral envelopes that were similar to those for 
more complex spectral envelopes that were designed to match 
the detailed spectral envelope of formants in actual speech 
sounds. 

Fig. 3.  Single-formant vowel-like sounds are shown with two types of 
spectral envelopes that were studied by Lyzenga and Horst [16]. In both cases, 

the underlying structure of the sound is a set of harmonics of the fundamental 
frequency, or pitch. The amplitudes of the harmonics were either gradually 
varied across frequency, using amplitudes computed by a Klatt synthesizer, or 
they were varied according to a simple triangular spectral envelope. Stimuli 
created with a triangular spectral envelope were used for the results presented 
here. Lyzenga and Horst [16] described differences in jnd for triangular (or 
more complex) stimuli that had the spectral peak aligned with one harmonic 
(top) or positioned between two harmonics (bottom). Listeners were less 
sensitive when the spectral peak was aligned with a harmonic frequency (see 
text). (Adapted from [16] Fig. 1, k and l). 

B. Neural Models 

Two neural models were used for the calculations presented 
here (Fig. 4). A computational model for the auditory 
periphery [4] was used to simulate a population of AN 
responses. This model includes the sound-level-dependent 
bandwidth and gain of frequency-tuned cochlear responses, 
rate adaptation, rate saturation, and frequency-dependent 
phase-locking. In particular, this AN model makes accurate 
predictions of the responses of AN fibers to signals with 
fluctuating amplitudes [4].  
  Responses of midbrain neurons in the IC were simulated 
using the same-frequency inhibitory-excitatory (SFIE) model 
of Nelson and Carney [8] (Fig. 5).  This model explains the 
tuning of IC neurons to the frequency of amplitude 
modulations. AM tuning is achieved by the interplay between 
relatively sluggish inhibitory responses and relatively fast 
excitatory responses. 

 Fig. 4.  Schematic of models used for the predictions presented in this study.  

               

Fig. 5.  Schematic illustration of the Same-Frequency Inhibitory-Excitatory 
(SFIE) model for AM tuning of IC neurons [8]. One of these models was used 
for each audio frequency channel in the simulations presented here. All SFIE 
models had a BMF of 100 Hz, which was equal to the fundamental frequency 
of the vowel-like sound that was used as the input waveform. (Simulation of 
the entire IC population would require sets of SFIE models with the entire 
range of BMFs for each audio-frequency channel.) 

  

C. 4B9BCalculating the just-noticeable difference (jnd) 

The strategy for computing the jnd for formant frequency 
discrimination was based on the approach of Siebert [17]-[19] 
and Heinz et al. [20] for one-parameter discrimination of 
auditory stimuli. The developed calculations based on the 
Cramer-Rao bound, or equivalently a likelihood ratio test (see 
[20]), using the responses of a model for a population of AN 
fibers. In the case of the study presented here, the one 
parameter being manipulated was the peak of the triangular 
spectral envelope. In addition, rather than making predictions 
based on changes in the rate or timing of model AN responses, 
the predictions presented here are based on the responses of a 
population of model midbrain neurons that have band-pass 
tuning for amplitude-modulation frequency. It should be noted 
that although a single parameter is manipulated when the 
frequency of the spectral peak is changed, the amplitude of all 
of the harmonics change as a result. Nevertheless, the 
following calculation combines the information present across 
time and across the population of fibers to derive a single 
value for the predicted jnd for formant frequency.  

 The jnd is inversely proportional to the information in the 
responses of each neuron in the population, and this 
information is related to the change in rate (or in the timing 
pattern of the response) normalized by the variance. For the 
common assumption of Poisson variance in the neural 
responses, the variance is approximated by the mean rate.  
Thus, jnd is calculated as 

2/12

0

),(
),(

1
−




















∂
∂

=∆ ∑∫ dt
F

Ftr
Ftr

F
i

T
i

i
JND    (1) 



 4 

where F is the peak frequency of the spectral envelope (see 
Fig. 3), and ri is the time-varying discharge rate of the ith 
neuron in the population (see Eq 3.1 in [20]). The calculation 
can be made using the entire time-varying rate function, as 
shown in the equation above; this result is referred to as the 
all-information prediction because it is based on both rate and 
timing information in the neural responses. Alternatively, 
predictions can be made based only on average rate 
information, by first averaging the discharge rate over the 
stimulus duration, thus discarding detailed temporal 
information [20]. Computationally, the jnd’s can be computed 
by finding model responses to slightly different stimuli (see 
Fig. 6 below). Then the point-by-point difference between the 
two responses, normalized by the size of the increment in the 
parameter that varied between the two stimuli, provides an 
approximation to the partial derivative in Eq. 1. The results 
are then combined over time (for the all-information estimate) 
and over the population of model neurons, as in Eq. 1. For 
further details about the computation of jnd from model 
population responses, see [1] and [20]. Code for both the AN 
and SFIE models is available at: 
HUhttp://www.urmc.rochester.edu/labs/Carney-
Lab/publications/auditory-models.cfmUH  . 

III. 2B7BRESULTS 
 
Fig. 6 illustrates population responses for model IC (top) 

and AN (bottom) neurons. Each plot shows population 
responses to two stimuli that differed in peak frequency by 1 
Hz; the harmonic frequencies do not differ across the two 
stimuli, but the amplitude of each harmonic in the stimulus 
was affected by the slight difference in the frequency of the 
spectral peak. Populations consisted of 100 model neurons 
tuned to best frequencies that were logarithmically spaced 
over 2 octaves surrounding the stimulus peak frequency. Fig. 
6A shows the population response to a stimulus in which the 
spectral peak (2000 Hz) was aligned with a harmonic 

frequency (F0 = 100 Hz); Fig. 6B is for a stimulus in which 
the peak frequency (2050 Hz) fell between two harmonics.  
The population responses show discharge rates averaged over 
the time course of 500-ms duration stimuli with the triangular 
spectra shown in Fig. 3. The maximum amplitude of the 

spectral peak was 60 dB SPL, and the overall rms values of 
the two stimuli were matched. The jnd’s were calculated 
based on differences in the model responses for neurons tuned 
near the spectral peak (dark lines in Fig. 6, also these 
population subsets are enlarged in the insets). 

There are interesting qualitative differences between the 
two population responses due to the difference in alignment of 
the peak of the spectral envelope and the harmonic 
frequencies. In Fig. 6A, the AN responses near the harmonic 
frequency that is aligned with the peak are the least modulated 
(see Fig. 2A), and thus the model IC cells tuned near the 
spectral peak have strongly reduced responses. In Fig. 6B, 
there is no single dominant harmonic; as a result, the AN 
responses have larger amplitude modulations in general, 
resulting in higher rates in responses of the IC neurons. In 
addition, there are two notches in the IC population response; 
these notches are at the locations of the two harmonics that 
straddle the peak of the spectral envelope. Note that in both 
cases the AN population responses are characterized by a 
single broad peak. 

The jnd calculated for the IC population responses in Fig. 
6A was 9.4 Hz and for Fig. 6B it was 7.5 Hz. Smaller jnd’s 
for stimuli in which the spectral peak fell between two 
harmonics were also observed for human listeners. For human 
subjects with normal hearing, the jnd was 0.6%, or 12 Hz for a 
peak at 2000 Hz, when the spectral peak was aligned with a 
harmonic [16]. In comparison, the jnd was 0.2%, or 4 Hz for a 
2050 Hz peak, when the spectral peak was positioned between 
two harmonics [16]. Thus, the model jnd’s have comparable 
sizes and follow a similar trend as the human data, although 
the difference between the two conditions was larger for 
human listeners than for the model calculations. The presence 
of two notches in the population response for the mis-aligned 
spectral peak (Fig. 6B) provides more features for 
discrimination, contributing to the lower jnd; however, the 
larger rates associated with the more strongly modulated  

Fig. 6 – A) Population responses for model IC neurons (top) and AN fibers 
(bottom) for responses to two stimuli with triangular spectral envelopes, one 
with peak frequency = 2000 Hz (solid) and one with peak frequency = 2001 
Hz (dashed). B) Responses for stimuli with peak spectral envelopes that are 
positioned at 2050 Hz (solid) and 2051 Hz (dashed), which fall between 
stimulus harmonics. 

http://www.urmc.rochester.edu/labs/Carney-Lab/publications/auditory-models.cfm
http://www.urmc.rochester.edu/labs/Carney-Lab/publications/auditory-models.cfm
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stimulus mitigate this effect somewhat, because larger rates 
are associated with higher variance, given the Poisson 
assumption (see Eq. 1). The precise values of the model jnd’s 
depend upon detailed choices of the parameters used to set up 
the population responses and are being further explored in 
ongoing work. In addition, secondary features derived from 
the population responses, such as local response gradients, 
should be evaluated in the context of the formant-frequency 
discrimination problem. 

IV. 3B8BCONCLUSION 

 
A long-term goal of this work is to understand how neural 

constraints on formant-frequency discrimination influence the 
representation of speech sounds. Languages may vary in the 
number of vowel phonemes or contrasts (e.g. Spanish has 5 
vowels, and English has 13). However, cross-linguistically, 
vowels systematically disperse themselves within an 
acoustic/auditory vowel space defined primarily by the first 
and second formants or spectral energy bands (Fig. 7), which 
are orthogonal to the fundamental frequency, F0.  The 
position of these two formants identifies the vowel; for some 
vowels (e.g. /a/ and /o/), these formants lie on top of each 
other. Vowel dispersion within the space defined by the two 
formant frequencies has been modeled using distance metrics 
adjusted to reflect the actual distributions found in vowel 
systems (reviewed in [21]).  

 
Fig. 7 - A canonical 5 vowel system exemplifying vowel dispersal in the 
vowel space, determined by the frequencies of the lowest two formants, F1 
and F2. 
 
 The resolution for discriminations made within the vowel 
space is constrained by the resolution for discriminating single 
formants. The results presented here represent an effort to 
quantify the resolution within the vowel space based on the 
response properties of auditory neurons.  
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