
1. Introduction
The African continent possesses many geological terrains and tectonic features of great interest, including multi-
ple cratons spanning billions of years in age (Begg et al., 2009; Jessell et al., 2016), a long-wavelength super-
swell topography in the south (Lithgow-Bertelloni & Silver, 1998; Fishwick & Bastow, 2011), active and failed 
continental rifts (Chorowicz, 2005; Min & Hou, 2019), hotspots and active volcanoes and multiple second-order 
basins and swells (Burke & Gunnell, 2008; Doucouré & de Wit, 2003) (Figure 1a). One approach to studying the 
diverse and spatially undersampled regions of Africa's bulk crust is to turn to seismic velocity models (Adams 
& Nyblade, 2011; Emry et  al., 2019; Pasyanos et  al., 2014). These models provide useful constraints on the 
composition of the crust (Hacker et al., 2012; Rudnick & Gao, 2014; Sammon et al., 2022), the identification of 
structural boundaries within and across different tectonic domains (Buehler & Shearer, 2017) and how rheology 
(Shinevar et al., 2015, 2018) and density (Haas et al., 2020, 2021; Molinari & Morelli, 2011) influence continen-
tal rifting, isostatic and dynamic uplift, long-term deformation, and seismicity within the African plate (Behn 
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Plain Language Summary The rocks that constitute Africa's crust record the history of different 
geological periods. We produce a map, for the entire continent, of how fast shear waves travel within these 
rocks. We obtain this map from ambient noise surface wave vibrations. The ambient noise surface waves are 
generated from ocean and atmospheric waves that couple with the solid Earth. There are two types: Rayleigh 
and Love waves and they travel at different speeds for different wavelengths. This property is called dispersion 
and it is used to tell how fast the shear wave speeds travel within the subsurface rocks. Constructing the final 
map from ambient noise surface waves requires the solution of a computational imaging problem. We solve 
the most challenging computational task with a probabilistic approach—using random sampling—and this 
enables us to also construct associated error maps. The new maps of Africa's crust show new features that have 
important implications for subsurface geology of the continent.
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et al., 2002; Borrego et al., 2018; Fadel et al., 2020; Lowry & Pérez-Gussinyé, 2011; Schmandt et al., 2015; 
Schutt et al., 2018; White-Gaynor et al., 2021).

Insight into Africa's crust is provided by global (Laske et al., 2013; Pasyanos et al., 2014), as well as continent-wide 
velocity models (Adams & Nyblade,  2011; Begg et  al.,  2009; Fadel et  al.,  2020; Fishwick & Bastow, 2011; 
Li & Burke,  2006; Nair et  al.,  2006; Yang et  al.,  2008). A selection of the continent-wide seismic velocity 
models published in the last decade include Litho1.0 (Laske et al., 2013; Pasyanos et al., 2014), Africa.ANT.
Emry-etal.2018 (Emry et al., 2019; Trabant et al., 2012), AF2019 (Celli, Lebedev, Schaeffer, & Gaina, 2020), 
and SA2019 (Celli, Lebedev, Schaeffer, Ravenna, & Gaina, 2020). All of these models are replicas of CRUST1.0 
(Laske et al., 2013; Pasyanos et al., 2014) in the shallowest crust, except for Litho1.0, a heavily cited global 
velocity model, which updates CRUST1.0 by incorporating earthquake-derived surface wave dispersion meas-
urements (Laske et al., 2013; Pasyanos et al., 2014). Taken together, these models include both active and passive 
source data sets, but are yet to fully integrate comprehensive ambient noise data on the continent (Olugboji & 
Xue, 2022).

As a result, these models are limited in their resolution of Africa's crust in two key respects. First, because they 
do not include shortest period measurements, they lack sensitivity to absolute velocity in the shallowest crust 
(Roux et al., 2005; Yang et al., 2008). Second, because the continent-wide models do not include seismic data 
acquired in the past decade (2013–2023) (Accardo et al., 2017; Borrego et al., 2018; Celli, Lebedev, Schaeffer, 
& Gaina, 2020; Emry et al., 2019; Fadel et al., 2020; Wang et al., 2019; White-Gaynor et al., 2021), they lack 
spatial resolution across key tectonic domains. Here, we address this and other key issues necessary for building 
an updated model of Africa's crust using the ambient noise data set and model assessment product (ADAMA) 
provided by (Olugboji & Xue, 2022). We use these measurements to construct continent-wide Love and Rayleigh 
wave dispersion maps using a probabilistic approach. The inclusion of short-period surface wave measurements 
improves constraints on short-wavelength features (Lebedev et al., 2013). This allows us to provide greater reso-
lution of the shallowest crust (Figures 1b and 2a).

In constructing new dispersion maps, we adopt a probabilistic Bayesian approach that solves for an image of 
surface wave speeds in the presence of irregular ray path coverage and variable measurement quality (Bodin 
et al., 2009; Bodin, Sambridge, Tkalčić, et al., 2012; Bodin & Sambridge, 2009; Bodin, Sambridge, Rawlinson, & 
Arroucau, 2012; Olugboji et al., 2017). This technique is well suited to the data set obtained from Africa. Further-
more, it also provides information on statistical significance—that is, error maps that quantify uncertainties in the 
final reported dispersion maps (Bodin, Sambridge, Tkalčić, et al., 2012; Olugboji et al., 2017). The dispersion 
maps with associated uncertainties are a useful data product since they span the entire continent and can be used 
to assess (Olugboji et al., 2017) and update existing models during linear and non-linear inversions for elastic 
properties in the crust (Shen et al., 2016; Shen & Ritzwoller, 2016).

In the rest of our paper we describe, in detail, the construction of our new maps, highlighting key benefits of 
adopting a probabilistic Bayesian approach. We show how the comprehensive ADAMA data set produces new 
illumination of crustal structure. We investigate the statistics and resolution present in the maps using the ensem-
ble results obtained from sampling the posterior distribution. We then compare our results to existing published 
results at similar periods. We provide an assessment of one of the global velocity models, Litho1.0, by inverting 
the phase maps for depth dependent shear-wave velocity structure in Africa's crust. Finally, we generate a crustal 
taxonomy derived from unsupervised machine learning and discuss its implications for unanswered questions 
in Africa's crustal architecture: for example, secular evolution of the crust and its connection to tectonics and 
basement geology.

2. Continent-Wide Ambient Noise Data Set From ADAMA
The data set used in this study—ADAMA—is from the recently published catalog of continent-wide 
inter-station dispersion measurements provided by (Olugboji & Xue, 2022). This is a large catalog of Love 
and Rayleigh wave phase and group dispersion measurements. It represents the following advances: (a) it is 
a large distribution of short period dispersion measurements: ∼114,000 interstation pairs at periods between 
5 and 40 s, (b) it includes uncertainties, and (c) is extracted from cross-spectra of continuous recordings of 
ambient noise ground vibrations, collected over four decades, since the commencement of digital seismom-
etry on the continent. The inter-station cross-spectra are calculated from seismograms downloaded from 
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1,372 stations, spanning 62 networks in and across Africa (e.g., southern Europe, and the Middle East). The 
inter-station ray paths provide improved spatial coverage and depth resolution across the entire continent 
(Figures 1b and 2a).

2.1. Love and Rayleigh Waves Dispersion With Uncertainties

For each station pair, phase and group velocities of Love and Rayleigh waves between 5 and 40 s are reported. 
Measurement uncertainty is also reported using a non-linear waveform fitting of the ambient noise cross-spectra, 
providing necessary regularization information during probabilistic inversion of our maps (Hawkins & 
Sambridge, 2019). For a detailed description of the data set catalog, we refer the reader to (Olugboji & Xue, 2022). 
Here, we describe how improved spatial coverage with short-period measurements extend the resolution of the 
crust. The catalog of inter-station dispersion measurements is used to obtain dispersion maps, uncertainties and 
shear-velocity in the entire crust.

Figure 1. Africa's geology overlaid on topography (a) (Meta)-Cratons: WAC, SMC, TC, CC, KC: West Africa Craton, 
Sahara Metacraton, Tanzania Craton, Congo Craton, Kalahari Craton. Terranes in legend adapted from Begg et al. (2009): I. 
Archean Blocks (✭): in WAC: MLS, RgS: Man-Leo Shield, Reguibat Shield; in TC, in CC: AS, BKS, GKS, KS: Angolan 
Shield, Bomu-Kibalan Shield, Gabon-Kamerun Shield, Kasai Shield; in SMC; in WAMZ: BNS, TS: Benin-Nigeria Shield, 
Tuareg Shield; in KC: ZC, KpC: Zimbabwe Craton, Kaapvaal Craton. II. Basins (⚫): in CC: bsCg: Congo Basin; in AtM: 
bsTi, bsTa: Tindouf and Taoudeni Basins. III. Mobile Belts (⬛): WAMZ, OB, DB, MB, NNB, KrB, SB: West Africa 
Mobile Zone, Oubangides Belt, Damara Belt, Mozambique Belt, Kibaran Belt, Namaqua-Natal Belt, Saldania Belt; IV. 
Orogens (▲): AtM, EAOZ: Atlas Mountains, East-Africa Orogenic Zone; V. Unclassified (⬣): Madagascar (Madg); Other 
Cratons: UC, ZC: Uganda Craton, Zimbabwe Craton; Others: AF, bsCd, LB, MER, MR, OR: Afar; Chad Basin; Lurio 
Block; Main Ethiopian Rift, Malawi Rift, Okavango Rift. Hotspots (⚫) : HP, TP, DD, VVP, RVP, CVL: Hoggar Plateau, 
Tibesti Plateau, Darfur Dome, Virunga Volcanic Province, Rungwe Volcanic Province, Cameroon Volcanic Line (b: Inset): 
Station distribution (red dots) used to obtain dispersion data set. East-west transect same as Figures 7 and 9.
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2.2. Ray Coverage and Depth Sensitivity to Crustal Structure

The ADAMA data set improves on global and regional surface wave dispersion catalogs in two regards: the first is 
increased ray-path density with better spatial sampling across the entire continent and second is that it extends the 
surface wave dispersion measurements to very short periods (<25 s). At the shortest periods, and with rays sampling 
the entire continent, good resolution of the crust is possible (Figure 2). The latest data set encompasses measure-
ments that are three orders of magnitude greater than the most recent continent-wide study (Emry et al., 2019).

3. Methods
3.1. Auto Adaptive and Probabilistic Noise Maps for Model Update of Africa's Crust

We construct dispersion maps with a probabilistic inverse approach. We solve for the spatial distribution of phase 
and group speeds, with associated uncertainties, while imposing minimal restrictions on parameterization and 
regularization. In Africa, where spatial sampling is highly irregular, and crustal structure is heterogeneous, an 
optimal parameterization along with modeling uncertainties can still be recovered during tomographic inversion. 
The technique is known as transdimensional hierarchical Bayesian inversion (THBI), and has been widely used 
by many authors to construct surface wave dispersion maps (see Crowder et al., 2019; Galetti et al., 2016; Pilia 
et al., 2020; Rawlinson et al., 2016; Zulfakriza et al., 2014). A comprehensive discussion of THBI can be found 
in Bodin et  al.  (2009), Bodin, Sambridge, Rawlinson, and Arroucau  (2012), and Bodin, Sambridge, Tkalčić, 
et al. (2012). Here we provide a brief overview of the approach, show how we apply it to the ADAMA data set, 
and describe how we use the maps themselves for model assessment and update of the African crust (Olugboji 
et al., 2017). The new maps, constructed with THBI, contain information across multiple scales, with resolu-
tion not yet assimilated into the continent-wide models (Pasyanos et al., 2014; Sammon et al., 2022; Wipperfurth 
et al., 2020). We compare model predictions of dispersion with our new dispersion maps. Tests of statistical 
significance and an evaluation of improved resolution are estimated using ensemble statistics. In regions of 
improved spatial coverage, where model predictions are different from data (dispersion maps), updates to crustal 
structure are obtained. We report updates in these regions using a perturbational inverse approach (Haney & 
Tsai, 2017, 2020).

3.2. Noise Maps With Transdimensional Hierarchical Bayesian Inversion

The transdimensional and hierarchical Bayesian inverse approach is a class of sampling methods that seeks not 
just a single optimal model (dispersion maps), but rather searches the parameter space for all possible model 

Figure 2. Shear wave sensitivity to Spatial coverage and Rayleigh wave for the ADAMA data set. (a, b) Raypath density for 
the ADAMA data set compared to a global model published in 2014 (Pasyanos et al., 2014). (c) Improved depth-sensitivity of 
ADAMA compared to the global Litho1.0 model showing improvements from short-period measurements.
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solutions that best satisfy the observational constraints (interstation dispersion measurements). The ensemble 
of model solutions is then used to evaluate formal uncertainty. In this approach Bayesian statistics is applied to 
the twin challenges of model regularization and non-uniqueness. In the first step, transdimensional inference 
recognizes that the image reconstruction requires the parameterization of a 2-D surface velocity field, V(r). This 
is specified by a variable number of basis (descriptor) functions and values, which are unknowns to be solved:

𝐕𝐕(𝐫𝐫) =

𝑁𝑁𝑖𝑖
∑

𝑖𝑖

𝑣𝑣𝑖𝑖𝐈𝐈𝐢𝐢 (1)

Where the Ni velocity values, 𝐴𝐴 𝐴𝐴𝑖𝑖 , sampled at points ri are allowed to vary across the 2-D surface, thus ensuring 
that the velocity field is adaptively parametrized. In our implementation, we use a nearest-neighbor Voronoi 
tessellation (Figure 3a) as the basis function Ii (Sambridge et al., 1995). This function tessellates the velocity 
field, V(r), and is widely used in transdimensional inversion (Bodin et al., 2009; Bodin, Sambridge, Rawlinson, & 
Arroucau, 2012). We note here that other forms of tessellations have recently been advocated (Belhadj et al., 2018; 
Hawkins et al., 2019) with beneficial properties like smoothness.

Figure 3. A snapshot through the Transdimensional Hierarchical Bayesian Inversion algorithm. (a) A single snapshot of model, m, showing the irregular Voronoi 
tessellation used to parameterize the Love wave 2-D phase velocity map at 35 s. The velocity values are constant within each cell and the node centers are irregularly 
located in the domain (black dots). (b) The posterior distribution of the phase velocity map (blue) and after discarding the first 10% or 50% of the samples (c) A 
time-series tracking the total number of Voronoi cells across all parallel chains in the Monte Carlo random walk. (d) A similar statistical analysis but showing the 
Voronoi cell density (number of cells per pixel) across all the chains.



Geochemistry, Geophysics, Geosystems

OLUGBOJI ET AL.

10.1029/2023GC011086

6 of 27

In the second step, the hierarchical inference recognizes that all inverse problems are fraught with uncertainty. 
That is, given the data vector of observations, d, and the model parameters 𝐴𝐴 𝐦𝐦 = {𝑣𝑣𝑖𝑖, 𝑟𝑟𝑖𝑖,𝑁𝑁𝑖𝑖} representing our 2-D 
image of the earth, errors are expected:

𝑔𝑔(𝐦𝐦) = 𝐝𝐝 + 𝜖𝜖 (2)

The errors, ϵ = ϵdata + ϵtheory + ϵ + …, can either be due to: (a) simplifying assumptions posed by our forward 
modeling operator g(m) (e.g., in our case using ray theory (Shen & Ritzwoller, 2016) instead of eikonal tomogra-
phy (Lin et al., 2009; Zhou et al., 2012)), (b) observational noise which cannot be modeled even in the case of a 
true model g(mtrue), or (c) sampling and discretization errors introduced from an approximate parameterization as 
described in Equation 1 above. In the Bayesian framework, the likelihood of a particular set of model predictions 
are those that minimize the probability on the prediction error term, and by definition maximizes the Gaussian 
likelihood:

𝑝𝑝(𝐝𝐝|𝐦𝐦) =
1

∏

𝑗𝑗

√

2𝜋𝜋𝜋𝜋𝑗𝑗

exp

(

−
∑

𝑗𝑗

(𝑔𝑔(𝐦𝐦)𝑗𝑗 − 𝐝𝐝𝑗𝑗)
2

2𝜋𝜋2
𝑗𝑗

)

 (3)

The standard deviation term, σ, is the hierarchical parameter, and is an additional model parameter to be solved 
for with the hierarchical Bayes (Malinverno & Briggs, 2004) inversion. Note that it is defined in a way so as to 
represent all of the sources of error present in modeling and observation, so: σi = σi,data + σtheory. Admittedly this is 
a rather simplistic model, since we do not investigate covariation in measurement errors. Nonetheless, by solving 
for a single scaling parameter for each period, we can accommodate for this, so that:

𝜎𝜎𝑖𝑖 = 𝜆𝜆𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (4)

In summary, a transdimensional and hierarchical Bayesian inverse solution of our ambient noise dispersion meas-
urements produces dispersion maps that involves sampling the posterior probability distribution for a collection 
of extended set of model parameters:

𝐗𝐗 = {𝐦𝐦, 𝜆𝜆} = {𝑣𝑣𝑖𝑖, 𝑟𝑟𝑖𝑖,𝑁𝑁𝑖𝑖, 𝜆𝜆} (5)

𝑃𝑃
(

𝐗𝐗|𝐝𝐝𝑗𝑗 = 𝑡𝑡
𝑐𝑐𝑐𝑐𝑐

𝑗𝑗

)

∝ 𝑃𝑃
(

𝐝𝐝𝑗𝑗 = 𝑡𝑡
𝑐𝑐𝑐𝑐𝑐

𝑗𝑗
|𝐗𝐗

)

𝑝𝑝(𝐗𝐗) (6)

Where p(X) and 𝐴𝐴 𝐴𝐴
(

𝐝𝐝𝐣𝐣 = 𝑡𝑡
𝑐𝑐𝑐𝑐𝑐

𝑗𝑗
|𝐗𝐗

)

 are the prior and likelihood on the extended set of model parameters X (actual 
model parameterization, m, and hierarchical uncertainties λ), dj is the data (dispersion measurements), Nj is 
the number of inter-station travel time measurements, for station separation, rj, using either the interstation 
phase velocity, cj or group velocity, uj: 𝐴𝐴 𝐴𝐴

𝑐𝑐

𝑗𝑗
= 𝑐𝑐𝑗𝑗∕𝑟𝑟𝑗𝑗 ; 𝐴𝐴

𝑢𝑢

𝑗𝑗
= 𝑢𝑢𝑗𝑗∕𝑟𝑟𝑗𝑗 . The prior distribution is a uniform distribution, 

𝐴𝐴 𝐴𝐴(𝐗𝐗) =
1

𝛽𝛽−𝛼𝛼
 , on the set of model parameters, X (in Equation 5) and is specified by identifying the lower and upper 

limits (α, β). For a summary of the most relevant parameters in the THBI process see Table 1.

The solution to X is found by sampling the posterior distribution in Equation 6 using a reversible-jump Markov 
chain Monte Carlo (rj-McMC) algorithm (Green, 1995). The algorithm proceeds through a random walk by 
perturbing an initial model X to give X′ on every step, adding X′ to a collection of likely models and setting X′ 
back to X if the model is accepted. Accepting (or rejecting) a proposed model is governed by acceptance prob-
abilities that are defined in order to allow efficient sampling of the posterior distribution, and include models 
that, in the long run, increase the likelihood ratio of new proposed models. In this description, we leave the 
details of acceptance probabilities to the following papers for a complete discussion (Bodin et al., 2009; Hawkins 
et al., 2019). We point out that in the reversible jump transdimensional step, the number of model parameters, 
that is the set 𝐴𝐴 𝐦𝐦 = {𝑣𝑣𝑖𝑖, 𝑟𝑟𝑖𝑖, 𝑁𝑁𝑖𝑖} , is allowed to grow or shrink on every rjMcMC step. These steps are often referred 
to as the birth and death steps. They represent two of the four perturbation states when going from X to X′ 
(Figures 3b–3d). The other two perturbation states involve changing the velocity values, 𝐴𝐴 𝐴𝐴𝑖𝑖 or the hierarchical 
noise parameter, λ. Therefore, given a collection of Nk steps, sampled over Nc parallel chains, we obtain a final 
average phase or group velocity map by using the entire ensemble Xk (Figure 4a):

𝑉𝑉
𝑝𝑝𝑝𝑝𝑝

(𝜔𝜔𝑙𝑙𝑝 𝐫𝐫) = ∫
𝑚𝑚

𝐦𝐦𝑃𝑃 (𝐦𝐦)𝑑𝑑𝐦𝐦 ≈
1

𝑁𝑁𝑇𝑇

𝑘𝑘=𝑁𝑁𝑘𝑘×𝑁𝑁𝑐𝑐
∑

𝑘𝑘=𝑏𝑏+Δ𝑘𝑘

𝑣𝑣
𝑝𝑝𝑝𝑝𝑝

𝑖𝑖𝑘𝑘
𝐈𝐈𝑖𝑖(𝐫𝐫𝑖𝑖𝑘𝑘) (7)
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Where the equation represents ensemble averaging using the nearest-neighbor tessellation of the Voronoi cells 
centered at longitude and latitude node coordinates rik = (θik, ϕik). Whether a phase or group velocity node is 
implied: 𝐴𝐴 𝐴𝐴

𝑝𝑝

𝑖𝑖𝑖𝑖
, 𝐴𝐴

𝑔𝑔

𝑖𝑖𝑖𝑖
 , is dependent on which data set is used, 𝐴𝐴 𝐝𝐝𝐣𝐣 = 𝑡𝑡

𝑐𝑐𝑐𝑐𝑐

𝑗𝑗
 (see Equation 6). During ensemble averaging, we 

use a total of NT samples, discarding b burnin steps, and downsampling each chain using a thinning parameter Δk:

𝑁𝑁𝑇𝑇 = 𝑁𝑁𝑐𝑐 ×

(

𝑁𝑁𝑘𝑘 − 𝑏𝑏

Δ𝑘𝑘

)

 (8)

We also use the ensemble and its average to compute statistical estimators of the dispersion maps' posterior distri-
bution: that is standard deviation or second moments (skewness) (Figures 4b and 4c), providing a quantitative 
measure of statistical significance (Bodin et al., 2009; Bodin & Sambridge, 2009; Bodin, Sambridge, Rawlinson, 
& Arroucau, 2012; Olugboji et al., 2017):

𝜉𝜉
𝑝𝑝𝑝𝑝𝑝(𝜔𝜔𝑙𝑙𝑝 𝐫𝐫) = ∫

𝑚𝑚

(𝐦𝐦 − �̄�𝐦)
2
𝑃𝑃 (𝐦𝐦)𝑑𝑑𝐦𝐦 ≈

1
√

𝑁𝑁𝑇𝑇

𝑘𝑘=𝑁𝑁𝑘𝑘×𝑁𝑁𝑐𝑐
∑

𝑘𝑘=𝑏𝑏+Δ𝑘𝑘

[

𝑣𝑣
𝑝𝑝𝑝𝑝𝑝

𝑖𝑖𝑘𝑘
𝐈𝐈𝑖𝑖(𝐫𝐫𝑖𝑖𝑘𝑘) − 𝑉𝑉

𝑝𝑝𝑝𝑝𝑝]2

 (9)

In one sense, the average dispersion maps are solutions of an inverse transformation g −1 obtained through 
Monte Carlo Markov chain (McMC) sampling. The McMC sampling transforms the inter-station travel-time 

Variable Description

I. Bayesian probabilistic framework

1 𝐴𝐴 𝐴𝐴
(

𝐗𝐗|𝐝𝐝𝑗𝑗 = 𝑡𝑡
𝑐𝑐𝑐𝑐𝑐

𝑗𝑗

)

 Posterior distribution on model parameters 𝐴𝐴 X , given data, 𝐴𝐴 d

2 𝐴𝐴 𝐴𝐴(𝐗𝐗) Prior distribution on model parameters 𝐴𝐴 X

3 𝐴𝐴 𝐴𝐴
(

𝐝𝐝𝐣𝐣 = 𝑡𝑡
𝑐𝑐𝑐𝑐𝑐

𝑗𝑗
|𝐗𝐗

)

 Likelihood of data, 𝐴𝐴 d , given model 𝐴𝐴 X

4 𝐴𝐴 𝐴𝐴
𝑐𝑐𝑐𝑐𝑐

𝑗𝑗
 Inter-station travel time measurements

II. Transdimensional and hierarchical model definition

5 𝐴𝐴 𝐗𝐗𝐤𝐤 = {𝐦𝐦𝐤𝐤, 𝜆𝜆𝑘𝑘} A set of 𝐴𝐴 3𝑁𝑁𝑖𝑖 + 2 parameters for every 𝐴𝐴 𝐴𝐴th McMC step

6 𝐴𝐴 𝐦𝐦𝐤𝐤 = {𝑣𝑣𝑖𝑖𝑖𝑖, 𝑟𝑟𝑖𝑖𝑖𝑖,𝑁𝑁𝑖𝑖𝑖𝑖} The transdimensional model parameters

7 𝐴𝐴 𝐕𝐕(𝐫𝐫) The Voronoi tessellation for a 2-D velocity field

8 𝐴𝐴 𝐈𝐈  Interpolating function that uses the Voronoi nodes

9 𝐴𝐴 𝐴𝐴𝑖𝑖 Number of Voronoi nodes

10 𝐴𝐴 𝐴𝐴𝑘𝑘 Observational error for each map

11 𝐴𝐴 𝐴𝐴
𝑝𝑝

𝑖𝑖𝑖𝑖
 Phase velocities at 𝐴𝐴 𝐴𝐴𝑖𝑖 nodes

12 𝐴𝐴 𝐴𝐴
𝑔𝑔

𝑖𝑖𝑖𝑖
 Group velocities at 𝐴𝐴 𝐴𝐴𝑖𝑖 nodes

13 𝐴𝐴 𝐫𝐫𝑖𝑖𝑖𝑖 = (𝜃𝜃𝑖𝑖𝑖𝑖, 𝜙𝜙𝑖𝑖𝑖𝑖) Location (longitude, latitude) of the center Voronoi nodes

III. Forward problem and observational data

14 𝐴𝐴 𝐴𝐴(𝐦𝐦) Forward problem predicts data given model 𝐴𝐴 X (great circle, bezier, fast marching, etc.)

15 𝐴𝐴 𝐴𝐴𝑗𝑗 number of available interstation phase dispersion measurements

16 𝐴𝐴 𝐝𝐝𝑗𝑗 = 𝑡𝑡
𝑐𝑐𝑐𝑐𝑐

𝑗𝑗
 Data is 𝐴𝐴 𝐴𝐴𝑗𝑗 travel-time observations

17 𝐴𝐴 𝐴𝐴𝑗𝑗 Phase dispersion measurement for stations i, j

18 𝐴𝐴 𝐴𝐴𝑗𝑗 Group dispersion measurement for stations i, j

19 𝐴𝐴 𝐴𝐴𝑗𝑗 Interstation distance

IV. McMC sampling strategy

20 𝐴𝐴 𝐴𝐴𝑐𝑐 Number of chains run in parallel

21 𝐴𝐴 𝐴𝐴𝑘𝑘 Number of Monte Carlo (McMC) steps per chain

22 𝐴𝐴 𝐴𝐴  No of burnin steps discarded before averaging

23 𝐴𝐴 Δ𝑘𝑘 Length of thinning steps ensures decorrelation during averaging

Table 1 
A List of Variables and Definitions Used in Describing the Transdimensional and Hierarchical Bayesian Inverse 
Formulation
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observations, Nj data vectors, into NR dispersion curves: 𝐴𝐴
[

𝐝𝐝𝐣𝐣 = 𝑡𝑡
] 𝑔𝑔

−1≈𝑃𝑃 (𝐗𝐗)

→ [𝐝𝐝𝐑𝐑 = 𝑉𝑉
𝑝𝑝𝑝𝑔𝑔] . The dispersion curve at each 

point on the African continent can then be used to solve for an earth model, m β,α,ρ(z):

𝐟𝐟
(

𝐦𝐦
𝜷𝜷,𝜶𝜶,𝝆𝝆(𝑧𝑧)

)

= 𝐝𝐝𝐑𝐑 (10)

Where, f is a non-linear forward model that maps a local 1D earth model into our data of dispersion curves dR and 
α, β are the compressional and shear velocities and ρ is the density, all varying with depth, z. We discuss, next, 
our approach to obtaining this earth model.

3.3. Shear-Velocity Model Assessment and Update Using a Perturbation Method

We use a perturbational approach to invert the Rayleigh wave phase velocity maps for an updated earth model 
(Haney & Tsai, 2017). The shear velocity model of the global lithospheric model of Pasyanos et al. (2014) is used 
as a starting model.  The perturbational approach uses an iterative gradient descent method to solve the nonlinear 
inverse problem (Equation 10) using a modified augmented system of equations:

⎡

⎢

⎢

⎣

𝐂𝐂
−𝟏𝟏∕𝟐𝟐

𝐝𝐝
𝐆𝐆

𝐂𝐂
−𝟏𝟏∕𝟐𝟐

𝐦𝐦 𝐈𝐈

⎤

⎥

⎥

⎦

𝚫𝚫𝐦𝐦
𝛽𝛽

𝐤𝐤
=

⎡

⎢

⎢

⎣

𝐂𝐂
−𝟏𝟏∕𝟐𝟐

𝐝𝐝
𝚫𝚫𝐝𝐝𝐤𝐤

𝟎𝟎

⎤

⎥

⎥

⎦

 (11a)

𝐅𝐅𝐤𝐤𝚫𝚫𝚫𝚫
𝛽𝛽

𝐤𝐤
= 𝐃𝐃𝐤𝐤 (11b)

 b.1: Iterative solution starts with: 𝐴𝐴 𝐦𝐦
𝛽𝛽

𝟎𝟎
∶ 𝚫𝚫𝚫𝚫𝐤𝐤 = 𝚫𝚫𝐑𝐑 − 𝐟𝐟

(

𝐦𝐦
𝛽𝛽

𝐤𝐤

)

 b.2: Solving: 𝐴𝐴 𝚫𝚫𝚫𝚫
𝛽𝛽

𝐤𝐤
=
[

𝐅𝐅
𝐓𝐓

𝐤𝐤
𝐅𝐅𝐤𝐤

]−1
𝐅𝐅
𝐓𝐓

𝐤𝐤
𝐃𝐃𝐤𝐤

 b.3: Updating: 𝐴𝐴 𝐦𝐦
𝛽𝛽

𝐤𝐤+𝟏𝟏
= 𝐦𝐦

𝛽𝛽

𝐤𝐤
+ 𝚫𝚫𝐦𝐦

𝛽𝛽

𝐤𝐤

 b.4: Repeating until: 𝐴𝐴 𝐴𝐴
2 ≈

𝐃𝐃
𝐓𝐓

𝐤𝐤
𝐃𝐃𝐤𝐤

𝐹𝐹
≤ 1 + 𝜖𝜖

Figure 4. Statistical estimators of the posterior distribution on the 30 s-Love wave phase map. (a) The mean dispersion map. (b) The sensitivity of Love waves to shear-
wave velocity. (c) The standard deviation of the phase map provides an estimate of uncertainty in the phase map shown in (a) as reconstructed during the sampling of 
the posterior distribution. (d) A second estimator of the statistics of the posterior distribution, the skewness (second-moment) of the probability distribution showing 
deviation from non-Gaussian statistics.
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Where 𝐴𝐴 𝐦𝐦
𝛽𝛽

𝟎𝟎
 and 𝐴𝐴 𝚫𝚫𝚫𝚫

𝛽𝛽

𝐤𝐤
 are the shear wave velocity and its kth update and dR and Δdk are the observed dispersion 

curves and the prediction error for each iteration (Equation 10). The stopping criterion is reached (Equation 11b.4) 
when the dispersion measurements are matched by the predicted data for a given number of measurements, F = l 
and ϵ = 0.5. The augmented system (Equation 11a) requires computing the sensitivity kernel G, and the data and 
model covariance matrices, Cd and Cm:

𝐂𝐂𝐝𝐝 = 𝜉𝜉
2(𝜔𝜔)𝐈𝐈 (12a)

𝐂𝐂𝐦𝐦 = 𝛾𝛾𝛾𝛾
2(𝜔𝜔)exp

(

−|𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑗𝑗|

𝑑𝑑

)

 (12b)

Data covariance is diagonal and prescribed from measurement uncertainties obtained from Bayesian inversion 
(Equation 9), while the full matrix representing the covariance of model parameters at depth nodes zi and zj 
is prescribed by two user-supplied factors: a smoothing distance or correlation length, d, and a scaling factor 
γ. These parameters prescribe some type of regularization to the model solution and weight the degree of 
data  fit.

In model assessment, we constrain shear-wave velocity by assuming (a) that the Poisson ratio and densities of 
the Litho1.0 model are fixed or (b) compressional velocity and density can be estimated from shear velocity, 
using scaling relationships derived from empirical measurements of rock elasticities (Brocher, 2005). We then 
construct an updated model of Africa's Crust Evaluated with ADAMA Rayleigh Phase maps (ACE-ADAMA-RP) 
following the iterative scheme of Equation 11. We point out that this is just one way to use the new ADAMA 
data set. In principle, we could construct a model not tied to any starting reference model. Alternatively, we 
could use all the surface wave dispersion maps—Love and Rayleigh including group velocity as well as phase 
velocities (ACE-ADAMA-SW). Additionally, we could adopt a similar probabilistic approach to jointly invert 
the surface wave dispersion data sets with other body-wave seismic measurements like receiver functions (Bodin, 
Sambridge, Tkalčić, et al., 2012). We defer this to future work. Here, we focus on producing a model update 
(ACE-ADAMA-RP) based on a reference global model (Litho1.0). This provides a quick benchmark of our new 
dispersion maps. The updated model can then be evaluated in the context of statistics derived from the computa-
tionally expensive THBI algorithm.

4. Results
We summarize the THBI solutions using representative Rayleigh and Love wave phase dispersion maps discretely 
sampled at four periods (8, 15, 20, and 35). The full solution is archived as a digital open source model (see data 
acknowledgment) and represents a finer sampling at l = 11 periods. The maps include Love and Rayleigh phase 
and group dispersion maps at each of the 11 discretely sampled periods for a total of 44 maps 2 × 2 × 11 = 44. 
A summary of the ensemble statistics is provided in Tables 2 and 3. The posterior distribution for the entire set 
of dispersion maps, providing insights into which regions in Africa are best resolved; that is, which regions are 
constrained with high precision and are not biased toward unreasonably large or small velocities. Finally, we 
present illustrative examples of the new model of Africa's crustal shear-velocity model (ACE-ADAMA-RP).

4.1. THBI Solutions: Exemplary Phase Maps With Errors

The rj-McMC algorithm is run on ∼20 parallel chains for a total of 1 million iterations. For each Markov chain, 
accepted model ensembles are downsampled every 100 steps. The final averages and standard deviations are 
computed to produce final Love and Rayleigh wave dispersion maps. We downsample, or “thin,” the ensemble to 
avoid potential biases from interdependence (Bodin et al., 2009; Olugboji et al., 2017). We show exemplary maps 
at four distinct periods, from the shortest to longest periods (Figures 5 and 6). Dispersion maps display spatial 
heterogeneity that depends on wavelength: more heterogeneity at shorter periods compared to the longest periods.

At the shortest periods (<12 s) we observe faster velocities in west and central Africa than in east and southern 
Africa (Figures 5a1–5d1). Similar patterns of heterogeneity are observed for Love as well as Rayleigh disper-
sion. Love waves travel faster than Rayleigh waves and are therefore more sensitive to shallow crustal structure 
(compare Figure 4b to Figure 2c). This explains why, at the shortest periods,  the Love wave maps are more 
heterogeneous than the corresponding Rayleigh maps (compare Figures 5b1 and 6b1 and Figures 5b2 and 6b2).
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In general, the error maps show that the standard deviations are lowest at 
the longest periods (long wavelength image >20  s) and when data cover-
age is the highest (south east vs. west and central Africa). This pattern in 
the error maps is replicated with our synthetic tests (Figure S1 in Support-
ing Information  S1). We observe that the uncertainties are highest for 
checkerboard  models and when data coverage is poor. In comparison, 
the  long-wavelength toy models are better resolved especially in regions 
with good data coverage. These synthetic experiment suggest that the THBI 
algorithm can appropriately model uncertainties inherent in the measurement 
errors as well as those inherent in the reconstruction process. Although the 
synthetic tests show that the greatest uncertainties should be expected where 
the station coverage is sparse, statistically significant patterns are discerni-
ble even for regions with poor data coverage. For example, along the Congo 
craton where sampling is relatively sparse, stable high-velocity feautures can 
be resolved (compares Figures 5 and 6 with Figure 2a). We use the full statis-
tics of the posterior distributions to explore these features. In particular, we 
describe which regions of our maps are resolved with high-precision and 
which are not. This is important for evaluating final updates to the crustal 
models.

4.2. Ensemble Statistics of Noise Maps: Convergence and Posterior 
Distributions

As we've pointed out, the spatial distribution of the standard-deviation 
(error maps) is fundamentally governed by measurement error and raypath 

sampling. As a result, we observe that the Rayleigh maps are better resolved than the Love maps. The noisiest 
maps are observed at the shortest periods. This is not surprising since horizontally polarized waves are noisier 
at these periods. We also observe that the most problematic maps are the 6 and 10 s maps (see also Table 1 of 
Olugboji and Xue (2022)). We determine precision by classifying each pixel based on: (a) its standard deviations 
and (b) the amplitude of the absolute velocity relative to a 1-D reference model (ak135). At each location, the 
dispersion maps are either precise or biased depending on these two measures. For example, a phase dispersion 
curve is highly precise and recovered with low bias when no more than two discrete periods have standard devia-
tions that exceed 0.4 km/s with values that are not biased toward unreasonably high numbers (>40% of the refer-
ence value). Based on this scheme, we classify Africa into four categories: (a) High precision, (b) Low precision, 
(c) Biased, and (d) Unbiased regions based on the error statistics (Figure 7). This is a concise way to summarize 
the uncertainty inherent in our THBI dispersion maps. The statistics derived here are propagated onwards into the 
model update of Africa's crust.

We observe only a slight difference in Rayleigh and Love precision and bias: 64.4%, by area, for Rayleigh and 
63.3%, by area, for Love. In particular, regions like Madagascar, the Sahara metacraton, the cratons of southern, 
central, and eastern Africa and the atlas mountains of North Africa are recovered with high precision and low 
bias (green dots of Figures 7a and 7b). While these regions are recovered with a high precision, some portions 
are highly biased. For example, the west-end of the Congo craton and the eastern edge of the Sahara meta-craton. 
Within this large sea of “high precision-low-bias” regions are regions on the east with low-precision-low-bias: 
the Horn of Africa and the western African craton (blue dots of Figures 7a and 7b). The western African craton 
also has the most regions with very highly biased dispersion curves (red dots of Figure 7). Again, these broad 
patterns are well explained by the raypath coverage. Regions with the lowest precision and that are highly biased 
often intersect with regions of very low ray path coverage—for example, the western Africa craton, the Horn of 
Africa, and the eastern edge of the Congo craton (see Figure 2a).

Compared to the phase dispersion maps, the group dispersion maps have larger uncertainties, with only 25.3% 
and 13.5% by area of Rayleigh, and Love, being recovered with high precision. Large portions have very low 
precision and high bias (Figures  7c and  7d). This makes it difficult to use the group dispersion results for 
continent-wide model assessment or update. Regardless, we observe improvements in precision at some specific 
regions, made possible by short-aperture, country-wide seismic array deployments. For example, in Morocco, 

Prior distributions Posterior distributions

𝐴𝐴 𝐴𝐴  

Rayleigh Love Rayleigh Love

Ui Ui 𝐴𝐴 �̄�𝑁𝑖𝑖 Ui𝐴𝐴 �̄�𝑁𝑖𝑖 Ui

MIN MAX MIN MAX – – – –

5 0.2 5.5 0.2 5.5 306 3.61 308 3.66

6 0.2 5.5 0.2 6 284 3.64 431 3.83

8 0.2 5.8 0.2 6 361 3.69 374 3.86

10 0.5 6 0.2 6 776 3.68 400 3.86

12 0.5 6.2 0.5 6.2 358 3.70 279 3.92

15 1 6.5 0.5 6.5 540 3.68 334 3.97

20 1.5 6.5 1.5 7 600 3.54 571 3.98

25 1.5 7 1.5 7 690 3.61 703 3.99

30 2 7 1.5 7 389 3.72 711 4.07

35 2 7.5 2 7.5 434 3.86 414 4.17

40 2 7.5 2 8 455 3.94 618 4.29

Table 3 
Group Velocities
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Cameroon, Ethiopia, Tanzania, and Southern Africa (Olugboji & Xue, 2022). Similarly, the cratons in the east 
and south of Africa are the best resolved as well as the highlands of Ethiopia, Morocco and the volcanic regions 
of Cameroon (compare Figures 7c and 7d with Figure 1b). Next, the group dispersion maps for Congo craton 
and Sahara metacraton are moderately well resolved. Along these cratons, only a few regions are highly biased 
with low-precision (i.e., the western edge of the Congo craton, and a few regions in the Sahara meta craton). 
Finally, we observe the worst resolution across the west African craton and along the mobile belts between the 
west African and sahara metacraton. In our current study, we do not use the group dispersion maps to inform 
the model update. However, other authors may elect to use it as a constraint for investigating targeted regional 
crustal structure especially in highly resolved regions. For completeness, we report the entire data set and provide 
the digital maps for reference. In general, the statistics of our dispersion maps shows that continent-wide model 
updates, using Rayleigh wave phase dispersion, are statistically significant there is room for improvement in 
low-resolution regions and we anticipate this will be possible with improvements in instrumentation (blue and 
red dots of Figure 7a).

4.3. Africa's Crustal Structure: Model Update and Assessment of Shear-Wave Velocity

To complete our analysis, we present a new continent-wide, shear-wave velocity model of the entire African 
continent. This model is based on the Rayleigh wave phase dispersion maps and uncertainties. The decision to 
use this dispersion data set is informed by the error statistics presented in the previous section (Figure 7). An 
attempt to use both phase and group dispersion would lead to a final crustal model that inherits a larger set of 

Figure 5. Rayleigh-wave phase maps and associated uncertainties at four discrete periods constructed using transdimensional hierarchical Bayesian inversion. (a1, b1, 
c1, d1) Average maps constructed using the posterior distributions. (a2, b2, c2, d2) The standard deviation maps constructed using a method similar to Figure 4c. For 
Rayleigh wave group velocity maps see Figure S2 in Supporting Information S1.
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biased and unreliable dispersion curves (Figures 7c and 7d). The new model is constructed using the Litho1.0 
model as a reference starting model. Therefore, we consider it both a model update as well as a model assess-
ment of the crust within Africa. An inversion at each grid point produces an updated 1-D model (Figure 8). We 
then interpolate these models into a quasi-3D shear velocity model. We visualize the final model by taking 2-D 
vertical and horizontal projections at selected transects and depth-slices across the entire model domain. A few 
such examples are selected to highlight geographic regions and crustal depths where we expect to see improve-
ments in resolution (Figure 2b). The 2-D projections include: (a) a vertical slice defined by a transect that runs 
from the western edge of the Congo craton on toward Ethiopia (Figures 7a and 9) and (b) four horizontal slices 
spaced at 10-km intervals starting at the topmost crust and terminating around the Moho which is at 40 km for 
most of Africa (Figure 10).

The vertical slice through our updated crustal model illustrates the utility of ensemble statistics. The 
shear-velocities are typically left unchanged when ADAMA's Rayleigh dispersion curves do not statistically 
differ significantly from that of the starting reference model. Significant model updates are observed within 
the topmost crust (Figure 9a) informed by improved resolution at the shortest periods (Figure 2c). The updated 
crustal velocity model also includes uncertainties that have been forward propagated from the McMC ensemble 
(Figure S5b in Supporting Information S1). This shows that not all regions of our model update are equally 
well resolved. For example, along transect X′X, the shallow crust underneath the Angolan and Bomu-Kibalan 
shields are the least resolved with higher standard deviations and highly biased velocities (compare Figure 7a 
and Figure S5b in Supporting Information S1). This point is further elaborated by comparing the model updates, 
ACE-ADAMA-RP, with the Litho1.0 starting reference model (Figure 10 and Figure S6 in Supporting Informa-
tion S1). We observe the largest differences within the top and middle crust (<20 km) especially along craton 

Figure 6. Same as Figure 5 but for Love-wave phase dispersion. For group velocity maps see Figure S3 in Supporting Information S1. For summaries of all maps at 
other periods see Tables 2 and 3.



Geochemistry, Geophysics, Geosystems

OLUGBOJI ET AL.

10.1029/2023GC011086

14 of 27

edges. The new model tends to have higher shear velocities compared to Litho1.0. Within the interiors of the 
Congo Craton and the Sahara Meta Craton new features are recovered that are absent in Litho1.0. For example, 
the high-velocity domains in the western edge of the Congo craton and within the North and eastern end of the 
Sahara Meta Craton (Figures 10a–10c).

While some of these features are recovered from the least resolved dispersion curves (high-velocity western bound-
aries of the western African and Congo craton), they cannot be entirely explained by poor measurements. This is 
because are spatially coherent across the entire crust and can be seen at the longest periods in both the Rayleigh and 
Love dispersion measurements, which are recovered with better resolution (compare e.g., Figure 7 with Figures 4–6). 
The spatial extent and the reliability of these features may require further tests as improvements in station coverage 
and data quality lead to improvements in spatial resolution and lead to more precise dispersion maps.

5. Discussion and Interpretation
We have constructed a continent-wide shear velocity model of the entire African continent and Madagascar using a 
probabilistic and perturbational inversion of the most comprehensive ambient noise dispersion measurements to date 
(Olugboji & Xue, 2022). This work, in Africa, is similar to other continent-wide studies that construct models of 
the crust based on short period passive source ambient noise seismic data (Lu et al., 2018; Saygin & Kennett, 2012; 
Shen et al., 2012). However, we have used the probabilistic approach to produce ambient noise dispersion maps 
(Eshetu et al., 2021; Galetti et al., 2016; Yuan & Bodin, 2018; Zulfakriza et al., 2014). The probabilistic approach 
has allowed us to pose, and answer, fundamental questions about the statistical significance of our new disper-
sion results. For example, we explore how new measurements inform model updates of Africa's crust (Olugboji 
et al., 2017): (a) at which periods are the dispersion maps best resolved? (b) which regions of Africa need significant 
updates, and which do not? (c) In the regions with improved resolution, and requiring significant model updates, to 
what degree do existing reference models differ from current model updates? Our current update of Africa's Crust 
(ACE-ADAMA-RP) answers all these questions. It extends our understanding of Africa's crustal architecture.

We reiterate that the model we have constructed here is derived from the vertically polarized ambient noise 
dispersion maps alone. Future work will explore other passive source data sets like receiver functions, earthquake 
surface wave tomography, and other seismic observables that extend resolution in the lithosphere from the crust 
into the upper mantle (Gao et al., 2022; Han et al., 2022; Shen et al., 2012, 2018). We anticipate that such efforts 
will extend lateral resolution only when data are collected in regions with poor spatial resolution, for example, 

Figure 7. The quality of Rayleigh and Love dispersion models derived based on ensemble statistics. (a) The spatial statistics of Rayleigh phase dispersion is 
color-coded by precision and bias: high precision and unbiased (green), low precision and unbiased (blue) high-precision and biased (red), low precision and biased 
(brown). We identify four locations (A-B-C-D) that exemplify these four classes. (b) The spatial statistics of Love phase dispersion. (c) The spatial statistics of Rayleigh 
group dispersion. (d) The spatial statistics of Love group dispersion. Model update and assessment using Rayleigh phase dispersion curves and associated uncertainties 
are shown at the four locations (Figure 8) and on a transect 𝐴𝐴 𝐗𝐗′𝐗𝐗 crossing south-west to north-east (Figure 9).
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across the western Africa craton (Figure  7). When other passive source data sets are jointly interpreted, the 
improved depth resolution of other elastic-properties like compressional wave speed, Poisson ratio, is possible 
only when the measurements are made in regions with low-resolution. In what follows, we review the current 
state of seismic models of the African crust (Begg et al., 2009; Crosby et al., 2010; Finger et al., 2022; Raveloson 
et al., 2015). We contrast this with Moho models based on joint inversion with other geophysical methods to 

Figure 8. Illustrative examples showing model assessment and update of Litho1.0's shear-wave velocity using ADAMA's 
Rayleigh wave phase dispersion curve and uncertainties. Model assessment and update for: (a) a high precision and unbiased 
dispersion curve, starting phase velocity from Litho1.0 model (blue curve), final dispersion curve after the perturbational 
inversion scheme described in Section 3.3 (red line) (b) a low precision and unbiased dispersion data (c) a biased and low 
precision data (d) a biased and high precision data. The locations of the examples in (a)–(d) above are shown in Figure 7 
(indicated by arrows). See Figure S4 in Supporting Information S1 for a more conservative inversion.
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obtain thermo-compositional models of the African lithosphere (Afonso et al., 2022; Globig et al., 2016; Haas 
et al., 2021; Raveloson et al., 2021).

5.1. Comparing ADAMA to Other Ambient Noise Models of Africa's Crust

A few previous studies have used ambient noise measurements to construct regional and continent-wide seismic 
velocity models on the continent (Accardo et al., 2017; Borrego et al., 2018; Emry et al., 2019; Fadel et al., 2020; 
S. Kim et al., 2012; Pasyanos et al., 2014; White-Gaynor et al., 2021; Yang et al., 2008). Only two of these extend 
across the continent and provide complete imaging of the African crust (Emry et al., 2019; Pasyanos et al., 2014). 
Both studies use fewer stations and calculate dispersion measurements at periods >30 s, therefore limiting their 
spatial resolution to long-wavelength features and their depth resolution to the lowermost crust and sub-Moho depths 
(>33 km). By comparison, our work extends the resolution of crustal structure both laterally and at depth, using 
a large catalog of shortest periods: 5–40 s (Figure 2b) (Olugboji & Xue, 2022). Other regional models (Borrego 
et al., 2018; Chambers et al., 2019; Eshetu et al., 2021; Fadel et al., 2020; S. Kim et al., 2012; Malory et al., 2022; 
Wang et al., 2019; White-Gaynor et al., 2021) do a similar job at providing improved depth and spatial resolution, 

Figure 9. A vertical slice through, ACE-ADAMA-RP, the updated shear-velocity model of Africa's crust based on ADAMA's Rayleigh wave phase dispersion curves. 
(a) The shear velocity model through transect 𝐴𝐴 𝐗𝐗′𝐗𝐗 starts from the western edge of the Congo craton on toward Ethiopia (see Figure 7a). The depth to the crust-mantle 
boundary is shown for reference and taken from Globig et al. (2016). (b) The difference between the final model and the starting model. (Top of 9a & 9b) Topography 
running through transect 𝐴𝐴 𝐗𝐗′𝐗𝐗 with abbreviations same as in Figure 1a and statistical properties of each region (colored circles) same as in Figure 7a. (c) The geology 
surrounding transect X′X showing domains within the Congo craton, continental shield domains, the congo basin, and surrounding areas. The outline of the Congo 
basin is taken from Raveloson et al. (2015, 2021). For a view of the starting model used for the update and standard deviation of the final shear-velocity model see 
Figures S5a and S6 in Supporting Information S1.



Geochemistry, Geophysics, Geosystems

OLUGBOJI ET AL.

10.1029/2023GC011086

17 of 27

but they do not allow a complete view of the continent. Unlike all the other models, the probabilistic approach 
makes it possible to use the large-ensemble statistics to evaluate resolution of various features on the continent.

We point out that not all the features in our crustal model are well resolved. This is because of the uncertainties 
inherited from the dispersion measurements. While this might at first be discouraging, we note that we are able to 
identify and quantify the total area of the entire continent that is not well resolved (Figure 7). All in all, this provides 
users with a quantitative judgment of how much confidence to place in the various parts of our new model update. 
The analyst can determine which regions are highest priorities for continued updates as new seismic measurements 
are assimilated. As an example, it is clear that major updates are still required for the western African craton since 
only a few dispersion measurements have been made in that region. Also, compared to the phase dispersion, group 
dispersion measurements are still only useful for regional updates of the African continental crust (cf. Figures 7b 
and 7c). We expect that future targets will include constraining radial anisotropy (Lin et  al.,  2010; Moschetti 

Figure 10. Horizontal slices through the updated shear-velocity model of Africa's crust. Recovered shear velocity at (a) Crustal depth of 10-km compared to Litho1.0 
(b) Crustal depth of 20-km and compared to Litho1.0 (c) Crustal depth of 30-km (d) Moho and Sub-crustal depth of 40 km. All horizontal slices through the starting 
model of Litho1.0 are taken at the same depth as the new updated model. For a spatial accounting of locations where ADAMA and Litho1.0 differ see Figure S6 in 
Supporting Information S1.
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et al., 2010a, 2010b; Ojo et al., 2017) expecially along regions where both Rayleigh and Love dispersion measure-
ments are well resolved, for example, within the eastern and Southernmost portion of Africa.

5.2. ACE-ADAMA Compared to Other Geophysical Constraints on Africa's Crustal Structure

Compared to other regions of  the world, Africa is sparsely instrumented and therefore earlier seismic models 
based on combined active and passive source seismics have required extensive spatial averaging (Fishwick & 
Bastow, 2011; Globig et al., 2016; Mooney, 2010; Stolk et al., 2013). These models are heavily spatially aliased. 
In particular, the models of the bulk velocity in the crust or it's thickness (Moho depth) have been conducted 
using several techniques that can be broadly categorized into three categories: (a) passive source seismics with 
sensitivity to the crust, for example, receiver functions, ambient noise, or SS reflectivity (Globig et al., 2016; 
Pasyanos & Nyblade, 2007; Rychert & Shearer, 2010; Tugume et al., 2013) (b) regionalized earthquake body 
wave tomography models with only marginal sensitivity to the crust (Boyce et al., 2021; Celli, Lebedev, Schaeffer, 
& Gaina, 2020), and (c) joint gravity and seismic models (Finger et al., 2021, 2022; Haas et al., 2021). Our new 
model is not spatially aliased. In regions with high-precision (60% of Africa: Figure 7a), we provide improved 
resolution on the bulk shear velocity in the crust. Improved spatial resolution relies on small aperture regional 
networks (Nyblade, 2015; Fadel et al., 2018; Olugboji & Xue, 2022; Yu et al., 2020). Also, the adaptive probabil-
istic tomography approach can adequately parameritze the velocity field without imposing strict limiting assump-
tions on spatial averaging or smoothness (Belhadj et al., 2018; Bodin, Sambridge, Rawlinson, & Arroucau, 2012; 
Sambridge et al., 2013).

5.3. Crustal Taxonomy and Surface Geology

To help with describing the most important features in the ADAMA model update, we produce a taxonomy of 
the entire African crust. This taxonomy is a grouping of our final velocity model into four distinct crustal types 
based on self-similar patterns detected across the entire model. Contrasted with classification schemes described 
in global crustal models (Mooney et al., 2023; Pasyanos et al., 2014) our taxonomy is not informed by surface 
geology, or required for data extrapolation where spatial sampling is lacking. The new crustal taxonomy we have 
constructed is derived exclusively from applying unsupervised machine learning algorithms on our final seismo-
logical model without imposing, a priori, any biasing geological assumption. This is justified because the disper-
sion maps, and the model update, reflect improved lateral sampling of the continent, with two-thirds by surface 
area being resolved with high precision (Figure 7). To obtain the taxonomy, we use a hybrid of the sequencer 
algorithm and a cluster analysis (Baron & Ménard, 2021; Lekic et al., 2012).

The sequencer algorithm is an unsupervised, graph-based, machine-learning algorithm that has been used in many 
applications to re-order a sequence of “data objects” (e.g., seismograms, light spectra, geophysical images). The 
algorithm minimizes dissimilarities between neighbors and across the entire sequence (Baron & Ménard, 2021; D. 
Kim et al., 2020). An appropriate measure of dissimilarity (earth-mover distance) and scale (four) allows for opti-
mal ordering. In our application, the data objects are the 1-D shear velocity profiles at each location on the Afri-
can continent (columns in Figure 12). The unordered sequence of data objects is randomly distributed along the 
columns of a 2-D matrix with no discernible patterns and no similarities between adjoining columns. After apply-
ing the sequencer algorithm, the entire shear velocity model is now ordered with each column being similar to its 
adjoining neighbors (top of Figure 12). This ordered sequence is then grouped into distinct crustal types based on 
the K-means clustering algorithm. K-means clustering separates the ordered velocities into distinct crustal types 
(C1–C4) based on how similar each velocity profile is to a representative profile. A low variance relative to the 
centroid (see Figure 13) ensures that each crustal type is dissimilar to the others (Ogden et al., 2019). Based on the 
shape of the representative velocity profiles (the centroids) a natural nomenclature for the crustal type is chosen.

The C1-type is the primitive crust because it shows very little velocity gradients, and low variance, across the entire 
column and is little altered to lower velocities in the shallowest crust. The C2, C3, and C4 type are the modified 
crust with the numbers indicating the degree of modification: least (C2), moderately (C3), and extensively (C4) 
modified. The modified crustal types are most dissimilar in the shallowest crust (<10 km) and sometimes in the 
lowermost crust (>25 km). The profiles that belong to these crustal type have slow velocities, larger variances, and 
larger gradients as the velocities transition to the basement rocks. The spatial patterns of the new taxonomy also 
reveal striking correlations to the bedrock geology even though it is not derived from it. For example, the primi-
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tive crustal type (C1 in Figure 13) is more likely to overlap with the oldest crustal blocks in the cratons (Archean 
shields). By contrast, the most extensively modified crustal type (C4) is fairly consistent with basins, orogens, 
western margin of Madagascar, and continental margins in the North, south, and eastern margins of Africa.

5.4. Crustal Architecture: Secular Evolution, Extrapolation and Newly Resolved Features

Two broad inferences can be made based on our shear-wave velocity model and the new crustal taxonomy derived 
from it. The first is that a simple secular evolution of crustal genesis can-not be conclusively supported. The 
second is that naive extrapolations based on surface geology are not often appropriate. The inference on secu-
lar evolution is based on the correlations, and lack thereof, between the surface geology and our data-derived 
crustal types. Although many Archean blocks show a high spatial correlation with the primitive crustal type 
(C1), in other regions this is not the case. For example, the Archean terranes in the Kaapvaal cratons are a mix 
of multiple crustal types (C1–C3). Also, many geologically diverse regions, for example, Neoproterozoic and 
Archean terranes like the Oubangides belt, Kibaran belt, and the Tanzanian craton, share a similar expression 
of the primitive crustal types (see Tables 3 and Figure 13). While this does not rule out multiple crustal genesis 
models between Archean and Proterozoic terranes (Durrheim & Mooney, 1994; Thompson et al., 2010), it does 
favor the hypothesis that, in Africa, the crust was generated by one primary process (C1) which was then later 
modified (C2–C4) (Kachingwe et al., 2015; Rudnick & Gao, 2014). The processes that lead to crustal modifi-
cation are most likely modulated by surface deformation—stretching, folding, thrusting or erosion—rather than 

Figure 11. A view of the shear-wave velocity and 2-D horizontal gradients through the lowermost crust of Africa and 
Madagascar as seen by the ACE-ADAMA-RP model update. (a) The continent-wide shear wave velocities at 25 km in Africa 
and Madagascar. (b) The 2D-gradient of the velocity field shown in (a), highlighting the regions with the greatest changes in 
shear velocities: continental margins, craton edges, and the mobile belts between WAC and SMC.
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mantle-mediated igneous differentiation (Hacker et al., 2015). This inference is based on the fact that the imprint 
of modification is mostly in the shallow and mid-crustal layers, and seems to reflect, to a large degree, late-stage 
deformation processes (basin formation, mountain-building, etc.). While secondary models of crustal genesis 
may still be possible (change in mantle temperature, or source composition), they are not extensive or distinctive 

Figure 12. A crustal taxonomy obtained by sorting and grouping the ACE-ADAMA shear velocity model using an 
unsupervised machine learning algorithm (sequencer and K-means). (Top) The four distinct crustal types (C1–C4) obtained 
after sorting the velocity model along the column axis. Each crustal type is distinguished from the other by a centroid and a 
boundary (dashed line). The centroids (visualized in Figure 13) and the boundaries (dashed line) are obtained from running 
a K-means clustering algorithm on the downsampled version of the shear velocity model. The sampling interval (red dots) is 
along the depth-axis and is chosen to emphasize the crustal layer with the most variability, that is the shallowest crustal layer. 
(Bottom) The unordered shear velocity model shows random velocity distribution making it difficult to identify similarities 
amongst different locations. Each column is a 1-D shear velocity from a unique location in Africa and Madagascar. The 
ordering algorithm places similar velocity models close together based on a similarity measure after rescaling the data. The 
naming scheme and spatial grouping of each crystal type is provided in Figure 13 A justification for a 4-grouping scheme is 
provided in Figure S7 in Supporting Information S1.
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enough to leave their imprint in the shear-velocity signal and hence are not currently detected by our crustal 
taxonomy. We emphasize however that this conclusion needs to be further tested when improved continent-wide 
models on crustal thickness and Poisson ratio are obtained following joint analysis of body-wave and surface-
wave data (Abbott et al., 2013).

Our analysis suggests that much of Africa's crust is a statistical mix of two main crustal types: primitive (one 
third by area) and modified (two-thirds by area) crust. All the crustal types share some commonalities: they have 
similar mid and lower crustal velocities which are statistically comparable within variance. However, they also 
retain some clear differences. The primitive crust has faster velocities within the entire crustal column and tighter 
variances with little differences in the top and bottom layers of the crust (moderate gradients). Because of this 
pattern, much of the Archean blocks are faster on average, especially in the shallowest crust. The clearest expres-
sion of this behavior is the Archean shields in West Africa which possess the fastest shear-wave velocities on the 
continent (see Table 4 and Figure S10 in Supporting Information S1). As the crust evolves and is modified, much 

Figure 13. The crustal taxonomy overlain on the bedrock geology of Begg et al. (2009) (see also Figure 1). (Map) The 
locations of each of the four distinct crustal types: C1–C4. The nomenclature: primitive (C1) and modified (C2–C4) crust. 
The modified crust is further divided into three: least (C2), moderate (C3) and extensively modified (C4). The shear-velocity 
for the centroid (colored lines), distribution of all velocity profiles (gray lines), and statistics (variance relative to the centroid) 
of each of the crustal types are shown to the left of the map. A description of sub-groups is also provided in Figure S8 in 
Supporting Information S1 and a comparison between the taxonomy provided here, and other crustal classification schemes is 
provided in Figure S9 in Supporting Information S1.
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of the variation in shear-wave velocities is taken up in the shallowest layers and leads to more variation across 
the entire crustal column. For example, the least and moderately modified crustal types (C2 and C3) are evenly 
expressed across Africa and preserve larger gradients in the topmost crust and moderate gradients in the lower 
crust (Figure 13 and Figure S7 in Supporting Information S1).

Taken together, our new shear velocity model, when synthesized with the crustal taxonomy, show newly resolved 
features across the continent, including but not limited to: (a) C1-type dominated crust in the Archean shields of 
the West-Africa, Congo and south-east of the Sahara Meta Craton (b) C3 and C4-dominated crust in the basins 
and along the eastern margins of Africa (c) A more heterogeneous Kaapvaal craton in Southern Africa compared 
to the other cratons (see also Table 4) and (d) a crustal taxonomy that is largely different from existing schemes 
(Figure S8 in Supporting Information S1). Some of these features, though visible in the velocity model (Figures 10 
and 11), are more clearly captured by the machine learning algorithm (Figure 13 and Table 4). The fact that we can 
make continent-wide inferences is justified by highly precise Rayleigh wave dispersion measurements (Figures 2b, 
5c2, and 4d2) and therefore the newly resolved features can be interpreted with better confidence. Compared with 
the reference model, Litho1.0, the shear-wave velocities are faster within the exposed Archean shields, along the 
continental margins, and especially for a few of the craton edges (compare Figure 10b2 with Figure 11). In particu-
lar, as already argued, the outlines of the Archean shields in the west African craton and the Congo craton are much 
more prominent and are now clearly delineated with our crustal taxonomy (Begg et al., 2009). The spatial homoge-
neity of some of these features are clearly seen in the taxonomy even with coherent features detectable along highly 
mobile belts between the west African craton and the Sahara Meta Craton. We expect that future work will apply 
our model and taxonomy to other geological and geophysical problems, for example, improving constraining crus-
tal composition (Afonso et al., 2022; Hacker et al., 2015; Sammon et al., 2022; Sammon & McDonough, 2021), 
lithospheric stress modeling (Craig et al., 2011; Stamps et al., 2010; Zoback & Mooney, 2003), and connection to 
long-term deformation and seismicity on the African continent (Fadel et al., 2020; Schmandt et al., 2015).

6. Conclusion
We construct a new shear-wave velocity model of Africa's crustal architecture using a probabilistic and pertur-
bational inversion of ambient noise surface wave measurements. The probabilistic inversion solves for phase 
and group dispersion maps using a transdimensional and hierarchical Bayesian inversion of a large catalog 
of interstation dispersion data. The dispersion map are large ensemble models of a posterior distribution and 
provide estimates of statistical significance. An evaluation of the error statistics suggests that the phase disper-
sion is better constrained than group dispersion, with Rayleigh wave phase dispersion maps possessing the best 
resolution. Informed by these error statistics, we use a perturbational approach to construct the updated model 
of Africa's crustal architecture evaluated using the Rayleigh phase maps and starting from a reference global 
model (Litho 1.0). The model recovers new features not present in existing maps, with important implications 
for crustal structure and geological architecture of Archean cratons, exposed shields and mobile belts within 
Africa.

Data Availability Statement
No seismic data was used in this study. The full catalog of dispersion measurements can be obtained from Xue 
and Olugboji (2021) and was published alongside (Olugboji & Xue, 2022). A digital format of the probabilis-
tic surface wave dispersion maps and the shear velocity model of Africa's Crust Evaluated using the ADAMA 
Rayleigh wave Phase dispersion (ACE-ADAMA-RP) is available at (Xue, 2023).
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