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This book provides an approachable and concise introduction to seismic theory,
designed as a first course for graduate students or advanced undergraduate students.
It clearly explains the fundamental concepts, emphasizing intuitive understanding
over lengthy derivations.

Incorporating over 30% new material, this second edition includes all the topics
needed for a one-semester course in seismology.Additional material has been added
throughout, including numerical methods, 3-D ray tracing, earthquake location,
attenuation, normal modes, and receiver functions. The chapter on earthquakes and
source theory has been extensively revised and enlarged, and now includes details
on non-double-couple sources, earthquake scaling, radiated energy, and finite slip
inversions.

Each chapter includes worked problems and detailed exercises that give
students the opportunity to apply the techniques they have learned to com-
pute results of interest and to illustrate the Earth’s seismic properties. Computer
subroutines and data sets for use in the exercises are available on the book’s website.

Peter M. Shearer is a Professor of Geophysics at the Scripps Institution of Ocean-
ography, University of California, San Diego. He has written over 100 scientific
papers on various aspects of seismology and is currently the President-Elect of
the seismology section of the American Geophysical Union. He has taught the
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PREFACE TO THE F IRST EDITION

Why another book on seismology? Several excellent texts already exist that cover
most parts of the field. None, however, is ideal for the purposes of an introductory
class. Most simply present far more material than can be adequately covered in a
single quarter or semester. My goal for this book is to produce a readable, concise
introduction to the quantitative aspects of seismology that is designed specifically
for classroom instruction. The result is not as rigorous or comprehensive as Aki
and Richards (1980) or Lay and Wallace (1995), but I hope that it is more suited
for teaching an overview of seismology within a limited time period.

To quicken the pace, many results are described without detailed proofs or deriva-
tions of equations. In these cases, the reader is usually referred to Aki and Richards
or other sources for more complete explanations. Generally I have attempted to
provide practical descriptions of the main concepts and how they are used to study
Earth structure. Some knowledge of physics and vector calculus is assumed, but in
an effort to make the book self-contained most of the key concepts are reviewed in
the Appendices.

Any book to some extent reflects the prejudices of its author. In this regard, I have
perhaps included more material on ray theory and body wave travel times, and less
on surface waves and normal modes, than a truly balanced book would require. In
my defense, it can be argued that a large fraction of current seismological research
continues to rely on travel times, and that ray theory provides a good starting point
for students as it is intuitively easier to understand than more advanced theories.
Although some current research results are presented, I have concentrated more on
fundamental principles and key data sets in an effort to avoid rapid obsolescence
after this book goes to press.

The emphasis in the student exercises is not on deriving equations (which few
seismologists spend much time doing anyway), but on using techniques explained
in the text to compute results of interest and to illustrate some of Earth’s seismic

xi



xii P R E F A C E T O T H E F I R S T E D I T I O N

properties. Since computer programming skills are often a necessity for performing
seismology research, I have included a number of computer-based assignments.
These are designed to give a taste of real research problems, while requiring only
a moderate level of programming ability. Subroutines to assist in the exercises are
listed in Appendix D.



PREFACE TO THE SECOND EDITION

During the last ten years, I have continued teaching the beginning seismology
class at University of California, San Diego, and have received feedback from my
students, as well as other instructors who have been using the book. The second
edition is my attempt to expand on some subjects, clarify parts of the book that have
proven confusing, and update the discussion of current research results. The biggest
changes are to the Source Theory chapter, which now provides a more complete
discussion of non-double-couple sources, stress drop, earthquake scaling, radiated
energy, energy partitioning, and magnitude saturation. However, I have also tried
to remain concise enough that the book can still be used for a one-quarter or one-
semester class, although depending upon the pace of the class it may be necessary
to skip some of the material. Sections flagged with a † are suggestions for possible
areas to skip without much compromise in understanding of the remaining subjects.

The computer subroutines and data for some of the exercises can now be obtained
from www.cambridge.org/shearer, which also contains links to any errors found in
the text and other supplemental information that I plan to add in the future.
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1

Introduction

Every day there are about fifty earthquakes worldwide that are strong enough to
be felt locally, and every few days an earthquake occurs that is capable of dam-
aging structures. Each event radiates seismic waves that travel throughout Earth,
and several earthquakes per day produce distant ground motions that, although too
weak to be felt, are readily detected with modern instruments anywhere on the
globe. Seismology is the science that studies these waves and what they tell us
about the structure of Earth and the physics of earthquakes. It is the primary means
by which scientists learn about Earth’s deep interior, where direct observations are
impossible, and has provided many of the most important discoveries regarding
the nature of our planet. It is also directly concerned with understanding the phys-
ical processes that cause earthquakes and seeking ways to reduce their destructive
impacts on humanity.

Seismology occupies an interesting position within the more general fields of
geophysics and Earth sciences. It presents fascinating theoretical problems involv-
ing analysis of elastic wave propagation in complex media, but it can also be
applied simply as a tool to examine different areas of interest. Applications range
from studies of Earth’s core, thousands of kilometers below the surface, to detailed
mapping of shallow crustal structure to help locate petroleum deposits. Much of
the underlying physics is no more advanced than Newton’s second law (F = ma),
but the complications introduced by realistic sources and structures have motivated
sophisticated mathematical treatments and extensive use of powerful computers.
Seismology is driven by observations, and improvements in instrumentation and
data availability have often led to breakthroughs both in seismology theory and in
our understanding of Earth structure.

The information that seismology provides has widely varying degrees of un-
certainty. Some parameters, such as the average compressional wave travel time
through the mantle, are known to a fraction of a percent, while others, such as the
degree of damping of seismic energy within the inner core, are known only very
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2 1. I N T R O D U C T I O N

approximately. The average radial seismic velocity structure of Earth has been
known fairly well for over fifty years, and the locations and seismic radiation pat-
terns of earthquakes are now routinely mapped, but many important aspects of the
physics of earthquakes themselves remain a mystery.

1.1 A brief history of seismology

Seismology is a comparatively young science that has only been studied quantita-
tively for about 100 years. Reviews of the history of seismology include Dewey
and Byerly (1969) andAgnew (2002). Early thinking about earthquakes was, as one
might expect, superstitious and not very scientific. It was noted that earthquakes
and volcanoes tended to go together, and explanations for earthquakes involving
underground explosions were common. In the early 1800s the theory of elastic
wave propagation began to be developed by Cauchy, Poisson, Stokes, Rayleigh,
and others who described the main wave types to be expected in solid materials.
These include compressional and shear waves, termed body waves since they travel
through solid volumes, and surface waves, which travel along free surfaces. Since
compressional waves travel faster than shear waves and arrive first, they are often
called primary or P waves, whereas the later arriving shear waves are called sec-
ondary or S waves. At this time theory was ahead of seismic observations, since
these waves were not identified in Earth until much later.

In 1857 a large earthquake struck near Naples. Robert Mallet, an Irish engin-
eer interested in earthquakes, traveled to Italy to study the destruction caused by
the event. His work represented the first significant attempt at observational seis-
mology and described the idea that earthquakes radiate seismic waves away from a
focus point (now called the hypocenter) and that they can be located by projecting
these waves backward to the source. Mallet’s analysis was flawed since he assumed
that earthquakes are explosive in origin and only generate compressional waves.
Nevertheless, his general concept was sound, as were his suggestions that obser-
vatories be established to monitor earthquakes and his experiments on measuring
seismic velocities using artificial sources.

Early seismic instrumentation was based on undamped pendulums, which did
not continuously record time, although sometimes an onset time was measured. The
first time-recording seismograph was built in Italy by Filippo Cecchi in 1875. Soon
after this, higher-quality instruments were developed by the British in Japan, begin-
ning with a horizontal pendulum design by James Ewing that recorded on a rotating
disk of smoked glass. The first observation of a distant earthquake, or teleseism, was
made in Potsdam in 1889 for a Japanese event. In 1897 the first North American
seismograph was installed at Lick Observatory near San Jose in California; this
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device was later to record the 1906 San Francisco earthquake. These early instru-
ments were undamped, and they could provide accurate estimates of ground motion
only for a short time at the beginning of shaking. In 1898 E. Wiechert introduced
the first seismometer with viscous damping, capable of producing useful records
for the entire duration of an earthquake. The first electromagnetic seismographs,
in which a moving pendulum is used to generate an electric current in a coil,
were developed in the early 1900s, by B. B. Galitzen, who established a chain of
stations across Russia. All modern seismographs are electromagnetic, since these
instruments have numerous advantages over the purely mechanical designs of the
earliest instruments.

The availability of seismograms recorded at a variety of ranges from earth-
quakes led to rapid progress in determining Earth’s seismic velocity structure. By
1900 Richard Oldham reported the identification of P , S, and surface waves on
seismograms, and later (1906) he detected the presence of Earth’s core from the
absence of direct P and S arrivals at source–receiver distances beyond about 100◦.
In 1909 Andrija Mohorovičić reported observations showing the existence of a ve-
locity discontinuity separating the crust and mantle (this interface is now generally
referred to, somewhat irreverently, as the “Moho’’). Tabulations of arrival times
led to the construction of travel time tables (arrival time as a function of distance
from the earthquake); the first widely used tables were produced by Zöppritz in
1907. Beno Gutenberg published tables in 1914 with core phases (waves that pen-
etrate or reflect off the core) and reported the first accurate estimate for the depth
of Earth’s fluid core (2900 km, very close to the modern value of 2889 km). In
1936, Inge Lehmann discovered the solid inner core, and in 1940 Harold Jeffreys
and K. E. Bullen published the final version of their travel time tables for a large
number of seismic phases. The JB tables are still in use today and contain times
that differ by only a few seconds from current models.

The travel times of seismic arrivals can be used to determine Earth’s average
velocity versus depth structure, and this was largely accomplished over fifty years
ago. The crust varies from about 6 km in thickness under the oceans to 30–50 km
beneath continents. The deep interior is divided into three main layers: the mantle,
the outer core, and the inner core (Fig. 1.1). The mantle is the solid rocky outer shell
that makes up 84% of our planet’s volume and 68% of the mass. It is characterized
by a fairly rapid velocity increase in the upper mantle between about 300 and
700 km depth, a region termed the transition zone, where several mineralogical
phase changes are believed to occur (including those at the 410 and 660 km seismic
discontinuities, shown as the dashed arcs in Fig. 1.1). Between about 700 km to
near the core–mantle boundary (CMB), velocities increase fairly gradually with
depth; this increase is in general agreement with that expected from the changes in
pressure and temperature on rocks of uniform composition and crystal structure.
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Figure 1.1 Earth’s P velocity, S velocity, and density as a function of depth. Values are plotted
from the Preliminary Reference Earth Model (PREM) of Dziewonski and Anderson (1981); except
for some differences in the upper mantle, all modern Earth models are close to these values.
PREM is listed as a table in Appendix A.

At the CMB, the P velocity drops dramatically from almost 14 km/s to about
8 km/s and the S velocity goes from about 7 km/s to zero. This change (larger than
the velocity contrast at Earth’s surface!) occurs at a sharp interface that separates the
solid mantle from the fluid outer core. Within the outer core, the P velocity again
increases gradually, at a rate consistent with that expected for a well-mixed fluid.
However, at a radius of about 1221 km the core becomes solid, the P velocities
increase slightly, and non-zero shear velocities are present. Earth’s core is believed
to be composed mainly of iron, and the inner-core boundary (ICB) is thought to
represent a phase change in iron to a different crystal structure.
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Earth’s internal density distribution is much more difficult to determine than
the velocity structure, since P and S travel times provide no direct constraints on
density. However, by using probable velocity versus density scaling relationships
and Earth’s known mass and moment of inertia, K. E. Bullen showed that it is
possible to infer a density profile similar to that shown in Figure 1.1. Modern
results from normal mode seismology, which provides more direct constraints on
density (although with limited vertical resolution), have generally proven consistent
with the older density profiles.

Seismic surveying using explosions and other artificial sources was developed
during the 1920s and 1930s for prospecting purposes in the oil-producing regions
of Mexico and the United States. Early work involved measuring the travel time
versus distance of P waves to determine seismic velocity at depth. Later studies
focused on reflections from subsurface layering (reflection seismology), which
can achieve high resolution when instruments are closely spaced. The common-
midpoint (CMP) stacking method for reflection seismic data was patented in 1956,
leading to reduced noise levels and higher-quality profiles. The Vibroseis method,
also developed in the 1950s, applies signal-processing techniques to data recorded
using a long-duration, vibrating source.

The increasing number of seismic stations established in the early 1900s enabled
large earthquakes to be routinely located, leading to the discovery that earthquakes
are not randomly distributed but tend to occur along well-defined belts (Fig. 1.2).
However, the significance of these belts was not fully appreciated until the 1960s,
as part of the plate tectonics revolution in the Earth sciences. At that time, it was
recognized that Earth’s surface features are largely determined by the motions of
a small number of relatively rigid plates that drift slowly over geological time
(Fig. 1.3). The relative motions between adjacent plates give rise to earthquakes
along the plate boundaries. The plates are spreading apart along the mid-oceanic
ridges, where new oceanic lithosphere is being formed. This has caused the splitting
apart and separation of Europe and Africa from the Americas (the “continental
drift’’ hypothesized by Alfred Wegener in 1915). The plates are recycled back
into the mantle in the trenches and subduction zones around the Pacific margin.
Large shear faults, such as the San Andreas Fault in California, are a result of
transverse motion between plates. Plate boundaries across continents are often
more diffuse and marked by distributed seismicity, such as occurs in the Himalayan
region between the northward moving Indian Plate and the Eurasian Plate.

In the 1960s, seismologists were able to show that the focal mechanisms (the type
of faulting as inferred from the radiated seismic energy) of most global earthquakes
are consistent with that expected from plate tectonic theory, thus helping to validate
the still emerging paradigm. However, considering the striking similarity between
Figures 1.2 and 1.3, why didn’t seismologists begin to develop the theory of plate
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Figure 1.2 Selected global earthquake locations from 1977 to 1994 (taken from the PDE and ISC
catalogs). Earthquakes occur along well-defined belts of seismicity; these are particularly
prominent around the Pacific rim and along mid-oceanic ridges. We now know that these belts
define the edges of the tectonic plates within Earth’s rigid outermost layer (see Fig. 1.3).

tectonics much earlier? In part, this can be attributed to the lower resolution of
the older earthquake locations compared to more modern results. However, a more
important reason was that seismologists, like most geophysicists at the time, did not
feel that ideas of continental drift had a sound physical basis. Thus they were unable
to fully appreciate the significance and implications of the earthquake locations,
and tended to interpret their results in terms of local and regional tectonics, rather
than a unifying global theory.

In 1923, H. Nakano introduced the theory for the seismic radiation from a double-
couple source (two pairs of opposing point forces). For about the next forty years,
a controversy would rage over the question of whether a single- or double-couple
source is the most appropriate for earthquakes, despite the fact that theory shows that
single-couple sources are physically impossible. In 1928, Kiyoo Wadati reported
the first convincing evidence for deep focus earthquakes (below 100 km depth). A
few years earlier, H. H. Turner had located some earthquakes at significant depth,
but his analyses were not generally accepted (particularly since he also located some
events in the air above the surface!). Deep focus events are typically observed along
dipping planes of seismicity (often termed Wadati–Benioff zones) that can extend
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Figure 1.3 Earth’s major tectonic plates. The arrows indicate relative plate motions at some of
the plate boundaries. The plates are pulling apart along spreading centers, such as the
Mid-Atlantic Ridge, where new crust is being formed. Along the subduction zones in the
western Pacific, the Pacific Plate is sliding back down into the mantle. The San Andreas Fault in
California is a result of shear between the Pacific and North American Plates.

to almost 700 km depth; these mark the locations of subducting slabs of oceanic
lithosphere that are found surrounding much of the Pacific Ocean. Figure 1.4 shows
a cross-section of the earthquake locations in the Tonga subduction zone in the
southwest Pacific, the world’s most active area of deep seismicity. The existence of
deep events was a surprising discovery because the high pressures and temperatures
that exist at these depths should make most materials deform ductilely, without the
sudden brittle failure that causes shallow earthquakes in the crust. Even today the
physical mechanism for deep events is not well understood and is a continuing
source of controversy.

In 1946, an underwater nuclear explosion near BikiniAtoll led to the first detailed
seismic recordings of a nuclear bomb. Perhaps a more significant development, at
least for western government funding for seismology, was the 1949 testing of a
Soviet nuclear bomb. This led to an intense interest by the US military in the
ability of seismology to detect nuclear explosions, estimate yields, and discriminate
between explosions and earthquakes. A surge in funding for seismology resulted,
helping to improve seismic instrumentation and expand government and university
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Figure 1.4 A vertical west−east cross-section of the deep seismicity in the Tonga subduction
zone, showing selected earthquakes from the PDE and ISC catalogs between 1977 and 1994.The
seismicity marks where the lithosphere of the Pacific Plate is sinking down into the mantle.

seismology programs. In 1961 the Worldwide Standardized Seismograph Network
(WWSSN) was established, consisting of well-calibrated instruments with both
short- and long-period seismometers. The ready availability of records from these
seismographs led to rapid improvements in many areas of seismology, including the
production of much more complete and accurate catalogs of earthquake locations
and the long overdue recognition that earthquake radiation patterns are consistent
with double-couple sources.

Records obtained from the great Chilean earthquake of 1960 were the first to
provide definitive observations of Earth’s free oscillations. Any finite solid will
resonate only at certain vibration frequencies, and these normal modes provide an
alternative to the traveling wave representation for characterizing the deformations
in the solid. Earth “rings’’ for several days following large earthquakes, and its
normal modes are seen as peaks in the power spectrum of seismograms. The 1960s
and 1970s saw the development of the field of normal mode seismology, which gives
some of the best constraints on the large-scale structure, particularly in density, of
Earth’s interior. Analyses of normal mode data also led to the development of many
important ideas in geophysical inverse theory, providing techniques for evaluating
the uniqueness and resolution of Earth models obtained from indirect observations.

Between 1969 and 1972, seismometers were placed on the Moon by the Apollo
astronauts, and the first lunar quakes were recorded. These include surface im-
pacts, shallow quakes within the top 100 km, and deeper quakes at roughly 800
to 1,000 km depth. Lunar seismograms appear very different from those on Earth,
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Figure 1.5 An approximate
seismic velocity model derived for
the Moon from observations of
quakes and surface impacts (from
Goins et al., 1981). Velocities at
greater depths (the lunar radius is
1737 km) are largely
unconstrained owing to a lack of
deep seismic waves in the Apollo
data set.

with lengthy wavetrains of high-frequency scattered energy. This has complicated
their interpretation, but a lunar crust and mantle have been identified, with a crustal
thickness of about 60 km (see Fig. 1.5).Aseismometer placed on Mars by theViking
2 probe in 1976 was hampered by wind noise, and only one possible Mars quake
was identified.

Although it is not practical to place seismometers on the Sun, it is possible to
detect oscillations of the solar surface by measuring the Doppler shift of spectral
lines. Such oscillations were first observed in 1960 by Robert Leighton, who dis-
covered that the Sun’s surface vibrates continually at a period of about five minutes
and is incoherent over small spatial wavelengths. These oscillations were initially
interpreted as resulting from localized gas movements near the solar surface, but
in the late 1960s several researchers proposed that the oscillations resulted from
acoustic waves trapped within the Sun. This idea was confirmed in 1975 when it
was shown that the pattern of observed vibrations is consistent with that predicted
for the free oscillations of the Sun, and the field of helioseismologywas born. Anal-
ysis is complicated by the fact that, unlike Earth, impulsive sources analogous to
earthquakes are rarely observed; the excitation of acoustic energy is a continuous
process. However, many of the analysis techniques developed for normal mode
seismology can be applied, and the radial velocity structure of the Sun is now well
constrained (Fig. 1.6). Continuing improvements in instrumentation and dedicated
experiments promise further breakthroughs, including resolution of spatial and tem-
poral variations in solar velocity structure. In only a few decades, helioseismology
has become one of the most important tools for examining the structure of the Sun.
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Figure 1.6 The velocity of
sound within the Sun (adapted
from Harvey, 1995).

The advent of computers in the 1960s changed the nature of terrestrial seismol-
ogy, by enabling analyses of large data sets and more complicated problems, and
led to the routine calculation of earthquake locations. The first complete theoretical
seismograms for complicated velocity structures began to be computed at this time.
The computer era also has seen the rapid expansion of seismic imaging techniques
using artificial sources that have been applied extensively by the oil industry to
map shallow crustal structure. Beginning in 1976, data started to become available
from global seismographs in digital form, greatly facilitating quantitative wave-
form comparisons. In recent years, many of the global seismic stations have been
upgraded to broadband, high dynamic range seismometers, and new instruments
have been deployed to fill in gaps in the global coverage. Large numbers of portable
instruments have also become available for specialized experiments in particular
regions. Seismic records are now far easier to obtain, with centralized archives
providing online data access in standard formats.

Earth’s average radial velocity and density structures were well established
by 1970, including the existence of minor velocity discontinuities near 410- and
660-km depth in the upper mantle. Attention then shifted to resolving lateral differ-
ences in velocity structure, first by producing different velocity versus depth pro-
files for different regions, and more recently by inverting seismic data directly for
three-dimensional velocity structures. The latter methods have been given the name
“tomography’’ by analogy to medical imaging techniques. During recent years,
tomographic methods of increasing resolution have begun to provide spectacular
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images of the structure of Earth’s crust and mantle at a variety of scale lengths.
Local earthquake tomography at scales from tens to hundreds of kilometers has
imaged details of crustal structure in many different regions, including the slow
seismic velocities found in sedimentary basins and the sharp velocity changes that
can occur near active fault zones.

Figure 1.7 shows seismic velocity perturbations in the mantle, as recently im-
aged using whole-Earth tomographic methods. Note that the velocity anomalies
are strongest at the top and bottom of the mantle, with high velocities beneath the
continents in the uppermost mantle and in a ring surrounding the Pacific in the low-
ermost mantle. Many, but not all, geophysicists ascribe these fast velocities near

150 km 550 km

1000 km 1600 km

2200 km 2800 km

-1.8 -1.0 -0.2 0.6 1.4%
S velocity perturbation

Figure 1.7 Lateral variations in S velocity at depths of 150, 550, 1000, 1600, 2200, and 2800 km
in the mantle from Manners and Masters (2008). Velocity perturbations are contoured as shown,
with black indicating regions that are more than 1.4% faster than average, and white indicating
velocities over 1.8% slower than average.
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the core–mantle boundary to the pooling of cold descending slabs from current and
past subduction zones around the Pacific. The slow lowermost mantle S velocities
seen beneath the south-central Pacific have often been interpreted as a warm region
that may feed plumes and oceanic island volcanism, but differences between P- and
S-wave tomography models now indicate that the anomaly is largely compositional
in origin (e.g., Masters et al., 2000). Other features include ponding of slabs in the
transition zone between the 410- and 660-km discontinuties (see 550 km slice) as
well as some evidence for slabs in the midmantle beneath Tonga and SouthAmerica
(see 1000 km slice).

At shallower depths, reflection seismic experiments using controlled sources
have led to detailed images of crustal structure, both on land and beneath the
oceans (Fig. 1.8). The ability to image three-dimensional structures has greatly
expanded the power of seismology to help resolve many outstanding problems in

Ti
)s( e

m

Figure 1.8 An image of the axial magma chamber (AMC) beneath the East Pacific Rise near
14◦15′S obtained through migration processing of reflection seismic data (from Kent et al.,
1994). The profile is about 7 km across, with the vertical axis representing the two-way travel
time of compressional waves between the surface of the ocean and the reflection point.The sea
floor is the reflector at about 3.5 s in the middle of the plot, while the magma chamber appears
at about 4.0 s and is roughly 750 m wide. Shallow axial magma chambers are commonly seen
beneath fast-spreading oceanic ridges, such as those in the eastern Pacific, but not beneath
slow-spreading ridges, such as the Mid-Atlantic Ridge.
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the Earth sciences. These include the structure of fault zones at depth, the deep
roots of continents, the properties of mineralogical phase changes in the mantle,
the fate of subducting slabs, the structure of oceanic spreading centers, the nature of
convection within the mantle, the complicated details of the core–mantle boundary
region, and the structure of the inner core.

Most of the preceding discussion is concerned with structural seismology, or
using records of seismic waves to learn about Earth’s internal structure. Progress has
also been made in learning about the physics of earthquakes themselves. The turning
point came with the investigations following the 1906 San Francisco earthquake.
H. F. Reid, an American engineer, studied survey lines across the fault taken before
and after the earthquake. His analysis led to the elastic rebound theory for the
origin of earthquakes in which a slow accumulation of shear stress and strain is
suddenly released by movement along a fault. Subsequent work has confirmed
that this mechanism is the primary cause of tectonic earthquakes in the crust and
is capable of quickly releasing vast amounts of energy. Today, observations of
large-scale deformations following large earthquakes, using land- and satellite-
based surveying methods, are widely used to constrain the distribution of slip on
subsurface faults.

The first widely used measure of earthquake size was the magnitude scale devel-
oped for earthquakes in southern California by Charles Richter and Beno Gutenberg
in 1935. Because the Richter scale is logarithmic, a small range of Richter mag-
nitudes can describe large variations in earthquake size. The smallest earthquakes
that are readily felt at the surface have magnitudes of about 3, while great earth-
quakes such as the 1906 San Francisco earthquake have magnitudes of 8 or greater.
A number of different magnitude scales, applicable to different types of seismic
observations, have now been developed that are based on Richter’s idea. However,
most of these scales are empirical and not directly related to properties of the source.
A more physically based measure of earthquake size, the seismic moment, was for-
mulated by Keiiti Aki in 1966. This led to the definition of the moment magnitude,
which remains on scale even for the earthquakes of magnitude 8 and greater.

Because catastrophic earthquakes occur rarely in any particular region, humanity
often forgets how devastating these events can be. However, history should remind
us of their power to suddenly kill tens of thousands of people (see Table 1.1) and
of the importance of building earthquake resistant structures. Earth’s rapidly in-
creasing population, particularly in cities in seismically active regions, means that
future earthquakes may be even more deadly. The great earthquake and tsunami of
December 2004 killed over 250 000 people in Sumatra and around the northeast
Indian ocean. This earthquake was the first magnitude 9+ earthquake recorded by
modern broadband seismographs (instruments were much more primitive for the
1960 Chile and 1964 Alaskan earthquakes). The Sumatra earthquake lasted over
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Table 1.1: Earthquakes with 70 000 or more deaths.

Year Location Magnitude Deaths

856 Damghan, Iran 200 000

893 Ardabil, Iran 150 000

1138 Aleppo, Syria 230 000

1290 Chihli, China 100 000

1556 Shansi, China ∼8 830 000

1667 Shemakha, Caucasia 80 000

1727 Tabriz, Iran 77 000

1755 Lisbon, Portugal 8.7 70 000

1908 Messina, Italy 7.2 ∼85 000

1920 Gansu, China 7.8 200 000

1923 Kanto, Japan 7.9 143 000

1927 Tsinghai, China 7.9 200 000

1932 Gansu, China 7.6 70 000

1948 Ashgabat,Turkmenistan 7.3 110 000

1976 Tangshan, China 7.5 255 000

2004 Sumatra 9.1 283 106

2005 Pakistan 7.6 86 000

2008 Eastern Sichuan, China 7.9 87 652

Source: http://earthquake.usgs.gov/regional/world/most-destructive.php

8 minutes and ruptured about 1300 km of fault (see Fig. 1.9). Seismic wave dis-
placements caused by this event were over a centimeter when its surface waves
crossed the United States, over 12 000 kilometers away. The radiated seismic en-
ergy from this earthquake has been estimated as 1.4 to 3 ×1017 joules (Kanamori,
2006; Choy and Boatwright, 2007). Normal modes excited by this event could
be observed for several months as the Earth continued to vibrate at very long
periods.

During the past few decades, large networks of seismometers have been de-
ployed in seismically active regions to map out patterns of earthquake activity,
and strong motion instruments have been used to obtain on-scale recordings near
large earthquakes. It has become possible to map the time–space history of the
slip distribution on faults during major earthquakes. Despite these advances, many
fundamental questions regarding the nature of earthquakes remain largely unan-
swered, including the origin of deep events and the processes by which the rupture
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Figure 1.9 The 2004
Sumatra-Andaman
earthquake as imaged by
Ishii et al. (2005) using
high-frequency data from
the Japanese Hi-Net array.
Note the good agreement
between the 1300-km-long
rupture zone and the
locations of the first 35 days
of aftershocks (small dots).

of a crustal fault initiates, propagates, and eventually comes to a halt. It is perhaps in
these areas of earthquake physics that some of seismology’s most important future
discoveries remain to be made.

1.2 Exercises

1. The radii of the Earth, Moon, and Sun are 6371 km, 1738 km, and 6.951 × 105 km,
respectively. From Figures 1.1, 1.5, and 1.6, make a rough estimate of how long
it takes a P wave to traverse the diameter of each body.

2. Assuming that the P velocity in the ocean is 1.5 km/s, estimate the minimum and
maximum water depths shown in Figure 1.8. If the crustal P velocity is 5 km/s,
what is the depth to the top of the magma chamber from the sea floor?



16 1. I N T R O D U C T I O N

3. Assume that the S velocity perturbations plotted at 150 km depth in Figure 1.7 ex-
tend throughout the uppermost 300 km of the mantle. Estimate how many seconds
earlier a vertically upgoing S-wave will arrive at a seismic station in the middle
of Canada, compared to a station in the eastern Pacific. Ignore any topographic or
crustal thickness differences between the sites; consider only the integrated travel
time difference through the upper mantle.

4. Earthquake moment is defined as M0 = µDA, where µ is the shear modulus,
D is the average displacement on the fault, and A is the fault area that slipped.
The moment of the 2004 Sumatra-Andaman earthquake has been estimated to be
about 1.0 × 1023 N m. Assuming that the fault is horizontal, crudely estimate the
slip area from the image shown in Figure 1.9. Assuming that the shear modulus
µ = 3.0 × 1010 N/m2, then compute the average displacement on the fault.

5. Do some research on the web to find the energy release of the following: (a) a 1
megaton nuclear explosion, (b) the yearly electricity consumption in the United
States, (c) yearly dissipation of tidal energy in Earth’s oceans, and (d) the daily
energy release of a typical hurricane. Express all your answers in joules (J) and
compare these numbers to the seismic energy release of the 2004 Sumatra earth-
quake (see text). Note that the total energy release (including heat generated on
the fault, etc.) of the Sumatra earthquake may be significantly greater than the
seismically radiated energy. This is discussed in Chapter 9.



2

Stress and strain

Any quantitative description of seismic wave propagation or of earthquake physics
requires the ability to characterize the internal forces and deformations in solid
materials. We now begin a brief review of those parts of stress and strain theory
that will be needed in subsequent chapters. Although this section is intended to be
self-contained, we will not derive many equations, and the reader is referred to any
continuum mechanics text (Malvern, 1969, is a classic but there are many others)
for further details.

Deformations in three-dimensional materials are termed strain; internal forces
between different parts of the medium are called stress. Stress and strain do not exist
independently in materials; they are linked through the constitutive relationships
that describe the nature of elastic solids.

2.1 The stress tensor

t

n
Consider an infinitesimal plane of arbitrary orientation
within a homogeneous elastic medium in static equi-
librium. The orientation of the plane may be specified
by its unit normal vector, n̂. The force per unit area ex-
erted by the side in the direction of n̂ across this plane
is termed the traction and is represented by the vec-
tor t(n̂) = (tx, ty, tz). If t acts in the direction shown
here, then the traction force is pulling the opposite side toward the interface. This
definition is the usual convention in seismology and results in extensional forces
being positive and compressional forces being negative. In some other fields, such
as rock mechanics, the definition is reversed and compressional forces are positive.
There is an equal and opposite force exerted by the side opposing n̂, such that

17
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Figure 2.1 The traction vectors t(x̂),
t(ŷ), and t(ẑ) describe the forces on the
faces of an infinitesimal cube in a
Cartesian coordinate system.

t(−n̂) = −t(n̂). The part of t which is normal to the plane is termed the normal
stress, that which is parallel is called the shear stress. In the case of a fluid, there
are no shear stresses and t = −P n̂, where P is the pressure.

In general, the magnitude and direction of the traction vector will vary as a
function of the orientation of the infinitesimal plane. Thus, to fully describe the
internal forces in the medium, we need a general method for determining t as a
function of n̂. This is accomplished with the stress tensor, which provides a linear
mapping between n̂ and t. The stress tensor, τττ, in a Cartesian coordinate system
(Fig. 2.1) may be defined1 by the tractions across the yz, xz, and xy planes:

τττ =

⎡

⎣
tx(x̂) tx(ŷ) tx(ẑ)
ty(x̂) ty(ŷ) ty(ẑ)
tz(x̂) tz(ŷ) tz(ẑ)

⎤

⎦ =

⎡

⎣
τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

⎤

⎦ . (2.1)

xz

zx

xz

zx

x

z

Because the solid is in static equilibrium, there can be no
net rotation from the shear stresses. For example, consider
the shear stresses in the xz plane. To balance the torques,
τxz = τzx. Similarly, τxy = τyx and τyz = τzy, and the stress
tensor τττ is symmetric, that is,

τττ = τττT =

⎡

⎣
τxx τxy τxz

τxy τyy τyz

τxz τyz τzz

⎤

⎦ . (2.2)

The stress tensor τττ contains only six independent elements, and these are sufficient
to completely describe the state of stress at a given point in the medium.

1 Often the stress tensor is defined as the transpose of (2.1) so that the first subscript of τττ represents the surface
normal direction. In practice, it makes no difference as τττ is symmetric.
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The traction across any arbitrary plane of orientation defined by n̂ may be ob-
tained by multiplying the stress tensor by n̂, that is,

t(n̂) = τττn̂ =

⎡

⎣
tx(n̂)

ty(n̂)

tz(n̂)

⎤

⎦ =

⎡

⎣
τxx τxy τxz

τxy τyy τyz

τxz τyz τzz

⎤

⎦

⎡

⎣
n̂x

n̂y

n̂z

⎤

⎦ . (2.3)

This can be shown by summing the forces on the surfaces of a tetrahedron (the
Cauchy tetrahedron) bounded by the plane normal to n̂ and the xy, xz, and yz

planes.
The stress tensor is simply the linear operator that produces the traction vector

t from the normal vector n̂, and, in this sense, the stress tensor exists independent
of any particular coordinate system. In seismology we almost always write the
stress tensor as a 3 × 3 matrix in a Cartesian geometry. Note that the symmetry
requirement reduces the number of independent parameters in the stress tensor to
six from the nine that are present in the most general form of a second-order tensor
(scalars are considered zeroth-order tensors, vectors are first order, etc.).

The stress tensor will normally vary with position in a material; it is a measure of
the forces acting on infinitesimal planes at each point in the solid. Stress provides
a measure only of the forces exerted across these planes and has units of force per
unit area. However, other forces may be present (e.g., gravity); these are termed
body forces and have units of force per unit volume or mass.

2.1.1 Example: Computing the traction vector

Suppose we are given that the horizontal components of the stress tensor are

τττ =
[
τxx τxy
τxy τyy

]
=
[−40 −10

−10 −60

]
MPa.

Assuming this is a two-dimensional problem, let us compute the forces acting
across a fault oriented at 45◦ (clockwise) from the x-axis. We typically assume
that the x-axis points east and the y-axis points north, so in this case the fault
is trending from the northwest to the southeast. To compute the traction vector
from equation (2.3), we need the normal vector n̂. This vector is perpendicular
to the fault and thus points to the northeast, or parallel to the vector (1,1) in
our (x, y) coordinate system. However, remember that n̂ is a unit vector and
thus we must normalize its length to obtain

n̂ =
[

1/
√

2
1/

√
2

]
=
[

0.7071
0.7071

]
.
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Figure 2.2 The fault tractions and principal stresses for Examples 2.1.1 and 2.1.3.

Substituting into (2.3), we have

t(n̂) = τττn̂ =
[−40 −10

−10 −60

] [
1/

√
2

1/
√

2

]
=
[−50/

√
2

−70/
√

2

]
≈
[−35.4

−49.4

]
MPa.

Note that the traction vector points approximately southwest (see Fig. 2.2).
This is the force exerted by the northeast side of the fault (i.e., in the direction
of our normal vector) on the southwest side of the fault. Thus we see that there
is fault normal compression on the fault. To resolve the normal and shear stress
on the fault, we compute the dot products with unit vectors perpendicular (n̂)
and parallel (f̂ ) to the fault

tN = t · n̂ = (−50/
√

2, −70/
√

2) · (1/
√

2, 1/
√

2) = −60 MPa

tS = t · f̂ = (−50/
√

2, −70/
√

2) · (1/
√

2, −1/
√

2) = 10 MPa.

The fault normal compression is 60 MPa. The shear stress is 10 MPa.

2.1.2 Principal axes of stress

For any stress tensor, it is always possible to find a direction n̂ such that there are
no shear stresses across the plane normal to n̂, that is, t(n̂) points in the n̂ direction.
In this case

t(n̂) = λn̂ = τττn̂,

τττn̂ − λn̂ = 0, (2.4)

(τττ − λI)n̂ = 0,
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where I is the identity matrix and λ is a scalar. This is an eigenvalue problem that
has a non-trivial solution only when the determinant vanishes

det[τττ − λI] = 0. (2.5)

This is a cubic equation with three solutions, the eigenvalues λ1, λ2, and λ3 (do
not confuse these with the Lamé parameter λ that we will discuss later). Since τττ is
symmetric and real, the eigenvalues are real. Corresponding to the eigenvalues are
the eigenvectors n̂(1), n̂(2), and n̂(3). The eigenvectors are orthogonal and define
the principal axes of stress. The planes perpendicular to these axes are termed the
principal planes. We can rotate τττ into the n̂(1), n̂(2), n̂(3) coordinate system by
applying a similarity transformation (see Appendix B for details about coordinate
rotations and transformation tensors):

τττR = NTτττN =

⎡

⎣
τ1 0 0
0 τ2 0
0 0 τ3

⎤

⎦ , (2.6)

where τττR is the rotated stress tensor and τ1, τ2, and τ3 are the principal stresses
(identical to the eigenvalues λ1, λ2, and λ3). Here N is the matrix of eigenvectors

N =

⎡

⎢⎣

n
(1)
x n

(2)
x n

(3)
x

n
(1)
y n

(2)
y n

(3)
y

n
(1)
z n

(2)
z n

(3)
z

⎤

⎥⎦ , (2.7)

with NT = N−1 for orthogonal eigenvectors normalized to unit length.
By convention, the three principal stresses are sorted by size, such that |τ1| >

|τ2| > |τ3|. The maximum shear stress occurs on planes at 45◦ to the maximum
and minimum principle stress axes. In the principal axes coordinate system, one of
these planes has normal vector n̂ = (1/

√
2, 0, 1/

√
2). The traction vector for the

stress across this plane is

t(45◦) =

⎡

⎣
τ1 0 0
0 τ2 0
0 0 τ3

⎤

⎦

⎡

⎣
1/

√
2

0
1/

√
2

⎤

⎦ =

⎡

⎣
τ1/

√
2

0
τ3/

√
2

⎤

⎦ . (2.8)

This can be decomposed into normal and shear stresses on the plane:

tN(45◦) = t(45◦) · (1/
√

2, 0, 1/
√

2) = (τ1 + τ3)/2 (2.9)

tS(45◦) = t(45◦) · (1/
√

2, 0, −1/
√

2) = (τ1 − τ3)/2 (2.10)

and we see that the maximum shear stress is (τ1 − τ3)/2.
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If τ1 = τ2 = τ3, then the stress field is called hydrostatic and there are no planes
of any orientation in which shear stress exists. In a fluid the stress tensor can be
written

τττ =

⎡

⎣
−P 0 0

0 −P 0
0 0 −P

⎤

⎦ , (2.11)

where P is the pressure.

2.1.3 Example: Computing the principal axes

Let us compute the principal axes for our previous example, for which the
2-D stress tensor is given by

τττ =
[−40 −10

−10 −60

]
MPa

From equation (2.5), we have

det
[−40 − λ −10

−10 −60 − λ

]
= 0

or

(−40 − λ)(−60 − λ) − (−10)2 = 0

λ2 + 100λ+ 2300 = 0

This quadratic equation has roots λ1 = −64.14 and λ2 = −35.86. Substitut-
ing into equation (2.4), we have two eigenvector equations

[
24.14 −10
−10 4.14

][
n

(1)
x

n
(1)
y

]

= 0 and
[−4.14 −10

−10 −24.14

][
n

(2)
x

n
(2)
y

]

= 0

with solutions for the two eigenvectors (normalized to unit length) of

n̂(1) =
[

0.3827
0.9239

]
and n̂(2) =

[−0.9239
0.3827

]
.

Note that these vectors are orthogonal (n̂(1) · n̂(2) = 0) and define the principal
stress axes. The maximum compressive stress is in the direction n̂(1), or at an
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angle to 67.5◦ with the x axis (see Fig. 2.2). The eigenvector matrix is

N =
[

n
(1)
x n

(2)
x

n
(1)
y n

(2)
y

]

=
[

0.383 −0.924
0.924 0.383

]

which we can use to rotate τττ into the principal stress coordinate system:

τττR = NT τττN =
[

0.383 0.924
−0.924 0.383

] [−40 −10
−10 −60

] [
0.383 −0.924
0.924 0.383

]

=
[−64.14 0

0 −35.86

]
MPa.

As expected, the principal stresses are simply the eigenvalues, λ1 and λ2. In
practice, matrix eigenvector problems are most easily solved using software
such as Matlab or Mathematica, or an appropriate computer subroutine. A
Matlab script to solve this example is given in the supplemental web material.

2.1.4 Deviatoric stress

Stresses in the deep Earth are dominated by the large compressive stress from
the hydrostatic pressure. Often it is convenient to consider only the much smaller
deviatoric stresses, which are computed by subtracting the mean normal stress
(given by the average of the principle stresses, that is τm = (τ1 + τ2 + τ3)/3) from
the diagonal components of the stress tensor, thus defining the deviatoric stress
tensor

τττD =

⎡

⎢⎣
τxx − τm τxy τxz

τxy τyy − τm τyz

τxz τyz τzz − τm

⎤

⎥⎦ (2.12)

It should be noted that the trace of the stress tensor is invariant with respect to
rotation, so the mean stress τm can be computed by averaging the diagonal elements
of τττ without computing the eigenvalues (i.e., τm = (τ11 +τ22 +τ33)/3). In addition,
the deviatoric stress tensor has the same principal stress axes as the original stress
tensor.

The stress tensor can then be written as the sum of two parts, the hydrostatic
stress tensor τmI and the deviatoric stress tensor τττD

τττ = τmI+τττD =

⎡

⎣
−p 0 0

0 −p 0
0 0 −p

⎤

⎦+

⎡

⎢⎣
τxx + p τxy τxz

τxy τyy + p τyz

τxz τyz τzz + p

⎤

⎥⎦ (2.13)
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Table 2.1: Pressure versus depth inside Earth.

Depth (km) Region Pressure (GPa)

0−24 Crust 0−0.6

24−400 Upper mantle 0.6−13.4

400−670 Transition zone 13.4−23.8

670−2891 Lower mantle 23.8−135.8

2891−5150 Outer core 135.8−328.9

5150−6371 Inner core 328.9−363.9

where p = −τm is the mean normal pressure. For isotropic materials (see Section
2.3), hydrostatic stress produces volume change without any change in the shape;
it is the deviatoric stress that causes shape changes.

2.1.5 Values for stress

Stress has units of force per unit area. In SI units

1 pascal (Pa) = 1 N m−2.

Recall that 1 newton (N) = 1 kg m s−2 = 105 dyne. Another commonly used unit
for stress is the bar:

1 bar = 105 Pa,

1 kbar = 108 Pa = 100 MPa,

1 Mbar = 1011 Pa = 100 GPa.

Pressure increases rapidly with depth in Earth, as shown in Table 2.1 using
values taken from the reference model PREM (Dziewonski and Anderson, 1981).
Pressures reach 13.4 GPa at 400 km depth, 136 GPa at the core–mantle boundary,
and 329 GPa at the inner-core boundary. In contrast, the pressure at the center of
the Moon is only about 4.8 GPa, a value reached in Earth at 150 km depth (Latham
et al., 1969). This is a result of the much smaller mass of the Moon.

These are the hydrostatic pressures inside Earth; shear stresses at depth are much
smaller in magnitude and include stresses associated with mantle convection and
the dynamic stresses caused by seismic wave propagation. Static shear stresses can
be maintained in the upper, brittle part of the crust. Measuring shear stress in the
crust is a topic of current research and the magnitude of the stress is a subject of
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some controversy. Crustal shear stress is probably between about 100 and 1000
bars (10 to 100 MPa), with a tendency for lower stresses to occur close to active
faults (which act to relieve the stress).

2.2 The strain tensor

Now let us consider how to describe changes in the positions of points within a
continuum. The location of a particular particle at time t relative to its position at a
reference time t0 can be expressed as a vector field, that is, the displacement field
u is given by

u(r0, t) = r − r0, (2.14)

where r is the position of the point at time t and r0 is the reference location of the
point. This approach of following the displacements of particles specified by their
original positions at some reference time is called the Lagrangian description of
motion in a continuum and is almost always the most convenient formulation in
seismology.2 As we will discuss in Chapter 11, seismometers respond to the motion
of the particles in the Earth connected to the instrument and thus provide a record
of Lagrangian motion. The particle displacement is u(t), the particle velocity is
∂u/∂t, and the particle acceleration is ∂2u/∂t2.

The displacement field, u, is an important concept and we will refer to it often in
this book. It is an absolute measure of position changes. In contrast, strain is a local
measure of relative changes in the displacement field, that is, the spatial gradients
in the displacement field. Strain is related to the deformation, or change in shape,
of a material rather than any absolute change in position. For example, extensional
strain is defined as the change in length with respect to length. If a 100 m long
string is fixed at one end and uniformly stretched to a length of 101 m, then the

u(x0)
u(x)

x0 x

d

u(x0)

displacement field varies from 0 to 1 m along
the string, whereas the strain field is constant at
0.01 (1%) everywhere in the string.

Consider the displacement u = (ux, uy, uz)

at position x, a small distance away from a ref-
erence position x0:

2 The alternative approach of examining whatever particle happens to occupy a specified location is termed the
Eulerian description and is often used in fluid mechanics.
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We can expand u in a Taylor series to obtain

u(x) =

⎡

⎣
ux

uy

uz

⎤

⎦ = u(x0) +

⎡

⎢⎢⎢⎣

∂ux
∂x

∂ux
∂y

∂ux
∂z

∂uy

∂x

∂uy

∂y

∂uy

∂z

∂uz

∂x
∂uz

∂y
∂uz

∂z

⎤

⎥⎥⎥⎦

⎡

⎣
dx

dy

dz

⎤

⎦ = u(x0) + Jd, (2.15)

where d = x−x0. We have ignored higher-order terms in the expansion by assuming
that the partials, ∂ux/∂x, ∂uy/∂x, etc., are small enough that their products can be
ignored (the basis for infinitesimal strain theory). Seismology is fortunate that actual
Earth strains are almost always small enough that this approximation is valid. We
can separate out rigid rotations by dividing J into symmetric and antisymmetric
parts:

J =

⎡

⎢⎢⎢⎣

∂ux
∂x

∂ux
∂y

∂ux
∂z

∂uy

∂x

∂uy

∂y

∂uy

∂z

∂uz

∂x
∂uz

∂y
∂uz

∂z

⎤

⎥⎥⎥⎦
= e +$$$, (2.16)

where the strain tensor, e, is symmetric (eij = eji) and is given by

e =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ux
∂x

1
2

(
∂ux
∂y + ∂uy

∂x

)
1
2

(
∂ux
∂z + ∂uz

∂x

)

1
2

(
∂uy

∂x + ∂ux
∂y

)
∂uy

∂y
1
2

(
∂uy

∂z + ∂uz

∂y

)

1
2

(
∂uz

∂x + ∂ux
∂z

)
1
2

(
∂uz

∂y + ∂uy

∂z

)
∂uz

∂z

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.17)

and the rotation tensor,$$$, is antisymmetric ($ij = −$ji) and is given by

$$$ =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 1
2

(
∂ux
∂y − ∂uy

∂x

)
1
2

(
∂ux
∂z − ∂uz

∂x

)

−1
2

(
∂ux
∂y − ∂uy

∂x

)
0 1

2

(
∂uy

∂z − ∂uz

∂y

)

−1
2

(
∂ux
∂z − ∂uz

∂x

)
−1

2

(
∂uy

∂z − ∂uz

∂y

)
0

⎤

⎥⎥⎥⎥⎥⎥⎦
. (2.18)

The reader should verify that e +$$$ = J.
The effect of e and $$$ may be illustrated by considering what happens to an

infinitesimal cube (Fig. 2.3). The off-diagonal elements of e cause shear strain; for
example, in two dimensions, if$$$ = 0 and we assume ∂ux/∂x = ∂uz/∂z = 0, then
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Figure 2.3 The different effects of the strain tensor e and the rotation tensor$$$ are illustrated by
the deformation of a square in the x − z plane.The off-diagonal components of e cause shear
deformation (left square), whereas$$$ causes rigid rotation (right square).The deformations
shown here are highly exaggerated compared to those for which infinitesimal strain theory is
valid.

∂ux/∂z = ∂uz/∂x, and

J = e =
[

0 θ

θ 0

]
=
[

0 ∂ux
∂z

∂uz

∂x 0

]
, (2.19)

where θ is the angle (in radians, not degrees!) through which each side rotates. Note
that the total change in angle between the sides is 2θ.

In contrast, the $$$ matrix causes rigid rotation, for example, if e = 0, then
∂ux/∂z = −∂uz/∂x and

J = $$$ =
[

0 θ

−θ 0

]
=
[

0 ∂ux
∂z

∂uz

∂x 0

]
. (2.20)

In both of these cases there is no volume change in the material. The relative volume
increase, or dilatation,& = (V − V0)/V0, is given by the sum of the extensions in
the x, y, and z directions:

& = ∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
= tr[e] = ∇ · u, (2.21)

where tr[e] = e11 + e22 + e33, the trace of e. Note that the dilatation is given by
the divergence of the displacement field.

What about the curl of the displacement field? Recall the definition of the curl
of a vector field:

∇ × u =
(
∂uz

∂y
− ∂uy

∂z

)
x̂ +

(
∂ux

∂z
− ∂uz

∂x

)
ŷ +

(
∂uy

∂x
− ∂ux

∂y

)
ẑ. (2.22)
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z

x

Figure 2.4 Simple extensional
strain in the x direction results in
shear strain; internal angles are not
preserved.

A comparison of this equation with (2.18) shows that ∇ × u is nonzero only if$$$ is
non-zero and the displacement field contains some rigid rotation.

The strain tensor, like the stress tensor, is symmetric and contains six independent
parameters. The principal axes of strain may be found by computing the directions
n̂ for which the displacements are in the same direction, that is,

u = λn̂ = en̂. (2.23)

This is analogous to the case of the stress tensor discussed in the previous section.
The three eigenvalues are the principal strains, e1, e2, and e3, while the eigenvectors
define the principal axes. Note that, except in the case e1 = e2 = e3 (hydrostatic
strain), there is always some shear strain present.

For example, consider a two-dimensional square with extension only in the x

direction (Fig. 2.4), so that e is given by

e =
[

e1 0
0 0

]
=
[ ∂ux
∂x 0
0 0

]
. (2.24)

Angles between lines parallel to the coordinate axes do not change, but lines at
intermediate angles are seen to rotate. The angle changes associated with shearing
become obvious if we consider the diagonal lines at 45◦ with respect to the square.
If we rotate the coordinate system (see Appendix B) by 45◦ as defined by the unit
vectors (1/

√
2, 1/

√
2) and (−1/

√
2, 1/

√
2) we obtain

e′ =
[

1/
√

2 1/
√

2
−1/

√
2 1/

√
2

] [
e1 0
0 0

] [
1/

√
2 −1/

√
2

1/
√

2 1/
√

2

]
=
[

e1/2 −e1/2
−e1/2 e1/2

]

(2.25)

and we see that the strain tensor now has off-diagonal terms. As we shall see in the
next chapter, the type of deformation shown in Figure 2.4 would be produced by
a seismic P wave traveling in the x direction; our discussion here shows how P

waves involve both compression and shearing.
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In subsequent sections, we shall find it helpful to express the strain tensor using
index notation. Equation (2.17) can be rewritten as

eij = 1
2(∂iuj + ∂jui), (2.26)

where i and j are assumed to range from 1 to 3 (for the x, y, and z directions) and
we are using the notation ∂xuy = ∂uy/∂x.

2.2.1 Values for strain

Strain is dimensionless since it represents a change in length divided by length.
Dynamic strains associated with the passage of seismic waves in the far field are
typically less than 10−6.

2.2.2 Example: Computing strain for a seismic wave

A seismic plane shear wave is traveling through a solid with displacement that
can locally be approximated as

uz = A sin [2πf(t − x/c)]

where A is the amplitude, f is the frequency, and c is the velocity of the
wave. What is the maximum strain for this wave?

The non-zero partial derivative from equation (2.17) is

∂uz

∂x
= −2πfA

c
cos [2πf(t − x/c)] .

The maximum occurs when cos = −1 and is thus
(
∂uz

∂x

)

max
= 2πfA

c
.

For example, if f = 2 Hz, c = 3.14 km/s (3140 m/s) and A = 1 mm (10−3 m),
then (∂uz/∂x)max = 4 × 10−6 and the strain tensor is given by

emax =

⎡

⎣
0 0 2 × 10−6

0 0 0
2 × 10−6 0 0

⎤

⎦ .
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2.3 The linear stress−strain relationship

Stress and strain are linked in elastic media by a stress–strain or constitutive rela-
tionship. The most general linear relationship between the stress and strain tensors
can be written

τij = cijklekl ≡
3∑

k=1

3∑

l=1

cijklekl, (2.27)

where cijkl is termed the elastic tensor. Here we begin using the summation conven-
tion in our index notation. Any repeated index in a product indicates that the sum
is to be taken as the index varies from 1 to 3. Equation (2.27) is sometimes called
the generalized Hooke’s law and assumes perfect elasticity; there is no energy loss
or attenuation as the material deforms in response to the applied stress (sometimes
these effects are modeled by permitting cijkl to be complex). A solid obeying (2.27)
is called linearly elastic. Non-linear behavior is sometimes observed in seismology
(examples include the response of some soils to strong ground motions and the
fracturing of rock near earthquakes and explosions) but the non-linearity greatly
complicates the mathematics. In this chapter we only consider linearly elastic solids,
deferring a discussion of anelastic behavior and attenuation until Chapter 6. Note
that stress is not sensitive to the rotation tensor $; stress changes are caused by
changes in the volume or shape of solids, as defined by the strain tensor, rather than
by rigid rotations.

Equation (2.27) should not be applied to compute the strain for the large values
of hydrostatic stress that are present within Earth’s interior (see Table 2.1). These
strains, representing the compression of rocks under high pressure, are too large for
linear stress–strain theory to be valid. Instead, this equation applies to perturbations
in stress, termed incremental stresses, with respect to an initial state of stress at
which the strain is assumed to be zero. This is standard practice in seismology and
we will assume throughout this section that stress is actually defined in terms of
incremental stress.

The elastic tensor, cijkl, is a fourth-order tensor with 81 (34) components. How-
ever, because of the symmetry of the stress and strain tensors and thermodynamic
considerations, only 21 of these components are independent. These 21 components
are necessary to specify the stress–strain relationship for the most general form of
elastic solid. The properties of such a solid may vary with direction; if they do,
the material is termed anisotropic. In contrast, the properties of an isotropic solid
are the same in all directions. Isotropy has proven to be a reasonable first-order
approximation for much of the Earth’s interior, but in some regions anisotropy has
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been observed and this is an important area of current research (see Section 11.3
for more about anisotropy).

If we assume isotropy (cijkl is invariant with respect to rotation), it can be shown
that the number of independent parameters is reduced to two:

cijkl = λδijδkl + µ(δilδjk + δikδjl), (2.28)

where λ and µ are called the Lamé parameters of the material and δij is the
Kronecker delta (δij = 1 for i = j, δij = 0 for i ̸= j). Thus, for example,
C1111 = λ + 2µ, C1112 = 0, C1122 = λ, C1212 = µ, etc. As we shall see, the
Lamé parameters, together with the density, will eventually determine the seismic
velocities of the material. The stress–strain equation (2.27) for an isotropic solid is

τij = [λδijδkl + µ(δilδjk + δikδjl)]ekl

= λδijekk + 2µeij, (2.29)

where we have used eij = eji to combine the µ terms. Note that ekk = tr[e], the
sum of the diagonal elements of e. Using this equation, we can directly write the
components of the stress tensor in terms of the strains:

τττ =

⎡

⎣
λ tr[e] + 2µe11 2µe12 2µe13

2µe21 λ tr[e] + 2µe22 2µe23

2µe31 2µe32 λ tr[e] + 2µe33

⎤

⎦ . (2.30)

The two Lamé parameters completely describe the linear stress–strain relation
within an isotropic solid. µ is termed the shear modulus and is a measure of the
resistance of the material to shearing. Its value is given by half of the ratio be-
tween the applied shear stress and the resulting shear strain, that is, µ = τxy/2exy.
The other Lamé parameter, λ, does not have a simple physical explanation. Other
commonly used elastic constants for isotropic solids include:

Young’s modulus E: The ratio of extensional stress to the resulting extensional strain
for a cylinder being pulled on both ends. It can be shown that

E = (3λ+ 2µ)µ

λ+ µ
. (2.31)

Bulk modulus κ: The ratio of hydrostatic pressure to the resulting volume change,
a measure of the incompressibility of the material. It can be expressed as

κ = λ+ 2
3µ. (2.32)



32 2. S T R E S S A N D S T R A I N

Poisson’s ratio σ: The ratio of the lateral contraction of a cylinder (being pulled on
its ends) to its longitudinal extension. It can be expressed as

σ = λ

2(λ+ µ)
. (2.33)

In seismology, we are mostly concerned with the compressional (P) and shear (S)
velocities. As we will show later, these can be computed from the elastic constants
and the density, ρ:

P velocity, α, can be expressed as

α =
√
λ+ 2µ

ρ
. (2.34)

S velocity, β, can be expressed as

β =
√

µ

ρ
. (2.35)

Poisson’s ratio σ is often used as a measure of the relative size of the P and S

velocities; it can be shown that

σ = α2 − 2β2

2(α2 − β2)
= (α/β)2 − 2

2(α/β)2 − 2
. (2.36)

Note that σ is dimensionless and varies between 0 and 0.5 with the upper limit
representing a fluid (µ = 0). For a Poisson solid, λ = µ, σ = 0.25, and α/β =

√
3

and this is a common approximation in seismology for estimating the S velocity
from the P velocity and vice versa. Note that the minimum possible P-to-S velocity
ratio for an isotropic solid is

√
2, which occurs when λ = σ = 0. Most crustal rocks

have Poisson’s ratios between 0.25 and 0.30.
Although many different elastic parameters have been defined, it should be noted

that two parameters and density are sufficient to give a complete description of
isotropic elastic properties. In seismology, these parameters are often simply the
P and S velocities. Other elastic parameters can be computed from the velocities,
assuming the density is also known.

2.3.1 Units for elastic moduli

The Lamé parameters, Young’s modulus, and the bulk modulus all have the same
units as stress (i.e., pascals). Recall that

1 Pa = 1 N m−2 = 1 kg m−1 s−2.
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Note that when this is divided by density (kg m−3) the result is units of velocity
squared (appropriate for equations (2.34) and (2.35)).

2.4 Exercises

1. Assume that the horizontal components of the 2-D stress tensor are

τττ =
[
τxx τxy
τyx τyy

]
=
[−30 −20

−20 −40

]
MPa

(a) Compute the normal and shear stresses on a fault that strikes 10◦ east of north.

(b) Compute the principal stresses, and give the azimuths (in degrees east of
north) of the maximum and minimum compressional stress axes.

2. The principal stress axes for a 2-D geometry are oriented at N45◦ E and N135◦ E,
corresponding to principal stresses of −15 and −10 MPa. What are the four com-
ponents of the 2-D stress tensor in a (x = east, y = north) coordinate system?

3. Figure 2.5 shows a vertical-component seismogram of the 1989 Loma Prieta earth-
quake recorded in Finland. Make an estimate of the maximum strain recorded at
this site. Hints: 1 micron = 10−6 m, note that the time axis is in 100s of seconds, as-
sume the Rayleigh surface wave phase velocity at the dominant period is 3.9 km/s,
remember that strain is proportional to ∂uz/∂x, Table 3.1 may be helpful.

4. Using equations (2.4), (2.23), and (2.30), show that the principal stress axes always
coincide with the principal strain axes for isotropic media. In other words, show
that if x is an eigenvector of e, then it is also an eigenvector of τττ.

5. From equations (2.34) and (2.35) derive expressions for the Lamé parameters in
terms of the seismic velocities and density.

6. Seismic observations of S velocity can be directly related to the shear modulus
µ. However, P velocity is a function of both the shear and bulk moduli. For this
reason, sometimes seismologists will compute the bulk sound speed, defined as:

Vc =
√
κ

ρ
(2.37)

which isolates the sensitivity to the bulk modulus κ. Derive an equation for Vc in
terms of the P and S velocities.

7. What is the P /S velocity ratio for a rock with a Poisson’s ratio of 0.30?
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Figure 2.5 A vertical component seismogram of the 1989 Loma Prieta earthquake in
California, recorded in Finland.This plot was taken from the Princeton Earth
Physics Project, PEPP, website at
www.gns.cri.nz/outreach/qt/quaketrackers/curr/seismic waves.htm.

8. A sample of granite in the laboratory is observed to have a P velocity of 5.5 km/s
and a density of 2.6 Mg/m3. Assuming it is a Poisson solid, obtain values for the
Lamé parameters, Young’s modulus, and the bulk modulus. Express your answers
in pascals.

9. Using values from the PREM model (Appendix A), compute values for the bulk
modulus on both sides of (a) the core–mantle boundary (CMB) and (b) the inner-
core boundary (ICB). Express your answers in pascals.

10. Figure 2.6 shows surface displacement rates as a function of distance from the San
Andreas Fault in California.

(a) Consider this as a 2-D problem with the x-axis perpendicular to the fault and
the y-axis parallel to the fault. From these data, estimate the yearly strain (e)
and rotation ($$$) tensors for a point on the fault. Express your answers as
2 × 2 matrices.
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Figure 2.6 Geodetically determined displacement rates near the San Andreas
Fault in central California.Velocities are in mm per year for motion parallel to the
fault; distances are measured perpendicular to the fault.Velocities are normalized
to make the velocity zero at the fault. Data points courtesy of Duncan Agnew.

(b) Assuming the crustal shear modulus is 27 GPa, compute the yearly change
in the stress tensor. Express your answer as a 2 × 2 matrix with appropriate
units.

(c) If the crustal shear modulus is 27 GPa, what is the shear stress across the fault
after 200 years, assuming zero initial shear stress?

(d) If large earthquakes occur every 200 years and release all of the accumulated
strain by movement along the fault, what, if anything, can be inferred about
the absolute level of shear stress?

(e) What, if anything, can be learned about the fault from the observation that
most of the deformation occurs within a zone less than 50 km wide?

(f) Note: The asymmetry in the deformation pattern is a long-standing puzzle.
To learn more, see Schmalzle et al. (2006).

11. Do some research on the observed density of the Sun.Are the high sound velocities
in the Sun (see Fig. 1.6) compared to Earth’s P velocities caused primarily by low
solar densities compared to the Earth, a higher bulk modulus or some combination
of these factors?

12. The University of California, San Diego, operates the Piñon Flat Observatory
(PFO)in the mountains northeast of San Diego (near Anza). Instruments include
high-quality strain meters for measuring crustal deformation.

(a) Assume, at 5 km depth beneath PFO, the seismic velocities are α = 6 km/s
and β = 3.5 km/s and the density is ρ = 2.7 Mg/m3. Compute values for
the Lamé parameters, λ and µ, from these numbers. Express your answer in
units of pascals.
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Figure 2.7 The 1992 Landers earthquake (MS = 7.3) in southern California
produced measurable strain changes at PFO observatory, located about 80 km
south of the event.

(b) Following the 1992 Landers earthquake (MS = 7.3), located in southern
California 80 km north of PFO (Fig. 2.7), the PFO strain meters measured a
large static change in strain compared to values before the event. Horizontal
components of the strain tensor changed by the following amounts: e11 =
−0.26 × 10−6, e22 = 0.92 × 10−6, e12 = −0.69 × 10−6. In this notation 1
is east, 2 is north, and extension is positive. You may assume that this strain
change occurred instantaneously at the time of the event. Assuming these
strain values are also accurate at depth, use the result you obtained in part (a)
to determine the change in stress due to the Landers earthquake at 5 km, that
is, compute the change in τ11, τ22, and τ12. Treat this as a two-dimensional
problem by assuming there is no strain in the vertical direction and no depth
dependence of the strain.

(c) Compute the orientations of the principal strain axes (horizontal) for the
response at PFO to the Landers event. Express your answers as azimuths
(degrees east of north).

(d) A steady long-term change in strain at PFO has been observed to occur in
which the changes in one year are: e11 = 0.101×10−6, e22 = −0.02×10−6,
e12 = 0.005 × 10−6. Note that the long-term strain change is close to simple
E–W extension. Assuming that this strain rate has occurred steadily for the
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last 1000 years, from an initial state of zero stress, compute the components
of the stress tensor at 5 km depth. (Note: This is probably not a very realistic
assumption!) Don’t include the large hydrostatic component of stress at 5 km
depth.

(e) Farmer Bob owns a 1 km2 plot of land near PFO that he has fenced and
surveyed with great precision. How much land does Farmer Bob gain or
lose each year? How much did he gain or lose as a result of the Landers
earthquake? Express your answers in m2.

(f) (COMPUTER) Write a computer program that computes the stress across
vertical faults at azimuths between 0 and 170 degrees (east from north, at 10
degree increments). For the stress tensors that you calculated in (b) and (d),
make a table that lists the fault azimuth and the corresponding shear stress
and normal stress across the fault (for Landers these are the stress changes,
not absolute stresses). At what azimuths are the maximum shear stresses for
each case?

(g) (COMPUTER) Several studies (e.g., Stein et al., 1992, 1994; Harris and
Simpson, 1992; Harris et al., 1995; Stein, 1999; Harris, 2002) have modeled
the spatial distribution of events following large earthquakes by assuming that
the likelihood of earthquake rupture along a fault is related to the Coulomb
failure function (CFF). Ignoring the effect of pore fluid pressure, the change
in CFF may be expressed as:

&CFF = &|τs| + µs&τn,

where τs is the shear stress (traction), τn is the normal stress, and µs is the
coefficient of static friction (don’t confuse this with the shear modulus!). Note
that CFF increases as the shear stress increases, and as the compressional
stress on the fault is reduced (recall in our sign convention that extensional
stresses are positive and compressional stresses are negative). Assume that
µs = 0.2 and modify your computer program to compute&CFF for each fault
orientation. Make a table of the yearly change in&CFF due to the long-term
strain change at each fault azimuth.

(h) (COMPUTER) Now assume that the faults will fail when their long-term
CFF reaches some critical threshold value. The change in time to the next
earthquake may be expressed as

&t = CFF1000+L − CFF1000

CFFa
,

where CFFa is the annual change in CFF, CFF1000 is the thousand year change
in CFF, and CFF1000+L is the thousand year + Landers change in CFF (note
that CFF1000+L ̸= CFF1000 + CFFL). Compute the effect of the Landers
earthquake in terms of advancing or retarding the time until the next earth-
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quake for each fault orientation. Express your answer in years, using the
sign convention of positive time for advancement of the next earthquake and
negative time for retardation. (Warning: This is tricky.) Check your answer
against the values of shear stress on the fault. Generally (but not always)
the earthquake time should advance when the long-term and Landers shear
changes agree in sign (either both positive or both negative), and the time
should be delayed when the shear stress changes disagree in sign.

(i) No increase in seismicity (small earthquake activity) has been observed near
PFO following the Landers event. Does this say anything about the validity
of the threshold CFF model?

Hint: Getting the signs correct in parts (f)–(h) can be complicated, particularly
for part (h). Stresses can be either positive or negative. To help get it right, define
two unit vectors for each fault azimuth, one parallel to the fault (f̂ ) and one per-
pendicular to the fault (p̂). Compute the traction vector by multiplying the stress
tensor by p̂. Then resolve the traction vector into shear stress and normal stress by
computing the dot product with f̂ and p̂, respectively. Naturally, f̂ and p̂ must be
of unit length for this to work.
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The seismic wave equation

Using the stress and strain theory developed in the previous chapter, we now con-
struct and solve the seismic wave equation for elastic wave propagation in a uniform
whole space. We will show that two types of solutions are possible, corresponding
to compressional (P) and shear (S) waves, and we will derive the equations for their
velocities that we presented in the last chapter. This will involve vector calculus
and complex numbers; some of the mathematics is reviewed in Appendix B. For
simplicity, in this chapter we assume perfect elasticity with no energy loss in the
seismic waves from any intrinsic attenuation.

3.1 Introduction:The wave equation

To motivate our discussion, consider the one-dimensional wave equation

∂2u

∂t2 = c2 ∂
2u

∂x2 (3.1)

and its general solution

u(x, t) = f(x ± ct), (3.2)

which represents waves of arbitrary shape propagating at velocity c in the positive
and negative x directions. This is a very common equation in physics and can be
used to describe, for example, the vibrations of a string or acoustic waves in a pipe.
The velocity of the wave is determined by the physical properties of the material
through which it propagates. In the case of a vibrating string, c2 = F/ρ where F is
the string tension force and ρ is the density.

39



40 3. T H E S E I S M I C W A V E E Q U A T I O N

The wave equation is classified as a hyperbolic equation in the theory of linear
partial differential equations. Hyperbolic equations are among the most challeng-
ing to solve because sharp features in their solutions will persist and can reflect off
boundaries. Unlike, for example, the diffusion equation, solutions will be smooth
only if the initial conditions are smooth. This complicates both analytical and nu-
merical solution methods.

As we shall see, the seismic wave equation is more complicated than equation
(3.1) because it is three dimensional and the link between force and displacement
involves the full stress–strain relationship for an elastic solid. However, the P

and S seismic wave solutions share many characteristics with the solutions to the
1-D wave equation. They involve pulses of arbitrary shape that travel at speeds
determined by the elastic properties and density of the medium, and these pulses
are often decomposed into harmonic wave solutions involving sine and cosine
functions. Stein and Wysession (2003, Section 2.2) provide a useful review of the
1-D wave equation as applied to a vibrating string, with analogies to seismic wave
propagation in the Earth.

3.2 The momentum equation

In the previous chapter, the stress, strain, and displacement fields were considered
in static equilibrium and unchanging with time. However, because seismic waves
are time-dependent phenomena that involve velocities and accelerations, we need
to account for the effect of momentum. We do this by applying Newton’s law
(F = ma from your freshman physics class) to a continuous medium.

Consider the forces on an infinitesimal cube in an (x1, x2, x3) coordinate system
(Fig. 3.1). The forces on each surface of the cube are given by the product of the
traction vector and the surface area. For example, the force on the plane normal to
x1 is given by

F(x̂1) = t(x̂1) dx2 dx3

= τττx̂1 dx2 dx3

=

⎡

⎢⎣

τ11

τ21

τ31

⎤

⎥⎦ dx2 dx3, (3.3)
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x1

x2

x3

t(   )x1

t(    )-x1

dx1

dx2

dx3
Figure 3.1 The force on the
(x2, x3) face of an infinitesimal
cube is given by t(x̂1) dx2 dx3, the
product of the traction vector and
the surface area.

where F is the force vector, t is the traction vector, and τττ is the stress tensor. In
the case of a homogeneous stress field, there is no net force on the cube since the
forces on opposing sides will cancel out, that is, F(−x̂1) = −F(x̂1). Net force will
only be exerted on the cube if spatial gradients are present in the stress field. In this
case, the net force from the planes normal to x1 is

F(x̂1) = ∂

∂x1

⎡

⎢⎣

τ11

τ21

τ31

⎤

⎥⎦ dx1 dx2 dx3, (3.4)

and we can use index notation and the summation convention to express the total
force from the stress field on all the faces of the cube as

Fi =
3∑

j=1

∂τij

∂xj
dx1 dx2 dx3

= ∂jτij dx1 dx2 dx3. (3.5)

The djτij term is the divergence of the stress tensor (recall that the summation
convention means that this term is summed over j = 1, 2, 3). There may also exist
a body force on the cube that acts in proportion to the volume of material, that is,

F
body
i = fi dx1 dx2 dx3. (3.6)

The mass of our infinitesimal cube is given by

m = ρ dx1 dx2 dx3, (3.7)

where ρ is the density. The acceleration of the cube is given by the second
time derivative of the displacement u. Substituting (3.5)–(3.7) into F = ma and
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canceling the common factor of dx1 dx2 dx3, we obtain1

ρ
∂2ui

∂t2 = ∂jτij + fi. (3.8)

This is the fundamental equation that underlies much of seismology. It is called the
momentum equation or the equation of motion for a continuum. Each of the terms
ui, τij , and fi is a function of position x and time. The body force term f generally
consists of a gravity term fg and a source term fs. Gravity is an important factor at
very low frequencies in normal mode seismology, but it can generally be neglected
for body- and surface-wave calculations at typically observed wavelengths. We
will consider the effects of the source term fs later in this book (Chapter 9). In the
absence of body forces, we have the homogeneous equation of motion

ρ
∂2ui

∂t2 = ∂jτij, (3.9)

which governs seismic wave propagation outside of seismic source regions. Gen-
erating solutions to (3.8) or (3.9) for realistic Earth models is an important part
of seismology; such solutions provide the predicted ground motion at specific
locations at some distance from the source and are commonly termed synthetic
seismograms.

If, on the other hand, we assume that the acceleration term in (3.8) is zero, the
result is the static equilibrium equation

∂jτij = −fi. (3.10)

in which the body forces are balanced by the divergence of the stress tensor. This
equation is applicable to static deformation problems in geodesy, engineering, and
many other fields.

3.3 The seismic wave equation

In order to solve (3.9) we require a relationship between stress and strain so that we
can expressτττ in terms of the displacement u. Recall the linear, isotropic stress–strain

1 In expressing the acceleration term, we approximate the total derivatives of u with respect to time with the
partial derivatives of u with respect to time. That is, we make the small-deformation approximation such that
the terms in the total derivative containing the spatial derivatives of u can be ignored. This is generally assumed
valid in seismology, but the spatial derivatives (advection terms) are very important in fluid mechanics.
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relationship,

τij = λδijekk + 2µeij, (3.11)

where λ and µ are the Lamé parameters and the strain tensor is defined as

eij = 1
2(∂iuj + ∂jui). (3.12)

Substituting for eij in (3.11), we obtain

τij = λδij∂kuk + µ(∂iuj + ∂jui). (3.13)

Equations (3.9) and (3.13) provide a coupled set of equations for the displacement
and stress. These equations are sometimes used directly at this point to model wave
propagation in computer calculations by applying finite-difference techniques. In
these methods, the stresses and displacements are computed at a series of grid
points in the model, and the spatial and temporal derivatives are approximated
through numerical differencing. The great advantage of finite-difference schemes is
their relative simplicity and ability to handle Earth models of arbitrary complexity.
However, they are extremely computationally intensive and do not necessarily
provide physical insight regarding the behavior of the different wave types.

In the equations that follow, we will switch back and forth between vector notation
and index notation. A brief review of vector calculus is given in Appendix B. If we
substitute (3.13) into (3.9), we obtain

ρ
∂2ui

∂t2 = ∂j[λδij∂kuk + µ(∂iuj + ∂jui)]

= ∂iλ∂kuk + λ∂i∂kuk + ∂jµ(∂iuj + ∂jui) + µ∂j∂iuj + µ∂j∂jui

= ∂iλ∂kuk + ∂jµ(∂iuj + ∂jui) + λ∂i∂kuk + µ∂i∂juj + µ∂j∂jui. (3.14)

Defining ü = ∂2u/∂t2, we can write this in vector notation as

ρü = ∇λ(∇ · u) + ∇µ · [∇u + (∇u)T ] + (λ+ µ)∇∇ · u + µ∇2u. (3.15)

We now use the vector identity

∇ × ∇ × u = ∇∇ · u − ∇2u (3.16)

to change this to a more convenient form. We have

∇2u = ∇∇ · u − ∇ × ∇ × u. (3.17)
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Substituting this into (3.15), we obtain

ρü = ∇λ(∇ ·u)+∇µ ·[∇u+(∇u)T ]+(λ+2µ)∇∇ ·u−µ∇×∇×u. (3.18)

This is one form of the seismic wave equation. The first two terms on the right-hand
side (r.h.s.) involve gradients in the Lamé parameters themselves and are non-zero
whenever the material is inhomogeneous (i.e., contains velocity gradients). Most
non-trivial Earth models for which we might wish to compute synthetic seismo-
grams contain such gradients. However, including these factors makes the equations
very complicated and difficult to solve efficiently. Thus, most practical synthetic
seismogram methods ignore these terms, using one of two different approaches.

First, if velocity is only a function of depth, then the material can be mod-
eled as a series of homogeneous layers. Within each layer, there are no gradients
in the Lamé parameters and so these terms go to zero. The different solutions
within each layer are linked by calculating the reflection and transmission coef-
ficients for waves at both sides of the interface separating the layers. The effects
of a continuous velocity gradient can be simulated by considering a “staircase’’
model with many thin layers. As the number of layers increases, these results can
be shown to converge to the continuous gradient case (more layers are needed at
higher frequencies). This approach forms the basis for many techniques for com-
puting predicted seismic motions from one-dimensional Earth models; we will term
these homogeneous-layermethods. They are particularly useful for studying surface
waves and low- to medium-frequency body waves. However, at high frequencies
they become relatively inefficient because large numbers of layers are necessary
for accurate modeling.

Second, it can be shown that the strength of these gradient terms varies as 1/ω,
whereω is frequency, and thus at high frequencies these terms will tend to zero. This
approximation is made in most ray-theoretical methods, in which it is assumed that
the frequencies are sufficiently high that the 1/ω terms are unimportant. However,
note that at any given frequency this approximation will break down if the velocity
gradients in the material become steep enough. At velocity discontinuities between
regions of shallow gradients, the approximation cannot be used directly, but the
solutions above and below the discontinuities can be patched together through
the use of reflection and transmission coefficients. The distinction between the
homogeneous-layer and ray-theoretical approaches is often important and will be
emphasized later in this book.

If we ignore the gradient terms, the momentum equation for homogeneous media
becomes

ρü = (λ+ 2µ)∇∇ · u − µ∇ × ∇ × u. (3.19)
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This is a standard form for the seismic wave equation in homogeneous media and
forms the basis for most body-wave synthetic seismogram methods. However, it is
important to remember that it is an approximate expression, which has neglected
the gravity and velocity gradient terms and has assumed a linear, isotropic Earth
model.

We can separate this equation into solutions for P waves and S waves by taking
the divergence and curl, respectively. Taking the divergence of (3.19) and using the
vector identity ∇ · (∇ ×''') = 0, we obtain:

∂2(∇ · u)

∂t2 = λ+ 2µ

ρ
∇2(∇ · u) (3.20)

or

∇2(∇ · u) − 1
α2

∂2(∇ · u)

∂t2 = 0, (3.21)

where the P-wave velocity, α, is given by

α2 = λ+ 2µ

ρ
. (3.22)

Taking the curl of (3.19) and using the vector identity ∇ × (∇φ) = 0, we obtain:

∂2(∇ × u)

∂t2 = −µ

ρ
∇ × ∇ × (∇ × u). (3.23)

Using the vector identity (3.16) and ∇ · (∇ × u) = 0, this becomes

∂2(∇ × u)

∂t2 = µ

ρ
∇2(∇ × u) (3.24)

or

∇2(∇ × u) − 1
β2

∂2(∇ × u)

∂t2 = 0, (3.25)

where the S-wave velocity, β, is given by

β2 = µ

ρ
. (3.26)

We can use (3.22) and (3.26) to rewrite the elastic wave equation (3.18) directly
in terms of the P and S velocities:

ü = α2∇∇ · u − β2∇ × ∇ × u. (3.27)
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3.3.1 Potentials

The displacement u is often expressed in terms of the P-wave scalar potential φ
and S-wave vector potential''', using the Helmholtz decomposition theorem (e.g.,
Aki and Richards, 2002, pp. 67–9), i.e.,

u = ∇φ + ∇ ×''', ∇ ·''' = 0. (3.28)

We then have

∇ · u = ∇2φ (3.29)

and

∇ × u = ∇ × ∇ ×'''

= ∇∇ ·''' − ∇2''' (from 3.16)

= −∇2''' (since ∇ ·''' = 0). (3.30)

Motivated by (3.21) and (3.25), we require that these potentials also satisfy

∇2φ − 1
α2

∂2φ

∂t2 = 0, (3.31)

∇2''' − 1
β2

∂2'''

∂t2 = 0. (3.32)

After solving these equations for φ and ''', the P-wave displacement is given by
the gradient of φ and the S-wave displacement is given by the curl of''', following
(3.28).

3.4 Plane waves

At this point it is helpful to introduce the concept of a plane wave. This is a solution
to the wave equation in which the displacement varies only in the direction of
wave propagation and is constant in the directions orthogonal to the propagation
direction. For example, for a plane wave traveling along the x axis, the displacement
may be expressed as

u(x, t) = f(t ± x/c), (3.33)

where c is the velocity of the wave, f is any arbitrary function (a vector function is
required to express the polarization of the wave), and the waves are propagating in
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Table 3.1: Harmonic wave parameters.

Angular frequency ω time−1 ω = 2πf = 2π
T = ck

Frequency f time−1 f = ω
2π = 1

T = c
#

Period T time T = 1
f = 2π

ω = #
c

Velocity c distance time−1 c = #
T = f# = ω

k

Wavelength # distance # = c
f = cT = 2π

k

Wavenumber k distance−1 k = ω
c = 2π

# = 2πf
c = 2π

cT

either the +x or −x direction. The displacement does not vary with y or z; the wave
extends to infinity in these directions. If f(t) is a discrete pulse, then u assumes
the form of a displacement pulse traveling as a planar wavefront. More generally,
displacement at position vector x for a plane wave propagating in the unit direction
ŝ may be expressed as

u(x, t) = f(t − ŝ · x/c) (3.34)

= f(t − s · x), (3.35)

where s = ŝ/c is the slowness vector, whose magnitude is the reciprocal of the
velocity.

Since seismic energy is usually radiated from localized sources, seismic wave-
fronts are always curved to some extent; however, at sufficiently large distances
from the source the wavefront becomes flat enough that a plane wave approxima-
tion becomes locally valid. Furthermore, many techniques for solving the seismic
wave equation involve expressing the complete solution as a sum of plane waves of
differing propagation angles. Often the time dependence is also removed from the
equations by transforming into the frequency domain. In this case the displacement
for a particular angular frequency ω may be expressed as

u(x, t) = A(ω)e−iω(t−s·x) (3.36)

= A(ω)e−i(ωt−k·x), (3.37)

where k = ωs = (ω/c)ŝ is termed the wavenumber vector. We will use complex
numbers to represent harmonic waves throughout this book; details of how this
works are reviewed in Appendix B. This may be termed a monochromatic plane
wave; it is also sometimes called the harmonic or steady-state plane wave solution.
Other parameters used to describe such a wave are the wavenumber k = |k| = ω/c,
the frequency f = ω/(2π), the period T = 1/f , and the wavelength, = cT . Equa-
tions relating the various harmonic wave parameters are summarized in Table 3.1.
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3.4.1 Example: Harmonic plane wave equation

What is the equation for the displacement of a 1 Hz P-wave propagating in
the +x direction at 6 km/s? In this case ω = 2πf , where f = 1 Hz, and
thus ω = 2π. The slowness vector is in the direction of the x axis and thus
ŝ = x̂ = (1, 0, 0) and s = (1/c, 0, 0) = (1/6, 0, 0) s/km. We can thus express
(3.36) as

u(x, t) = u(x, t) = Ae−2iπ(t−x/6)

where t is in s and x is in km. As we shall see in the next section, P waves are
polarized in the direction of wave propagation, so u = (ux, 0, 0) and we can
express this more simply as

ux(x, t) = Ae−2iπ(t−x/6).

In general, the coefficient A is complex to permit any desired phase at x = 0.
As described in Appendix B, the real part must be taken for this equation to
have a physical meaning. An alternative form is

ux(x, t) = a cos [2π(t − x/6) − φ]

where a is the amplitude and φ is the phase at x = 0 (see Figure B.3).

3.5 Polarizations of P and S waves

Consider plane P waves propagating in the x direction. From (3.31) we have

α2∂xxφ = ∂ttφ. (3.38)

A general solution to (3.38) can be written as

φ = φ0(t ± x/α), (3.39)

where a minus sign corresponds to propagation in the +x direction and a plus sign
denotes propagation in the −x direction. Because u = ∇φ, we have

ux = ∂xφ,

uy = 0, (3.40)

uz = 0.
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Figure 3.2 Displacements occurring from a harmonic plane P wave (top) and S wave (bottom)
traveling horizontally across the page. S-wave propagation is pure shear with no volume change,
whereas P waves involve both a volume change and shearing (change in shape) in the material.
Strains are highly exaggerated compared to actual seismic strains in the Earth.

Note that for a plane wave propagating in the x direction there is no change in
the y and z directions, and so the spatial derivatives ∂y and ∂z are zero. For P

waves, the only displacement occurs in the direction of propagation along the x

axis. Such wave motion is termed “longitudinal.’’Also, because ∇ × ∇φ = 0, the
motion is curl-free or “irrotational.’’ Since P waves introduce volume changes in
the material (∇ · u ̸= 0), they can also be termed “compressional’’or “dilatational.’’
However, note that P waves involve shearing as well as compression; this is why
the P velocity is sensitive to both the bulk and shear moduli. Particle motion for a
harmonic P wave is shown in Figure 3.2.

Now consider a plane S wave propagating in the positive x direction. The vector
potential becomes

''' = 'x(t − x/β)x̂ +'y(t − x/β)ŷ +'z(t − x/β)ẑ. (3.41)

The displacement is

ux = (∇ ×''')x = ∂y'z − ∂z'y = 0,

uy = (∇ ×''')y = ∂z'x − ∂x'z = −∂x'z, (3.42)

uz = (∇ ×''')z = ∂x'y − ∂y'x = ∂x'y,
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where again we have used ∂y = ∂z = 0, thus giving

u = −∂x'zŷ + ∂x'yẑ. (3.43)

The motion is in the y and z directions, perpendicular to the propagation direction.
S-wave particle motion is often divided into two components: the motion within
a vertical plane through the propagation vector (SV waves) and the horizontal
motion in the direction perpendicular to this plane (SH waves). Because ∇ · u =
∇ · (∇ × ''') = 0, the motion is pure shear without any volume change (hence
the name shear waves). Particle motion for a harmonic shear wave polarized in the
vertical direction (SV wave) is illustrated in Figure 3.2.

3.6 Spherical waves

Another solution to the scalar wave equation (3.31) for the P-wave potential φ is
possible if we assume spherical symmetry. In spherical coordinates, the Laplacian
operator is

∇2φ(r) = 1
r2

∂

∂r

[
r2 ∂φ

∂r

]
, (3.44)

where we have dropped the angular derivatives because of the spherical symmetry.
Using this expression in (3.31), we have

1
r2

∂

∂r

[
r2 ∂φ

∂r

]
− 1
α2

∂2φ

∂t2 = 0. (3.45)

Solutions to this equation outside the point r = 0 may be expressed as

φ(r, t) = f(t ± r/α)

r
. (3.46)

Note that this is identical to the plane wave equation (3.33), except for the factor
of 1/r. Inward and outward propagating waves are specified by the + and − signs
respectively. Since this expression is usually used to model waves radiating away
from a point source, the inward propagating solution is normally ignored. In this
case the 1/r term represents a decay in the wave amplitude with range, a geometrical
spreading factor that we will explore further in Chapter 6.

Equation (3.46) is not a valid solution to (3.45) at r = 0. However, it can be
shown (e.g., Aki and Richards, 2002, Section 4.1) that (3.46) is the solution to the
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inhomogeneous wave equation

∇2φ(r) − 1
α2

∂2φ

∂t2 = −4πδ(r)f(t), (3.47)

where the delta function δ(r) is zero everywhere except r = 0 and has a volume
integral of 1. The factor 4πδ(r)f(t) represents the source-time function at the origin.
We will return to this equation when we discuss seismic source theory in Chapter 9.

3.7 Methods for computing synthetic seismograms†

Alarge part of seismology involves devising and implementing techniques for com-
puting synthetic seismograms for realistic Earth models. In general, our goal is to
calculate what would be recorded by a seismograph at a specified receiver location,
given an exact specification of the seismic source and the Earth model through
which the seismic waves propagate. This is a well-defined forward problem that,
in principle, can be solved exactly. However, errors in the synthetic seismograms
often occur in practical applications. These inaccuracies can be be separated into
two parts:

1. Inaccuracies arising from approximations in the theory used to compute the synthetic
seismograms. Examples of this would include many applications of ray theory which do
not properly account for head waves, diffracted waves, or the coupling between different
wave types at long periods.Another computational error is the grid dispersion that occurs
in most finite difference schemes.

2. Errors caused by using a simplified Earth or source model. In this case the syn-
thetic seismogram may be exact for the simplified model, but the model is an inad-
equate representation of the real problem. These simplifications might be necessary
in order to apply a particular numerical technique, or might result from ignorance of
many of the details of the model. Examples would include the use of 1-D models
that do not fully account for 3-D structure, the assumption of a point source rather
than a finite rupture, and neglecting the effects of attenuation or anisotropy in the
calculations.

The first category of errors may be addressed by applying a more exact algorithm,
although in practice limits on computing resources may prevent achieving the de-
sired accuracy in the case of complicated models. The second category is more
serious because often one simply does not know the properties of the Earth well
enough to be able to model every wiggle in the observed seismograms. This is
particularly true at high frequencies (0.5 Hz and above). For teleseismic arrivals,
long-period body waves (15–50 s period) and surface waves (40–300 s period) can
usually be fit well with current Earth models, whereas the coda of high-frequency
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body-wave arrivals can only be modeled statistically (fitting the envelope function
but not the individual wiggles).

Because of the linearity of the problem and the superposition principle (in which
distributed sources can be described as the sum of multiple point sources), there
is no great difficulty in modeling even very complicated sources (inverting for
these sources, is, of course, far more difficult, but here we are only concerned
with the forward problem). If the source can be exactly specified, then computing
synthetics for a distributed source is only slightly more complicated than for a simple
point source. By far the most difficult part in computing synthetic seismograms is
solving for the propogation effects through realistic velocity structures. Only for
a few grossly simplified models (e.g., whole space or half-spaces) are analytical
solutions possible.

The part of the solution that connects the force distribution at the source with
the displacements at the receiver is termed the elastodynamic Green’s function, and
will be discussed in greater detail in Chapter 9. Computation of the Green’s function
is the key part of the synthetic seismogram calculation because this function must
take into account all of the elastic properties of the material and the appropriate
boundary conditions.

There are a large number of different methods for computing synthetic seismo-
grams. Most of these fall into the following categories:

1. Finite-difference and finite-element methods that use computer power to solve the wave
equation over a discrete set of grid points or model elements. These have the great
advantage of being able to handle models of arbitrary complexity. Their computational
cost grows with the number of required grid points; more points are required for 3-D
models (vs. 2-D) and for higher frequencies. These methods are discussed in more detail
in the next section.

2. Ray-theoretical methods in which ray geometries are explicitly specified and ray paths
are computed. These methods include simple (or geometrical) ray theory, WKBJ, and
so-called “generalized’’ ray theory. They are most useful at high frequencies for which
the ray-theoretical approximation is most accurate. They are most simply applied to 1-D
Earth models but can be generalized to 3-D models.

3. Homogeneous layer methods in which the model consists of a series of horizontal lay-
ers with constant properties within each layer. Matrix methods are then used to con-
nect the solutions between layers. Examples of this approach include “reflectivity’’
and “wavenumber integration.’’ These methods yield an exact solution but can become
moderately computationally intensive at high frequencies because a large number of
layers are required to accurately simulate continuous velocity gradients. Unlike finite-
difference and ray-theoretical methods, homogeneous-layer techniques are restricted to
1-D Earth models. However, spherically symmetric models can be computed using the
flat Earth transformation.
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4. Normal mode summation methods in which the standing waves (eigenvectors) of the
spherical Earth are computed and then summed to generate synthetic seismograms.
This is the most natural and complete way to compute synthetic seismograms for the
spherical Earth, but is computationally intensive at high frequencies. Generalization to
3-D Earth models requires including coupling between modes; this is generally done
using asymptotic approximations and greatly increases the complexity of the algorithm.

There is no single “best’’ way to compute synthetic seismograms as each method
has its own advantages and disadvantages. The method of choice will depend upon
the particular problem to be addressed and the available computer power; thus it
is useful to be aware of the full repertoire of techniques. This book will cover only
how relatively simple ray-theoretical synthetic seismograms can be computed for
1-D Earth models. For details regarding ray-theoretical and homogeneous-layer
methods, see Kennett (2001) and Chapman (2004). For normal mode methods, see
Dahlen and Tromp (1998).

3.8 The future of seismology?†

Increasing computer capabilities now make possible ambitious numerical simu-
lations of seismic wave propagation that were impractical only a few years ago
and this trend is likely to continue for many decades. These calculations involve
finite-difference or finite-element methods that approximate the continuum of elas-
tic properties with a large number of discrete values or model elements and solve
the wave equation numerically over a series of discrete time steps. They provide a
complete image of the wavefield at each point in the model for every time step, as
illustrated in Figure 3.3, which shows a snapshot at 10 minutes of the SH wavefield
in the mantle for a source at 500 km (Thorne et al., 2007). Finite difference methods
specify the model at a series of grid points and approximate the spatial and temporal
derivatives by using the model values at nearby grid points. Finite-element meth-
ods divide the model into a series of volume elements with specified properties and
match the appropriate boundary conditions among adjacent elements. Historically,
because of their simplicity, finite-difference methods have been used in seismology
more often than finite elements. However, finite-difference algorithms can have
difficulty correctly handling boundary conditions at sharp interfaces, including the
irregular topography at the Earth’s surface, for which finite-element schemes are
more naturally suited.

Discrete modeling approaches can accurately compute seismograms for compli-
cated 3-D models of Earth structure, provided the gridding or meshing scheme has
sufficient resolution. Complicated analytical techniques are not required, although
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ScS

sS

S

Figure 3.3 The SH-velocity wavefield in the mantle after 10 minutes for a source at 500 km
depth (star), adapted from a figure in Thorne et al. (2007). This axi-symmetric 2-D
finite-difference calculation used the PREM velocity model. The major seismic phases are labeled
(see Chapter 4); the lower amplitude phases are mainly reflections off upper-mantle
discontinuities and an assumed discontinuity 264 km above the core--mantle boundary.

the speed of the algorithm depends upon the skill of the computer programmer
in developing efficient code. Typically, a certain number of grid points or model
elements are required per seismic wavelength for accurate results, with the exact
number depending upon the specific algorithm. In three dimensions, the number of
grid points grows inversely as the cube of the grid spacing and number of required
time steps normally also increases. Because of this, computational requirements
increase rapidly with decreasing seismic wavelength, with the most challenging
calculations being at high frequencies and the greatest required grid densities oc-
curring in the slowest parts of the model.

Finite-difference methods vary depending upon how the temporal and spa-
tial derivatives in these equations are calculated. Simple first-order differencing
schemes for the spatial derivatives are fast and easy to program, but require more
grid points per wavelength to achieve accuracy comparable to higher-order differ-
encing schemes. Many finite-difference programs use the staggered grid approach
in which the velocities and stresses are computed at different grid points.

A few general points to keep in mind:

1. Finite-difference programs run most efficiently if their arrays fit into memory and thus
machines with large memories are desirable. Higher-order finite-difference schemes
generally have an advantage because fewer grid points per wavelength are required for
accurate results, thus reducing the size of the arrays.
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2. Simple first-order differencing schemes require more grid points per wavelength than
higher-order schemes. A commonly used “rule of thumb’’ is that first-order differencing
algorithms require about 20 grid points per wavelength, but even this is not sufficient if
the calculation is performed for a large model that spans many wavelengths. So called
pseudo-spectral methods are equivalent to very high-order differencing methods and in
principle require the smallest number of grid points per wavelength (approaching 2 in
certain idealized situations). However, models with sharp velocity discontinuities often
require more grid points, so much of the advantage of the spectral methods is lost in this
case.

3. An important aspect of finite-difference and finite-element methods is devising absorbing
boundary conditions to prevent annoying reflections from the edges of the model. This is
a non-trivial problem, and many papers have been written discussing various techniques.
Many of these methods work adequately for waves hitting the boundaries at near normal
incidence, but have problems for grazing incidence angles.

Finite-element programs often have advantages over finite differences in ap-
plying boundary conditions. Currently the most developed finite-element program
in global seismology is the implementation of the spectral-element method by
Komatitsch, Tromp and coworkers (Komatitsch et al., 2002, 2005), which explic-
itly includes the free-surface and fluid/solid boundary conditions at the core–mantle
and inner-core boundaries. This program is designed to run in parallel on large high-
performance computing clusters. It uses a variable size meshing scheme for the en-
tire Earth that maintains a relatively constant number of grid points per wavelength
(see Fig. 3.4). The method includes the effects of general anisotropy, anelasticity
(attenuation), surface topography, ellipticity, rotation, and self-gravitation. As im-
plemented, the method requires an average of five grid points per wavelength for
many applications. The algorithm has been validated through comparisons with
synthetics computed using normal mode summation.

Numbers cited by Komatitsch et al. (2005) for calculations on the Earth Simulator
at the JapanAgency for Marine Earth Science and Technology (JAMSTEC) provide
some perspective on the computational requirements. Using 48 nodes (with 64
gigaflops and 16 gigabytes of memory per node), a global simulation can model
waveperiods down to 9 s in about 10 hours of computer time. Shorter periods
can be reached in the same time if more nodes are used. This calculation provides
synthetic seismograms from a single earthquake to any number of desired receivers.
The Earth model itself can be arbitrarily complicated with calculations for general
3-D velocity and density variations taking no longer than those for 1-D reference
models.

Large-scale numerical simulations are also important for modeling strong ground
motions in and around sedimentary basins from large earthquakes and a number of
groups are now performing these calculations (e.g.,Akcelik et al., 2003; Olsen et al.,
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Figure 3.4 The meshing scheme used by the Komatitsch et al. (2002, 2005) implementation of
the spectral element method.The spherical Earth is decomposed into six ‘‘cubical’’ blocks.The
right plot shows how the blocks join and how the number of elements increases near the surface.

2006). A challenging aspect of these problems is the very slow shear velocities
observed in shallow sedimentary layers. For example, in the Los Angeles basin the
average shear velocity approaches 200 m/s at the surface (e.g., Magistrale et al.,
2000). These calculations are valuable because they show how focusing effects
from rupture directivity and basin geometry can lead to large variations in expected
wave amplitudes.

As computer speed and memory size increase, these numerical methods will
become practical even on desktop machines and eventually it will be possible to
routinely compute broadband synthetics for general 3-D Earth models. In time,
these computer-intensive algorithms will probably replace many of the alternative
synthetic seismogram methods. However, there will still be a need for the tech-
niques of classical seismology, such as ray theory and surface wave dispersion
analysis, in order to understand and interpret the results that the computers provide.
Ultimately the challenge will be to devise new methods of data analysis and inver-
sion that will fully exploit the computational capabilities that are rapidly coming
to the field.

3.9 Equations for 2-D isotropic finite differences†

As an example of a discrete modeling method, this section presents equations for
simple isotropic 1-D and 2-D finite differences. Much of this material is adapted
from Section 13.6 of the 2nd volume of the first edition of Aki and Richards (1980).
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We begin with the momentum equation:

ρ
∂2u
∂t2 = ∇ · τττ. (3.48)

Now let u = (ux, uy, uz) = (u, v, w) and recall that (∇ · τττ)i = ∂jτij . For the
two-dimensional case of SH waves propagating in the xz plane, displacement only
occurs in the y direction (i.e., u = (0, v, 0)) and we can write:

ρ
∂2v

∂t2 = ∂jτyj = ∂τyx

∂x
+ ∂τyz

∂z
. (3.49)

Note that ∂
∂y = 0 for the two-dimensional problem. Now recall (3.13) which relates

stress to displacement for isotropic media:

τij = λδij∂kuk + µ(∂iuj + ∂jui). (3.50)

Using this equation we can obtain expressions for τyx and τyz:

τyx = µ
∂v

∂x
(3.51)

τyz = µ
∂v

∂z
.

Substituting into (3.49), we obtain:

ρ
∂2v

∂t2 = ∂

∂x

[
µ
∂v

∂x

]
+ ∂

∂z

[
µ
∂v

∂z

]
. (3.52)

Note that for one-dimensional wave propagation in the x direction ∂
∂z = 0 and the

SH equation reduces to:

ρ(x)
∂2v

∂t2 = ∂

∂x

[
µ(x)

∂v

∂x

]
. (3.53)

This is equivalent to equation (13.129) in Aki and Richards (1980). A similar equa-
tion exists for one-dimensional P-wave propagation if the µ(x) is replaced with
λ(x) + 2µ(x) and the displacements in the y direction (v) are replaced with dis-
placements in the x direction (u).

We can avoid the double time derivative and the space derivatives of µ if we
use the particle velocity v̇ and stress τ = µ∂v/∂x as variables. We then have the
simultaneous equations:

∂v̇

∂t
= 1

ρ(x)

∂τ

∂x
(3.54)
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∂τ

∂t
= µ(x)

∂v̇

∂x
.

A solution to these equations can be obtained directly using finite-difference
approximations for the derivatives. In order to design a stable finite-difference
algorithm for the wave equation, it is important to use centered finite-difference
operators. To see this, consider the Taylor series expansion of a function φ(x)

φ(x +-x) = φ(x) + ∂φ

∂x
-x + 1

2
∂2φ

∂x2 (-x)2 + 1
6
∂3φ

∂x3 (-x)3 + higher-order terms.

(3.55)
If we solve this equation for ∂φ/∂x, we obtain

∂φ

∂x
= 1
-x

[
φ(x +-x) − φ(x)

]
− 1

2
∂2φ

∂x2-x − 1
6
∂3φ

∂x3 (-x)2 − · · · (3.56)

and we see that the simple approximation

∂φ

∂x
≈ 1
-x

[
φ(x +-x) − φ(x)

]
(3.57)

will have a leading truncation error proportional to -x. To obtain a better approx-
imation, consider the expansion for φ(x −-x)

φ(x −-x) = φ(x) − ∂φ

∂x
-x + 1

2
∂2φ

∂x2 (-x)2 − 1
6
∂3φ

∂x3 (-x)3 + higher-order terms

(3.58)
Solving for ∂φ/∂x, we obtain

∂φ

∂x
= 1
-x

[
φ(x) − φ(x −-x)

]
+ 1

2
∂2φ

∂x2-x − 1
6
∂3φ

∂x3 (-x)2 − · · · (3.59)

Averaging (3.56) and (3.59), we obtain

∂φ

∂x
= 1

2-x

[
φ(x +-x) − φ(x −-x)

]
− 1

3
∂3φ

∂x3 (-x)2 − · · · (3.60)

and we see that the central difference formula

∂φ

∂x
= 1

2-x

[
φ(x +-x) − φ(x −-x)

]
(3.61)

has an error of order (-x)2. For small values of -x, these errors will be much
smaller than those obtained using (3.57). Similarly, the second derivative of φ can
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be computed by summing (3.55) and (3.58) to obtain

∂2φ

∂x2 = 1
(-x)2

[
φ(x +-x) − 2φ(x) + φ(x −-x)

]
, (3.62)

which also has error of order (-x)2.
To show how a centered finite-difference approach can be used to solve (3.54),

consider Figure 3.5a, which shows the xt plane sampled at points (i-t, j-x), where
i and j are integers. We can then write

v̇i+1
j − v̇i−1

j

2-t
= 1

ρj

τi
j+1 − τi

j−1

2-x
(3.63)

τi+1
j − τi−1

j

2-t
= µj

v̇i
j+1 − v̇i

j−1

2-x
.

This approach will be stable provided the time-mesh interval -t is smaller than or
equal to -x/cj , where cj = √

µj/ρj is the local wave velocity.
An even better algorithm uses a staggered-grid approach (e.g., Virieux, 1986)

in which the velocities and stresses are computed at different grid points, offset by

t
i+ 1

i

j – 1 j j +1

∆t

∆x

x

t

i+1

i

j –1/2 j j +1/2

∆t

∆x

x

i+1/2

i– 1/2

v

τ

(a) (b)

Figure 3.5 (a) A simple 1-D finite-difference gridding scheme. (b) A staggered grid in which the
velocities and stresses are stored at different points.
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half a grid length in both x and t (see Figure 3.5b). In this case, we have

v̇
i+1

2
j − v̇

i−1
2

j

-t
= 1

ρj

τi
j+1/2 − τi

j−1/2

-x
(3.64)

τi+1
j+1/2 − τi

j+1/2

-t
= µ

j+1
2

v̇
i+1

2
j+1 − v̇

i+1
2

j

-x
.

As discussed in Aki and Richards (1980, p. 777), the error in this approximation is
four times smaller than in (3.63) because the sampling interval has been halved.

Now let us consider the two-dimensional P-SV system. In this case u = (u, 0, w)

and we can write:

ρ
∂2u

∂t2 = ∂jτxj = ∂τxx

∂x
+ ∂τxz

∂z
(3.65)

ρ
∂2w

∂t2 = ∂jτzj = ∂τzx

∂x
+ ∂τzz

∂z
.

Using (3.50) we can obtain expressions for τxx, τxz, and τzz:

τxx = λ

[
∂u

∂x
+ ∂w

∂z

]
+ µ

[
2
∂u

∂x

]

= (λ+ 2µ)
∂u

∂x
+ λ

∂w

∂z

τxz = µ

[
∂u

∂z
+ ∂w

∂x

]
(3.66)

τzz = λ

[
∂u

∂x
+ ∂w

∂z

]
+ µ

[
2
∂w

∂z

]

= (λ+ 2µ)
∂w

∂z
+ λ

∂u

∂x
.

Equations (3.49) and (3.51) are a coupled system of equations for two-dimensional
SH-wave propagation, while (3.65) and (3.66) are the equations for P-SV wave
propagation. As in the one-dimensional case, it is often convenient to take time
derivatives of the equations for the stress (3.51) and (3.66), so that we can express
everything in terms of (u̇, v̇, ẇ) = ∂u/∂t. In this case the SH equations become:

ρ
∂v̇

∂t
= ∂τyx

∂x
+ ∂τyz

∂z
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∂τyx

∂t
= µ

∂v̇

∂x
(3.67)

∂τyz

∂t
= µ

∂v̇

∂z

and the P-SV equations become:

ρ
∂u̇

∂t
= ∂τxx

∂x
+ ∂τxz

∂z

ρ
∂ẇ

∂t
= ∂τzx

∂x
+ ∂τzz

∂z

∂τxx

∂t
= (λ+ 2µ)

∂u̇

∂x
+ λ

∂ẇ

∂z
(3.68)

∂τxz

∂t
= µ

[
∂u̇

∂z
+ ∂ẇ

∂x

]

∂τzz

∂t
= (λ+ 2µ)

∂ẇ

∂z
+ λ

∂u̇

∂x
.

These are first-order systems of equations in velocity and stress which can be solved
numerically. In this case, the elastic properties ρ, λ, and µ are specified at a series
of model grid points. With suitable starting conditions, the velocities and stresses
are also defined at grid points. The program then calculates the required spatial
derivatives of the stresses in order to compute the velocities at time t + -t. The
spatial derivatives of these velocities then allow the computation of new values for
the stresses. This cycle is then repeated.

The global finite-difference calculation plotted in Figure 3.3 was performed using
an axi-symmetric SH-wave algorithm developed and implemented by Igel and
Weber (1995), Thorne et al. (2007), and Jahnke et al. (2008). It uses a staggered
grid, with an eight-point operator to compute the spatial derivatives, and can be run
on parallel computers with distributed memory.

3.10 Exercises

1. Period T is to angular frequency ω as wavelength , is to: (a) wavenumber k, (b)
velocity c, (c) frequency f , (d) time t, (e) none of the above.

2. Figure 3.6 plots a harmonic plane wave at t = 0, traveling in the x direction at
5 km/s. (a) Write down an equation for this wave that describes displacement, u,
as a function of x and t. (b) What is the maximum strain for this wave?
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u
8 km

0.04 m
V = 5 km/s

x

Figure 3.6 Displacement of a harmonic wave at t = 0 as a function of distance.

3. Consider two types of monochromatic plane waves propagating in the x direction
in a uniform medium: (a) P wave in which ux = A sin(ωt − kx), (b) S wave with
displacements in the y direction, i.e., uy = A sin(ωt − kx). For each case, derive
expressions for the non-zero components of the stress tensor. Refer to (2.17) to get
the components of the strain tensor; then use (2.30) to obtain the stress components.

4. Assume harmonic P waves are traveling through a solid with α = 10 km/s. If the
maximum strain is 10−8, what is the maximum particle displacement for waves
with periods of: (a) 1 s, (b) 10 s, (c) 100 s?

5. Is it possible to have spherical symmetry for S waves propagating away from a
point source? Under what conditions could an explosive source generate shear
waves?

6. Show that (3.46) satisfies (3.45) for r ̸= 0.

7. (COMPUTER) In the case of plane-wave propagation in the x direction within
a uniform medium, the homogeneous momentum equation (3.9) for shear waves
can be expressed as

∂2u

∂t2 = β2 ∂
2u

∂x2 ,

where u is the displacement. Write a computer program that uses finite differences
to solve this equation for a bar 100 km in length, assuming β = 4 km/s. Use
dx = 1 km for the length spacing and dt = 0.1 s for the time spacing. Assume a
source-time function at u (50 km) of the form

u50(t) = sin2(πt/5), 0 < t < 5 s.

Apply a stress-free boundary condition at u (0 km) and a fixed boundary condi-
tion at u (100 km). Approximate the second derivatives using the finite difference
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scheme:

∂2u

∂x2 = ui+1 − 2ui + ui−1

dx2 .

Plot u(x) at 4 s intervals from 1 to 33 s. Verify that the pulses travel at velocities
of 4 km/s. What happens to the reflected pulse at each endpoint? What happens
when the pulses cross?

Hint: Here is the key part of a FORTRAN program to solve this problem:

(initialize t, dx, dt, tlen, beta and u1,u2,u3 arrays)
10 t=t+dt

do i=2,100
rhs=beta**2*(u2(i+1)-2.*u2(i)+u2(i-1))/dx**2
u3(i)=dt**2*rhs+2.*u2(i)-u1(i)

enddo
u3(1)=u3(2)
u3(101)=0.
if (t.le.tlen) then

u3(51)=sin(3.1415927*t/tlen)**2
end if
do i=1,101

u1(i)=u2(i)
u2(i)=u3(i)

enddo
(output u2 at desired intervals, stop when t is big
enough)

go to 10





4

Ray theory:Travel times

Seismic ray theory is analogous to optical ray theory and has been applied for
over 100 years to interpret seismic data. It continues to be used extensively to-
day, owing to its simplicity and applicability to a wide range of problems. These
applications include most earthquake location algorithms, body-wave focal mech-
anism determinations, and inversions for velocity structure in the crust and mantle.
Ray theory is intuitively easy to understand, simple to program, and very efficient.
Compared to more complete solutions, it is relatively straightforward to generalize
to three-dimensional velocity models. However, ray theory also has several im-
portant limitations. It is a high-frequency approximation, which may fail at long
periods or within steep velocity gradients, and it does not easily predict any “non-
geometrical’’ effects, such as head waves or diffracted waves. The ray geometries
must be completely specified, making it difficult to study the effects of reverberation
and resonance due to multiple reflections within a layer.

In this chapter, we will be concerned only with the timing of seismic arrivals,
deferring the consideration of amplitudes and other details to later. This narrow
focus is nonetheless very useful for many problems; a significant fraction of current
research in seismology uses only travel time information. The theoretical basis for
much of ray theory is derived from the eikonal equation (seeAppendix C); however,
because these results are not required for most applications we do not describe
them here.

4.1 Snell’s law

Consider a plane wave, propagating in material of uniform velocity v, that intersects
a horizontal interface (Fig. 4.1).

The wavefronts at time t and time t +!t are separated by a distance !s along
the ray path. The ray angle from the vertical, θ, is termed the incidence angle. This

65
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!x

!s

!t

u

wavefront at time t1

wavefront at time t1 + 

Figure 4.1 A plane wave incident on a horizontal surface.The ray angle from vertical is termed
the incidence angle θ.

angle relates !s to the wavefront separation on the interface, !x, by

!s = !x sin θ. (4.1)

Since !s = v!t, we have

v!t = !x sin θ (4.2)

or

!t

!x
= sin θ

v
= u sin θ ≡ p, (4.3)

where u is the slowness (u = 1/v where v is velocity) and p is termed the ray
parameter. If the interface represents the free surface, note that by timing the
arrival of the wavefront at two different stations, we could directly measure p. The
ray parameter p represents the apparent slowness of the wavefront in a horizontal
direction, which is why p is sometimes called the horizontal slowness of the ray.

Now consider a downgoing plane wave that strikes a horizontal interface be-
tween two homogeneous layers of different velocity and the resulting transmitted
plane wave in the lower layer (Fig. 4.2). If we draw wavefronts at evenly spaced
times along the ray, they will be separated by different distances in the different
layers, and we see that the ray angle at the interface must change to preserve the
timing of the wavefronts across the interface.

In the case illustrated the top layer has a slower velocity (v1 < v2) and a cor-
respondingly larger slowness (u1 > u2). The ray parameter may be expressed in
terms of the slowness and ray angle from the vertical within each layer:

p = u1 sin θ1 = u2 sin θ2. (4.4)
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v1

v2

u1

u2

Figure 4.2 A plane wave crossing a horizontal interface between two homogeneous half-spaces.
The higher velocity in the bottom layer causes the wavefronts to be spaced further apart.

Notice that this is simply the seismic version of Snell’s law in geometrical optics.
Equation (4.4) may also be obtained from Fermat’s principle, which states that
the travel time between two points must be stationary (usually, but not always, the
minimum time) with respect to small variations in the ray path. Fermat’s principle
itself can be derived from applying variational calculus to the eikonal equation
(e.g., Aki and Richards, 2002, pp. 89–90).

4.2 Ray paths for laterally homogeneous models

In most cases the compressional and shear velocities increase
as a function of depth in the Earth. Suppose we examine a
ray traveling downward through a series of layers, each of
which is faster than the layer above. The ray parameter p

remains constant and we have

p = u1 sin θ1 = u2 sin θ2 = u3 sin θ3. (4.5)

If the velocity continues to increase, θ will eventually equal 90◦ and the ray will be
traveling horizontally.

This is also true for continuous velocity gradients (Fig. 4.3). If we let the slowness
at the surface be u0 and the takeoff angle be θ0, we have

u0 sin θ0 = p = u sin θ. (4.6)

When θ = 90◦ we say that the ray is at its turning point and p = utp, where utp is
the slowness at the turning point. Since velocity generally increases with depth in
Earth, the slowness decreases with depth. Smaller ray parameters are more steeply
dipping at the surface, will turn deeper in Earth, and generally travel farther. In
these examples with horizontal layers or vertical velocity gradients, p remains
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v

z
u = 90°

u

Figure 4.3 Ray paths for a model that has a continuous velocity increase with depth will curve
back toward the surface.The ray turning point is defined as the lowermost point on the ray path,
where the ray direction is horizontal and the incidence angle is 90◦.

T

dT/dX= p = ray parameter

X

= horizontal slowness
= constant for given ray

Figure 4.4 A travel time curve for a model with a continuous velocity increase with depth. Each
point on the curve results from a different ray path; the slope of the travel time curve, dT/dX,
gives the ray parameter for the ray.

constant along the ray path. However, if lateral velocity gradients or dipping layers
are present, then p will change along the ray path.

u

p = u sin 

=
 u

 c
os

sx

sz

s

u

uu
h

In a model in which velocity increases with depth,1 the
travel time curve, a plot of the first arrival time versus dis-
tance, will look like Figure 4.4. Note that p varies along
the travel time curve; a different ray is responsible for the
“arrival’’ at each distance X. At any point along a ray,
the slowness vector s can be resolved into its horizontal
and vertical components. The length of s is given by u,
the local slowness. The horizontal component, sx, of the

1 Observant readers may notice that our coordinate system has now flipped so that z is no longer pointing upward
as it did in Chapters 2 and 3, but rather points downward so that depths from the surface are positive. Both
conventions are often used in seismology, depending upon which is more convenient.
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slowness is the ray parameter p. In an analogous way, we may define the vertical
slowness η by

η = u cos θ = (u2 − p2)1/2. (4.7)

At the turning point, p = u and η = 0.

dsdz

dx
x

z

u

Let us now develop integral expressions to compute travel
time and distance along a particular ray. Consider a segment
of length ds along a ray path. From the geometry we have

dx

ds
= sin θ,

dz

ds
= cos θ = (1 − sin2 θ)1/2. (4.8)

Since p = u sin θ, we may write

dx

ds
= p

u
,

dz

ds
= (1 − p2/u2)1/2 = u−1(u2 − p2)1/2. (4.9)

From the chain rule

dx

dz
= dx

ds

ds

dz
= dx/ds

dz/ds
= p

u

u

(u2 − p2)1/2 = p

(u2 − p2)1/2 . (4.10)

This can be integrated to obtain x:

x(z1, z2, p) = p

∫ z2

z1

dz

(u2(z) − p2)1/2 . (4.11)

If we let z1 be the free surface (z1 = 0) and z2 be the turning point zp, the distance
x from the surface source to the surface point over the turning point is

x(p) = p

∫ zp

0

dz

(u2(z) − p2)1/2 . (4.12)

Because the ray is symmetric about the turning point, the total distance X(p) from
surface source to surface receiver is just twice this expression, that is,

X(p) = 2p

∫ zp

0

dz
(
u2(z) − p2

)1/2 . (4.13)
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In a similar way, we can derive an expression for the travel time t(p):

dt = u ds, dt/ds = u, (4.14)

dt

dz
= dt

ds

ds

dz
= dt/ds

dz/ds
= u2

(
u2(z) − p2

)1/2 , (4.15)

and we obtain

t(p) =
∫ zp

0

u2(z)
(
u2(z) − p2

)1/2 dz. (4.16)

This gives the travel time from the surface to the turning point, zp. The total surface-
to-surface travel time, T(p), is given by

T(p) = 2
∫ zp

0

u2(z)
(
u2(z) − p2

)1/2 dz. (4.17)

Equations (4.13) and (4.17) are suitable for a model in which u(z) is a continuous
function of depth.

u ∆

∆

∆

1 z1

u2

ui

z2

zi

The simplest velocity models are specified as a stack of
homogeneous layers. In this case the integrals for X and T

become summations:

X(p) = 2p
∑

i

!zi
(
u2

i − p2
)1/2 , ui > p, (4.18)

and

T(p) = 2
∑

i

u2
i!zi

(
u2

i − p2
)1/2 , ui > p. (4.19)

Note that we sum over the layers from the top downward until the layer slowness
is less than the ray parameter; we don’t want (u2(z)−p2)1/2 to become imaginary.

4.2.1 Example: Computing X(p) and T(p)

Consider a homogeneous three-layer model with 3 km layer thicknesses and
velocities 4, 6 and 8 km/s for the top, middle and bottom layers, respectively.
What is the surface-to-surface distance and travel time for a ray with p =
0.15 s/km? We first convert the velocities to slownesses and obtain u1 = 0.25,
u2 = 0.167, and u3 = 0.125 s/km. We also have!z1 = !z2 = !z3 = 3 km.
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In equations (4.18) and (4.19), note that u is only greater than p for layers
1 and 2. This means that the ray will pass through these layers but will be
reflected off the top of layer 3. We thus have:

X(p) = 2p
!z1

(
u2

1 − p2
)1/2 + 2p

!z2
(
u2

2 − p2
)1/2

= 2 · 3 · 0.15
(
0.252 − 0.152

)1/2 + 2 · 3 · 0.15
(
0.16772 − 0.152

)1/2

= 16.9 km

and

T(p) = 2
u2

1!z1
(
u2

1 − p2
)1/2 + 2

u2
2!z2

(
u2

2 − p2
)1/2

= 2 · 3 · 0.252

(
0.252 − 0.152

)1/2 + 2 · 3 · 0.1672

(
0.16772 − 0.152

)1/2

= 4.17 s

The ray travels for 4.17 s and hits the surface 16.9 km from the source.

4.2.2 Ray tracing through velocity gradients

When velocity gradients are present, (4.18) and (4.19) are not very convenient since
a “staircase’’ model with a large number of homogeneous layers must be evaluated
to give accurate results. A better strategy is to parameterize the velocity model at
a number of discrete points in depth and evaluate the integrals (4.12) and (4.16)
by assuming an appropriate interpolation function between the model points. For a
linear velocity gradient between model points of the form v(z) = a + bz, the slope
of the gradient, b, between v1(z1) and v2(z2) is given by

b = v2 − v1

z2 − z1
. (4.20)

Evaluating the integrals for t(p) and x(p), one can then obtain (e.g., Chapman et al.,
1988)

x(p) = η

bup

∣∣∣∣∣

u1

u2

(4.21)
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and

t(p) = 1
b

[
ln
(

u + η

p

)
− η

u

] ∣∣∣∣∣

u1

u2

+ px(p), (4.22)

where the vertical slowness η = (u2 − p2)1/2. If the ray turns within the layer,
then there is no contribution to these integrals from the lower point. A computer
subroutine that uses these expressions to compute x(p) and t(p) for a layer with a
linear velocity gradient is provided in Appendix D; this is needed in some of the
Exercises.

4.3 Travel time curves and delay times

Generally in the Earth, X(p) will increase as p decreases; that is, as the takeoff
angle decreases, the range increases:

v

z
p
decreasing

X increasing

In this case the derivative dX/dp is negative. When dX/dp < 0, we say that
this branch of the travel time curve is prograde. Occasionally, because of a rapid
velocity transition in the Earth, dX/dp > 0, and the rays turn back on themselves:

v

p
decreasing

X decreasing

z

When dX/dp > 0 the travel time curve is termed retrograde. The transition from
prograde to retrograde and back to prograde generates a triplication in the travel
time curve (Fig. 4.5). The endpoints on the triplication are termed caustics. These
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Figure 4.5 A triplication in the travel time curve and the corresponding X(p) curve resulting
from a steep velocity increase.

are the points where dX/dp = 0. Energy is focused to these points since rays at
different takeoff angles arrive at the same range (as we shall see later, geometrical
ray theory predicts infinite amplitude at these points!). The triplication may be
“unraveled’’ by considering the X(p) function.

At large values of p the rays turn at shallow depths and travel only short
distances. As the ray parameter decreases, the turning point depth increases and the
range, X, increases. When the turning points enter the steep velocity gradient, X

begins decreasing with decreasing p. Once the rays break through the steep velocity
gradient and turn in the more shallow gradient below, X once again increases with
decreasing p. The caustics are the stationary points on the X(p) curve. However, it
should be noted that sharp changes in the velocity gradient (i.e., discontinuities in
dv/dz) will produce sharp bends in the X(p) curve so that it will not always have
the smooth appearance shown in Figure 4.5. In particular, local maxima or minima
in X(p) may be present where dX/dp is discontinuous and a caustic does not occur.

4.3.1 Reduced velocity

Travel time curves can often be seen in more detail if they are plotted using a
reduction velocity that is subtracted from the travel times (Figure 4.6). In this case
the time scale is shifted an amount equal to the range divided by the reducing
velocity. Velocities that are equal to the reduction velocity will plot as horizontal
lines, and a greatly expanded time scale becomes possible.

4.3.2 The τ(p) function

The function X(p) is more nicely behaved than T(X) since it does not cross itself
(there is a single value of X for each value of p), but the inverse function p(X) is
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Figure 4.6 A reduction velocity can be used to expand the time scale to show more detail in
travel time curves.

multivalued. An even nicer function is the combination

τ(p) = T(p) − pX(p), (4.23)

where τ is called the delay time. It can be calculated very simply from (4.13) and
(4.17):

τ(p) = 2
∫ zp

0

[
u2

(u2 − p2)1/2 − p2

(
u2 − p2

)1/2

]

dz

= 2
∫ zp

0

(
u2(z) − p2

)1/2
dz

= 2
∫ zp

0
η(z) dz. (4.24)

For our simple layered medium, we have

τ(p) = 2
∑

i

(
u2

i − p2
)1/2

!zi = 2
∑

i

ηi!zi, ui > p. (4.25)

Consider a point on a travel time curve t(x) at distance X and time T (Fig. 4.7). The
equation of the straight line tangent to the travel time curve is t = T + p(x − X).
At x = 0, t = T − pX = τ(p), so the intercept of the line is τ(p) while the slope
is p. The slope of the τ versus p curve is

dτ

dp
= d

dp
2
∫ zp

0

(
u2 − p2

)1/2
dz = −2p

∫ zp

0

dz
(
u2 − p2

)1/2 (4.26)
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X

(p)

tangent to curve
T

!
Figure 4.7 The delay time,
τ(p) = T − pX, is given by the
intercept of the tangent to the
travel time curve.

and thus

dτ

dp
= −X(p). (4.27)

The slope of the τ(p) curve is −X. Because X ≥ 0, the τ(p) curve is always
decreasing, or monotonically decreasing. The τ(p) curve remains monotonically
decreasing (dτ/dp < 0) even in the presence of a triplication in the T(X) curve.
The second derivative of τ is simply

d2τ

dp2 = d

dp
(−X) = −dX

dp
. (4.28)

The τ(p) curve is concave upward for a prograde branch and concave downward
for a retrograde branch (Fig. 4.8). The functions X(p), T(p), and τ(p) are “proper’’
in that they are single valued. T(X), on the other hand, is not a proper function since

p

prograde

retrograde

prograde

T

Xprograde

prograde
retrograde

!

Figure 4.8 The τ(p) function ‘‘unravels’’ triplications in travel time curves. Prograde branches
have concave upward τ(p) curves; retrograde branches have concave downward τ(p) curves.
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it will generally be multivalued. This difference means that τ(p) data, if available,
are generally easier to interpret than T(X) data. We shall see in the next chapter
that working in the τ(p) domain has advantages in computing velocity versus depth
functions from travel time data.

4.4 Low-velocity zones

In all of the examples plotted above, we have assumed that velocity always increases
with depth. However, occasionally we will encounter the case where velocity de-
creases with depth, creating a low-velocity zone (LVZ). The outstanding example in
Earth is the core, where the P velocity drops from about 14 km/s in the lowermost
mantle to 8 km/s in the outermost core. There is also considerable evidence for a
LVZ in the upper mantle, at least in shear velocity, within the asthenosphere (about
80 to 200 km depth). Within the negative velocity gradient at the top of the LVZ,
the rays are bent downward (Fig. 4.9). Note that no rays originating at the surface

v

z

LVZ

Shadow zone

T shadow zone

pX

!

Figure 4.9 A low velocity zone (LVZ) results from a velocity decrease with depth. Rays curve
downward as the velocity decreases, creating a shadow zone on the surface and gaps in the T(X)
and τ(p) curves.
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v

z

LVZ

Figure 4.10 A low-velocity zone (LVZ) can trap waves, creating a wave guide.

can turn within the LVZ itself. Rays with horizontal slownesses corresponding to
values within the LVZ turn above the zone. Only when the ray parameter becomes
small enough do rays enter the LVZ. These rays then pass through the low velocity
zone and turn in the region below the LVZ in which velocities are once again higher
than any velocities in the overlying material.

The existence of a low velocity zone creates a gap, termed a shadow zone, in both
the T(X) and τ(p) curves. The absence of rays turning within the LVZ often makes
the velocity structure within low velocity zones difficult to determine. A related
phenomenon arises when rays originate within a low velocity zone. In this case,
some rays are trapped within the LVZ and are forever curving back in toward the
velocity minimum (Fig. 4.10). The LVZ acts as a wave guide and, in cases of low
attenuation, seismic energy can propagate very long distances. The most notable
example of a wave guide in Earth is the sound channel in the ocean. Acoustic waves
trapped within the sound channel can be detected over distances of thousands of
kilometers.

4.5 Summary of 1-D ray tracing equations

Let us now review the important equations for ray tracing in laterally homogeneous
Earth models. First, the ray parameter or horizontal slowness p is defined by several
expressions:

p = u(z) sin θ = dT

dX
= utp = constant for given ray, (4.29)

where u = 1/v is the slowness, θ is the ray incidence angle (from vertical), T is
the travel time, X is the horizontal range, and utp is the slowness at the ray turning
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point. We also defined the vertical slowness

η =
(
u2 − p2)1/2 (4.30)

and integral expressions for the surface-to-surface travel time T(p), range X(p),
and delay time τ(p):

T(p) = 2
∫ zp

0

u2(z)
(
u2(z) − p2

)1/2 dz = 2
∫ zp

0

u2(z)

η
dz, (4.31)

X(p) = 2p

∫ zp

0

dz
(
u2(z) − p2

)1/2 = 2p

∫ zp

0

dz

η
, (4.32)

and

τ(p) = 2
∫ zp

0

(
u2(z) − p2

)1/2
dz = 2

∫ zp

0
η(z) dz, (4.33)

where zp is the turning point depth (p = u at the turning point). We also have

τ(p) = T(p) − pX(p) (4.34)

and

X(p) = −dτ

dp
. (4.35)

The T(X), X(p), τ(p) functions can be quite sensitive to even small changes in
the velocity-depth model. Figure 4.11 illustrates the relationships between these
functions for some simple models. These examples demonstrate that even slight
changes in seismic velocity gradients can have large effects on the resulting ray
paths. It is also apparent that many if not most triplications will not have the sim-
ple form illustrated in Figure 4.5 where the X(p) curve has smooth maxima and
minima. Discontinuities in the vertical velocity gradient produce sharp bends in the
X(p) function, and triplications can exist without formal caustics at their endpoints
where dX/dp = 0. Staircase models are interesting because all of their ray paths
involve reflections off the top of layers and thus are on retrograde branches, con-
nected by straight lines on the T(X) curve that define the first arrivals. These first
arrivals represent head waves traveling along the top of each layer. They have zero
energy in geometrical ray theory but more complete synthetic seismogram calcu-
lations show that they do produce observable arrivals, although generally of low
amplitude.
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Figure 4.11 The T(X), X(p),τ(p) curves for assorted velocity-depth models (z(v)), illustrating (a) a
simple triplication, (b) a velocity model that focuses many of the rays to a single T(X) point, (c) a
double triplication, (d) a staircase model, (e) a low-velocity zone, and (f ) a low-velocity zone with
a sharp velocity jump. Note: T and τ are in s, x and z are in km.
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4.6 Spherical-Earth ray tracing

The ray tracing equations described above are for a horizontally layered Earth. They
are adequate for modeling crustal arrivals in the upper 30 km or so. However, for
deeper rays, it is necessary to take into account Earth’s sphericity. There are two
ways in which this can be done: (1) changing the definition of the ray parameter to
account for the spherical geometry and (2) applying a transformation (the Earth-
flattening transformation) to the spherical model to permit direct use of the flat-
Earth ray tracing equations.

In the first method we modify the definition of the ray parameter to account for
the fact that the ray angle from the radius (the local vertical) changes along the
ray path, even within homogeneous shells. Consider two such spherical shells in a
spherically symmetric Earth (Fig. 4.12). At the interface between shell 1 and shell
2, we have from Snell’s law

u1 sin θ1(r1) = u2 sin θ2(r1). (4.36)

As the ray travels through shell 2, note that the incidence angle changes (θ2(r1) ̸=
θ2(r2)). If we project the ray to its “turning point’’ as if layer 2 continued down,
we see from the geometry of the triangles that we can express the incidence angle
within layer 2 as a function of radius:

sin θ2(r) = rmin/r. (4.37)

Thus θ2(r1) in (4.36) is related to θ2(r2) by the expression

r1 sin θ2(r1) = r2 sin θ2(r2)

1

1

2

rmin
r2

r1

u

2u

2u

Figure 4.12 The ray geometry
for spherical shells of constant
velocity. Note that θ2 ̸= θ′2
because of the changing angle
of the radius vector.
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or (4.38)

sin θ2(r1) = (r2/r1) sin θ2(r2).

Substituting into (4.36), we obtain the generalization of Snell’s law for spherically
symmetric media:

r1u1 sin θ1 = r2u2 sin θ2. (4.39)

In this case, the ray parameter p becomes

psph = ru sin θ. (4.40)

Recall, in the case of the flat-Earth ray parameter, that p is a measure of the
horizontal slowness

pf = u sin θ = dT

dX
. (4.41)

In the spherical Earth, dX = d! r, where ! is the angle in radians. Thus

psph = rdT

dX
= dT

d!
. (4.42)

Note that the spherical-Earth ray parameterpsph has units of time (s/radian), whereas
the flat-Earth ray parameter has units of slowness (time/distance). Expressions for
travel time and range as a function of psph are very similar to those we derived
earlier:

T(psph) = 2
∫ re

rtp

(ur)2

[
(ur)2 − p2

sph

]1/2

dr

r
(4.43)

and

!(psph) = 2psph

∫ re

rtp

1
[
(ur)2 − p2

sph

]1/2

dr

r
, (4.44)

where re is the Earth radius. The distinction that we make here between pf and psph
is generally not made in the literature – you have to look at the equations to tell the
difference. If there is an r present, then the authors are using psph.
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4.7 The Earth-flattening transformation

Our derivations for T(p), X(p), and τ(p) all assumed that the rays were traveling in
a “flat’’Earth. For a flat, homogeneous half-space, the travel time curve is a straight
line and none of the rays leaving the source at incidence angles other than 90◦

return to the surface since they cannot turn at depth. However, in a homogeneous
spherical Earth, all rays will eventually return to the surface and the travel time
curve is not straight. The curvature of the travel time curve in a spherical Earth can
be simulated in a flat-Earth model if a special velocity gradient is introduced in the
half-space (e.g., Müller, 1971). A new depth variable, zf , is defined:

e−zf /a = r/a or zf = −a ln(r/a), (4.45)

where r is the distance from the center of the Earth and a is the radius of the Earth,
6371 km. Note that r = a−zs, where zs is the depth in a spherical Earth. The radius
r = a (the free surface) corresponds to a flat-Earth depth of z = −a ln(a/a) = 0,
while a radius of r = 0 corresponds to an infinite depth. The velocities transform
as

vf (zf ) = (a/r)vs(r) (4.46)

with separate transformations for P-wave and S-wave velocities. For a given
spherical-Earth model, we can use the above transformations to obtain a corre-
sponding flat-Earth model that will predict identical travel time behavior. Thus, all
of our ray tracing equations can be used without modification. The ranges, Xkm,
calculated for a flat Earth can be converted into degrees,!deg, on a spherical Earth
by using !deg = Xkm[360/(2πa)] since 2πa is the circumference of the Earth in
kilometers.

At a depth of 30 km below the Earth’s surface, a/r = 6371/(6371−30) = 1.005
and the Earth-flattening transformation is probably unnecessary. However, at a
depth of 150 km in the Earth, a spherical Earth velocity, vs, of 8.6 km s−1 becomes
vf = 8.6[6371/(6371 − 150)] = 8.81 km s−1. In this case, the Earth-flattening
transformation starts to assume significance, and of course it becomes increasingly
important for deeper rays. Figure 4.13 shows the Earth-flattening transformation
applied to the PREM P-velocity model. Notice that both the depth and velocity
increase for features at depth. For example, the core–mantle boundary (CMB) depth
increases from 2891 km to 3853 km, while the velocity at the base of the mantle
increases from 13.7 km/s to 25.1 km/s. The change for the inner-core boundary
(ICB) is even more dramatic, with its depth increasing from 5149 km to 10 523 km
and the velocity at the base of the outer core increasing from 10.4 km/s to 54 km/s.
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Figure 4.13 The Earth-flattening transformation applied to the PREM P-velocity model.

There is a singularity in the Earth-flattening transformation at the Earth’s center
where r = 0.

4.8 Three-dimensional ray tracing†

In the preceding sections, we have solved for ray paths by assuming that seismic
velocity varies only with depth or radius. However, ray tracing often must be per-
formed for models with general 3-D velocity variations, which makes the equations
considerably more complicated. Detailed descriptions of ray tracing theory in seis-
mology may be found in Cerveny (2001) and Chapman (2004). Here we adapt
results presented by Müller (2007).

Solutions in this case usually begin with the eikonal equation (see Appendix C)

|∇T |2 =
(
∂T

∂x

)2

+
(
∂T

∂y

)2

+
(
∂T

∂z

)2

= u2, (4.47)

which gives the relationship between the phase factor T and the local slowness u.
The wavefronts are defined by the surfaces T(x) = constant and lines perpendic-
ular to T(x) (parallel to ∇T(x)) define the rays. The ray direction is given by the
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gradient of T

∇T = uŝ = s (4.48)

where ŝ is a unit vector in the local ray direction and s is the slowness vector. If we
consider a position vector x = (x, y, z) along the ray path, then

s = u
dx
ds

= ∇T (4.49)

where ds is the incremental length along the ray path. For ray tracing purposes,
we are interested in how things change along the ray path. Thus let us evaluate the
expression

d

ds
(∇T) = d

ds

(
∂T

∂x
,
∂T

∂y
,
∂T

∂z

)
. (4.50)

Considering for now only the ∂/∂x term, we have (e.g., Müller, 2007)

d

ds

(
∂T

∂x

)
= ∂2T

∂x2

dx

ds
+ ∂2T

∂x∂y

dy

ds
+ ∂2T

∂x∂z

dz

ds
(4.51)

= 1
u

(
∂2T

∂x2

∂T

∂x
+ ∂2T

∂x∂y

∂T

∂y
+ ∂2T

∂x∂z

∂T

∂z

)
(4.52)

= 1
2u

∂

∂x

[(
∂T

∂x

)2

+
(
∂T

∂y

)2

+
(
∂T

∂z

)2
]

(4.53)

= 1
2u

∂

∂x

(
u2
)

(4.54)

= 1
2u

2u

(
∂u

∂x

)
= ∂u

∂x
(4.55)

where we used (4.49) and (4.47). In a similar fashion we may obtain:

d

ds

(
∂T

∂y

)
= ∂u

∂y
(4.56)

d

ds

(
∂T

∂z

)
= ∂u

∂z
(4.57)

and thus

d

ds
(∇T) =

(
∂u

∂x
,
∂u

∂y
,
∂u

∂z

)
= ∇u. (4.58)
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From (4.49), we then have

d

ds

(
u
dx
ds

)
= ∇u. (4.59)

This second-order equation and (4.49) can be replaced with two coupled first-order
equations:

ds
ds

= ∇u (4.60)

and

dx
ds

= s
u
, (4.61)

which can be solved numerically for the position, x, and the slowness vector, s,
along the ray path, assuming initial values for x and s and specified 3-D variations
in the local medium slowness u. Once the ray path is known, it is straightforward
to also solve for the travel time along the ray using (4.48).

For models where slowness varies only with depth, these equations reduce to
those of the previous sections. In this case, ∇u = (0, 0, du/dz) and, from (4.60),
sx and sy are constant and sz is the vertical slowness η. With no loss of generality,
we may rotate the coordinates such that sy = 0 and sx = p, the ray parameter
(horizontal slowness). Equation (4.61) is thus

dx

ds
= p

u
, (4.62)

which is seen to match equation (4.9). Equation (4.60) becomes

dη

ds
= du

dz
or

dη

du
= ds

dz
, (4.63)

which is consistent with η = u cos θ = (u2 − p2)1/2 of equation (4.7).
Equations (4.60) and (4.61) are easiest to solve numerically if the slowness vari-

ations are smooth so that the spatial derivatives are all defined. However, slowness
discontinuities can be handled through a generalization of Snell’s law to material
interfaces of any orientation. Numerical ray tracing can solve for ray theoretical
amplitudes as well as travel times, but we defer discussion of amplitude variations
until Chapter 6. Finally, we note that these equations sometimes have difficulty in
solving the problem of finding the travel time between two specified points (the
two-point ray tracing problem, discussed in more detail in Chapter 5), because ray
paths can bend wildly in models with strong velocity variations and it can be hard
to find an exact ray path that connects the points. In this case, other numerical
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schemes, such as finite-difference ray tracing (e.g., Vidale, 1988) and graph theory
(e.g., Moser, 1991) have often proven more stable. These methods also have the
convenience of requiring model slowness values only at fixed grid points (usually
evenly spaced) within the model.

4.9 Ray nomenclature

The different layers in the Earth (e.g., crust, mantle, outer core, and inner core),
combined with the two different body-wave types (P , S), result in a large number
of possible ray geometries, termed seismic phases. The following naming scheme
has achieved general acceptance in seismology:

4.9.1 Crustal phases

Earth’s crust is typically about 6 km thick under the oceans and 30 to 50 km thick
beneath the continents. Seismic velocities increase sharply at the Moho discon-
tinuity between the crust and upper mantle. A P wave turning within the crust
is called Pg, whereas a ray turning in or reflecting off the Moho is called PmP
(Fig. 4.14). The m in PmP denotes a reflection off the Moho and presumes that
the Moho is a first-order discontinuity. However, the Moho might also be simply a
strong velocity gradient, which causes a triplication that mimics the more simple
case of a reflection. Finally, Pn is a ray traveling in the uppermost mantle below the
Moho. The crossover point is where the first arrivals change abruptly from Pg to
Pn. The crossover point is a strong function of crustal thickness and occurs at about
X = 30 km for oceanic crust and at about X = 150 km for continental crust. There
are, of course, similar names for the S-wave phases (SmS, Sn, etc.) and converted
phases such as SmP.

T

v

Pg
PmP

Pn

Moho
crossover
point

Crust

Mantle
z X

PmP Pn

Pg

Figure 4.14 Ray geometries and names for crustal P phases.The sharp velocity increase at the
Moho causes a triplication in the travel time curve.
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4.9.2 Whole Earth phases

Here the main layers are the mantle, the fluid outer core, and the solid inner core.
P- and S-wave legs in the mantle and core are labeled as follows:

P – P wave in the mantle
K – P wave in the outer core
I – P wave in the inner core
S – S wave in the mantle
J – S wave in the inner core
c – reflection off the core–mantle boundary (CMB)
i – reflection off the inner-core boundary (ICB)

For P and S waves in the whole earth, the above abbreviations apply and stand for
successive segments of the ray path from source to receiver. Some examples of these
ray paths and their names are shown in Figure 4.15. Notice that surface multiple

P

PP

PPP

PcP
PcS

PKP

PKIKP PKJKP

PKiKP

S

SS

SP

SPP

ScS

SKS

SKKS

Source

Figure 4.15 Global seismic ray paths and phase names, computed for the PREM velocity model.
P waves are shown as solid lines, S waves as wiggly lines.The different shades indicate the inner
core, the outer core, and the mantle.
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P

pP
sP

S
sS

pS

Figure 4.16 Deep earthquakes generate surface-reflected arrivals, termed depth phases, with
the upgoing leg from the source labeled with a lower-case p or s. Ray paths plotted here are for
an earthquake at 650 km depth, using the PREM velocity model.

phases are denoted by PP, PPP, SS, SP, and so on. For deep focus earthquakes,
the upgoing branch in surface reflections is denoted by a lowercase p or s; this
defines pP, sS, sP , etc. (see Fig. 4.16). These are termed depth phases, and the time
separation between a direct arrival and a depth phase is one of the best ways to
constrain the depth of distant earthquakes. P-to-S conversions can also occur at
the CMB; this provides for phases such as PcS and SKS. Ray paths for the core
phase PKP are complicated by the Earth’s spherical geometry, leading to several
triplications in the travel time curve for this phase. Often the inner-core P phase
PKIKP is labeled as the df branch of PKP. Because of the sharp drop in P velocity
at the CMB, PKP does not turn in the outer third of the outer core. However, S-to-P
converted phases, such as SKS and SKKS, can be used to sample this region.

4.9.3 PKJKP : The Holy Grail of body wave seismology

The phase PKJKP is a P wave that converts to an S wave during passage through
the solid inner core. Observations of PKJKP potentially could provide improved
estimates of the shear-velocity structure of the inner core, which is otherwise only
constrained by normal mode observations. However, the predicted amplitude of
PKJKP is well below typical noise levels (Doornbos, 1974), owing to the small
P-to-S and S-to-P transmission coefficients at the ICB and strong inner-core atten-
uation. To meet the challenge of its expected weak amplitude, seismologists have
deployed stacking and other methods to enhance the visibility of PKJKP , and
recently a number of observations have been published (Okal and Cansi, 1998;
Deuss et al., 2000; Cao et al., 2005; Wookey and Helffrich, 2008). These results
generally suggest an average inner-core shear velocity close to that derived from
normal mode data. However, PKJKP cannot yet be observed routinely and it
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remains puzzling why the amplitudes of the existing PKJKP observations are much
larger than those predicted by standard velocity and attenuation models of the inner
core. One possibility is that inner-core anisotropy (see Chapter 11) produces larger
PKJKP amplitudes along certain ray paths (Wookey and Helffrich, 2008).

4.10 Global body-wave observations

The visibility of different body-wave phases depends upon their amplitude, polar-
ization, and frequency content. Modern seismographs record all three components
of ground motion (using a vertical and two orthogonal horizontal sensors) over a
wide frequency range. The horizontal records are normally rotated into the radial
component parallel to the azimuth to the source and the transverse component
perpendicular to this azimuth. Figure 4.17 plots the vertical, radial, and transverse

10 15 20 25 30
Time (minutes)

Vertical

Radial

Transverse

P PP
S SP

SS

Figure 4.17 The vertical, radial, and transverse components of ground motion (velocity) from
the January 17, 1994 Northridge earthquake recorded at the IRIS/IDA station OBN at 88.5◦ range.
The original broadband records have been filtered to between 15 and 100 s period.Time is in
minutes relative to the earthquake origin time; amplitudes are self-scaled.
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component records for the 1994 Northridge earthquake in southern California,
recorded at station OBN in Russia, 88.5 degrees away, and identifies some of the
major body-wave phases. Note that the P waves are most visible on the vertical
component, with little P energy arriving on the transverse component.

The time of the first discernible motion of a seismic phase is called the arrival
time, and the process of making this measurement is termed picking the arrival.
In the past, particularly before digital data became available, arrival time picking
was a major part of the operation of seismographic stations. Even today, many
seismic records are still picked by hand, since devising automatic picking schemes
that are reliable in the presence of noise or multiple events has proven difficult.
By measuring the arrival times of seismic phases at a variety of source–receiver
ranges, seismologists are able to construct travel time curves for the major phases
and use these to infer Earth’s average radial velocity structure. This was largely
accomplished in the early part of the twentieth century, and the JB travel time
tables, completed by Jeffreys and Bullen in 1940, are still widely used, differing
by no more than a few seconds from the best current models.

Figure 4.18 plots over five million travel time picks archived by the International
Seismological Centre (ISC) from 1964 to 1987. The major body-wave phases are
easily seen and may be identified from the travel time curves plotted in Figures 4.20
and 4.24. The ISC data have proven to be an invaluable resource in seismology,
and they are used extensively both to locate earthquakes and to perform three-
dimensional velocity inversions (see Chapter 5). They have the advantage of cov-
ering over three decades in time and providing data from many more stations (some
still analog) than are currently available in digital form.

However, the ISC data only provide travel times, and many of the later arriving
phases are sparsely picked. Amore complete picture of the entire seismic wavefield
may be obtained by stacking data from the modern digital seismic networks. In this
procedure, records at common source–receiver ranges are averaged to produce a
composite seismogram. Figures 4.19 and 4.21–4.23 plot stacks of almost 100 000
seismograms from the global networks for all earthquakes larger than magnitude
5.7 between 1988 and 1994 (figures from Astiz et al., 1996). At higher frequencies,
the arrivals appear sharper, but fewer phases can be distinguished. Figures 4.20 and
4.24 show theoretical travel time curves, calculated from the reference velocity
model IASP91 (Kennett and Engdahl, 1991), for the phases visible in the stacked
images.

The shape of the observed travel time curves is related to Earth’s radial velocity
structure, plotted in Figure 1.1 and also tabulated in Appendix A. The ray tracing
equations derived earlier in this chapter can be used to compute theoretical travel
time curves for any radial Earth model. In the next chapter we will discuss the
inverse problem – how velocity models can be derived from travel time data.
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Figure 4.18 Travel time picks collected by the ISC between 1964 and 1987 for events
shallower than 50 km. Over five million individual picks are plotted, the bulk of which are
P, PKP, and S arrivals. However, several later arriving branches can also be seen, including
PP, PKS, PcP, PcS, ScS, PKKP, and PKPPKP. See Figures 4.20 and 4.24 for a key to the
phase names.The phases visible at ±1 minute from the P wave are due to errors
in assigning times.
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Figure 4.19 A stack of short-period (< 2 s), vertical component data from
the global networks between 1988 to 1994. See Figure 4.20 for a key to the phase names.
(From Astiz et al., 1996.)
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Figure 4.20 A key to the phases visible in the short-period stack plotted in Figure 4.19.Travel
time curves are calculated using the IASP91 velocity model (Kennett and Engdahl, 1991). (From
Astiz et al., 1996.)
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Figure 4.21 A stack of long-period (> 10 s), vertical component data from the global networks
between 1988 to 1994. See Figure 4.24 for a key to the phase names.
(From Astiz et al., 1996.)
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Figure 4.22 A stack of long-period (> 10 s), radial component data from the global networks
between 1988 to 1994. See Figure 4.24 for a key to the phase names.
(From Astiz et al., 1996.)
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Figure 4.23 A stack of long-period (> 10 s), transverse component data from the global
networks between 1988 to 1994. See Figure 4.24 for a key to the phase names.
(From Astiz et al., 1996.)
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Figure 4.24 The phases visible in the long-period stacks shown in Figures 4.21−4.23.Travel time
curves are calculated using the IASP91 velocity model (Kennett and Engdahl, 1991).
(From Astiz et al., 1996.)
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4.11 Exercises

1. Show that the minimum time path between points A and B for the ray geometry
in Figure 4.25 gives the same result as Snell’s law. Hint: Express the total travel
time as a function of the position of the ray bending point on the interface.

2. A downgoing P wave in a medium with a P

velocity of 6 km/s travels through this “corner’’
shaped structure. If the incident ray is at an angle
of 60◦ from the horizontal and the final ray is at
an angle of 75◦ from the vertical, what is the P

velocity within the corner-shaped medium?

α = 6 km/s

α = ?

60˚

75˚

3. As shown in Figure 4.26, a vertically prop-
agating upgoing plane wave is incident on a
sediment-basement interface where the seismic velocity drops from 4 km/s to
2 km/s. A cylindrically shaped depression (with radius of curvature r = 1 km)
focuses (approximately) the ray paths to a focus point within the sediments. Solve
for the height of the focus point above the lowest point of the interface. Hint: As-
sume that the maximum slope of the depression is sufficiently small that sin θ ≈ θ

when considering the ray angles.

4. Show that rays in a linear velocity gradient of the form v = a + bz will have ray
paths that are circular. Derive an expression for the radius of the circle in terms of
b and the ray parameter p. (It is also possible to derive a more general constraint,
applying to ray geometries for linear velocity gradients in anisotropic media (see
Shearer and Chapman, 1988); the circular result for isotropic media follows as a
special case.)

5. Assume that velocity varies nicely with depth in such a way that the T(X) curve
for P (surface to surface) has the simple analytical form T = 2(X + 1)1/2 − 2.

velocity = v1

velocity = v2

d

a

a

A

B

u1

u2

Figure 4.25 The bending of a ray path between two homogeneous layers.
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Upgoing plane wave

r = 1 kmv = 2 km/s

v = 4 km/s

Focus point

h = ?

Figure 4.26 The ray geometry for an upcoming plane wave incident on a cylindrical
basin.

Now consider the phase PP for this velocity structure, containing two P legs
with a surface bounce point between source and receiver. Using the above T(X)

function, show that for the travel time to be stationary with respect to changes in the
bouncepoint position, the bouncepoint must occur at the midpoint between source
and receiver. Show that this is a maximum time point. (Note: Consider only bounce-
points within the vertical plane connecting source and receiver. The midpoint is a
minimum time point for perturbations perpendicular to the source–receiver plane,
and thus the PP bouncepoint on a two-dimensional surface is actually a minimax
or saddle point.)

6. Give a graphical argument using the T(X) curve that shows that the PP midpoint
must be a maximum time point along any prograde branch of the travel time curve.

7. Transform the variables in equation (4.32) for X(p) to the spherical-Earth case
by applying the flat-Earth transformation (4.45)–(4.46) and changing the equation
from a dz integral to a dr integral. That is, replace z with z = −a ln(r/a), u = uf

with the appropriate function of us, etc. Show that the result is the spherical-Earth
equation for !(p) (equation 4.44). Hint: Remember that x ̸= ! and to transform
the u on the right side of equation (4.40).

8. (COMPUTER) Consider MARMOD, a velocity-versus-depth model, which is
typical of much of the oceanic crust (Table 4.1). Linear velocity gradients are
assumed to exist at intermediate depths in the model; for example, the P velocity
at 3.75 km is 6.9 km/s. Write a computer program to trace rays through this model
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Table 4.1: MARMOD, a generic marine seismic model

Depth (km) α (km/s) β (km/s) ρ (g/cc)

0.0 4.50 2.40 2.0

1.5 6.80 3.75 2.8

6.0 7.00 3.85 2.9

6.5 8.00 4.60 3.1

10.0 8.10 4.70 3.1

and produce a P-wave T(X) curve, using 100 values of the ray parameter p equally
spaced between 0.1236 and 0.2217 s/km. You will find it helpful to use subroutine
LAYERXT (provided in Fortran in Appendix D and in the supplemental web
material as a Matlab script), which gives dx and dt as a function of p for layers
with linear velocity gradients. Your program will involve an outer loop over ray
parameter and an inner loop over depth in the model. For each ray, set x and t to
zero and then, starting with the surface layer and proceeding downward, sum the
contributions, dx and dt, from LAYERXT for each layer until the ray turns. This
will give x and t for the ray from the surface to the turning point. Multiply by two
to obtain the total surface-to-surface values of X(p) and T(p). Now produce plots
of: (a) T(X) plotted with a reduction velocity of 8 km/s, (b) X(p), and (c) τ(p). On
each plot, label the prograde and retrograde branches. Where might one anticipate
that the largest amplitudes will occur?

9. (COMPUTER) Construct a P-wave travel time curve for Earth using the PREM
model (seeAppendixA). Your program should first read in the depth and P velocity
for the different layers in the model. Next, apply the Earth-flattening transformation
(4.45)–(4.46) to convert these depths and velocities to their flat-Earth equivalent
values. Then, use the subroutine LAYERXT (provided in Fortran in Appendix D
and in the supplemental web material as a Matlab script) to trace rays through this
model and produce a P-wave T(X) curve, using 201 values of the ray parameter p

equally spaced between 0.0017 and 0.1128 s/km. Your program can be structured
as described in Exercise 4.8; however, you should convert the X values returned
by LAYERXT from kilometers to degrees along the Earth’s surface. Now produce
plots of:

(a) T(X) with X = 0 to 180◦, T = 0 to 25 minutes, and no reduction velocity. If
you connect the individual T(X) points with a line, be careful to avoid filling
in the shadow zone between P and PKP. Compare your result with Figure
4.20.

(b) T(X) with X = 10 to 35◦, T = 50 to 100 s, and a reduction velocity of
0.1 degree/s. This should produce an enlarged view of the triplications asso-
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ciated with the upper mantle discontinuities at 400 and 670 km depth in the
PREM model. On the plot, label the travel time branch that represents: (1)
rays that turn above 400 km, (2) rays that turn at 400 km, (3) rays that turn
between 400 and 670 km, (4) rays that turn at 670 km, and (5) rays that turn
below 670 km.

Note: The flat-Earth transformation blows up at the center of the Earth and your
program may produce strange results at small r values; thus do not attempt to
transform the (r = 0, z = 6,371) level in PREM. As a kluge, simply change
the final depth in the model to 6360 km. This means that you will not be able to
include the vertical ray that goes straight through the center of the inner core; this
is why you are asked to use p = 0.0017 as a minimum ray parameter. Warning:
Your computed P travel times are only approximate, owing to the relatively coarse
sampling of PREM in Appendix 1. The true PREM model does not contain linear
velocity gradients between depth points, as the LAYERXT subroutine assumes.

10. For spherically symmetric Earth models, P-SV wave motion separates completely
from SH motion. Despite this, P waves are often observed (weakly) on the trans-
verse component (e.g., Figures 4.17 and 4.23). Give several reasons why this might
occur.

11. The stacked images in Figures 4.21–4.23 appear “grainier’’ at source–receiver
distances near 0◦ and 180◦ than at 90◦, owing to a smaller number of seismograms
available at these distances. Why might one expect the number of seismograms to
diminish at small and long ranges?

12. Some of the seismic phases in Figures 4.18–4.24 are plotted with negative slopes,
that is, they arrive sooner at longer distances. How can this be?

13. Using Figures 4.18–4.24, identify the period (short or long), component (vertical,
radial, or transverse), and the source–receiver distance at which one can most
easily observe the following seismic phases:

(a) SKS,

(b) PKKP,

(c) Sdiff (S wave diffracted along the CMB),

(d) PKPPcP,

(e) PcP,

(f) ScSScS (labeled ScS2 in Figure 4.24),

(g) PKPPKP (often called P ′P ′).





5

Inversion of travel time data

In the preceding chapter we examined the problem of tracing rays and calculating
travel time curves from a known velocity structure. We derived expressions for ray
tracing in a one-dimensional (1-D) velocity model in which velocity varies only with
depth; ray tracing in general three-dimensional (3-D) structures is more complex
but follows similar principles. We now examine the case where we are given travel
times obtained from observations and wish to invert for a velocity structure that can
explain the data. As one might imagine, the inversion is much more complicated
than the forward problem. The main strategy used by seismologists, both in global
and crustal studies, has generally been to divide the problem into two parts:

1. A 1-D “average’’ velocity model is determined from all the available data. This is gen-
erally a non-linear problem but is tractable since we are seeking a single function of
depth. Analysis often does not proceed beyond this point.

2. If sufficient 3-D ray coverage is present, the 1-D model is used as a reference model
and a travel time residual is computed for each datum by subtracting the predicted time
from the observed time. A 3-D model is obtained by inverting the travel time residuals
for velocity perturbations relative to the reference model. If the velocity perturbations
are fairly small, this problem can be linearized and is computationally feasible even for
large data sets. This is the basis for tomographic inversion techniques.

We now consider each of these problems in turn. For now we will assume that
the source locations are precisely known, deferring discussion of the earthquake
location problem to the end of the chapter.

5.1 One-dimensional velocity inversion

Before beginning it is useful to imagine how one might obtain a 1-D velocity
structure from travel times. Assume that we are given a simple travel time curve

103
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without any triplications or low-velocity zones. Each point on the T(X) curve has
a slope, which gives the velocity at the turning point of the ray. Thus, we know
that a particular velocity must be present; the problem is to determine where. This
is equivalent to assigning a depth to each point along the travel time curve. To do
this we need to know the velocity structure above the depth in question, and so it
makes sense to start at the surface and work our way down. At the origin we know
both the depth (zero) and the velocity (the slope of the T(X) curve). We could then
examine a nearby point on the T(X) curve, compute the velocity, and find the depth
at which the predicted travel time curve would pass through the observed point. In
this way we could continue along the T(X) curve and down in depth.

However, this is hardly a rigorous approach and leaves several questions un-
answered. Is it always possible to obtain a velocity model? Could there be more
than one velocity model that predicts the same travel time curve? We now explore
these issues, generally following the treatment in Aki and Richards (2002, pp. 414–
22) to which the reader is referred for more details.

Recall from Chapter 4 the formulas for the surface-to-surface travel time and
distance for a 1-D velocity model:

T(p) = 2
∫ zp

0

u2(z)
(
u2(z) − p2

)1/2 dz, X(p) = 2p

∫ zp

0

dz
(
u2(z) − p2

)1/2 . (5.1)

Assume that we are given a complete T(X) curve. By measuring the slope of the
T(X) curve, we can obtain p = dT/dX and thus both X(p) and T(p). Our goal is
to invert for u(z).

It turns out that this inversion problem is analo-
gous to a very old problem that Abel (pronounced
“ah-buhl’’) solved in 1826.Abel’s problem was to find
the shape of a hill, given measurements of how long
it takes a ball to roll up and back down the hill, as
a function of the ball’s initial velocity (the unrealistic
assumptions typical of first-year physics problems ap-
ply: the ball is assumed to be frictionless, to have no rotational inertia, and to be
“stuck’’ to the hill such that it never becomes airborne). The highest point the ball
reaches can be computed from the initial velocity by equating kinetic and potential
energy.

Abel showed that the solution can be obtained from the integral transform pair:

t(x) =
∫ a

x

f(ξ)√
ξ − x

dξ, (5.2)
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f(ξ) = − 1
π

d

dξ

∫ a

ξ

t(x)√
x − ξ

dx, (5.3)

where x is the highest point of the ball and t is the travel time. The X(p) equation
(5.1) can be put into an analogous form by using u2 as the integration variable:

X(p)

2p
=
∫ p2

u2
0

dz/d(u2)
(
u2 − p2

)1/2 d(u2), (5.4)

where u0 is the slowness at z = 0. Now compare with (5.2) and (5.3) and let
t(x) = X(p)/2p, x = p2, ξ = [u(z)]2, and f(ξ) = dz/d(u2) to obtain

dz/d(u2) = − 1
π

d

d(u2)

∫ u2

u2
0

X(p)/2p
√

p2 − u2
d(p2),

z(u) = − 1
π

∫ u2

u2
0

X(p)/2p
√

p2 − u2
d(p2)

= − 1
π

∫ u

u0

X(p)
√

p2 − u2
d(p). (5.5)

Integrating by parts, we can obtain

z(u) = 1
π

∫ X(u)

0
cosh−1(p/u) dX. (5.6)

Equations (5.5) and (5.6) were derived in seismology in the period 1903 to 1910
by three independent investigators and are referred to as the Herglotz–Wiechert–
Bateman formulas (often just Herglotz–Wiechert). Similar formulas can be derived
for the spherical Earth case (see Aki and Richards, 2002, p. 419). In order to use
this equation to obtain a velocity depth function, we select a value for the slowness
u. The upper limit of integration in (5.6), X(u), represents the range for a ray with
ray parameter p = u and is obtained from the X(p) curve. The integral is then
computed for values of X ranging from 0 to X(u) (note that p in (5.6) is a function
of X). This gives z(u), the depth to the slowness u. By repeating this calculation
for different values of u we can obtain u(z) and thus the desired velocity profile.

These formulas are invalid when a low-velocity zone is present, in which case
X(p) is discontinuous and there is no unique solution. A simple illustration of this
fact is to imagine a number of homogeneous layers of varying velocity within the
LVZ. Since no rays turn within these layers, they can be shuffled arbitrarily and
the integrated travel time and distance for rays passing through the LVZ will be
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T

X X

T

Figure 5.1 Travel time observations often exhibit scatter, complicating inversions for velocity
profiles.

unchanged. The thickness of a LVZ also cannot be uniquely determined, although
limits can be placed on its maximum thickness.

Despite its analytical elegance, the Herglotz–Wiechert (HW) formula is seldom
used in modern seismology. There are at least two reasons for this. First, HW
assumes that we are given a continuous T(X) curve. In practice, we always have
only a finite number of travel time points. This means that the T(X) curve will need
to be interpolated between data points, and differences in interpolation schemes will
lead to different velocity profiles. Indeed, there are an infinite number of slightly
different velocity models that are compatible with a finite number of T(X) points.
However, a more serious problem is that real seismic data are generally somewhat
noisy and self-contradictory. Typical examples of real data are shown in Figure 5.1.
In the example on the left, small timing shifts result in “jitter’’ in the T(X) points.
It is impossible to connect these points with the smooth, physically realizable T(X)

curve that is expected for a 1-D velocity model. In the example on the right, data
from a number of different earthquakes have been combined and we are interested
in determining an “average’’ velocity profile for these data.

In both of these cases, the HW formula cannot be applied in a straightforward
manner. We will now go on to explore some of the ways that seismologists invert
these imperfect data sets. The main usefulness of the HW formula is the demon-
stration that a precisely specified T(X) curve does produce a unique solution for
the velocity profile. Thus, in many inversion strategies the problem of finding the
“best’’ velocity model is reduced to the problem of finding the “best’’ T(X) curve
through the data.

5.2 Straight-line fitting

One of the simplest approaches to velocity inversion is to fit the travel time data
with a series of straight lines. This was used extensively by seismologists in the
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Figure 5.2 Straight lines fit to T(X) data can be inverted for a ‘‘layer-cake’’ velocity model.

1950s and early 1960s to interpret results of their marine refraction experiments.
Lines were generally drawn in by hand at slopes and positions estimated by eye
(this was before computers became commonly available). Because the slope of
each line determines a seismic velocity, it is straightforward to invert the data for a
simple model consisting of a small number of homogeneous layers (Fig. 5.2). The
model can be obtained most easily by converting each line segment to a point in
τ(p). Recall (4.25) for τ(p) in the case of a series of homogeneous layers:

τ(p) = 2
∑

i

(
u2

i − p2)1/2
$zi, ui > p. (5.7)

Note that τ1 = 0 and that the slowness of the top layer is determined by the slope
of the first line segment (u1 = p1), the slowness of the second layer is set by the
slope of the second line segment (u2 = p2), etc. The thickness of the first layer
is determined by the slopes and delay times of the first two line segments, that
is, given τ2 and u2 = p2, we can solve this equation for z1 (also using τ1 = 0,
u1 = p1). We then use τ3 and u3 = p3 to solve for z2, etc.

Travel time data from the oceanic crust were generally fit with three line seg-
ments, leading to models containing three homogeneous layers: layer 1 for the
sediments, layer 2 for the upper crust (∼2 km thick), and layer 3 for the lower crust
(∼4 km thick). These layer designations have become a standard terminology for
describing the oceanic crust, although we now know that the upper crust (layer
2) generally consists of several structures and is characterized by a steep velocity
gradient rather than a constant velocity.

Note that layer-cake models such as this predict triplications and secondary
arrivals around each “corner’’ in the travel time curve. There are a large number of
alternative models that will produce identical first-arrival times, differing only in
the shape of the secondary branches (Fig. 5.3). For the case shown on the bottom
of Figure 5.3, the model focuses all the intermediate rays to land at the same range
(the velocity profile that accomplishes this was first obtained by L. B. Slichter in



108 5. I N V E R S I O N O F T R A V E L T I M E D A T A

v

z

X

T

X

T

v

z

v

z X

T

Figure 5.3 Each of the velocity models on the left produces identical first arrivals; the
differences only appear in the secondary branches of the travel time curve.

1932). Without secondary branch data, there is no way to discriminate between
these models. The homogeneous layer approach only makes sense in cases where
we have some a priori reason to expect the velocity model to be characterized by a
small number of layers of nearly constant velocity.

5.2.1 Example: Solving for a layer-cake model

Given the travel time curve to the right, solve for
a homogeneous layer model. The curve has three
straight line segments, so the first step is to solve
for the ray parameter, p, and delay time, τ, for
each line. This is straightforward, but note that
the plotted times are reduced by 6 km/s. Thus,
p1 = $T/$X = (1 + 4/6)/4 = 0.417 s/km,

T – X/6 (s)

X (km)
10

1.6

0.6

4

1.0

p2 = ((1.6 + 10/6) − (1 + 4/6))/(10 − 4) = 0.267 s/km, and p3 = 1/6 =
0.167 s/km (because horizontal lines occur at the reduction velocity).



5.2 S T R A I G H T - L I N E F I T T I N G 109

The τ values are obtained by the y-intercepts of each line, i.e., τ1 = 0 s, τ2

= 0.6 s, τ3 = 1.6 s. For a layer cake model, we set u1 = p1, u2 = p2, and
u3 = p3, corresponding to velocities v1 = 1/u1 = 2.4, v2 = 1/u2 = 3.75, and
v3 = 6 km/s. We then use (5.7) to solve for $z1 and $z2, i.e.,

τ2(p2) = 0.6 = 2(u2
1 − p2

2)
1/2$z1 = 2(0.4172 − 0.2672)1/2$z1

from which we obtain $z1 = 0.937 km. We then have

τ3(p3) = 1.6 = 2(u2
1 − p2

3)
1/2$z1 + 2(u2

2 − p2
3)

1/2$z2

= 2(0.4172 − 0.1672)1/20.937 + 2(0.2672 − 0.1672)1/2$z2

from which we obtain$z2 = 2.12 km.The model consists of a 0.937-km-thick
surface layer of velocity 2.40 km/s, above a 2.12-km-thick layer of velocity
3.75 km/s. Note that the thickness of the bottom layer with velocity of 6 km/s
is unconstrained.

5.2.2 Other ways to fit the T(X) curve

Suppose we abandon the crude straight-line fitting approach discussed above and
attempt to determine directly the T(X) curve that in some sense (e.g., least squares)
comes closest to our observed discrete T(X) points. Any simple discrete representa-
tion of the T(X) curve will often lead to T(X) curves with patches that are concave
up and thus physically unrealizable for first-arriving branches. We can avoid this
problem if we add a positivity constraint to the change in slope of the T(X) curve
(for example, applying a non-negative least-squares algorithm). However, the pos-
itivity constraint will lead to T(X) curves characterized by a series of straight-line
segments. This result, which may seem surprising at first, is typical of positivity
constraints in inverse problems. The T(X) curve is “banging against the stops’’ in
places where it really would like to be concave up. This T(X) curve is best fitting in
the sense that it is the closest physically realizable curve to the data points. How-
ever, as we saw above, parameterizing the T(X) curve with a series of line segments
hardly leads to a unique solution for the velocity versus depth profile. Furthermore,
a segmented T(X) curve results from this approach even if the underlying velocity
distribution is smooth.

In cases where we expect a smooth velocity profile and no triplications, better
results may be obtained by fitting a smooth curve to the data. This can be done using
a polynomial or spline representation. The travel time data must be sufficiently
curved that concave upward segments are not a problem. This approach has been
used with some success in the lower mantle where triplications are generally not
thought to be present. However, uniqueness is still a significant problem since
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different curve-fitting procedures will lead to different T(X) curves (and different
velocity models).

5.3 τ(p) Inversion

The Herglotz–Wiechert formula is awkward for performing inversions because
velocity is a non-linear function of X(p). Working in the τ(p) domain can be
preferable, since a linear formulation is possible (e.g., Garmany et al., 1979). Recall
the τ(p) formula for the surface-to-surface ray geometry

τ(p) = 2
∫ zp

0

(
u2(z) − p2

)1/2
dz. (5.8)

Now change the integration variable from z to u. If u(z) is monotonically decreasing
(no low-velocity zones), then switching the limits on the integral is straightforward:

τ(p) = 2
∫ utp=p

u0

(
u2(z) − p2

)1/2 dz

du
du, (5.9)

where u0 is the slowness at the surface (the maximum slowness) and the slowness
at the turning point, utp, is equal to the ray parameter p. If we integrate this equation
by parts, we obtain

τ(p) =
[

2z(u)(u2 − p2)1/2
]p

u0

− 2
∫ p

u0

uz(u)
(
u2 − p2

)−1/2
du. (5.10)

The left-hand term vanishes at both limits, and so we are left with

τ(p) = 2
∫ u0

p

u
(
u2(z) − p2

)1/2 z(u) du. (5.11)

Note that this expression is linear with respect to changes in z(u). If the z(u) function
is multiplied by 2 then the τ(p) function is also doubled. This linearity permits the
application of many of the techniques of linear inverse theory to the problem of
finding the velocity–depth profile.

As a simple example, consider the case where we know τ(p) at a series of discrete
values of ray parameter pj, (j = 1, 2, . . . , m) and we decide to parameterize our
model as a series of homogeneous layers (ui, i = 1, 2, . . . , n). Our integral for
τ(p), equation (5.8), becomes a summation:

τ(pj) = 2
n∑

i

hi

(
u2

i − p2
j

)1/2
, ui > pj, (5.12)
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where hi is the thickness of the ith layer. We might write this out as

τ(p1) = 2h1
(
u2

1 − p2
1

)1/2
,

τ(p2) = 2h1
(
u2

1 − p2
2

)1/2 + 2h2
(
u2

2 − p2
2

)1/2
,

τ(p3) = 2h1
(
u2

1 − p2
3

)1/2 + 2h2
(
u2

2 − p2
3

)1/2 + 2h3
(
u2

3 − p2
3

)1/2
,

etc. In matrix form, this becomes
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

τ(p1)

τ(p2)

τ(p3)

·
·
·

τ(pm)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
(
u2

1 − p2
1

)1/2 0 0 · · ·

2
(
u2

1 − p2
2

)1/2 2
(
u2

2 − p2
2

)1/2 0 · · ·
·
·
·

2
(
u2

1 − p2
m

)1/2 · · ·

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1

h2

h3

·
·
·

hn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.13)

or, in shorthand,

τττ = Gh, (5.14)

whereG is the matrix defined above. Note that all the τ, p, and u values are known;
the only unknowns are the layer thicknesses, which are contained in the h vector.
Because this is a linear system, we can use standard techniques to solve for h.
If the number of layers is less than the number of τ values (n < m), this will
generally be an overdetermined problem for which least squares methods can be
used. If the number of layers is greater than the number of τ values (n > m), then
the problem is underdetermined, and some form of regularization will be required
to obtain a solution. If n = m and we set u1 = p1, u2 = p2, etc., then we are
solving for the layer-cake model that fits a T(X) curve consisting of a series of
straight line segments. In this case, the diagonal terms of G in (5.13) are all zero,
the first term of τττ and the last value of h can be deleted (because τ(p1) = 0 and
hn is unconstrained) and a new square G matrix formed with non-zero diagonal,
analogous to equation (5.7).

5.3.1 Example: The layer-cake model revisited

In 5.2.1, we solved for a three-layer model using equation (5.7). We can
perform the same calculation using equation (5.13). Again, we assume u1 =
p1 = 0.417 s/km, u2 = p2 = 0.267 s/km, and u3 = p3 = 0.167 s/km. We
also have τ1 = 0 s, τ2 = 0.6 s and τ3 = 1.6 s. The diagonal terms of the matrix
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in (5.13) are zero and we have

[
τ(p2)

τ(p3)

]
=

⎡

⎣ 2
(
u2

1 − p2
2

)1/2 0

2
(
u2

1 − p2
3

)1/2 2
(
u2

2 − p2
3

)1/2

⎤

⎦
[

h1

h2

]

These are the same equations as before and substituting for the u, p and τ
values, we obtain h1 = 0.937 km and h2 = 2.12 km.

5.3.2 Obtaining τ(p) constraints

It is reasonably straightforward to generalize this approach to solve for a smoother
velocity model than that resulting from homogeneous layers. For example, the
velocities could be parameterized with linear slowness gradients connecting each
(u, z) point in the model. In this case a much smaller number of model points are
required to achieve a smooth velocity gradient. The single-valued nature of the τ(p)

function (triplications in T(X) are “unraveled’’) and the linearity of the equations
relating τ(p) to velocity make it much easier to work in the τ(p) domain than
in the T(X) domain. Unfortunately, seismic data typically are in T(X), making it
necessary to convert to τ(p) before analysis can begin. In principle, given noise-
free continuous data, it is trivial to compute τ(p) from T(X) and vice versa, using

T

p

slope d /dp = –X
p

T = +pX

= T – pX

slope dT/dX = p

X

T

X

Figure 5.4 Lines in the T(X) domain correspond to points in the τ(p) domain, and vice versa.
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the relationships

τ = T − pX, T = τ + pX, p = dT/dX, X = −dτ

dp
. (5.15)

Note that a line in T(X) becomes a point in τ(p), and that a line in τ(p) becomes a
point in T(X) (Fig. 5.4).

p

!In practice, we normally have T(X) data as a series of
points. One way to construct a τ(p) curve from a series of
T(X) points is to convert each of the T(X) points into a line in
τ(p). The desired τ(p) curve is then given graphically by the
envelope formed by the intersection of these lines (Bessonova
et al., 1974, 1976). This technique does not give an exact
solution for the τ(p) curve; some form of fitting procedure is
still required to get a single curve from the envelope of lines.

It is also possible to convert waveform data directly into
the τ(p) domain by performing a slant stack (also called a τ-p or Radon trans-
form), in which each point in the τ(p) image is generated by summing the data
points (this is called stacking) along the corresponding line in T(X). To see how
this works, consider the record section plot of seismograms versus distance in Fig-
ure 5.5. The slant stack is built by summing the data along lines defined by a ray
parameter and delay time. For p = 0.128 s/km and τ = 3 s, the line does not align
with any arrivals in the record section and thus there is little contribution to the

0 100 200 3000

5

10

Distance (km)

R
ed

uc
ed

 T
im

e 
(T

 - 
X/

8)
 (s

)

0.12 0.14 0.16 0.18 0.20

0

2

4

6

8

Slowness (s/km)

D
el

ay
 ti

m
e 

(s
)

Record Section Slant Stack

A

B

Figure 5.5 Stacking seismograms along lines defined by a slope and a delay time can be used to
map a T(X) image into a τ(p) (slant stack) image.
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slant stack (‘A’ in Fig. 5.5). However, the line with τ = 6.4 s and the same slope
aligns with many peaks in the seismograms and the slant stack will have a large
amplitude at the p = 0.128 s/km and τ = 6.6 s point (‘B’ in Fig. 5.5). This method
can work well if the data are evenly distributed with distance and the arrivals are
reasonably coherent, and it has the advantage of not requiring any picking of the
seismograms and naturally including the secondary branches of triplications. Slant
stacking is commonly used in seismology to process data from arrays of seismic
stations and to enhance the visibility of phases with poor signal-to-noise in indi-
vidual records. However, irregularly spaced data and edge effects often produce
artifacts in the slant stack image. In addition, to invert for a v(z) model using the
techniques discussed here, the τ(p) curve must still be parameterized from the
slant-stack image.

Sometimes this type of analysis is used to estimate upper and lower bounds on
the τ(p) curve. These can be measured, somewhat subjectively, from the graphical
envelope shown above or the slant stack image. Alternatively, bounds on τ can be
obtained for specific values of p by finding the lines of appropriate slope that limit
the T(X) curve (Fig. 5.6). Even this procedure is not entirely satisfactory since
there is some subjectivity in defining the lower bounds, and undetected secondary
arrivals from triplicated branches could, in some circumstances, lie outside the
assumed T(X) bounds. The problem of unraveling the triplications is still present,
and the uniqueness of the velocity inversion is severely limited if only first-arrival
data are available.

However, let us assume reliable upper and lower bounds on the τ(p) curve
are available. There are an infinite number of possible τ(p) curves within these
limits, corresponding to an infinite number of possible velocity models. How do
we choose between these models? We will discuss two approaches: (1) extremal
inversions to obtain limits on v(z) and (2) smoothness constraints on v(z).

T

X z

v

Figure 5.6 Upper and lower bounds obtained from travel time data can be used to place limits
on τ(p) and velocity vs. depth profiles.The two lines in z(v) show the minimum and maximum
depths for which a particular velocity can be present and still satisfy the travel time constraints.
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5.4 Linear programming and regularization
methods

Perhaps the most conservative approach we could take is to find the limits on
v(z) that correspond to the limits on τ(p). “Limits’’ on v(z) are generally defined
by asking the question: What is the minimum and maximum depth possible to a
given velocity? Once again, we must exclude low-velocity zones to obtain a well-
defined answer. This problem can be formulated using linear equations such as the
example shown in equation (5.13), and by applying linear programming theory
to obtain the maximum or minimum values of z(v) (e.g., Garmany et al., 1979;
Orcutt, 1980; Stark et al., 1986). The result is a corridor of permitted z(v) functions
(Fig. 5.6).

These results are sometimes misinterpreted to indicate that any velocity model
within the boundaries is permitted. This is incorrect. Most of the velocity models
that one could draw between the boundaries will produce τ(p) curves that exceed the
limits on τ(p). The boundaries shown represent the minimum and maximum depths
permitted for a specific velocity; the velocity profile that produces a maximum or
minimum depth at that velocity will never lie along the z(v) boundary.

This extremal inversion approach is appealing in that it can produce rigorous
limits on the velocity profile. However, in practice these limits often prove to be
so wide as to suggest that only very crude resolution in v(z) is possible (naturally,
this has discouraged their use!). The temptation exists to use other methods that,
however naively, appear to give finer resolution. Part of the problem is discussed
above; the simple maximum and minimum depth bounds don’t necessarily tell us
about the fine structure of the v(z) curve that we might be interested in. The linear
programming approach can return more than these bounds, but it is difficult to plot
the suite of permitted v(z) models in an understandable way. Another difficulty
with extremal inversions is that the T(X) “outliers’’ are the points that really limit
the models. The bulk of the data might appear quite consistent, but a few outlying
points ensure that the τ(p) bounds and z(v) bounds will be broad. It is always
tempting to throw out these points, but where does this process end? A less sub-
jective approach involves assuming some model for the errors in the T and τ (e.g.,
Gaussian) and then solving for a best-fitting v(z) model that includes statistical
confidence limits (e.g., Dorman and Jacobson, 1981). However, it remains diffi-
cult to visualize the permitted v(z) models that lie within the computed confidence
limits.

An alternative to the extremal bound approach for dealing with non-uniqueness
in inverse problems is provided by regularization, which involves finding the single
model among the infinity of permitted models that maximizes some property of the
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Figure 5.7 Solutions to geophysical inverse problems often involve a tradeoff between model
roughness and the misfit to the data.

model. For example, one could search for the “smoothest’’ model that is consistent
with the data. The advantage of this approach is that any structure (e.g., “rough-
ness’’) present in the smoothest model must be real since the method has tried to
remove it.

In the case of seismic velocity inversion, the second derivative of thev(z) function
can be used as a measure of the roughness of the model. A linear formulation of
the problem is possible if τ(p) data are available (e.g., Stark and Parker, 1987).
Results to inverse problems of this type are often expressed in terms of a tradeoff
curve between model roughness and the data misfit (Fig. 5.7). A very smooth model
is possible if we don’t care about fitting the data. However, minimizing the data
misfit to the lowest possible value often results in huge increases in the model
roughness. It is pointless to attempt to fit the data perfectly since there is always
some error associated with the data. The optimal models are generally considered
to lie somewhere in the “corner’’ of the tradeoff curve, where there is a reasonable
fit to the data and the model is fairly smooth (finding the optimal model can be made
more quantitative if the statistical uncertainties in the data are reliably known, but
they almost never are).

Smooth models often suffer from the same presentation problem that the extremal
bound models have – they can be so bland in appearance that it doesn’t appear as if
one is resolving very much. This, of course, is the point. If a smooth model fits the
data, then why put in more complicated structures? However, a word of caution is
also in order. One should not begin thinking of the smoothest model as the “best’’
model. There is usually no a-priori reason to expect the Earth to be smooth; the
smoothest model is not the “most probable’’ model.
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5.5 Summary: One-dimensional velocity inversion

We have discussed the one-dimensional velocity inversion problem at some length,
partly because of its importance, but also as an illustration of the complexities that
are often encountered in seismological and geophysical inverse problems. Despite
considerable effort, the problem of determining the best v(z) model, or limits on the
best model, from realistic travel time data is far from resolved. There are several
reasons for this:

1. Travel times from secondary branches in triplications are rarely available, and first-
arrival data are inherently non-unique.

2. Travel time data typically are noisy and contain both random and systematic errors.
The systematic errors most often result from lateral velocity variations not included in
one-dimensional velocity inversions.

It is unclear how much benefit will result from attempting to push 1-D travel
time inversion techniques any further. There is a risk of becoming distracted by
statistical arguments and losing sight of the goal of learning about Earth structure
using all available constraints. Much more information is generally available from
seismograms than travel times. For example, seismic amplitudes are very sensitive
to velocity gradients and can be diagnostic of the presence of triplications. The
current state of the art in 1-D modeling generally involves synthetic seismogram
modeling of the entire waveform. In this case, travel time inversions are used only
to produce starting models for more sophisticated techniques. Other phases, such
as discontinuity reflected or converted arrivals, often can be used to resolve fine
scale structure in much better detail than can be obtained using refracted arrivals.

Attention is also shifting to resolving 3-D structure, and there are clearly limits
to the usefulness of 1-D models in interpreting Earth structure. If the main source
of scatter in T(X) data is due to lateral heterogeneity, then the problem of finding
the “best’’ 1-D model is not clearly defined, and systematic offsets in the travel
times caused by the velocity perturbations will doom any statistical treatments that
assume uncorrelated errors in the data.

5.6 Three-dimensional velocity inversion

Observed travel times typically exhibit some scatter compared to the times predicted
by even the best reference 1-D Earth model. The travel time residual may be com-
puted by subtracting the predicted time from the observed time, tresid = tobs − tpred.
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Negative residuals result from early arrivals in-
dicative of faster-than-average structure, while
positive residuals are late arrivals suggestive of
slow structure. Residuals within a selected range
window are often plotted as a histogram to show
the spread in residuals. If the average residual is
non-zero, as in this example, this indicates that
the reference 1-D velocity model may require
some adjustment.

The spread in the residual histogram can be modeled as the sum of two parts:
(1) random scatter in the times due to picking errors and (2) systematic travel
time differences due to lateral heterogeneity. The goal of 3-D velocity inversion
techniques is to resolve the lateral velocity perturbations. These techniques are now
commonly called seismic tomography by analogy to medical imaging methods such
as CAT scans. However, it is worth noting that 3-D seismic velocity inversion is
much more complicated than the medical problem. This is due to several factors:
(1) seismic ray paths generally are not straight and are a function of the velocity
model itself, (2) the distribution of seismic sources and receivers is sparse and
non-uniform, (3) the locations of the seismic sources are not well known and often
trade off with the velocity model, and (4) picking and timing errors in the data are
common.

Thus the analogy to medical tomography can be misleading when seismolo-
gists speak of imaging Earth structure, since the term “image’’ implies a rather
direct measurement of the structure, whereas, in practice, seismic velocity inver-
sion usually requires a number of modeling assumptions to deal with the difficulties
listed above. It is comparatively easy to produce an image of apparent 3-D velocity
perturbations; the more challenging task is to evaluate its statistical significance,
robustness, and resolution.

5.6.1 Setting up the tomography problem

Assuming that a reference 1-D model is available, the next step is to parameterize the
model of 3-D velocity perturbations. This is commonly done in two different ways:
(1) the model is divided into blocks of uniform velocity perturbation or (2) spherical
harmonic functions can be used in the case of global models to parameterize lateral
velocity perturbations, with either layers or polynomial functions used to describe
vertical variations.

As an example, we now illustrate the block parameterization in the case of body
waves. Consider a two-dimensional geometry with the model divided into blocks
as shown in Figure 5.8. For each travel time residual, there is an associated ray



5.6 T H R E E - D I M E N S I O N A L V E L O C I T Y I N V E R S I O N 119

1 2 3 4 5 6 7 8

9

25

10 11 etc.

17

Figure 5.8 An example ray path and cell numbering scheme for a simple 2-D tomography
problem.

path that connects the source and receiver. Finding this exact ray path comprises
the two-point ray tracing problem, and this can be a non-trivial task, particularly
in the case of iterative tomography methods in which rays must be traced through
3-D structures. Methods for solving the two-point ray tracing problem include: (1)
ray shooting in which slightly different takeoff angles at the source are sampled
in order to converge on the correct receiver location, (2) ray bending in which a
nearby ray path is slightly deformed to arrive at the desired receiver location, or
(3) finite difference or graph theory techniques that require a grid of points (e.g.,
Vidale, 1988; Moser, 1991). Fortunately, Fermat’s principle suggests that we do not
have to get precisely the right ray path to obtain the correct travel time – getting
reasonably close should suffice, since, to first order, the travel times are insensitive
to perturbations in the ray paths.

Once we have determined the geometry of the ray path, the next step is to find
the travel time through each block that the ray crosses (although in principle this
is straightforward, programming this on the computer can be a substantial chore!).
The total travel time perturbation along the ray path is then given by the sum of the
product of each block travel time with the fractional velocity perturbation within
the block. In other words, the travel time residual r can be expressed as

r =
∑

k

bkvk, (5.16)

where bk is the ray travel time through the kth block and vk is the fractional velocity
perturbation in the block (note that vk is unitless, with vk = −0.01 for 1% fast,
vk = 0.01 for 1% slow, etc.). The ray paths and the bk values are assumed to be
fixed to the values obtained from ray tracing through the reference model. Note that
the velocity perturbations vk are constant within individual blocks, but the velocity
within each block may not be constant if the reference 1-D model contains velocity
gradients. Since velocity perturbations will affect the ray paths, Equation (5.16)
represents an approximation that is accurate only for small values of vk.
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If we set the ray travel times for the blocks not encountered by the ray to zero,
we can express the travel time residual for the ith ray path as:

ri =
m∑

j=1

bijvj, (5.17)

where m is the total number of blocks in the model. Note that most of the values
of bij are zero since each ray will encounter only a small fraction of the blocks in
the model. For n travel time measurements, this becomes a matrix equation:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣
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r3

·
·
·
rn

⎤
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·
·
·
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⎤

⎥⎥⎥⎥⎥⎥⎦
, (5.18)

where the numbers are examples of individual ray travel times through particular
blocks. This can be written as

d = Gm (5.19)

using the conventional notation of d for the data vector,m for the model vector, and
G for the linear operator that predicts the data from the model. The numbers in G
are the travel times for each ray through each block.G will generally be extremely
sparse with mostly zero elements. In the case shown, the number of travel time
observations is greater than the number of model blocks (n > m), and, in principle,
the problem is overdetermined and suitable for solution using standard techniques.
The least squares solution to (5.19) is

m = (GTG)−1GTd. (5.20)

In tomography problems this formula can almost never be used since the matrix
GTG is invariably singular or extremely ill-conditioned. Some of the ray paths may
be nearly identical while some of the blocks may not be sampled by any of the ray
paths. These difficulties can be reduced in the case of small matrices with linear
algebra techniques such as singular value decomposition (SVD). More commonly,
however, m is so large that direct matrix inversion methods cannot be used. In either
case, it will typically turn out that there is no unique solution to the problem – there
are too many undersampled blocks and/or tradeoffs in the perturbations between
different blocks.
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Acommon approach to dealing with ill-posed least squares problems is to impose
additional constraints on the problem, a process referred to as regularization. One
example of regularization is the damped least squares solution in which (5.19) is
replaced with

[
d
0

]
=
[
G
λI

]
m, (5.21)

where I is the identity matrix and λ is a weighting parameter that controls the degree
of damping. The least squares solution to this problem will minimize the functional

∥Gm− d∥2 + λ2∥m∥2,

where the first term is the misfit to the data and the second term is the variance of
the model. By adjusting the parameter λwe can control the tradeoff between misfit
and model variance. These constraints add stability to the inversion – perturbations
in blocks that are not sampled by rays will go to zero; anomalies will be distributed
equally among blocks that are sampled only with identical ray paths. However, the
damped least squares solution will not necessarily lead to a smooth model, since it
is the size of the model, not its roughness, that is minimized. Model perturbations
in adjacent blocks can be quite different.

A common measure of model roughness for block models is the Laplacian op-
erator ∇2, which can be approximated with a difference operator in both 2-D and
3-D block geometries. To minimize ∇2 we replace I with L in ( 5.21):

[
d
0

]
=
[
G
λL

]
m, (5.22)

where L is the finite difference approximation to the Laplacian applied over all
model blocks. Each row of L is given by the difference between the target block
and the average of the adjacent cells.

mj

mdown

mleft

mup

mright

For example, in a 2-D model the Laplacian
becomes

∇2
j ≃ 1

4(mleft + mright + mup + mdown) − mj,

where ∇2
j is the Laplacian of the jth model point.

In this case the least squares inversion will min-
imize

∥Gm− d∥2 + λ2∥Lm∥2,
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where λ controls the tradeoff between misfit and model roughness. This type of
regularization adds stability to the inversion in a different way than damped least
squares. The resulting models will be smooth, but not necessarily of minimum
variance. Blocks that are not sampled by ray paths will be interpolated between
nearby cells, or, more dangerously, extrapolated when they are near the edge of the
model.

Both damped least squares and minimum roughness inversions have advantages
and disadvantages, and the best regularization method to use will vary from problem
to problem. In general, one should distrust damped least squares solutions that
contain significant fine-scale structure at scale lengths comparable to the block
dimensions, whereas minimum roughness solutions are suspect when they produce
large-amplitude anomalies in regions constrained by little data.

We have so far assumed that all of the data are weighted equally. This is not always
a good idea in tomography problems since travel time residuals are often non-
Gaussian and plagued with outliers. This difficulty has been addressed in different
ways. Often the residuals are first windowed to remove the largest outliers. Travel
time residuals from similar ray paths are commonly averaged to form summary
ray residuals before beginning the inversion. In iterative schemes the influence of
anomalous data points can be downweighted in subsequent steps, thus simulating
a more robust misfit norm than used in least squares.

5.6.2 Solving the tomography problem

For “small’’ problems (number of blocks in model m < 500 or so), conventional
linear algebra methods such as Gauss reduction or singular value decomposition
can be used to obtain exact solutions to equations (5.21) or (5.22). In these cases, we
have a significant advantage in that it is also practical to compute formal resolution
and model covariance matrices. However, more commonly m is too large for such
calculations to be practical. For example, a 3-D model parameterized by 100 blocks
laterally and 20 blocks in depth contains 200 000 model points. Clearly we are not
going to be able to invert directly a 200 000 by 200 000 matrix! Indeed we could
not even fit such a matrix into the memory of our computer.

Thus, we must turn to iterative methods designed for large sparse systems of
equations in order to solve these problems. Fortunately these have proven extremely
useful in tomography problems and are found to converge fairly rapidly to close
approximations to the true solutions. Examples of iterative methods include names
such asART-backprojection, SIRT, conjugate gradient, and LSQR (see Nolet, 1987,
for a detailed discussion of many of these methods). Although it is instructive to
see the form of equations such as (5.18) and (5.19), in practice we rarely attempt to
constructG as a matrix. Rather we treatG as a linear operator that acts on the model
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Figure 5.9 The resolution of tomographic models is often evaluated using the impulse response
test (top) or the checkerboard test (bottom). In each, a synthetic set of travel times are created for
a simple velocity model using the same ray paths present in the real data; then the synthetic
times are inverted to see how well the starting model is recovered.

to predict the data. On the computer, this often will take the form of a subroutine.
Since the iterative techniques effectively use only one row of G at a time, they are
sometimes given the name row action methods.

A disadvantage of these iterative solutions is that it becomes impossible to com-
pute formal resolution and covariance matrices for the model. As substitutes for
these measures, it has become common practice to conduct experiments on syn-
thetic data sets. The synthetic data are generated by assuming a particular model
of velocity perturbations and computing travel time anomalies using the same ray
paths as the real data. The synthetic data are then inverted to see how well the test
model is recovered (Fig. 5.9). One example of this procedure is the impulse response
test, in which a single localized anomaly is placed in a region of interest to see how
well it can be resolved. Another method that is often applied is the checkerboard
test, in which a model with a regular pattern of alternating fast and slow velocities
is examined. In this case, the degree of smearing of the checkerboard pattern will
vary with position in the model, giving some indication of the relative resolution
in different areas.

It is not always clear that these tests give a reliable indication of the true resolution
and uniqueness of the velocity inversions. Impulse response and checkerboard tests
can be misleading because they typically assume uniform amplitude anomalies and
perfect, noise-free data. In real tomography problems, the data are contaminated by
noise to some degree and the velocity models that are obtained contain anomalies
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of varying amplitude. In these cases it is often only the higher amplitude features
that are unambiguously resolved. In principle, some of these problems can be
addressed using techniques that randomly resample the data (such as “jackknife’’
or “bootstrap’’ methods). However, these require repeating the inversion procedure
up to 100 times or more, a significant obstacle in these computationally intensive
analyses. Questions regarding the best way to evaluate resolution in tomographic
inversions are not fully answered, and this continues to be an active area of research.

5.6.3 Tomography complications

In the preceding discussion it has been assumed that the source locations and origin
times were precisely known. However, in the case of earthquakes this is rarely the
case, and there is the potential for bias due to errors in the locations. Since the
earthquakes are generally located using a reference 1-D velocity model, we would
expect the locations to change given a 3-D velocity model, and indeed there is often
a tradeoff between velocity anomalies and earthquake locations. This problem can
be addressed by joint hypocenter and velocity inversions (JHV) that solve for both
the earthquake locations and the velocity structure. In practice, for large inversions,
this is often an iterative process in which initial earthquake locations are assumed,
a velocity model is derived, the earthquakes are relocated using the new model, a
new velocity model is derived, etc. Tradeoffs between quake locations and velocity
structure will be minimized in this procedure, but only if a wide variety of ray paths
are available to locate each quake (we will discuss the earthquake location problem
in greater detail in the next section).

Another ambiguity in velocity inversions concerns the shallow structure at each
seismic station. Rays generally come up at near-vertical angles beneath individual
stations and sample only a very limited lateral area in the uppermost crust. Because
of this, and the fact that no information is generally obtained for the shallow structure
between stations, times to individual stations in large-scale inversions are usually
adjusted using a station correction, a time for each station obtained by averaging the
residuals from all ray paths to the station. As in the case of earthquake locations,
it is important that the station correction be obtained from a wide range of ray
paths, to minimize the biasing effect of travel time differences from deeper velocity
anomalies.

Seismic tomography works best when a large number of different ray geometries
are present and each cell in the model is crossed by rays at a wide range of angles.
Unfortunately, this is often not the case, since the sources and receivers are unevenly
distributed, and, at least in global tomography problems, largely confined to Earth’s
surface. Typically, this will result in many blocks being sampled at only a limited
range of ray angles. When this occurs, anomalies are smeared along the ray path
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Figure 5.10 When only a limited range of ray angles are available, resolution of velocity
anomalies is limited in the direction parallel to the rays.

orientation (Fig. 5.10). This problem cannot be cured by regularization or other
numerical methods – only the inclusion of additional ray paths at different angles
can improve the resolution.

In some cases, there is the danger that the 3-D velocity perturbations could cause
the source–receiver ray paths to deviate significantly from the reference model ray
paths. If these ray-path deviations are large enough, then Fermat’s principle may not
save us and our results could be biased.This concern can be addressed by performing
full 3-D ray tracing calculations on the velocity model and iterating until a stable
solution is achieved. This requires significantly more work and has not generally
been done in global tomography problems where the velocity perturbations are only
a few percent. This effect is probably of greater importance in local and regional
tomography problems where larger velocity anomalies are found and steep velocity
gradients and/or discontinuities are more likely to be present.

There is also a tendency for rays to bend or be diffracted around localized slow
anomalies, which may introduce a bias into tomographic inversions by making
such features less resolvable than fast velocity anomalies (Nolet and Moser, 1993).
More details concerning traditional seismic tomography techniques can be found
in the books by Nolet (1987) and Iyer and Hirahara (1993).

5.6.4 Finite frequency tomography

“Classic’’ seismic tomography assumes the ray theoretical approximation, in which
travel-time anomalies are accumulated only along the geometrical ray path. How-
ever, at realistic seismic wavelengths there will always be some averaging of struc-
ture adjacent to the theoretical ray path. Recently, seismologists have begun comput-
ing these finite-frequency effects in the form of kernels (sometimes called Fréchet
derivatives) that show the sensitivity of the travel time or other observables for
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Figure 5.11 Banana-doughnut kernels showing the sensitivity of P-wave travel times at 60◦

epicentral distance to velocity perturbations in the mantle.The right-hand plots show the
cross-section perpendicular to the ray direction at its midpoint. Note the much wider kernel at
20 s period compared to 2 s period and the more pronounced ‘‘doughnut hole’’ along the
geometrical ray path. Figure from Dahlen et al. (2000).

a particular seismic phase and source-receiver geometry to velocity perturbations
throughout the Earth (e.g., Dahlen et al., 2000; Hung et al., 2000; Zhao et al.,
2000). Examples of these kernels computed for a 1-D reference model for a P

wave at 60◦ range are plotted in Figure 5.11. These are sometimes given the name
banana-doughnut kernels, with “banana’’ describing the fact they are wider at the
middle of the ray path than near its endpoints, and “doughnut’’ arising from the
counterintuitive fact that their sensitivity is zero to velocity perturbations exactly
along the geometrical ray path. The width of the kernels shrinks with the frequency
of the waves and thus the finite-frequency differences from geometrical ray theory
are most important at long periods.

In principle, the use of finite-frequency kernels should improve seismic tomog-
raphy by properly accounting for the effects of off-ray-path structure. There has
been some recent controversy as to how significant these improvements are for the
global mantle tomography problem with respect to the imaging of plumes, when
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compared to differences arising from data coverage and regularization (see Mon-
telli et al., 2004; de Hoop and van der Hilst, 2005a,b; Dahlen and Nolet, 2005).
However, it is clear that finite-frequency tomography represents a significant theo-
retical advance and will eventually become common practice. Researchers are now
computing sensitivity kernels based on 3-D Earth models and developing sophis-
ticated algorithms for directly inverting waveforms for Earth structure (e.g., Zhao
et al., 2005; Liu and Tromp, 2006). These methods hold the promise of resolving
structure using much more of the information in seismograms than simply the travel
times of direct phases.

5.7 Earthquake location

The problem of locating earthquakes from travel time data is one of the oldest
challenges in seismology and continues to be an important component of seis-
mic research. Earthquakes are defined by their origin times and hypocenters. The
hypocenter is the (x, y, z) location of the event, while the epicenter is defined as
the (x, y) point on the Earth’s surface directly above the hypocenter. Earthquakes
are generally treated as point sources in location methods. For large earthquakes
that rupture from tens to hundreds of kilometers, the hypocenter is not necessarily
the “center’’ of the earthquake. Rather it is the point at which seismic energy first
begins to radiate at the beginning of the event. Since the rupture velocity is less
than the P-wave velocity, the hypocenter can be determined from the first arrival
times regardless of the eventual size and duration of the event. Earthquake infor-
mation given in standard catalogs, such as the Preliminary Determination of Epi-
centers (PDE), is based on travel times of high-frequency body-wave phases. These
origin times and hypocenters should not be confused with long-period inversion
results, which often give a centroid time and location for the event, representing the
“average’’ time and location for the entire event.

Four parameters describe the origin time and hypocenter. Let’s call these para-
meters the model, and define a model vector

m = (m1, m2, m3, m4) = (T, x, y, z). (5.23)

Now suppose we are given n observations of travel times, ti, at individual seismic
stations. In order to invert these times for the earthquake parameters, m, we first
must assume a reference Earth model. For every value ofm we can then calculate
ranges to the ith station and compute predicted arrival times,

t
p
i = Fi(m), (5.24)
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where F is the operator that gives the predicted arrival time at each station fromm.
The difference between the observed and predicted times is

ri = ti − t
p
i = ti − Fi(m), (5.25)

where ri is the residual at the ith station. We wish to find them that, in some sense,
gives the smallest residuals between the observed and predicted times. Note that F
is a function both of the Earth model and of the individual station locations. Most
importantly, F is a non-linear function of the model parameters (with the exception
of the origin time T ). In practice, for 1-D Earth models, F(m) is not particularly
difficult to calculate, since the arrival times can be interpolated at the appropriate
ranges from known travel time tables for the reference velocity model. However,
the non-linear dependence of the travel times on the earthquake location parameters
greatly complicates the task of inverting for the best earthquake model. This non-
linearity is apparent even in the simple example of 2-D location within a plane of
uniform velocity. The travel time from a station with coordinates (xi, yi) to a point
(x, y) is given by

ti =
√

(x − xi)2 + (y − yi)2

v
, (5.26)

where v is the velocity. Clearly t does not scale linearly with either x or y in this
equation. The result is that we cannot use standard methods of solving a system
of linear equations to obtain a solution. Given a set of travel times to the stations,
there is no single-step approach to finding the best event location.

Before discussing practical location strategies, it is instructive to consider what
we might do if an infinite amount of computer power were available. In this case, we
could perform a grid search over all possible locations and origin times and compute
the predicted arrival times at each station. We could then find the particular m for
which the predicted times t

p
i and the observed times ti were in best agreement. How

do we define “best’’ agreement? A popular choice is least squares, that is, we seek
to minimize

ϵ =
n∑

i=1

[
ti − t

p
i

]2
, (5.27)

where n is the number of stations. The average squared residual, ϵ/n, is called the
variance; thus we are trying to minimize the variance of the residuals. A common
term that you may hear in describing models is variance reduction (“I got a 50%
variance reduction with just two parameters’’ or “Their model only gives a 5%
variance reduction in the raw data’’). Here we use the term variance loosely to
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describe the spread in the residuals, independently of the number of free parame-
ters in the fitting procedure. More formally, in statistics the variance is defined as
ϵ/ndf , where ndf is the number of degrees of freedom (ndf is n minus the number
of free parameters in the fit). For typical problems the number of fitting param-
eters is much less than the number of data, and so n and ndf are approximately
equal.

Least squares is often used as a measure of misfit since it leads to simple analytical
forms for the equations in minimization problems. It will tend to give the right
answer if the misfit between t and tp is caused by uncorrelated, random Gaussian
noise in t. However, in many instances the errors are non-Gaussian, in which case
least squares will give too much weight to the outliers in the data (a residual of 2
contributes 4 times more to the misfit than a residual of 1). As an alternative, we
could use the sum of the differences

ϵ =
n∑

i=1

∣∣ti − t
p
i

∣∣ . (5.28)

This measure of misfit is called the L1 norm and is considered more robust than
the L2 norm (least squares) when excessive outliers are present in the data. For a
distribution of numbers, the minimum L2 norm yields the mean or average of the
numbers, while the minimum L1 norm gives the median value. The L1 norm is
not often used because the absolute value sign creates great complications in the
equations. As an alternative to robust norms such as L1, it is possible to weight the
residuals in the least squares problem using an iterative procedure that reduces the
influence of the outlying points in subsequent steps. Of course in the case of our
hypothetical “brute force’’ grid search it is straightforward to apply any norm that
we desire. Once we have defined a measure of misfit, we can find the “best’’m as
the one with the smallest misfit, ϵ(m). The next step is to estimate the probable
uncertainties in our location.

Some indication of these uncertainties can be seen in the behavior of the misfit
function in the vicinity of its minimum. In our two-dimensional example, suppose
that we contour ϵ(m) as a function of x and y, assuming that the origin time is
known (since the tp are a linear function of the origin time,
determination of the best origin time for a given location is
trivial). Clearly, if ϵ grows rapidly as we move away from
the minimum point, we have resolved the location to better
accuracy than when ϵ grows only very slowly away from its
minimum.

How can we quantify this argument? By far the most common approach is based
on least squares and the L2 norm, since the statistics of Gaussian processes are well
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Table 5.1: Percentage points of the
χ2 distribution.

ndf χ2(95%) χ2(50%) χ2(5%)

5 1.15 4.35 11.07

10 3.94 9.34 18.31

20 10.85 19.34 31.41

50 34.76 49.33 67.50

100 77.93 99.33 124.34

understood. In this case we define

χ2 =
n∑

i=1

[
ti − t

p
i

]2

σ2
i

, (5.29)

where σi is the expected standard deviation of the ith residual due to random mea-
surement error. The expected value of χ2 is approximately the number of degrees
of freedom ndf (in our case ndf = n − 4 because m has 4 components) and 95%
confidence limits may be obtained by consulting standard statistical tables (e.g.,
Table 5.1).

For example, if we locate an earthquake using 14 travel times, then ndf = 10
and there is a 90% probability that the value of χ2 computed from the residuals
at the best fitting hypocenter will be between 3.94 and 18.31. There is only a 5%
chance that the value of χ2 will exceed 18.31. The value χ2(m) will grow as we
move away from the best-fitting location, and by contouring values of χ2(m) we
can obtain an estimate of the 95% error ellipse for the event location.

Note that the σi values are critical in this analysis – the statistics are based on the
data misfit being caused entirely by random, uncorrelated Gaussian errors in the
individual travel time measurements. However, the misfit in earthquake location
problems is usually larger than would be expected from timing and picking errors
alone. If the σi are set significantly smaller than the average residual, then the χ2

measure may indicate that the solution should be rejected, most likely because
unmodeled velocity structure is dominating the misfit. Alternatively, if the σi are
set significantly larger than the average residual, then the best-fitting hypocenter
could be rejected because it fits the data “too well.’’

To avoid these embarrassments, the estimated data uncertainties σi are often
estimated from the residuals at the best location,

σ2(mbest) =
∑n

i=1
[
ti − t

p
i (mbest)

]2

ndf
, (5.30)
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Slow Fast

Bias moves locations off fault

Figure 5.12 Earthquakes located
along a fault will often be
mislocated if the seismic velocity
changes across the fault.

wherembest is the best-fitting location, and this constant value of σ2 is used for all
the σ2

i in (5.29), that is,

χ2(m) =
∑n

i=1
[
ti − t

p
i (m)

]2

σ2 . (5.31)

Note that χ2(mbest) = ndf so that the χ2 value at the best-fitting hypocenter is close
to the 50% point in the χ2 distribution. By contouring χ2(m), we can then obtain an
estimate of the 95% confidence ellipse for the solution; that is, we can approximate
the region within which there is a 95% chance that the true location lies.2

However, a serious problem with typical confidence limits is that they don’t
take into account the correlated changes to travel time residuals resulting from
unmodeled lateral heterogeneity. For example, consider a model in which a vertical
fault separates the crust into two blocks with slightly different velocities (Fig. 5.12).
Events occurring on the fault will tend to be mislocated off the fault into the faster
velocity block owing to a systematic bias in the travel times. This possibility is not
accounted for in the formal error analysis, which, in this case, incorrectly assumes
that the travel time uncertainties are uncorrelated between different stations. The
effects of unmodeled lateral heterogeneity are the dominant source of error for
earthquake locations, provided a good station distribution is used in the inversion.
Global locations in the ISC and PDE catalogs are typically off by about 25 km
in horizontal position and depth (assuming depth phases such as pP are used to
constrain the depth; if not, the probable depth errors are much greater). Techniques
that can be used to improve earthquake locations include joint hypocenter velocity
inversion (see preceding section) and master event methods (see Section 5.7.2).

When a good station distribution is not available, location errors can be quite
large. For example, the distance to events occurring outside of a seismic array is

2 The error ellipse is only approximate because the uncertainties in the σi estimate are ignored.
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Seismic network

Error ellipse elongated
away from array

Figure 5.13 Earthquake locations for events outside of a network are often not well constrained.

Depth
trades
off with
origin
time

Distant stations

Earthquake

Figure 5.14 Earthquake depth can be hard to determine if only distant stations are available.

not well constrained, since there is a large tradeoff between range and origin time
(Fig. 5.13). In this case, the location could be improved dramatically if a travel
time was available from a station on the opposite side of the event. Generally it is
best to have a good azimuthal distribution of stations surrounding an event to avoid
these kinds of location uncertainties. Another problem is the tradeoff between event
depth and origin time that occurs when stations are not available at close ranges
(Fig. 5.14). Since the takeoff angles of the rays are very similar, changes in the
earthquake depth may be compensated for by a shift in the event origin time.

In the preceding examples, we have assumed that only direct P-wave data are
available. The addition of other phases recorded at the same stations can substan-
tially improve location accuracy, since the use of differential times between phases
removes the effect of the earthquake origin time. For example, S arrivals travel at
a different speed than P arrivals and can be used to estimate the source–receiver
range at each station directly from the S − P time (a convenient rule of thumb for
crustal phases is that the distance to the event in kilometers is about 8 times the
S −P time in seconds). Even better than S for determining earthquake depths from
teleseismic data is the depth phase pP since the differential time pP − P is very
sensitive to the earthquake depth.
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5.7.1 Iterative location methods

In our discussion so far we have assumed that the minimum ϵ could be found
directly by searching over all ϵ(m). In practice, this often becomes computationally
unfeasible and less direct methods must be employed. The standard technique is to
linearize the problem by considering small perturbations to a target location

m = m0 +$m, (5.32)

wherem0 is the current guess as to the best location andm is a new location a small
distance away from m0. The predicted times at m may be approximated using the
first term in the Taylor series expansion

t
p
i (m) = t

p
i (m0) + ∂t

p
i

∂mj
$mj. (5.33)

The residuals at the new location m are given by

ri(m) = ti − t
p
i (m)

= ti − t
p
i (m0) − ∂t

p
i

∂mj
$mj

= ri(m0) − ∂t
p
i

∂mj
$mj. (5.34)

In order to minimize these residuals we seek to find $m such that

ri(m0) = ∂t
p
i

∂mj
$mj (5.35)

or

r(m0) = G$m, (5.36)

where G is the matrix of partial derivatives Gij = ∂t
p
i /∂mj, i = 1, 2, ..., n, j =

1, ..., 4. The best fit to (5.36) may be obtained using standard least squares tech-
niques to obtain the location adjustment $m. Next, we set m0 to m0 + $m and
repeat the process until the location converges. This iterative procedure generally
converges fairly rapidly provided the initial guess is not too far from the actual
location.
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5.7.2 Relative event location methods

In the common situation where the location error is dominated by the biasing effects
of unmodeled 3-D velocity structure, the relative location among events within a
localized region can be determined with much greater accuracy than the absolute
location of any of the events. This is because the lateral velocity variations outside
the local region, which lead to changes in the measured travel times at distant
stations, will have nearly the same effect on all of the events. In other words, the
residuals caused by 3-D structure to a given station will be correlated among all of
the events. If the ray path to a station is anomalously slow for one event, then it
will be slow for the other events as well, provided the local source region is small
compared to the heterogeneity. However, the bias in the locations caused by the
3-D structure will vary among the events because they typically do not have picks
from exactly the same set of stations.

The simplest way to improve relative location accuracy among nearby earth-
quakes is to consider differential times relative to a designated master event. The
arrival times of other events relative to the master event times are

trel = t − tmaster. (5.37)

Setting the master event location to m0 in (5.35), we see that the relative location
$m is given by the best-fitting solution to

trel
i = t

p
i (m) − t

p
i (m0) = ∂t

p
i

∂mj
$mj, (5.38)

where the solution will be valid provided $m is small enough that the linear ap-
proximation holds. This approach works because the differential times subtract out
any travel-time perturbations specific to a particular station. Note that the absolute
location accuracy is limited by the location accuracy of the master event, which
is assumed fixed. However, if the absolute location of the master event is known
by other means (e.g., a surface explosion), then these relative locations can also be
converted to absolute locations.

This approach can be generalized to optimally relocate events within a com-
pact cluster with respect to the cluster centroid by projecting out the part of the
travel-time perturbations that are common to particular stations, a method termed
hypocentroidal decomposition by Jordan and Sverdrup (1981). A simpler technique
is to compute station terms by averaging the residuals at each station, recompute the
locations after correcting the observed picks for the station terms, and iterate until a
stable set of locations and station terms is obtained (e.g., Frohlich, 1979). It can be
shown that this iterative approach converges to the same solution as hypocentroidal
decomposition (Lin and Shearer, 2005).
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Figure 5.15 Earthquake locations for over 17 000 earthquakes in the Imperial Valley, California
(1981−2005), as computed using: (left) single event location, (middle) source-specific station
term (SSST) locations, and (right) waveform cross-correlation locations using results from Lin
et al. (2007).

These ideas can be generalized to distributed seismicity where the effect of
3-D velocity structure on travel times will vary among different source regions.
The double-difference location algorithm (Waldhauser and Ellsworth, 2000; Wald-
hauser, 2001) performs simultaneous relocation of distributed events by minimiz-
ing the residual differences among nearby events. The source-specific station term
(SSST) method (Richards-Dinger and Shearer, 2000; Lin and Shearer, 2006) it-
eratively computes spatially varying time corrections to each station. Further im-
provements in relative location accuracy can be achieved by using waveform cross-
correlation to compute more accurate differential times among nearby events than
can be measured using arrival time picks on individual seismograms. Figure 5.15
illustrates the improvement in local earthquake locations that can be achieved us-
ing these methods compared to classic single event location. Note the increasingly
sharp delineation of seismicity features that is obtained using source-specific station
terms and waveform cross-correlation.

5.8 Exercises

1. Project VESE (very expensive seismic experiment) deployed 60 seismometers in a
linear array extending 240 km away from a large surface explosion. Despite careful
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picking of the resulting seismograms, the first-arrival P-wave travel times (plotted
in Fig. 5.16 and also given in the supplemental web material) show considerable
scatter.
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Figure 5.16 P-wave travel time data from a very expensive seismic experiment.

Fit these points with a series of straight lines and compute the ray parameter p

and the delay time τ for each line. The first of these lines should go through the
origin (zero time and range). Be sure to take into account the reduction velocity of
8 km/s in computing p. Using equation (5.12), invert these results for a layer-cake
P-velocity model of the crust and uppermost mantle. List your model in a table,
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Table 5.2: P-wave arrival times for two earthquakes.

Quake 1 Quake 2
x (km) y (km) t1 (s) t2 (s)

9.0 24.0 14.189 20.950

24.0 13.2 13.679 21.718

33.0 4.8 13.491 21.467

45.0 10.8 14.406 21.713

39.0 27.0 13.075 20.034

54.0 30.0 15.234 20.153

15.0 39.0 13.270 18.188

36.0 42.0 12.239 16.008

27.0 48.0 12.835 15.197

48.0 48.0 14.574 16.280

15.0 42.0 12.624 16.907

18.0 15.0 13.496 21.312

30.0 36.0 10.578 16.664

starting with the surface layer and continuing downward, with each line consisting
of a depth (km) and a velocity (km/s). Specify the velocity discontinuities between
layers by listing the depth twice, with the first line containing the velocity in the
upper layer and the second line the lower layer velocity. Make sure that the first
column of your table is absolute depth and not layer thickness. For example, a
three-layer model with a 2 km thick top layer of 4 km/s, a 4 km thick middle layer
of 6 km/s, and a bottom layer of 8.1 km/s would be written as:

0.0 4.0
2.0 4.0
2.0 6.0
6.0 6.0
6.0 8.1

What is the Pn crossover distance? How thick is the crust in your model? How
much uncertainty would you assign to your crustal thickness estimate? Note: Not
everyone will get the same answer to this exercise! It’s fun to plot the different
models to see how well they agree.
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2. (COMPUTER) You are given P-wave arrival times for two earthquakes recorded
by a 13-station seismic array. The station locations and times are listed in Table 5.2
and also given in the supplemental web material.

(a) Write a computer program that performs a grid search to find the best location
for these events. Try every point in a 100 km by 100 km array (x = 0 to
100 km, y = 0 to 100 km). At each point, compute the range to each of the
13 stations. Convert these ranges to time by assuming the velocity is 6 km/s
(this is a 2-D problem, don’t worry about depth). Compute the average sum
of the squares of the residuals to each grid point (after finding the best-fitting
origin time at the grid point; see below).

(b) For each quake, list the best-fitting location and origin time.

(c) From your answers in (b), estimate the uncertainties of the individual station
residuals (e.g., σ2 in 5.30) for each quake.

(d) For each quake, use (c) to compute χ2 at each of the grid points. What is χ2

at the best-fitting point in each case?

(e) Identify those values of χ2 that are within the 95% confidence ellipse. For
each quake, make a plot showing the station locations, the best quake location,
and the points within the 95% confidence region.

(f) Note: Don’t do a grid search for the origin time! Instead assume an origin
time of zero to start; the best-fitting origin time at each grid point will be the
average of the residuals that you calculate for that point. Then just subtract
this time from all of the residuals to obtain the final residuals at each point.
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Ray theory: Amplitude
and phase

Up to this point we have considered only the travel times of rays traveling in Earth,
ignoring the amplitude, polarity, and shape of the pulses. Such an analysis is not
without its merits in examining real data, since observed travel times are usually
more robust and stable than amplitudes. However, amplitude and waveform shape
are also important and contain valuable additional information about Earth structure
and seismic sources.

To model amplitude variations, ray theory must account for geometrical spread-
ing effects, reflection and transmission coefficients at interfaces, and intrinsic
attenuation. We have already seen some aspects of geometrical spreading in the
1/r factor in the equations for the spherical wavefront (Section 3.6) and in the
eikonal equation (Appendix C). However, because geometrical spreading is most
easily understood in terms of the energy density contained in wavefronts, we begin
by examining the energy in seismic waves.

6.1 Energy in seismic waves

The energy density Ẽ contained in a seismic wave may be expressed as a sum of
kinetic energy ẼK and potential energy ẼW :

Ẽ = ẼK + ẼW . (6.1)

The kinetic energy density is given by

ẼK = 1
2
ρu̇2, (6.2)

where ρ is the density and u̇ is the velocity. This is analogous to E = 1
2mv2 from

elementary physics. The potential energy density ẼW is also called strain energy

139



140 6. R A Y T H E O R Y : A M P L I T U D E A N D P H A S E

and results from the distortion of the material (the strain) working against a restoring
force (the stress). From thermodynamic considerations (e.g., see Aki and Richards,
2002, pp. 22–3) it can be shown that

ẼW = 1
2
τijeij, (6.3)

where τij and eij are the stress and strain tensors respectively.
Now consider a harmonic plane S wave propagating in the x direction with

displacement in the y direction. We have

uy = A sin(ωt − kx), (6.4)

u̇y = Aω cos(ωt − kx), (6.5)

where A is the wave amplitude, ω is the angular frequency, and k = ω/β is the
wavenumber where β is the shear velocity. The kinetic energy density is thus

ẼK = 1
2
ρA2ω2 cos2(ωt − kx). (6.6)

Since the mean value of cos2 is 1/2, we may express the average kinetic energy
density EK as

EK = 1
4
ρA2ω2, (6.7)

where the average may be taken over either t or x.
Recalling the expression for the strain tensor, eij = 1

2(∂iuj + ∂jui), the only
non-zero strains for the S plane wave are

e12 = e21 = 1
2
∂uy

∂x
= −1

2
Ak cos(ωt − kx). (6.8)

Assuming the isotropic stress–strain relationship, the non-zero stresses are given
by (2.30) and are

τ12 = τ21 = 2µe12 = −Akµ cos(ωt − kx). (6.9)

Substituting into (6.3), we obtain the strain energy density

ẼW = 1
2
A2k2µ cos2(ωt − kx) (6.10)

and its average

EW = 1
4
A2k2µ. (6.11)
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Using k = ω/β and β2 = µ/ρ this becomes

EW = 1
4
ρA2ω2, (6.12)

which is seen to be identical to the equation for the kinetic energy (6.7). Similar
expressions may be derived for a harmonic plane P wave; thus, in general

EK = EW = 1
4
ρA2ω2 (6.13)

and from (6.1) we get

E = 1
2
ρA2ω2. (6.14)

The mean energy density is proportional to the square of both the amplitude and
the frequency; for the same wave amplitude, higher frequency waves carry more
energy. The energy flux density in the propagation direction per unit time per unit
area (perpendicular to the wavefront) is given by

Ẽflux = 1
2
cρA2ω2, (6.15)

where c is the wave velocity (= α for P waves, = β for S waves).

dS1

dS2

To account for geometrical spreading in ray theory,
consider a small patch of surface area dS1 on a wave-
front at time t1. The total energy flux through this patch
is given by

Eflux(t1) = 1
2
cρA2

1ω
2 dS1. (6.16)

As the wavefront propagates, the edges of this patch are bounded by the rays that
define the local propagation direction.

Assuming that energy only travels along the rays (a high-frequency approxima-
tion), then the energy flux within this ray tube must remain constant, although the
area of the patch may change. Thus at time t2

Eflux(t1) = Eflux(t2) = 1
2
cρA2

2ω
2 dS2, (6.17)

and from (6.16) and (6.17) we have, for constant c and ρ,

A2

A1
=
√

dS1

dS2
. (6.18)
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The amplitude varies inversely as the square root of the surface area of the patch
bounded by the ray tube. Amplitudes decrease when the wavefront spreads out in
area and increase if the wavefront is focused to a smaller area. For a spherical wave
front, in which the surface area grows as r2, the amplitude scales as 1/r, consistent
with our previous results for spherical waves (Section 3.6) and amplitudes predicted
by the eikonal equation (Appendix C).

If the density ρ and wave speed c vary with position, then the amplitude will
also change. In the absence of any geometrical spreading (i.e., dS1 = dS2), we then
have

A2

A1
=
√
ρ1c1

ρ2c2
. (6.19)

The product ρc is termed the impedance of the material; the amplitude varies
inversely as the square root of impedance. This means that seismic amplitudes will
increase as waves move into slower, less dense solids. This is an important factor
in strong motion seismology where it is commonly observed that shaking from
large earthquakes is more intense at sites on top of sediment compared with nearby
sites on bedrock. Another important site amplification effect, not included in (6.19),
involves resonance and reverberations within near-surface layers.

6.2 Geometrical spreading in 1-D velocity models

du
u0 r=1

Now let us examine the amplitude of the ray ar-
rivals in a one-dimensional Earth model. Suppose
the source is isotropic (uniform in all directions)
and that the total seismic energy radiated is Es.
Let the surface slowness be u0 and consider the
rays leaving the source between the angles θ0 and
θ0 + dθ. The energy between these angles leaves the source in a band around the
unit sphere. The circumference of the band is 2π sin θ0 and its area is 2π sin θ0 dθ.
Since the unit sphere has a total area of 4π, the energy in the band, Edθ, may be
expressed as

Edθ = 1
2

sin θ0 dθEs. (6.20)

Next, consider where these rays strike the surface. The rays leaving the source
between θ0 and θ0 + dθ intersect the surface in a ring with area 2πX dX. The
corresponding area on the wavefront is 2πX cos θ0 dX since the rays arrive at the
surface at the angle θ0 and the wavefronts are perpendicular to the rays. The energy
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X X+dX

d

in the wavefront is given by the product of the wavefront area and the energy density
Ẽ on the wavefront:

EdX = 2πX cos θ0 dXẼ(X). (6.21)

From conservation of energy along the rays, we have Edθ = EdX and thus

Ẽ(X) = sin θ0

4πX cos θ0

∣∣∣∣
dθ

dX

∣∣∣∣Es.

Substituting for sin θ0 and dθ using p = u0 sin θ0 and dp = u0 cos θ0 dθ0, we have

Ẽ(X) = p

4πu2
0X cos2 θ0

∣∣∣∣
dp

dX

∣∣∣∣Es. (6.22)

The amplitude at X is proportional to the square root of this expression. This
equation assumes an isotropic source and a flat Earth; in the case of a spherical
Earth, the corresponding equation for a source at radius r1 and a receiver at radius
r2 is

Ẽ()) = psph

4πu2
1r

2
1r

2
2 sin) cos θ1 cos θ2

∣∣∣∣
dpsph

d)

∣∣∣∣Es, (6.23)

T

caustics

X

where psph is the spherical Earth ray parameter, u1 is
the slowness at the source, ) is the source–receiver
range (in radians), and θ1 and θ2 are the incidence an-
gles at source and receiver, respectively. It should be
noted that amplitudes computed directly from (6.22)
and (6.23) are based upon (6.18) and consider only
geometrical spreading effects; impedance differences
along the ray path will also affect the amplitudes and
can be accounted for by applying (6.19).

Equation (6.22) could also be written in terms of the factor 1/ |dX/dp|, illustrating
that large amplitudes are predicted whenever dX/dp is small, so that a large number
of rays (with different p values) all land close together. When dX/dp = 0 an energy



144 6. R A Y T H E O R Y : A M P L I T U D E A N D P H A S E

catastrophe is predicted and the amplitudes become infinite at this singular point.
These are called caustics in ray theory and occur at the cusps in the triplications in
travel time curves. This result is only true in the limit of infinitely high frequency;
at finite frequencies of interest the wavelengths will be long enough that they will
tend to average over points in space where dX/dp = 0. Thus, the amplitudes will
become large, but not infinite near caustics. In practice, the infinite amplitudes
predicted at caustics with geometrical ray theory do not usually cause numerical
problems since the caustics are single points along the travel time curves and the
integrated energy remains finite.

6.3 Reflection and transmission coefficients

So far we have limited our analysis to models in which the velocity changes
smoothly with depth – we have not considered what happens at velocity disconti-
nuities. We now extend our discussion to include the complications due to reflected
and transmitted waves at interfaces in the model. Specifically, we will compute the
reflection and transmission coefficients that result from a plane wave incident on
a horizontal interface. Recalling (3.35), we can write the general expression for
plane wave displacement as

u(x, t) = f(t − s · x), (6.24)

where s is the slowness vector (= uŝ where u is the slowness and ŝ is a unit vector
in the direction of propagation) and x = (x, y, z) is the position. Now let us assume
that velocity varies only in the z (vertical) direction and define our coordinate system
such that z grows in the downward direction and s is in the xz plane. Recalling that
the horizontal component of slowness is the ray parameter p and that the vertical
slowness is η = (u2 − p2)1/2, we can write

u = f(t − px − ηz) downgoing wave, (6.25)

= f(t − px + ηz) upgoing wave, (6.26)

where we have restricted ourselves to waves that travel in the positive x direc-
tion. We often will work with harmonic waves, in which case we can express the
downgoing wave as

u(t) = A(ω)e−iω(t−px−ηz) (6.27)

= A(ω)e−i(ωt−kxx−kzz), (6.28)



6.3 R E F L E C T I O N A N D T R A N S M I S S I O N C O E F F I C I E N T S 145

where kx = ωp is termed the horizontal wavenumber and kz = ωη is the vertical
wavenumber.

For a vertically stratified medium, it can be shown (e.g., Aki and Richards, 2002,
p. 220) that the wave equation separates into two types of solutions: a P–SV system
in which the S waves are polarized in the vertical plane containing the slowness
vectors (normally the vertical source–receiver plane) and an SH system in which the
S waves are polarized in the horizontal direction. Within homogenous layers, the P

and SV solutions are separate, but they are coupled at velocity discontinuities and
within velocity gradients. The coupling within velocity gradients is stronger at low
frequencies; in the ray theoretical approximation the frequencies are assumed to
be sufficiently high that no coupling occurs. The SH polarized waves never couple
with either P or SV for any laterally homogeneous medium.

6.3.1 SH-wave reflection and transmission coefficients

Let us now consider SH-wave propagation in a vertically stratified medium. The
particle motion is perpendicular to the xz plane; thus u= (0, uy, 0) and the dis-
placement for downgoing waves within a homogeneous layer is

uy = Àf(t − px − ηz), (6.29)

where À is the amplitude of the downgoing wave, p is the horizontal slowness, and
η is the vertical slowness.

u1

u2

u1 u1

u2

Now consider a discontinuous change in prop-
erties at a horizontal interface between two homo-
geneous layers, with a downgoing SH wave in the
top layer. There will be both a reflected upgoing
wave in the upper layer and a transmitted downgo-
ing wave in the bottom layer. We will use the terms
incident for the waves moving toward the interface
and scattered for the waves moving away from the
interface. We know from ray theory that the hor-
izontal phase velocity p must be preserved at the
interface; thus θ̀1 = θ́1 and u1 sin θ̀1 = u2 sin θ̀2, where u1 and u2 are the layer
slownesses. Thus, we know the ray angles of the scattered waves as a function
of the angle of the incident wave. However, this does not give us any amplitude
information. To obtain the amplitudes of the scattered waves, we need to consider
the boundary conditions at the interface.

For a solid–solid interface, we must have continuity of displacement and traction
across the interface. The displacement in layer 1 immediately above the interface is
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u+
y = À1f(t − px) + Á1f(t − px), (6.30)

where Á1 is the amplitude of the upgoing wave and we have assumed that the
interface is at z = 0. The displacement in layer 2 immediately below the interface is

u−
y = À2f(t − px). (6.31)

Since u+
y = u−

y from the continuity of displacement, we have

À1 + Á1 = À2. (6.32)

Assuming that the amplitude of the incident wave, À1, is known we now have
one equation and two unknowns. We are still not able to express Á1 or À2 en-
tirely in terms of À1 and the material properties. To obtain another equation, we
must consider the second boundary condition, the continuity of traction across the
interface.1

Recalling the definition of the stress tensor (equation 2.1), we can write the
traction across a horizontal plane (the plane normal to ẑ in our coordinate system) as

t(ẑ) =

⎡

⎣
τxz

τyz

τzz

⎤

⎦ . (6.33)

Our equations for the SH plane wave have been entirely in terms of displacement
u. Now recall (3.13), which relates stress to displacement for isotropic media:

τij = λδij∂kuk + µ(∂iuj + ∂jui). (6.34)

In our two-dimensional SH problem, ux = uz = 0 and ∂/∂y = 0 since displacement
is constant in the y direction. Thus, the first term drops out entirely, and the only
non-zero components of τij are:

τyx = τxy = µ
∂uy

∂x
, (6.35)

τyz = τzy = µ
∂uy

∂z
. (6.36)

Note that the components of τττ are related to the spatial derivatives of the displace-
ment by the shear modulus µ. The continuity of t(ẑ) requires that τyz be continuous

1 It is often misstated that stress must be continuous across the interface. This is incorrect. In general there will be
components of the stress tensor τij that are discontinuous across the interface. However, the force acting on the
plane from above must be equal to the force acting on the plane from below – this is the continuity of traction
boundary condition.
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but not τyx. From (6.29) for the displacement of the downgoing SH wave, we can
write

τ̀yz = −µηÀf ′(t − px − ηz), (6.37)

and for the upgoing wave, we obtain

τ́yz = µηÁf ′(t − px + ηz). (6.38)

Immediately above the interface at z = 0, we have

τ+
yz = −(À1 − Á1)µ1η1f

′(t − px), (6.39)

and immediately below the interface, we have

τ−
yz = −À2µ2η2f

′(t − px). (6.40)

Continuity of traction requires that τ+
yz = τ−

yz and thus

(À1 − Á1)µ1η1 = À2µ2η2. (6.41)

Together with (6.29) we now have two equations that relate À1, Á1, and À2. If we
set the incident wave amplitude to unity (À1 = 1), we have two equations and two
unknowns:

1 + Á1 = À2, (6.42)

(1 − Á1)µ1η1 = À2µ2η2. (6.43)

Substituting for À2 in the second equation, we have

(1 − Á1)µ1η1 = (1 + Á1)µ2η2,

Á1(µ1η1 + µ2η2) = µ1η1 − µ2η2,

Á1 = µ1η1 − µ2η2

µ1η1 + µ2η2
, (6.44)

and substituting this into (6.42), we have

À2 = 1 + µ1η1 − µ2η2

µ1η1 + µ2η2

= 2µ1η1

µ1η1 + µ2η2
. (6.45)

In seismology we will generally find it more convenient to work in terms of velocity,
density, and incidence angle. From β2 = µ/ρ and η = u cos θ = cos θ/β, where θ
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is the ray angle from vertical, we may replace µη in (6.44) and (6.45) with ρβ cos θ
and we have

S̀Ś ≡ Á1 = ρ1β1 cos θ1 − ρ2β2 cos θ2

ρ1β1 cos θ1 + ρ2β2 cos θ2
, (6.46)

S̀S̀ ≡ À2 = 2ρ1β1 cos θ1

ρ1β1 cos θ1 + ρ2β2 cos θ2
. (6.47)

These are the standard expressions for the SH-wave reflection and transmission
coefficients, where S̀Ś is the reflection coefficient and S̀S̀ is the transmission coeffi-
cient (adopting the notation used in Aki and Richards, note that S̀Ś is the reflection
coefficient for downgoing S to upgoing S; it is not the product between S̀ and Ś).
Before continuing, let us explore what these formulae mean. First, notice that they
are a function not just of velocity but also of the density. This is something new. All
of the travel times that we considered in geometric ray theory (and ray-theoretical
amplitudes due to geometrical spreading) depended only upon the seismic veloci-
ties. Indeed, many types of seismic data are not sensitive to density. Reflection and
transmission coefficients, if they can be measured inside Earth, provide a way to
place constraints on density.

The SH formulae in (6.46) and (6.47) are fairly simple because there exist only
two scattered waves, the reflected and transmitted SH pulses. The P/SV system is
far more complicated, since it involves four types of waves – the downgoing and
upgoing P and SV waves. For example, a P-wave incident on an interface will
generate both P and SV reflections and transmitted waves (Fig. 6.1). The P/SV

P

P

SV

P

SV

Figure 6.1 A non-vertical P wave striking a
horizontal interface will generate four
different scattered waves: the reflected and
transmitted P and SV waves
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coefficients can be derived in a similar way as the SH coefficients, but the algebra
is fairly involved. A computer subroutine for computing the P/SV coefficients is
listed in Appendix D.

6.3.2 Example: Computing SH coefficients

A downgoing SH wave with p = 0.2 s/km strikes a horizontal interface with
β1 = 3.2 km/s, ρ1 = 2.6 Mg/m3 in the top layer and β2 = 3.9 km/s, ρ2 =
2.9 Mg/m3 in the bottom layer. What are the amplitudes of the reflected and
transmitted waves? From the definition of the ray parameter (p = u sin θ)
and u1 = 1/β1 = 0.3125 s/km and u2 = 1/β2 = 0.2564 s/km, we have
θ1 = 39.8◦ and θ2 = 51.3◦. From (6.46) and (6.47), we have

S̀Ś = 2.6 · 3.2 cos 39.8◦ − 2.9 · 3.9 cos 51.3◦

2.6 · 3.2 cos 39.8◦ + 2.9 · 3.9 cos 51.3◦ = −0.05

S̀S̀ = 2 · 2.6 · 3.2 cos 39.8◦

2.6 · 3.2 cos 39.8◦ + 2.9 · 3.9 cos 51.3◦ = 0.95

Note that we don’t need to worry about the units (as long as they are consistent
in the different terms) because they cancel out in these equations. Assuming
that the incident SH wave has unit amplitude, the upgoing reflected wave has
amplitude −0.05 and the downgoing transmitted wave has amplitude 0.95.
The signs of the coefficients indicate that the incident wave polarity is flipped
for the reflected wave and preserved for the transmitted wave.

6.3.3 Vertical incidence coefficients

For the case of vertical incidence (θ = 0), the SH coefficients are

S̀Śvert = ρ1β1 − ρ2β2

ρ1β1 + ρ2β2
, (6.48)

S̀S̀vert = 2ρ1β1

ρ1β1 + ρ2β2
.

(6.49)

There is no distinction between SH and SV at vertical incidence, and therefore these
expressions are also valid for SV. For vertical P waves there is no conversion from
P to SV and the P-wave coefficients also have a simple form:

P̀Ṕvert = −ρ1α1 − ρ2α2

ρ1α1 + ρ2α2
, (6.50)
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P̀P̀vert = 2ρ1α1

ρ1α1 + ρ2α2
.

(6.51)

The product ρc, where c is the velocity, is the impedance. Note that the reflec-
tion coefficient is half of the impedance contrast; for example, a 10% change in
ρβ (relative to the mean ρβ) results in a reflection coefficient of 5%. The dif-
ference in the sign of the reflection coefficient between P and SH results from
the fact that the polarity of SH is defined independently of the ray direction,
whereas P polarities are relative to the ray direction, which changes sign upon
the reflection.

At near-vertical incidence, the reflection coefficient is negative for SH and pos-
itive for P when the impedance increase is positive. An example of this would
be a reflection off the top of the Moho. The reflected pulse is phase reversed
for SH relative to the incident pulse (Fig. 6.2). In contrast, for underside reflec-
tions off the Moho, it is the P reflection that experiences the polarity reversal.
The Earth’s surface represents a different boundary condition; in this case all the
components of the traction vector are zero since virtually no force is exerted by
the air on the ground. For upgoing waves incident on a free surface, there is no
transmitted pulse and the reflection coefficient is 1 for SH and −1 for P . The
transmission coefficient is greater than one for a near-vertical SH wave that prop-
agates into a layer with smaller impedance. For example if ρ1β1 = (1.1)ρ2β2,
then À2 = 2.2/2.1 ≃ 1.05. This example highlights the difference at an interface
between amplitude (which need not be conserved) and energy (which always must
be conserved).

Surface

1 1

S
1 –1

P
+ – + +

Moho

Underside
reflections

Topside
reflections

Figure 6.2 Examples of the polarity
changes for near-vertical P and S waves
at horizontal interfaces.When the
impedance decreases, as for underside
reflections off the free surface, the P
wave flips polarity whereas the S-wave
polarity is unchanged. In contrast, when
the impedance increases, as for topside
reflections off the Moho, the reflected S
pulse is of opposite polarity, while the P
pulse is the same polarity as the
incident wave.This difference between S
and P results from the fact that P-wave
particle motions are measured relative
to the ray direction; the small arrows
indicate the first motion of the P waves.
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r1, c1
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d2

1
D
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Figure 6.3 The ray and wavefront geometry for a plane wave crossing an interface. In this case,
the velocity is higher in the lower layer.

6.3.4 Energy-normalized coefficients

It is sometimes more convenient to work with energy-normalized reflection and
transmission coefficients. Consider an incident wave of amplitude A1 in layer 1
and a scattered wave of amplitude A2 in layer 2 (Fig. 6.3). The energy flux per unit
wavefront area Ẽflux

1 in the incident wave is given by (6.15):

Ẽflux
1 = 1

2
c1ρ1A

2
1ω

2, (6.52)

where c1 is the velocity (either P or S) and ρ1 is the density in layer 1. The incident
energy flux density on the interface, Ẽflux

1 , is reduced by the angle of the wave,

Ẽflux
1 = 1

2
c1ρ1A

2
1ω

2 cos θ1, (6.53)

where θ1 is the incident angle of the incoming wave. Similarly, the energy flux
density on the interface from the scattered wave A2 is given by

Ẽflux
2 = 1

2
c2ρ2A

2
2ω

2 cos θ2. (6.54)

The sum of the energy flux density on the interface from all of the scattered waves
must equal the energy flux density from the incident waves. It is therefore convenient
to define

Anorm =

√√√√ Ẽflux
2

Ẽflux
1

= A2

A1

√
ρ2c2 cos θ2

ρ1c1 cos θ1
= Araw

√
ρ2c2 cos θ2

ρ1c1 cos θ1
, (6.55)
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where Anorm is the energy-normalized reflection/transmission coefficient and Araw

is the ratio of the scattered amplitude to the incident amplitude (e.g., for S waves,
S̀S̀ in 6.47). With this definition, the sum of the squares of Anorm for all the scattered
waves will be one.

For the SH-wave reflection and transmission coefficients (6.46, 6.47), the energy-
normalized equations are:

S̀Śnorm = ρ1β1 cos θ1 − ρ2β2 cos θ2

ρ1β1 cos θ1 + ρ2β2 cos θ2
= S̀Śraw, (6.56)

S̀S̀norm = (ρ2β2 cos θ2)
1/2

(ρ1β1 cos θ1)1/2

2ρ1β1 cos θ1

ρ1β1 cos θ1 + ρ2β2 cos θ2
. (6.57)

Notice that the energy-normalized SH reflection coefficient is unchanged since
ρc cos θ is equal for the incident and reflected wave. This is also true in the P/SV
system for reflected waves of the same type as the incident wave (e.g., P̀Ṕ , S̀Ś),
but it is not true when the wave type changes (e.g., P̀ Ś, S̀Ṕ).

6.3.5 Dependence on ray angle

Let us now explore how the reflection and transmission coefficients change as
a function of ray angle. To motivate the discussion, we will consider a specific
example – the response of the Moho to downgoing SH waves. We take as our
starting point the PREM velocity and density values at the Moho: ρ1 = 2.9, ρ2 =
3.38, β1 = 3.9, β2 = 4.49 with density in g/cm3 and velocity in km/s. Note that
ρ1β1 = 11.31, ρ2β2 = 15.18, and that the increase in ρβ across the Moho is about
30% (relative to the mean ρβ).

Using equations (6.46) and (6.47) we can compute the reflection and transmission
coefficients as a function of ray angle for the incident wave. These results are plotted
in Figure 6.4. First, consider the results for near-vertical incidence (θ = 0◦). Here
the reflected wave has an amplitude of −0.146 (as predicted by the 30% impedance
change), while the transmitted wave amplitude is 0.854. Note that energy flux is
conserved since 12(11.31) ≃ (−0.146)2(11.31) + 0.8542(15.18).

We also plot the phase of the reflected and transmitted waves; at vertical incidence
the reflected pulse has experienced aπ phase shift (180◦) while the transmitted pulse
is unaltered. The reflection and transmission coefficients for θ < 30◦ change very
little and are well approximated by the vertical incidence values. As θ increases
to larger values and the incident ray becomes more horizontal, the amplitude of
the transmitted wave increases and the reflected amplitude approaches zero. At
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Figure 6.4 Reflection and transmission coefficients versus ray angle for a downgoing SH-wave
incident on the Moho. In the top plots, the real part of the reflection coefficient is shown with a
thin solid line, the imaginary part with a dashed line, and the magnitude with a heavy line.The
lower plots show the change in the phase angle for a harmonic wave.The sign of the imaginary
part of the reflection coefficients plotted here assumes that a phase shift of −90◦ represents a
π/2 phase advance (see text).

an incidence angle near 49◦, the reflected amplitude is zero and the transmitted
amplitude is one. Despite crossing a significant change in density and velocity,
there is no reflected wave for an incident ray at this angle.

Beyond 49◦, the amplitude of the transmitted wave continues to increase. This
amplitude increase in the transmitted wave results from the increasingly horizontal
orientation of the transmitted ray. Near-horizontal rays contribute much less to
the vertical energy flux than near-vertical rays of the same amplitude. Thus, to
balance the energy flux, the amplitude of the near-horizontal rays must increase.
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The reflected wave is now positive in amplitude (no phase shift) and grows as θ
increases in order to balance the displacements on both sides of the Moho.

This continues as θ approaches the critical angle (near 60◦ in our example), where
the transmitted ray is horizontal. At the critical angle, the transmitted SH wave has
an amplitude of two and the reflected wave amplitude is one. All reflections at
angles less than the critical angle are termed precritical reflections. To go beyond
the critical angle, we face a problem in our calculations. This arises from the cos θ2

term in the denominator of (6.46). Beyond the critical angle at which θ2 = 90◦ there
is no transmitted ray in the lower layer. How do we handle this situation? Recall
that the vertical slowness is given by

η = u cos θ =
√

u2 − p2. (6.58)

When u = p, then θ = 90◦ and the ray is horizontal. When p > u, the vertical
slowness becomes imaginary. It turns out that waves with imaginary vertical slow-
nesses do exist and satisfy the wave equation (see Aki and Richards, 2002, p. 149).
They are termed inhomogeneous or evanescent waves and their amplitude grows or
decays with depth. They have no vertical energy flux, and their energy-normalized
transmission coefficient is zero. In contrast, the homogeneous waves with real ver-
tical slownesses that we have studied so far have oscillatory behavior with depth
and non-zero values of vertical energy flux.

Our formulae for reflection and transmission coefficients remain valid for imag-
inary vertical slowness, provided we use

cos θ =
√

1 − p2c2, (6.59)

where c is the velocity for the appropriate wave type. Past the critical angle, both
the reflected and transmitted amplitude coefficients become complex. No energy
is transmitted downward in the lower layer; all of the energy is reflected upward
(|S̀Ś| = 1). This is termed total internal reflection. Unlike precritical reflections,
the shape of the reflected pulse at postcritical angles is distorted. This arises from
multiplication with a complex reflection coefficient. In the frequency domain this is
equivalent to multiplying by eiθ where θ is the phase of S̀Ś, introducing a frequency-
independent phase shift. These phase shifts are plotted as a function of ray angle
in Figure 6.4. A phase shift of π or −π is simply a polarity reversal. However,
intermediate phase shifts between 0 and π and between 0 and −π cause pulse
distortion.

Areflection coefficient of −i corresponds to a phase advance ofπ/2 and produces
what is called the Hilbert transform (see Appendix E). The Hilbert transform of a
delta function looks like the diagram at the top of the next page. It can be shown
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that any phase shift can be expressed as a linear combination of a function and its
Hilbert transform (e.g., see Aki and Richards, 2002, Section 5.3).

t

A complication that arises when reflection
and transmission coefficients are complex is
that the sign of the imaginary part will vary
depending upon the sign convention used for
the Fourier transform. Here we assume that
the time series is obtained through an inte-
gral over e−iωt (see Appendix E), and this
produces the −i coefficient for the π/2 phase
advance of the Hilbert transform. As noted
by Aki and Richards (2002, p. 151), the term
phase advance is more fundamental and less
ambiguous than the more commonly used
“phase shift’’ because of the sign differences in phase shift definitions. It’s easy
to check which sign convention is appropriate for a particular set of subroutines by
computing the inverse Fourier transform of −i. If the result resembles the Hilbert
transform, then the e−iωt convention applies; if the result looks polarity reversed,
then the eiωt convention applies and a coefficient of +i is required to yield the
Hilbert transform.

Now consider the travel time curve that results from the SH Moho reflection for
a simple model of the crust and upper mantle (Fig. 6.5). The reflected arrivals form
a retrograde branch. The critical angle occurs at the caustic where the Sn branch
emerges.At closer ranges the reflections are precritical and the amplitudes are much
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Figure 6.5 The different arrivals for S waves in the crust and upper mantle.
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smaller. At vertical incidence the pulse is phase reversed. At some point along the
precritical branch the reflection coefficient goes to zero and then increases rapidly
to 1 at the critical distance. Along this part of the reflected branch the pulse is not
phase reversed. The pulse shape is distorted along the postcritical branch, changing
gradually from a phase shift of 0 at the critical point to −π (phase reversed) at the
far caustic.

We have gone into this example in some detail in order to illustrate the range of
behavior that occurs with reflection and transmission coefficients. Other boundary
conditions will lead to different behavior but many of the general concepts remain
the same. The reflection and transmission coefficients are all real provided the ray
angles for the waves are real. However, as soon as at least one of the scattered
waves becomes inhomogeneous, then all of the coefficients become complex.

6.4 Turning points and Hilbert transforms

We now make a brief digression to consider some of the subtleties involved in plane
waves and ray theoretical versus homogeneous layer modeling. In our previous
discussions of plane waves, we have considered only homogeneous models in which
wavefronts are planes extending to infinity or models with an interface between
two uniform half spaces, in which case the wavefronts have a kink at the interface
but are planar on either side. We now generalize the idea of a plane wave to include
models with vertical velocity gradients. In this case the plane wave is defined by
the wavefronts orthogonal to the family of rays with constant horizontal slowness
(the ray parameter p). In regions of velocity gradients the rays will curve and the
wavefronts will no longer be planar (Fig. 6.6); however, we will continue to use the
term “plane wave’’since the wavefronts are locally planar in any homogeneous part
of the model. Monochromatic plane waves are thus waves at constant frequency and
horizontal wavenumber (kx = ωp). In order to solve the wave equation for laterally
homogeneous models, it is often convenient to first transform the equations into the
(ω, kx) domain from the (X, t) domain. The solution at the surface is then expressed
as a sum of plane waves at different values of ω and kx.

Figure 6.6 Waves of constant ray parameter turning within a vertical velocity gradient.
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Now consider a vertical velocity gradient that is approximated
by a staircase model with very fine layer spacing. We wish to
consider what happens at the turning point for an SH plane wave
in such a model.Adowngoing SH plane wave with ray parameter
p will be totally reflected at the top of the layer in which the
velocity exceeds β = 1/p.

Let the velocity jump at this interface be from β− = β − dβ

to β+ = β + dβ and the density jump to be from ρ− = ρ − dρ to ρ+ = ρ + dρ.
The SH reflection coefficient (6.46) may then be expressed as

S̀Ś =
ρ−β−

√
1 − 1

β2 (β − dβ)2 − ρ+β+
√

1 − 1
β2 (β + dβ)2

ρ−β−
√

1 − 1
β2 (β − dβ)2 + ρ+β+

√
1 − 1

β2 (β + dβ)2
, (6.60)

where we have used cos θ =
√

1 − p2β2 from (6.59).
Evaluating this expression as the layer spacing becomes infinitely fine

(dρ, dβ→ 0), we may ignore terms of (dβ)2, and thus
√

1 − 1
β2 (β − dβ)2 =

√

1 − 1
β2 (β2 − 2βdβ)

=
√

2dβ

β

and
√

1 − 1
β2 (β + dβ)2 =

√
−2dβ

β
.

Ignoring higher-order terms in dρ and dβ, we have

S̀Ś =
ρβ
√

2dβ
β − ρβ

√
−2dβ
β

ρβ
√

2dβ
β + ρβ

√
−2dβ
β

= 1 − i

1 + i

= −i. (6.61)

This result for a staircase model suggests that plane waves that turn in a vertical
velocity gradient should experience a π/2 phase advance at the turning point. In
fact, this is the case and can be shown more formally using WKBJ theory (Aki and
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caustic surface

1

2 2 1

Source Receivers

Figure 6.7 Along a retrograde branch of a travel time curve, the rays turn back sharply toward
the source.The crossing of the ray paths forms an internal caustic surface that produces a π/2
phase advance in the waveforms (diagram after Choy and Richards, 1975).

Richards, 2002, pp. 434–6). This is a high frequency approximation that is not valid
near the turning point itself, but can be used to connect the downgoing and upgoing
plane-wave solutions some distance above the turning point depth.

Because of the π/2 phase advance, the upgoing plane wave is the Hilbert trans-
form of the downgoing wave and its pulse shape is altered. Why does this happen?
Some insight may be obtained by considering what happens to the wavefront de-
fined by adjacent rays in a small ray tube near the turning point (Choy and Richards,
1975). The ray paths cross and the wavefront folds over itself at the turning point.
This is termed an internal caustic surface in ray theory and also occurs along retro-
grade branches for rays from a point source (Fig. 6.7). The folding of the wavefront
along the caustic surface is what produces the π/2 phase advance.

Generally the rays from a point source do not cross at the turning point and no
phase shift occurs. How can we reconcile this result with the π/2 phase advance at
the turning point for the plane wave? The answer involves the fact that adjacent rays
in the case of the point source have different ray parameters, unlike the constant
ray parameter that prevails for the plane wave. To obtain the point source solution
from a sum of plane waves of different ray parameters, we must perform an inverse
transform from the (ω, kx) domain to the (t, X) domain. The inverse transformation
involves a π/2 phase shift that cancels the −π/2 phase shift produced at the plane
wave turning points.

Although in most cases a point source does not produce an internal caustic sur-
face, some ray geometries will produce such a result. Examples of this include
retrograde branches from a steep velocity gradient and surface reflected phases
such as PP (Fig. 6.8). In each case, adjacent ray paths cross themselves and a
π/2 phase shift occurs. For example, PP is observed to be the Hilbert transform
of P (plus another phase shift of π that occurs at the surface reflection point).
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Source PP arrivals

caustic surface

P arrivals

Figure 6.8 Ray paths for the surface reflected phase PP also form an internal caustic; this causes
PP to be Hilbert transformed (as well as of opposite polarity owing to the surface reflection)
relative to direct P.

In the case of a steep velocity gradient producing a retrograde branch, ray theory
predicts that the arrivals along this branch will be Hilbert transformed compared
to the prograde branches. However, this result is only valid provided the velocity
gradient is not too steep. In the limit, an infinitely steep velocity gradient becomes
a step discontinuity. As we have seen (see Fig. 6.4), the post critical reflection
coefficients for such an interface involve a continuous change in phase with ray
angle, rather than a constant π/2 phase shift.

6.5 Matrix methods for modeling plane waves†

Our emphasis for much of this book has been motivated by understanding wave
propagation in terms of simple ray theory. However, many problems are more easily
addressed when the wave field is decomposed into plane waves (an example would
be computing the effect of resonance within a near-surface layer), and powerful
techniques have been developed for calculating the plane wave response of hori-
zontally layered models. Here we provide an introduction to a method for modeling
plane wave propagation in which we set up a system of equations for displacement
and stress for the different wave types. This method is quite general and is widely
used in seismology to model both body- and surface-wave propagation.

Once again we will consider the SH system, but the method is easily generalized
to the P/SV system. The technique is almost always set up in the frequency domain.
The displacement due to SH waves at a given frequency is

uy = S̀e−iω(t−px−ηz) = S̀e−iω(t−px)eiωηz (downgoing), (6.62)

uy = Śe−iω(t−px+ηz) = Śe−iω(t−px)e−iωηz (upgoing), (6.63)

where z points downward and we are considering only waves propagating in the
+x direction. We will assume thatω and p are fixed; our solution is for steady state,
monochromatic plane waves. Note that the depth dependence can be separated from
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the e−iω(t−px) term in each case. Next we define a vector, the stress-displacement
vector or Haskell vector, that contains the displacements and stress components
that must be continuous with depth:

H(z) ≡
[

uy

τyz

]
= f(z)e−iω(t−px), (6.64)

where the f vector contains the depth-dependent part ofH. Recalling our expression
for τyz (6.36), we have

τyz = µ
∂uy

∂z
= +iωµηuy (downgoing), (6.65)

= −iωµηuy (upgoing), (6.66)

and thus we can express f as

f(z) =
[

S̀eiωηz + Śe−iωηz

S̀iωµηeiωηz − Śiωµηe−iωηz

]

=
[

eiωηz e−iωηz

iωµηeiωηz −iωµηe−iωηz

] [
S̀

Ś

]
(6.67)

≡ Fw, (6.68)

where F is termed the solution matrix or layer matrix, and thew vector contains the
amplitudes of the downgoing and upgoing waves. The matrix Fmay be factored as

F(z) =
[

1 1
iωµη −iωµη

] [
eiωηz 0

0 e−iωηz

]
(6.69)

≡ E---. (6.70)

Now let us explore some of the power of our new notation. Applying boundary
conditions at a solid–solid interface is simple. First we match displacement and
traction at the interface between layer 1 and layer 2:

H1 = H2. (6.71)

Next we use (6.64) to obtain

f1 = f2 (6.72)
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after dividing through by the common factor of e−iω(t−px). From (6.67)–(6.70) we
may write

[
1 1

µ1η1 −µ1η1

] [
S̀1

Ś1

]
=
[

1 1
µ2η2 −µ2η2

] [
S̀2

Ś2

]
(6.73)

after setting z = 0 so that --- = I. To compute reflection and transmission coeffi-
cients we need to rearrange these equations to separate the incident and scattered
waves. The result is

[
1 −1

−µ1η1 −µ2η2

] [
Ś1

S̀2

]
=
[ −1 1

−µ1η1 −µ2η2

] [
S̀1

Ś2

]
. (6.74)

We then have
[

Ś1

S̀2

]
=
[

1 −1
−µ1η1 −µ2η2

]−1 [ −1 1
−µ1η1 −µ2η2

] [
S̀1

Ś2

]

= R
[

S̀1

Ś2

]
(6.75)

=
[

S̀Ś ŚŚ

S̀S̀ ŚS̀

] [
S̀1

Ś2

]
, (6.76)

whereR is the matrix of reflection and transmission coefficients. It is easily verified
that the coefficients obtained are identical to our previous expressions (6.46) and
(6.47).

Next, let us see how we can propagate a solution to a different depth. Within a
homogeneous layer, the amplitude factors w are constant. At depth z1 we have

f(z1) = F1w −→ w = F−1
1 f(z1). (6.77)

At depth z2 we have

f(z2) = F2w = F2F−1
1 f (z1)

= E---2(E---1)
−1f (z1) = E---2---

−1
1 E

−1f (z1)

= E
[

eiωη(z2−z1) 0
0 e−iωη(z2−z1)

]
E−1f (z1)

≡ P(z1, z2)f (z1). (6.78)

The matrix P is termed the propagator matrix because it propagates the solution
from z1 to z2. In this way the displacements and stresses at the top of a homogenous
layer may be propagated to the bottom of the layer. Because the displacements and
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S̀
S = ?`

Figure 6.9 A downgoing SH-wave
incident on a stack of homogeneous
layers will generate upgoing scattered
SH waves that are a product of all of
the internal reflections and
reverberations within the stack.

stresses must be continuous at an interface between layers, the solution may be
propagated downward (or upward) through a series of layers by using a different
propagator for each layer. Note that this does not require the use of reflection and
transmission coefficients at each interface – it is the displacements and stresses that
are being propagated, not the wave amplitudes.

This sounds too easy; doesn’t it? Why can’t we use this method to compute
synthetic seismograms in layer-cake models without any fuss? The answer lies in
the fact that a complete knowledge of H at any depth in the model implies that we
know both the upgoing and downgoing wave amplitudes:

H =
[

uy

τyz

]
= Fwe−iω(t−px) = F

[
S̀

Ś

]
e−iω(t−px). (6.79)

Since the layer matrix F is a fixed function of the layer properties, w can be com-
puted from H and vice versa. But we don’t normally know both the upgoing and
downgoing wave amplitudes. For example, we might want to compute the response
of a stack of layers to a downgoing plane wave (Fig. 6.9). We know the amplitude,
S̀, of the downgoing SH wave at z = zref . The problem is determining the am-
plitude of the upgoing wave, Ś, at the same depth, since the stack will produce a
complicated series of reflections and reverberations. Once Ś(zref ) is known, the
problem of determining the displacements and stresses,H, or the wave amplitudes,
w, at any other depth in the stack is essentially solved.

Fortunately, there are methods for determining the complete response of a series
of layers. A technique using the propagator matrix was developed by Thomson and
Haskell in the 1950s and has been used extensively to model surface waves.Another
method computes generalized reflection and transmission coefficients for the entire
stack of layers and forms the basis for reflectivity synthetic seismogram algorithms
(e.g., Fuchs and Müller, 1971; Kennett, 1974, 1983; Mallick and Frazer, 1987).
Note that the equations in this section apply to harmonic plane waves with a specific
frequency and ray parameter. By solving for the plane-wave response over a variety
of values of ω and p, one obtains a complex frequency-wavenumber spectrum,
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which can then be integrated over frequency and ray parameter to compute synthetic
seismograms (which are a function of time at specific distances). The frequency
integral is simply an inverse Fourier transform (ω → t), but the integral over ray
parameter can be quite tricky to perform and much of the challenge in writing
reflectivity codes comes from computing this integral.

Our treatment in this section has been for SH waves. However, all of the methods
and notation are readily generalized to P/SV , in which case

w =

⎡

⎢⎣

P̀

S̀

Ṕ

Ś

⎤

⎥⎦ , H =

⎡

⎢⎣

ux

uz

τxz

τzz

⎤

⎥⎦ . (6.80)

Note that for P/SV the displacement is confined to the xz plane (u = (ux, 0, uz))
and hence τyz = µ∂uy/∂z = 0. Chapter 5 of Aki and Richards (2002) contains
a complete treatment of the P/SV equations, including expressions for the reflec-
tion/transmission coefficients and the 4 × 4 matrix E.

As a final note, the results for the matrix methods can also be derived from
formulations that begin by casting the problem in the form

∂f
∂z

= Af , (6.81)

where f is defined as above and the A matrix depends only upon the elastic prop-
erties of the medium, p and ω. The elements of A can be obtained directly from
the wave equation and the stress–strain relationship (Aki and Richards contains
complete expressions forA). Solutions to coupled first-order differential equations
such as (6.81) are obtained by computing the eigenvalues and eigenvectors of A.
The eigenvalues turn out to be related to the vertical slownesses η for the different
wave types; the eigenvectors are related to the columns in the layer matrix F.

6.6 Attenuation

So far we have considered the changes in seismic wave amplitude that result from
geometrical spreading of wavefronts and the reflection and transmission coeffi-
cients that occur at discontinuities. A third factor that affects amplitudes is energy
loss due to anelastic processes or internal friction during wave propagation. This
intrinsic attenuation may be distinguished from scattering attenuation, in which
amplitudes in the main seismic arrivals are reduced by scattering off small-scale het-
erogeneities, but the integrated energy in the total wavefield remains constant. The
word attenuation is also sometimes used simply to describe the general decrease in
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amplitude of seismic waves with distance, which is primarily a result of geometrical
spreading, but in this section we will use the term only to refer to intrinsic attenu-
ation. The strength of intrinsic attenuation is given by the dimensionless quantity
Q in terms of the fractional energy loss per cycle

1
Q(ω)

= − )E

2πE
, (6.82)

where E is the peak strain energy and −)E is the energy loss per cycle. Q is
sometimes called the quality factor, a term borrowed from the engineering literature.
Note that Q is inversely related to the strength of the attenuation; low-Q regions are
more attenuating than high-Q regions. For seismic waves in the Earth, the energy
loss per cycle is very small, in which case one may derive an approximation (valid
for Q ≫ 1) that is better suited than (6.82) for seismic applications:

A(x) = A0e
−ωx/2cQ, (6.83)

where x is measured along the propagation direction and c is the velocity (e.g.,
c = α for P waves with attenuation Qα and c = β for S waves with attenuation
Qβ). The amplitude of harmonic waves may then be written as a product of a real
exponential describing the amplitude decay due to attenuation and an imaginary
exponential describing the oscillations

A(x, t) = A0e
−ωx/2cQe−iω(t−x/c). (6.84)

Sometimes the exponentials in this equation are combined, and the effect of Q

is included directly in e−iω(t−x/c) by adding a small imaginary part to the velocity
c (the imaginary part is small because Q ≫ 1). This provides an easy way to
incorporate the effects of attenuation into homogeneous layer techniques (e.g.,
reflectivity) for computing synthetic seismograms, since these methods typically
operate in the frequency domain. However, as discussed below, velocity dispersion
must also be included to obtain accurate pulse shapes using this approach.

6.6.1 Example: Computing intrinsic attenuation

A wave propagates for 50 km through a material with velocity 6 km/s and
Q = 100. What is the amplitude reduction for a wave at 1 Hz and at 10 Hz?
From (6.83) and recalling that ω = 2πf , we have

A(1 Hz) = e−2π50/2·6·100 = 0.77,

A(10 Hz) = e−20π50/2·6·100 = 0.0073.
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The wave retains 77% of its original amplitude at 1 Hz, but only 0.73% of its
amplitude at 10 Hz.

6.6.2 t∗ and velocity dispersion

In ray theoretical methods, attenuation is often modeled through the use of t∗,
defined as the integrated value of 1/Q along the ray path

t∗ =
∫

path

dt

Q(r)
, (6.85)

where r is the position vector. Equation (6.83) then becomes

A(ω) = A0(ω)e−ωt∗/2. (6.86)

The amplitude reduction at each frequency is obtained by multiplying by e−ωt∗/2.
The factor of ω means that the high frequencies are attenuated more than the low
frequencies; thus a pulse that travels through an attenuating region will gradually
lose its high frequencies. This property can be used to measure t∗ from observed
spectra (assuming the starting spectrum generated at the source is flat, i.e., a delta-
function source) by plotting log |A(ω)| versus f .

log10 |A(ω)| = log10 A0 − 1
2
ωt∗ log10(e) (6.87)

= log10 A0 − 0.2171ωt∗ (6.88)

or

log10 |A(f)| = log10 A0 − 1.364ft∗, (6.89)

where f = ω/2π. Assuming Q is constant with frequency, log |A(f)| will plot
as a straight line with a slope that is directly proportional to t∗. If Q is frequency
dependent, as will be discussed in the next section, then the slope of log |A(f)| is
proportional to what is often termed apparent t∗ or t∗, defined as

t∗ = −d(ln A)

πdf
= t∗ + f

dt∗

df
. (6.90)

In the time domain, attenuation can be modeled by convolving the original pulse
by a t∗ operator, defined as the inverse Fourier transform of the A(ω) function in
the frequency domain (Fourier transforms and convolution are discussed in Ap-
pendix E). This convolution will cause the pulse broadening that is observed in the
time domain.
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Figure 6.10 A simple t∗ operator with no velocity dispersion predicts a physically unrealistic
symmetric pulse.

However, there is a complication that we have so far neglected that involves
the phase part of the spectrum. The spectrum, A(ω), of a time series is complex
and has real and imaginary parts, which define both an amplitude and a phase at
each frequency point. Attenuation will reduce the amplitude part of the spectrum
according to (6.86). If we assume that the phase part of the spectrum is unchanged
(i.e., velocity is constant as a function of frequency) then the t∗ operator will take
the form of a symmetric pulse, as shown in Figure 6.10. For a δ-function source,
this represents the expected pulse shape resulting from propagation through the
attenuating medium. The pulse is broadened because of the removal of the higher
frequencies, but the symmetric shape of the pulse violates causality because the
leading edge of the pulse will arrive ahead of the ray-theoretical arrival time. It turns
out that the existence of attenuation requires that velocity vary with frequency, even
if Q itself is not frequency dependent over the same frequency band. This follows
both from the necessity to maintain causality in the attenuated pulse and from
considerations of physical mechanisms for attenuation. A full discussion of these
topics may be found in Aki and Richards (2002, pp. 163–75); one of the most
important results is that over a frequency interval in which Q(ω) is constant, the
velocity c may be expressed as

c(ω) = c(ω0)

(
1 + 1

πQ
ln
ω

ω0

)
, (6.91)
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where ω0 is a reference frequency. The predicted velocity dispersion in the Earth
is fairly small at typically observed values of Q. For example, at Q = 150, the
velocities at periods of 1 and 10 s differ by only about 0.5%.

Let us now consider the effects of this velocity dispersion on the spectrum for
the case where Q(ω) is constant. From (6.84) we have

A(x,ω, t) = A0e
−ωx/2c(ω)Qe−iω(t−x/c(ω)). (6.92)

From (6.91) and using the approximation 1/(1 + ϵ) ≈ 1 − ϵ for ϵ ≪ 1 (valid since
Q ≫ 1) we can express the 1/c(ω) term as

1
c(ω)

= 1
c0

[
1 − 1

πQ
ln
ω

ω0

]
(6.93)

= 1
c0

− ln(ω/ω0)

πc0Q
, (6.94)

where c0 = c(ω0). Substituting into (6.92) and ignoring terms of 1/Q2, we have

A(x,ω, t) = A0e
−ωx/2c0Qe−iω(t−x/c0)e−iωx ln(ω/ω0)/πc0Q. (6.95)

Defining t∗0 = x/c0Q we have

A(x,ω, t) = A0e
−ωt∗0/2e−iω(t−x/c0)e−iωt∗0 ln(ω/ω0)/π. (6.96)

Here e−ωt∗0/2 is the amplitude reduction term, e−iω(t−x/c0) is the phase shift due
to propagation for a distance x at the reference velocity c0, and the final term
gives the additional phase advance or delay for frequencies that deviate from the
reference frequency (note that this phase shift is zero when ω = ω0). The shapes
of the resulting t∗ operators are shown in Figure 6.11, where the times are given
relative to the predicted arrival time at 10 Hz (i.e., the phase shift given by the
final term in (6.96) when ω0 = 20π). These operators represent the pulses that
would be observed from a delta-function source after traveling through attenuating
material. Larger values of t∗ describe more attenuation, reduced high-frequencies,
and increased pulse broadening.

These t∗ operators have more impulsive onsets than the symmetric pulse plotted
in Figure 6.10 and preserve causality because no energy arrives before the time
predicted by the largest value of c(ω). Note that energy at frequencies greater than
10 Hz (which would plot at negative times in front of the pulses shown) is not
visible because it is severely attenuated by the e−ωt∗0/2 term.
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t* = 1 s

t* = 2 s

t* = 4 s

t* = 1 s

t* = 2 s

t* = 4 s

Figure 6.11 (left) Pulse shapes (t∗ operators) for t∗ values of 1, 2 and 4 s, computed using
equation (6.96) for a reference frequency of 10 Hz. (right) The corresponding amplitude spectra
plot as straight lines on a linear-log plot, according to equation (6.89).

6.6.3 The absorption band model†

Although Q is often approximated as being constant over a frequency band of
interest, it is clear from (6.91) that this approximation must fail at very high or low
frequencies. If Q were completely constant, then c(ω) becomes negative for small
ω and c(ω) → ∞ for ω → ∞. This is not observed in the Earth so it must be the
case that Q decreases at both low and high frequencies. This behavior is commonly
modeled in terms of an absorption band operator (e.g., Liu et al., 1976; Lundquist
and Cormier, 1980; Doornbos, 1983), in which case

Q−1(ω) = 2Q−1
m DQ(ω), (6.97)

where Q−1
m is the peak value of Q−1(ω), and

DQ(ω) = 1
π

tan−1
[
ω(τ2 − τ1)

1 + ω2τ1τ2

]
, (6.98)

where τ1 and τ2 are the lower and upper relaxation times that define the edges of
the absorption band (see Fig. 6.12). These times correspond to lower and upper
frequency limits, f1 = 1/2πτ2 and f2 = 1/2πτ1 (yes, the ones and twos should
be switched!), between which the attenuation is approximately constant. Because
tan−1 θ ≈ θ for θ ≪ 1, Q−1(ω) will vary as ω for frequencies well below f1 and
will vary as ω−1 for frequencies well above f2.
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Figure 6.12 Attenuation, Q−1, and velocity, c, as a function of frequency for an absorption band
attenuation model in which f1 = 0.0001 Hz and f2 = 1 Hz, peak attenuation Qm = 100, and c∞ =
10 km/s.

For this model, the velocity dispersion is given by

c(ω) = c∞

[
1 − Dc(ω)

Qm

]
. (6.99)

where c∞ is the velocity at infinite frequency and

Dc(ω) = 1
2π

ln

(
1 + 1/ω2τ2

1

1 + 1/ω2τ2
2

)

. (6.100)

As shown in Figure 6.12, the velocity increases to c∞ over the absorption band
from the low-frequency limit of c = c∞[1 − ln(τ2/τ1)/πQm]. Now rewrite (6.84)
for frequency-dependent Q(ω) and c(ω)

A(x,ω, t) = A0e
−ωx/2c(ω)Q(ω)e−iω(t−x/c(ω)) (6.101)

For Qm ≫ 1, we can express the 1/c(ω) term as

1
c(ω)

= 1
c∞

+ Dc

c∞Qm
. (6.102)
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Substituting into (6.101) and ignoring the 1/Q2
m terms, we have

A(x,ω, t) = A0e
−ωt∗DQ(ω)eiωt∗Dc(ω)e−iω(t−x/c∞), (6.103)

where we define t∗ as

t∗ = x

c∞Qm
. (6.104)

Behavior in the middle of the band

Now consider the case when we are near the middle of the absorption band so that
Q(ω) ≈ Qm is locally constant and ωτ1 ≪ 1 and ωτ2 ≫ 1. We then have

Dc(ω) ≈ 1
2π

ln

(
1

ω2τ2
1

)

(6.105)

and (6.102) becomes

1
c(ω)

= 1
c∞

+ 1
2πc∞Qm

ln

(
1

ω2τ2
1

)

(6.106)

= 1
c∞

+ −2 ln(ωτ1)

2πc∞Qm
(6.107)

= 1
c∞

− ln(τ1)

πc∞Qm
− ln(ω)

πc∞Qm
. (6.108)

Again substituting into (6.101), we obtain

A(x,ω, t) = A0e
−ωt∗/2e−iω(t−x/c∞)e−iωt∗ ln(τ1)/πe−iωt∗ ln(ω)/π. (6.109)

Notice that in this case there is a phase shift, e−iωt∗ ln(τ1)/π, associated purely with
the value of the upper-frequency cutoff (f2 = 1/2πτ1) of the absorption band.
Increasing f2 will not affect the shape of the pulse but will increase the delay
because we are assuming c∞ is constant so c(ω) will decrease for any fixed ω if f2

increases. Because f2 is not constrained by the pulse shape (and in general may be
poorly known), it is convenient to combine terms to obtain

A(x,ω, t) = A0e
−ωt∗/2e−iω(t−t0)e−iωt∗ ln(ω)/π, (6.110)
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where the total time delay is given by

t0 = x

c∞
− t∗ ln(τ1)

π
. (6.111)

Note the similarity of this equation to the constant Q result (6.96).

6.6.4 The standard linear solid†

Most of the physical mechanisms that have been proposed to explain intrinsic
attenuation (grain boundary processes, crystal defect sliding, fluid-filled cracks,
etc.) can be parameterized in terms of a standard linear solid, a simple model that
exhibits viscoelastic behavior (see Fig. 6.13). The displacement of the mass is not
simply proportional to the applied force (as was the case for the purely elastic
stress–strain relations we described in Chapter 3) because the resistance of the
dashpot scales with the velocity rather than the displacement. The result is that the
response is different depending upon the time scale of the applied force. In the
high-frequency limit, the dashpot does not move and the response is purely elastic
and defined by the second spring. In the low-frequency limit, the dashpot moves
so slowly that there is no significant resistance and the response is again purely
elastic and given by the sum of the two springs. But at intermediate frequencies,
the dashpot will move and dissipate energy, producing a viscoelastic response and
attenuation.

The stress–strain relationship for a standard linear solid is often expressed as

σ + τσσ̇ = MR(ϵ+ τϵϵ̇), (6.112)

where σ is stress (we don’t use τ for the stress tensor as we did in Chapter 3 because
here we are using τ for the relaxation times), ϵ is strain, the dots represent time
derivatives, τϵ is the relaxation time for the strain under an applied step in stress, τσ
is the relaxation time for stress given a step change in strain, and MR is the relaxed

Mass

Dashpot

Spring #1

Spring #2

Figure 6.13 A mechanical model of
the behavior of a standard linear
solid, consisting of a spring and
dashpot in parallel, connected in
series to a second spring.
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modulus, which gives the ratio of stress to strain at infinite time. It can be shown
(e.g., Aki and Richards, 2002, pp. 172–3) that Q for such a model is given by

Q−1(ω) = ω(τϵ − τσ)

1 + ω2τστϵ
(6.113)

and the velocity is given by

c(ω) =
√

MU

ρ

[
1 +

(
MU

MR
− 1

)
1

1 + ω2τ2
ϵ

]−1/2

, (6.114)

where ρ is density and MU is the unrelaxed modulus

MU = MR
τϵ

τσ
(6.115)

Note that the minimum velocity occurs at low frequencies and is a function of
the relaxed modulus (cmin = √

MR/ρ) and the maximum velocity occurs at high
frequencies and is given by the unrelaxed modulus (cmax = √

MU/ρ), and that for
Q ≫ 1 the ratio MR/MU is close to unity. For this model, the attenuation peaks
near ω = (τστϵ)

−1/2 (termed the Debye peak) and the velocity c(ω) increases from
(MR/ρ)1/2 at low frequencies to (MU/ρ)1/2 at high frequencies. This is shown in

Figure 6.14 Attenuation, Q−1, and velocity, c, as a function of frequency for a standard linear
solid in which τϵ = 0.1607 s,τσ = 0.1576 s, and c∞ = 10 km/s.
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the example plotted in Figure 6.14 in which the relaxation times are chosen to give
Q = 100 for an attenuation peak at 1 Hz. The Debye peak represents the behavior
of a solid with a single relaxation mechanism – attenuation is sharply peaked at
a resonant frequency. In contrast, Earth’s attenuation is nearly constant between
0.001 and 0.1 Hz, implying that a range of relaxation mechanisms operating at
different scales is occurring. As shown by Liu et al. (1976), a superposition of
these relaxation peaks can produce an absorption band over which Q−1 is constant.

Of course, there is no reason to expect that Q−1 in the Earth should be perfectly
flat over a wide band. There is some evidence from mineral physics experiments
that Q may have a power-law dependence on frequency, i.e., that Q−1 ∼ ωγ where
γ ≈ −0.2 to −0.3 (see Baig and Dahlen, 2004, who reference Berckhemer et al.,
1982; Jackson et al., 1992, 2002). Seismic observations are not clear enough yet to
resolve the details of the decrease in attenuation at high frequencies. However, the
shape of the Debye peak shows that the falloff of Q−1 should never exceed ω−1.

6.6.5 Earth’s attenuation

The equations in the previous sections apply equally to either P-wave attenuation
Qα or S-wave attenuation Qβ, which are related to bulk attenuation Qκ and shear
attenuation Qµ by the relationships

Q−1
α = LQ−1

µ + (1 − L)Q−1
κ , (6.116)

Qβ = Qµ, (6.117)

where L = (4/3)(β/α)2. Shear attenuation is observed to be much stronger than
bulk attenuation in the deep Earth where Qκ is generally assumed to be infinite
except in the inner core. Note that for Qκ = ∞ and α/β =

√
3 (Poisson solid),

Q−1
α = (4/9)Q−1

β and t∗α = (4/9
√

3)t∗β ≈ (1/4)t∗β, which are commonly used
approximations for the relative strength of P and S attenuation in the mantle.
Long-period P waves at epicentral distances between 30◦ and 90◦ are observed to
have t∗ values of roughly 1 s; corresponding S waves have t∗ values of about 4 s.

Earth’s attenuation is observed to be approximately constant for frequencies be-
tween about 0.001 and 0.1 Hz. This part of the seismic spectrum is observed with
normal modes and long-period surface and body waves (10 to 1000 s period). The
PREM model (see Fig. 6.15) provides a representative constant Q model for this
band. However, attenuation falls off sharply at higher frequencies and observed
body-wave amplitudes at 1 Hz are much higher than predicted by PREM. This be-
havior can be approximately fitted with an absorption band model in which the
upper frequency cutoff, f2, is between 0.5 and 2 Hz (see, e.g., Sipkin and Jor-
dan, 1979; Warren and Shearer, 2000). Figure 6.15 compares Q−1

α values between
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Figure 6.15 P-wave attenuation,Q−1
α , versus depth for the PREM model (solid line), compared to

the two-layer, frequency-dependent mantle Q−1
α of Warren and Shearer (2000) plotted at

frequencies of 0.1, 1, and 10 Hz (dashed lines).The jumps in the PREM Q model occur at 80, 220,
and 670 km.The change in the Warren and Shearer model occurs at 220 km.

PREM (derived from normal modes) and the frequency-dependent, two-layer man-
tle model WS2000 (Warren and Shearer, 2000, derived from short-period P and
PP observations). Note the approximate agreement between the models at low fre-
quency (0.1 Hz) but the much lower attenuation for WS2000 at frequencies of 1 Hz
and greater.

Attenuation is strongest in the upper mantle and inner core; typically assumed
long-period values are provided by the PREM model, for which Qµ is 600 above
80 km depth, drops to 80 between 80 and 220 km, increases to 143 from 220 to
670 km, and is 312 for the lower mantle (below 670 km). Shear waves do not
propagate in the fluid outer core; the PREM model assigns Qµ = 85 and Qκ = 1328
for the inner core.

In the crust, attenuation is concentrated near the surface where the effects of
cracks and/or fluids can be significant. Unlike mantle attenuation, Q−1

κ is significant
in the crust and P-wave attenuation Q−1

α can equal or exceed S-wave attenuation
Q−1
β . Attenuation decreases rapidly with depth in the crust and typical mid-crustal

values of Qα are 500 to 1000. Attenuation increases again in the upper man-
tle, particularly in the aesthenosphere where a seismic low-velocity zone is often
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observed and partial melt may be present. Attenuation is lower in the mid to lower
mantle but still generally exceeds that observed for most of the crust. Significant
lateral variations in crust and upper-mantle attenuation are observed, with higher
attenuation seen in tectonically active areas such as the western United States com-
pared with more stable continental shield and platform regions. The result is that
earthquakes in the eastern United States (rare, but they do happen) are felt and
cause damage over much wider areas than for the same magnitude earthquakes in
California.

Attenuation causes a small amount of velocity dispersion between long and short-
period seismic waves. Velocities in any global seismic model are always with
respect to a fixed frequency. Velocities in PREM are tabulated for a reference
period of 1 s, but can be converted to other periods using equation (6.91). Although
the velocity difference between short and long-period body waves is generally less
than 1%, this can cause travel-time differences in global phases of several seconds,
which are easily observable. In the 1960s, this velocity dispersion due to Q was
not widely understood (despite attempts by Harold Jeffreys to call attention to this
effect!) and many seismologists puzzled for some time over a discrepancy between
normal-mode and body-wave velocity models. The normal-mode models predicted
body-wave travel times longer than those actually observed by an amount that was
termed the baseline correction. It was recognized by several authors (e.g., Liu et al.,
1976) in the mid 1970s that the bulk of the baseline correction could be explained as
physical dispersion. There remains some debate, however, whether dispersion can
account for all of the baseline correlation (also sometimes called the S discrepancy),
or if some other effect might be involved, such as 3-D velocity heterogeneity (e.g.,
Nolet and Moser, 1993; Baig and Dahlen, 2004).

6.6.6 Observing Q

At long periods, Q can be observed from analysis of Earth’s normal modes (see
Chapter 8), which can be modeled as decaying harmonic functions. Attenuation
causes a broadening of the line spectrum that would be obtained from pure sine
waves; thus the Q of a mode can be measured from the width of its spectral peak. By
taking into account the different depth and lateral sensitivities of the various normal
modes, these measurements can be inverted for 1-D and/or 3-D attenuation models.
Surface-wave attenuation studies have mostly used amplitude measurements. Here
the tricky part is separating the amplitude variations caused by focusing and de-
focusing of energy related to lateral velocity changes from the amplitude reductions
caused by attenuation. Body-wave Q studies often measure t∗ for specific seismic
phases by computing the spectrum and measuring the falloff rate (i.e., using equa-
tion (6.89)). However, earthquake source spectra also fall off at high frequencies
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(see Chapter 9) so corrections must be applied for the source spectral content. This
can be done by assuming a particular source model or empirically for each source
if enough data are available. Alternatively, differential spectra between phase pairs
(such as S and SS) can be studied; these spectral ratios are insensitive to the source,
provided the ray takeoff angles from the event are sufficiently similar that radiation
pattern differences can be ignored. As an alternate to spectral methods, some body-
wave Q studies examine the rise time or the width of the displacement pulse, but,
just as in the spectral methods, these measurements must be corrected for source
effects.

At short periods the effects of scattering become increasingly important and it can
be difficult to separate the effects of intrinsic attenuation (the focus of our discussion
in this section) from scattering attenuation. Both have the effect of reducing the
high frequencies in transmitted body waves. Measurements of S coda decay rates
from local earthquakes are often used to estimate a parameter called coda Q, the
meaning of which has been debated, but which seems to represent primarily an
average of intrinsic attenuation within the scattering volume that is contributing to
the coda.

In principle, attenuation measurements can be inverted for 2-D or 3-D Q struc-
ture using the tomographic methods discussed in Chapter 5, but Q studies have
generally lagged behind velocity inversions because of the much greater scatter
exhibited by observed amplitudes and t∗ and other measurements. This scatter is
likely caused by source directivity effects, interference from other seismic phases,
and multipathing and focusing/defocusing from general 3-D structure. However,
attenuation studies are worth pursuing despite their difficulty because they provide
important independent constraints on Earth properties since their sensitivity to tem-
perature, fluids, and compositional differences is distinct from that provided by P-
and S-wave velocities.

6.6.7 Non-linear attenuation

Linear stress–strain theory is generally valid at the low strains typical of most
seismic waves. However, there are some circumstances in which non-linear defor-
mation is important, including the following:

1. There is a non-linear regime close to underground nuclear explosions in which permanent
fracturing and other rock damage occurs. These effects must be considered in developing
a complete theory of how to recover nuclear source properties from far-field seismic
records.

2. Strong ground accelerations from large earthquakes can produce a non-linear response
in shallow soils. This can be studied by comparing surface and borehole seismic records
for earthquakes of different sizes. When a non-linear site response is present, then the
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shaking from large earthquakes cannot be predicted by simple scaling of records from
small earthquakes. This is an active area of research in strong motion and engineering
seismology.

6.6.8 Seismic attenuation and global politics

Beginning in 1976, a nuclear threshold test ban treaty was observed by both the
United States and the Soviet Union, which limited underground nuclear tests to
150 kilotons or less. The yield of underground tests can be estimated from seismic
observations using an empirical magnitude versus yield curve for nuclear tests of
known size. The United States calibrated its “official’’magnitude-yield relationship
mostly using data from nuclear tests at the Nevada Test Site (NTS). The Soviets
detonated a number of large explosions at during the 1980s that appeared to exceed
150 kilotons when their yields were estimated using this formula. This led the
Reagan administration to charge that the Soviets were “likely’’ in violation of the
treaty. However, more careful analysis showed that seismic results from NTS were
biased by the relatively strong upper-mantle attenuation beneath the tectonically
active western United States compared to the stable continental regions of the Soviet
tests. This reduced the amplitudes of seismic waves from NTS explosions and their
computed magnitudes. Thus, the Soviet tests generated larger seismic magnitudes
than would be produced by a 150 kiloton NTS shot. But when the difference in Q

structure was taken into account, the evidence for Soviet cheating disappeared. For
more about this controversy, see http://www.ciaonet.org/conf/nya02/nya02ah.html.

6.7 Exercises

1. Derive equation (6.23), the geometrical spreading formula for a spherical Earth.
For r1 = r2 = 1 and small ), show that this equation is identical to the flat-earth
expression (6.22).

2. Using the P-wave travel times listed in Table 6.1 (values from the IASP91 tables for
a source at zero depth, Kennett, 1991), apply the geometrical spreading equation
(6.23) to predict the relative amplitude of P waves recorded at the surface from an
isotropic surface source at ranges of 30◦, 60◦ , and 90◦. Assume that the surface P

velocity is 5.8 km/s. If the amplitude at 30◦ is unity, what is the amplitude at 60◦

and 90◦? Hints: Be sure to convert the psph values in Table 6.1 to s/radian in order
to obtain correct units. Check the values you compute for the ray takeoff angle θ1

to be sure that they look reasonable.



178 6. R A Y T H E O R Y : A M P L I T U D E A N D P H A S E

Table 6.1: P travel times from iasp91.

! T psph
(deg.) (s) (s/deg.)

29 361.41 8.89

30 370.27 8.85

31 379.10 8.81

59 601.38 6.95

60 608.29 6.88

61 615.13 6.80

89 776.67 4.69

90 781.35 4.66

91 786.00 4.64

3. Solve for R in (6.75) and show that your result agrees with equations (6.44) and
(6.45).

4. (COMPUTER) Use subroutine RTCOEF (Appendix D) to tabulate the amplitude
and phase of reflected and transmitted waves for downgoing P waves incident
on the core–mantle boundary. Use PREM values (Appendix A) for the velocities
and densities across the interface. Plot your results as a function of ray incidence
angle. Note: RTCOEF is for a solid–solid boundary condition and will blow up for
a fluid–solid boundary. To get around this, use a very small, but non-zero, value for
the outer core shear velocity. Ignore the result that you obtain for the transmitted
shear wave; it should contain very little energy.

5. What is the phase shift (0, π/2, π, or 3π/2) for the following phases compared to
P : PP, PPP, PPPP, pP, pPP, PcP (near normal incidence), PcP (near intersection
with P)? What is the phase shift for the following SH phases compared to S: SS,
SSS, SSSS, sS, sSS, ScS (near normal incidence), ScS (near intersection with S)?

6. Use the values for Qα plotted in Figure 6.15 for the PREM model to:

(a) Estimate the attenuation for waves of 30 s period (0.033 Hz) for PcP ray paths
at vertical incidence. Consider only the intrinsic attenuation along the ray
paths; do not include the reflection coefficient at the core–mantle boundary
or geometrical spreading. Be sure to count both the surface-to-CMB and
CMB-to-surface legs. You can get the PREM P velocities from Figure 1.1
or the values tabulated in Appendix A. You may estimate the travel times
through the different Q layers in PREM by assuming a fixed velocity within
each layer (e.g., use the average velocity between 3 and 80 km, the average
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between 80 and 220 km, etc.). Note that in this case the “surface’’ is assumed
to be the bottom of the ocean at 3 km depth. Compute t∗ for PcP . Finally
give the attenuated amplitude of the PcP ray assuming the ray had an initial
amplitude of one.

(b) Using the approximation t∗β = 4t∗α, compute the attenuated amplitude of ScS

at 30 s period.

(c) Repeat (a) and (b) for 1 s period (1 Hz) PcP and ScS waves.

(d) Repeat your calculations for the PcP and ScS attenuated amplitudes at 1 Hz,
but this time use the Warren and Shearer (2000) Qα values from Figure 6.15.
How do the predicted amplitudes compare to the PREM model predictions?
What do these results predict for the observability of teleseismic S arrivals
at 1 Hz?

7. Assume that Qµ = 100 for the inner core and is constant with frequency, that all
of the attenuation is in shear (Qκ = ∞), that α = 11 km/s and β = 3.5 km/s (at 1 s
period) throughout the inner core, and that the inner-core radius is 1221.5 km.

(a) What are Qα and Qβ for the the inner core?

(b) For a P wave that travels straight through the Earth (i.e., travels a distance
twice the radius), how much will amplitudes be attenuated in the inner core
for waves of 100 s, 10 s, and 1 s period? By how many seconds will the total
travel time through the inner core vary as a function of these periods?

(c) Repeat (b) for the case of S waves.





7

Reflection seismology

One of the most important applications of seismology involves the probing of
Earth’s internal structure by examining energy reflected at steep incidence angles
from subsurface layers. This technique may loosely be termed reflection seismology
and has been used extensively by the mining and petroleum industries to study the
shallow crust, generally using portable instruments and artificial sources. However,
similar methods can be applied to the deeper Earth using recordings of earthquakes
or large explosions. Because reflected seismic waves are sensitive to sharp changes
in velocity or density, reflection seismology can often provide much greater lateral
and vertical resolution than can be obtained from study of direct seismic phases
such as P and S (analyses of these arrivals may be termed refraction seismology).
However, mapping of reflected phases into reflector depths requires knowledge
of the average background seismic velocity structure, to which typical reflection
seismic data are only weakly sensitive. Thus refraction experiments are a useful
complement to reflection experiments when independent constraints on the velocity
structure (e.g., from borehole logs) are unavailable.

Reflection seismic experiments are typically characterized by large numbers of
sources and receivers at closely spaced and regular intervals. Because the data
volume generally makes formal inversions too costly for routine processing, more
practical approximate methods have been widely developed to analyze the results.
Simple time versus distance plots of the data can produce crude images of the subsur-
face reflectors; these images become increasingly accurate as additional processing
steps are applied to the data.

Our discussion in this chapter will be limited to P-wave reflections, as the sources
and receivers in most reflection seismic experiments are designed to produce and
record P waves. Our focus will also mainly be concerned with the travel time
rather than the amplitude of seismic reflections. Although amplitudes are some-
times studied, historically amplitude information has assumed secondary impor-
tance in reflection processing. Indeed often amplitudes are self-scaled prior to

181
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plotting using automatic gain control (AGC) techniques. Finally, we will consider
a two-dimensional geometry, for which the sources, receivers, and reflectors are
assumed to lie within a vertical plane. Recently, an increasing number of reflection
surveys involve a grid of sources and receivers on the surface that are capable of
resolving three-dimensional Earth structure. Most of the concepts described in this
chapter, such as common midpoint stacking and migration, are readily generalized
to three dimensions, although the data volume and computational requirements are
much greater in this case.

Reflection seismology is a big topic, and only a brief outline can be presented
here. For additional details, the reader is referred to texts such as Yilmaz (1987),
Sheriff and Geldart (1995), and Claerbout (1976, 1985).

7.1 Zero-offset sections

Consider a collocated source and receiver at the surface above a horizontally layered
velocity structure (Fig. 7.1). The downward propagating P waves from the source
are reflected upward by each of the interfaces. The receiver will record a series of
pulses at times determined by the two-way P travel time between the surface and
the interfaces. If the velocity structure is known, these times can easily be converted
to depths.

Now imagine repeating this as the source and receiver are moved to a series
of closely spaced points along the surface. At each location, the receiver records
the reflected waves from the underlying structure. By plotting the results as a
function of time and distance, an image can be produced of the subsurface structure
(Fig. 7.2). For convenience in interpreting the results, these record sections are
plotted with downward increasing time (i.e., upside down compared with the plots

source & receiver

*

t

reflection seismogram

Figure 7.1 Seismic waves from a surface source are reflected by subsurface layers, producing a
seismogram with discrete pulses for each layer. In this example, the velocity contrasts at the
interfaces are assumed to be small enough that multiple reflections can be ignored.
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Figure 7.2 The structural cross-section on the left is imaged by an idealized zero-offset seismic
reflection profile on the right. Here we have assumed that velocity is approximately constant
throughout the model (except for thin reflecting layers) so that time and depth scale linearly.

in Chapter 4). Another convention, commonly used in reflection seismology, is to
darken the positive areas along the seismograms, increasing the visibility of the
reflected pulses.

If the large-scale P velocity is constant throughout the region of interest, then
time in this image scales linearly with depth and we can readily convert the verti-
cal axis to depth. If velocity increases with depth, a somewhat more complicated
transformation is necessary. Because the velocity structure is often not known very
accurately, most reflection seismic results are plotted as time sections, rather than
depth sections.

This example is termed a zero-offset section because there is assumed to be no
separation between the sources and receivers. More generally, reflection data are
recorded at a variety of source–receiver offsets, but the data are processed in order to
produce an equivalent zero-offset section that is easier to interpret than the original
data. In the idealized example shown in Figure 7.2, the zero-offset section provides
a clear, unbiased image of the reflectors. However, in practice there are several
factors that can hinder construction and interpretation of such a section:

1. Single records are often noisy and zero-offset data may be contaminated by near-source
reverberations. Improved results may be obtained by including different source–receiver
offsets to increase the number of data and then averaging or stacking the records to
increase the signal-to-noise ratio of the reflected pulses.

2. The layer spacing may be short compared to the source duration, producing overlap-
ping arrivals that make it difficult to distinguish the individual reflectors. This may
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be addressed through a process termed deconvolution, which involves removing the
properties of the source from the records, providing a general sharpening of the image.

3. Lateral variations in structure or dipping layers may result in energy being scattered away
from purely vertical ray paths. These arrivals can bias estimates of reflector locations
and depths. By summing along possible sources of scattered energy, it is possible to
correct the data for these effects; these techniques are termed migration and can result
in a large improvement in image quality.

4. Uncertainties in the overall velocity structure may prevent reliable conversion between
time and depth and hinder application of stacking and migration techniques. Thus it is
critical to obtain the most accurate velocity information possible; in cases where outside
knowledge of the velocities are unavailable, the velocities must be estimated directly
from the reflection data.

We now discuss each of these topics in more detail.

7.2 Common midpoint stacking

Consider a source recorded by a series of receivers at increasing distance. A pulse
reflected from a horizontal layer will arrive earliest for the zero-offset receiver, while
the arrivals at longer ranges will be delayed (Fig. 7.3). If the layer has thickness
h and a uniform P velocity of v, then the minimum travel time, t0, defined by the
two-way vertical ray path, is

t0 = 2h

v
. (7.1)

More generally, the travel time as a function of range, x, may be expressed as

t(x) = 2d

v
, (7.2)

where d is the length of each leg of the ray path within the layer. From the geometry,
we have

d2 = h2 + (x/2)2,

4d2 = 4h2 + x2.
(7.3)

Squaring (7.2) and substituting for 4d2, we may write

v2t2 = x2 + 4h2 (7.4)
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Figure 7.3 A reflected ray path (top) and the corresponding travel time curve as a function of
source−receiver separation (bottom). For a constant velocity model, the travel times form a
hyperbola.

or

v2t2

4h2 − x2

4h2 = 1, (7.5)

and we see that the travel time curve has the form of a hyperbola with the apex at
x = 0. This is often expressed in terms of t0 rather than h by substituting 4h2 = v2t2

0
from (7.1) to obtain

t2

t2
0

− x2

v2t2
0

= 1. (7.6)

Solving for t we have

t(x) =
√

t2
0 + x2

v2

= t0

√

1 +
(

x

vt0

)2

. (7.7)
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For small offsets (x ≪ vt0) we may approximate the square root as

t(x) ≈ t0

[
1 + 1

2(x/vt0)
2
]
. (7.8)

The difference in time between the arrival at two different distances is termed the
moveout and may be expressed as

!t = t(x2) − t(x1) = t0

√
1 + (x2/vt0)2 − t0

√
1 + (x1/vt0)2 (7.9)

≈ t0

[
1 + 1

2(x2/vt0)
2
]

− t0

[
1 + 1

2(x1/vt0)
2
]

≈ x2
2 − x2

1

2v2t0
, (7.10)

where the approximate form is valid at small offsets. The normal moveout (NMO)
is defined as the moveout from x = 0 and is given by

!tNMO = t0

√
1 + (x/vt0)2 − t0 (7.11)

≈ x2

2v2t0
. (7.12)

These equations are applicable for a single homogeneous layer. More complicated
expressions can be developed for a series of layers overlying the target reflector or
for dipping layers (e.g., see Sheriff and Geldart, 1995).Alternatively, the ray tracing
theory developed in Chapter 4 can be applied to solve for the surface-to-reflector
travel time for any arbitrary velocity versus depth function v(z). Thus, a general
form for the NMO equation is

!tNMO(x) = 2[t(z, x/2) − t(z, 0)], (7.13)

where t(z, x) is the travel time from the surface to a point at depth z and horizontal
offset x.

A typical seismic reflection experiment deploys a large number of seismometers
to record each source (these instruments are often called geophones in these appli-
cations, or hydrophones in the case of pressure sensors for marine experiments).
This is repeated for many different source locations. The total data set thus consists
of nm records, where n is the number of instruments and m is the number of sources.
The arrival time of reflectors on each seismogram depends on the source–receiver
offset as well as the reflector depth. To display these results on a single plot, it is
desirable to combine the data in a way that removes the offset dependence in the
travel times so that any lateral variability in reflector depths can be seen clearly.
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receivers

Figure 7.4 The source and receiver locations for a common midpoint (CMP) gather.

Figure 7.5 The left plot shows reflection seismograms at increasing source−receiver distance.
The right plot shows the same profile after applying a NMO correction to each time series. Note
that this removes the range dependence in the arrival times.The NMO corrected records can
then be stacked to produce a single composite zero-offset record.

This is done by summing subsets of the data along the predicted NMO times to
produce a composite zero-offset profile. Data are generally grouped by predicted
reflector location as illustrated in Figure 7.4.

Seismograms with common source–receiver midpoints are selected into what is
termed a gather.ANMO correction is then applied to the records that shifts the times
to their zero-offset equivalent (as illustrated in Fig. 7.5). Notice that this correction
is not constant for each record but varies with time within the trace. This results in
pulse broadening for the waveforms at longer offsets, but for short pulse lengths
and small offsets this effect is not large enough to cause problems. Finally the NMO
corrected data are summed and averaged to produce a single composite record that
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represents the zero-offset profile at the midpoint location. This is called common
midpoint (CMP) stacking, or sometimes common depth point (CDP) stacking. The
number of records, n, that are stacked is called the fold. For data with random
noise, stacking can improve the signal-to-noise ratio of the records by a factor of√

n. CMP stacking can also minimize the influence of contaminating arrivals, such
as direct body waves or surface waves (Rayleigh waves, termed ground roll by
reflection seismologists, are often the strongest arrival in reflection records), that
do not travel along the predicted NMO travel time curves and thus do not stack
coherently.

CMP stacking has proven to be very successful in practice and is widely used
to produce reflection profiles at a minimum of computational expense. However, it
requires knowledge of the velocity-depth function to compute the NMO times and
it does not explicitly account for the possibility of energy reflected or scattered from
non-horizontal interfaces. We will discuss ways to address some of these limitations
later in this chapter, but first we examine source effects.

7.3 Sources and deconvolution

The ideal source for reflection seismology would produce a delta function or a very
short impulsive wavelet that would permit closely spaced reflectors to be clearly
resolved. In practice, however, more extended sources must be used and the finite
source durations can cause complications in interpreting the data. For example, an
airgun is often used for marine seismic reflection profiling. This device is towed
behind a ship and fires bursts of compressed air at regular intervals. This creates a
bubble that oscillates for several cycles before dissipating, producing a complicated
“ringy’’ source-time function (e.g., Fig. 7.6). The reflection seismograms produced
by such a source will reproduce this source-time function for each reflector. This is
not too confusing in the case where there are only a few, widely separated reflectors.
However, if several closely spaced reflectors are present then it becomes difficult
to separate the real structure from the source.

The combination of the Earth response with the source-time function is termed
convolution (see Appendix E) and may be written as

u(t) = s(t) ∗ G(t) ≡
∫ ts

0
s(τ)G(t − τ) dτ, (7.14)

where u(t) is the recorded seismogram, s(t) is the effective source-time function
(i.e., what is actually recorded by the receiver; we assume that s(t) includes the
receiver response and any near-source attenuation), G(t) is the Earth response,
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(a)

(b)

(c)

Figure 7.6 (a) A schematic example of a typical source-time function s(t) produced by an airgun
in a marine experiment. A series of bubble pulses are produced by pressure reverberations
within the water. (b) An idealized example of the Earth response function G(t) showing a number
of reflected pulses. (c) The result of convolving (a) and (b).While single isolated reflectors can still
be identified, closely spaced reflectors produce a complex time series that cannot easily be
unraveled.

and ts is the duration of the source. Recovering G(t) from u(t) in this case is
termed deconvolution and is often an important part of reflection seismic processing.
However, it is not always clear how best to perform deconvolution and this has been
the subject of considerable research. The problem appears simpler in the frequency
domain (see Appendix E) where convolution is expressed as a product, that is,

u(ω) = s(ω)G(ω), (7.15)

where u(ω), s(ω), and G(ω) are the Fourier transforms of u(t), s(t), and G(t). Thus,
in principle, frequency-domain deconvolution is straightforward:

G(ω) = u(ω)

s(ω)
. (7.16)

The desired time series G(t) can then be obtained from the inverse Fourier transform
of G(ω). The difficulty with this approach is that (7.16) is exact and stable only for
noiseless data and when s(ω) does not go to zero. In practice, some noise is present
and the effective source-time function is usually band-limited so that s(ω) becomes
very small at the low- and high-frequency limits. These complications can cause
(7.16) to become unstable or produce artifacts in the deconvolved waveform. To
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address these difficulties, various methods for stabilizing deconvolution have been
developed. Often a time-domain approach is more efficient for data processing, in
which case a filter is designed to perform the deconvolution directly on the data.

Although deconvolution is an important part of reflection data processing, no
deconvolution method is perfect, and some information is invariably lost in the
process of convolution with the source-time function that cannot be recovered.
For this reason, it is desirable at the outset to obtain as impulsive a source-time
function as possible. Modern marine profiling experiments use airgun arrays that
are designed to minimize the amplitudes of the later bubble pulses, resulting in
much cleaner and less ringy pulses than the example plotted in Figure 7.6a.

Another important source-time function is produced by a machine that vibrates
over a range of frequencies. This is the most common type of source for shallow
crustal profiling on land and is termed vibroseis after the first commercial applica-
tion of the method. The machine produces ground motion of the form of a modulated
sinusoid, termed a sweep,

v(t) = A(t) sin[2π(f0 + bt)t]. (7.17)

The amplitude A(t) is normally constant except for a taper to zero at the start and end
of the sweep. The sweep lasts from about 5 to 40 s with frequencies ranging from
about 10 to 60 Hz. The sweep duration is long enough compared with the interval
between seismic reflections that raw vibroseis records are difficult to interpret. To
obtain clearer records, the seismograms, u(t), are cross-correlated with the vibroseis
sweep function.

The cross-correlation f(t) between two real functions a(t) and b(t) is defined as

f(t) = a(t) ⋆ b(t) =
∫ ∞

−∞
a(τ − t)b(τ) dτ, (7.18)

where, following Bracewell (1978), we use the five-pointed star symbol ⋆ to denote
cross-correlation; this should not be confused with the asterisk ∗ that indicates con-
volution. The cross-correlation integral is very similar to the convolution integral
but without the time reversal of (7.14). Note that

a(t) ∗ b(t) = a(−t) ⋆ b(t) (7.19)

and that, unlike convolution, cross-correlation is not commutative:

a(t) ⋆ b(t) ̸= b(t) ⋆ a(t). (7.20)
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Cross-correlation of the vibroseis sweep function v(t) with the original seismogram
u(t) yields the processed time series u′(t):

u′(t) = v(t) ⋆ u(t) =
∫ ts

0
v(τ − t)u(τ) dτ, (7.21)

where ts is the sweep duration. From (7.14) and replacing s(t) with v(t),
we obtain

u′(t) = v(t) ⋆ [v(t) ∗ G(t)] (7.22)

= v(−t) ∗ [v(t) ∗ G(t)] (7.23)

= [v(−t) ∗ v(t)] ∗ G(t) (7.24)

= [v(t) ⋆ v(t)] ∗ G(t) (7.25)

= v′(t) ∗ G(t), (7.26)

where we have used (7.19) and the associative rule for convolution. The cross-
correlation of v(t) with itself, v′(t) = v(t) ⋆ v(t), is termed the autocorrelation of
v(t). This is a symmetric function, centered at t = 0, that is much more sharply
peaked than v(t). Thus, by cross-correlating the recorded seismogram with the vi-
broseis sweep function v(t), one obtains a time series that represents the Earth
response convolved with an effective source that is relatively compact. These re-
lationships are illustrated in Figure 7.7. Cross-correlation with the source function
is a simple form of deconvolution that is sometimes termed spiking deconvolu-
tion. Notice that the resulting time series is only an approximation to the desired
Earth response function G(t). More sophisticated methods of deconvolution can
achieve better results, but G(t) can never be recovered perfectly since v(t) is band-
limited and the highest and lowest frequency components of G(t) are lost in the
convolution.

7.4 Migration

Up to this point, we have modeled reflection seismograms as resulting from reflec-
tions off horizontal interfaces. However, in many cases lateral variations in structure
are present; indeed, resolving these features is often a primary goal of reflection
profiling. Dipping, planar reflectors can be accommodated by modifying the NMO
equations to adjust for differences between the updip and downdip directions. How-
ever, more complicated structures will produce scattered and diffracted arrivals that
cannot be modeled by simple plane-wave reflections, and accurate interpretation
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(a)

(b)

(c)

(d)

Figure 7.7 (a) An example of a vibroseis sweep function v(t). (b) A hypothetical Earth response
function G(t). (c) The result of convolving (a) and (b). (d) The result of cross-correlating (a) with (c).

of data from such features requires a theory that takes these arrivals into account.
Most of the analysis techniques developed for this purpose are based on the idea
that velocity perturbations in the medium can be thought of as generating secondary
seismic sources in response to the incident wavefield, and the reflected wavefield
can be modeled as a sum of these secondary wavelets.

7.4.1 Huygens’ principle

Huygens’ principle, first described by Christiaan Huygens (c. 1678), is most com-
monly mentioned in the context of light waves and optical ray theory, but it is
applicable to any wave propagation problem. If we consider a plane wavefront
traveling in a homogeneous medium, we can see how the wavefront can be thought
to propagate through the constructive interference of secondary wavelets (Fig. 7.8).
This simple idea provides, at least in a qualitative sense, an explanation for the be-
havior of waves when they pass through a narrow aperture.
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(a)

(b)

t

t + !t

Figure 7.8 Illustrations of
Huygens’ principle. (a) A plane
wave at time t + !t can be
modeled as the coherent sum
of the spherical wavefronts
emitted by point sources on the
wavefront at time t. (b) A small
opening in a barrier to incident
waves will produce a diffracted
wavefront if the opening is
small compared to the
wavelength.

The bending of the ray paths at the edges of the gap is termed diffraction. The
degree to which the waves diffract into the “shadow’’ of the obstacle depends upon
the wavelength of the waves in relation to the size of the opening. At relatively long
wavelengths (e.g., ocean waves striking a hole in a jetty), the transmitted waves
will spread out almost uniformly over 180◦. However, at short wavelengths the
diffraction from the edges of the slot will produce a much smaller spreading in the
wavefield. For light waves, very narrow slits are required to produce noticeable
diffraction. These properties can be modeled using Huygens’ principle by comput-
ing the effects of constructive and destructive interference at different wavelengths.

7.4.2 Diffraction hyperbolas

We can apply Huygens’ principle to reflection seismology by imagining that each
point on a reflector generates a secondary source in response to the incident wave-
field. This is sometimes called the “exploding reflector’’ model. Consider a single
point scatterer in a zero-offset section (Fig. 7.9). The minimum travel time is
given by

t0 = 2h

v
, (7.27)
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*

t

t0

x

x

h d

source & receiver

point scatterer

diffraction hyperbola Figure 7.9 A point
scatterer will produce a
curved ‘‘reflector’’ in a
zero-offset section.

where h is the depth of the scatterer and v is the velocity (assumed constant in
this case). More generally, the travel time as a function of horizontal distance, x, is
given by

t(x) = 2
√

x2 + h2

v
. (7.28)

Squaring and rearranging, this can be expressed as

v2t2

4h2 − x2

h2 = 1 (7.29)

or

t2

t2
0

− 4x2

v2t2
0

= 1 (7.30)

after substituting 4h2 = v2t2
0 from (7.27). The travel time curve for the scattered

arrival has the form of a hyperbola with the apex directly above the scattering point.
Note that this hyperbola is steeper and results from a different ray geometry than
the NMO hyperbola discussed in Section 7.2 (equation (7.5)). The NMO hyperbola
describes travel time for a reflection off a horizontal layer as a function of source–
receiver distance; in contrast (7.30) describes travel time as a function of distance
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Zero-offset sectionModel

Figure 7.10 The endpoint of a horizontal reflector will produce a diffracted arrival in a
zero-offset section.The reflector itself can be modeled as the coherent sum of the diffraction
hyperbola from individual point scatterers.The diffracted phase, shown as the curved heavy line,
occurs at the boundary of the region of scattered arrivals.

away from a point scatterer at depth for zero-offset data (the source and receiver
are coincident).

7.4.3 Migration methods

Consider a horizontal reflector that is made up of a series of point scatterers, each
of which generates a diffraction hyperbola in a zero-offset profile (Fig. 7.10). Fol-
lowing Huygens’ principle, these hyperbolas sum coherently only at the time of
the main reflection; the later contributions cancel out. However, if the reflector
vanishes at some point, then there will be a diffracted arrival from the endpoint
that will show up in the zero-offset data. This creates an artifact in the section that
might be falsely interpreted as a dipping, curved reflector.

Techniques for removing these artifacts from reflection data are termed migration
and a number of different approaches have been developed. The simplest of these
methods is termed diffraction summation migration and involves assuming that
each point in a zero-offset section is the apex of a hypothetical diffraction hyperbola.
The value of the time series at that point is replaced by the average of the data from
adjacent traces taken at points along the hyperbola. In this way, diffraction artifacts
are “collapsed’’ into their true locations in the migrated section. In many cases
migration can produce a dramatic improvement in image quality (e.g., Fig. 7.11).

Aproper implementation of diffraction summation migration requires wave prop-
agation theory that goes beyond the simple ideas of Huygens’ principle. In partic-
ular, the scattered amplitudes vary as a function of range and ray angle, and the
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Figure 7.11 Original (top) and migrated (bottom) reflection data from a survey line across the
Japan trench (figure modified from Claerbout, 1985; data from the Tokyo University
Oceanographic Research Institute).

Huygens secondary sources are given, for a three-dimensional geometry, by the time
derivative of the source-time function (in the frequency domain this is described
by the factor −iω, a π/2 (90-degree) phase shift with amplitude proportional to
frequency). In the case of a two-dimensional geometry, the secondary sources are
the “half-derivative’’of the source function (a 45-degree phase shift with amplitude
scaled by the square root of frequency). These details are provided by Kirchhoff
theory, which is discussed later in this chapter. The diffraction hyperbola equation
assumes a uniform velocity structure, but migration concepts can be generalized
to more complicated velocity models. However, it is important to have an accu-
rate velocity model, as use of the wrong model can result in “undermigrated’’ or
“overmigrated’’ sections.
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In common practice, data from seismic reflection experiments are first processed
into zero-offset sections through CMP stacking. The zero-offset section is then
migrated to produce the final result. This is termed poststack migration. Because
CMP stacking assumes horizontal layering and may blur some of the details of the
original data, better results can be obtained if the migration is performed prior to
stacking. This is called prestack migration. Although prestack migration is known
to produce superior results, it is not implemented routinely owing to its much greater
computational cost.

7.5 Velocity analysis

Knowledge of the large-scale background seismic velocity structure is essential for
reflection seismic processing (for both stacking and migration) and for translating
observed events from time to depth. Often this information is best obtained from
results derived independently of the reflection experiment, such as from borehole
logs or from a collocated refraction experiment. However, if such constraints are not
available a velocity profile must be estimated from the reflection data themselves.
This can be done in several different ways.

One approach is to examine the travel time behavior of reflectors in CMP gathers.
From (7.7), we have for a reflector overlain by material of uniform velocity v:

t2(x) = t2
0 + x2

v2 (7.31)

= t2
0 + u2x2, (7.32)

where u = 1/v is the slowness of the layer. From observations of the NMO offsets
in a CMP gather, one can plot values of t2 versus x2. Fitting a straight line to these
points then gives the intercept t2

0 and the slope u2 = 1/v2. Velocity often is not
constant with depth, but this equation will still yield a velocity, which can be shown
to be approximately the root-mean-square (rms) velocity of the overlying medium,
that is, for n layers

v2 ≈
∑n

i=1 v2
i!ti∑n

i=1!ti
, (7.33)

where !ti is the travel time through the ith layer.
Another method is to plot NMO corrected data as a function of offset for different

velocity models to see which model best removes the range dependence in the data
or produces the most coherent image following CMP stacking. As in the case of the
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t2(x2) plotting method, this will only resolve the velocities accurately if a reasonable
spread in source–receiver offsets are available. Zero-offset data have no direct
velocity resolution; the constraints on velocity come from the NMO offsets in the
travel times with range. Thus, wider source–receiver profiling generally produces
better velocity resolution, with the best results obtained in the case where receiver
ranges are extended far enough to capture the direct refracted phases. However,
even zero-offset data can yield velocity information if diffraction hyperbolas are
present in the zero-offset profiles, as the curvature of these diffracted phases can
be used to constrain the velocities. One approach is to migrate the section with
different migration velocities in order to identify the model that best removes the
artifacts in the profile.

7.5.1 Statics corrections

Often strong near-surface velocity heterogeneity produces time shifts in the records
that can vary unpredictably between sources and stations. This could be caused
by topography/bathymetry or a sediment layer of variable thickness. The result-
ing “jitter’’ in the observed reflected pulses (Fig. 7.12) can hinder application
of stacking and migration techniques and complicate interpretation of the results.
Thus, it is desirable to remove these time shifts prior to most processing of the
results. This is done by applying timing corrections, termed statics corrections, to
the data. In the case of the receivers, these are analogous to the station terms (the

Figure 7.12 Small time shifts on individual records produce offsets in reflectors in CMP gathers
(left plot) that prevent coherent stacking of these phases in data processing.These shifts can be
removed by applying static corrections (right plot).
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average travel time residual at a particular station for many different events) used
in travel time inversions for Earth structure. Statics may be computed by tracking
the arrival time of a reference phase, such as a refracted arrival. Often automatic
methods are applied to find the time shifts that best smooth the observed reflectors.
The goal is to shift the timing of the individual records such that reflectors will stack
coherently. This problem is tractable since the time shifts are generally fairly small,
and solutions for the time shifts are overdetermined in typical reflection experiments
(multiple receivers for each source, multiple sources for each receiver).

7.6 Receiver functions

A wide-used technique in global seismology that has many parallels to reflection
seismology is the seismic receiver function (Langston, 1977). The method exploits
the fact that upcoming P waves beneath seismic stations will generate P-to-S
converted phases at any sharp interfaces below the receiver. This SV -polarized
wave is termed the Ps phase (see Figure 7.13) and will follow the direct P phase
by a time that increases with the depth of the interface.

Thus in principle we could estimate the depth of the discontinuity from the Ps−P

time, but in practice Ps is only rarely observed clearly on individual seismograms
because it is usually obscured by the coda of the P wave. However, Ps should have
the same shape as the direct P pulse (essentially the source-time function of the

P

SV

PPs PpSs
PpPs

PpPpPpSp

P

Figure 7.13 An upcoming P wave incident on a near-surface velocity discontinuity will generate
a number of first-order converted and reflected phases.
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earthquake as modified by attenuation along the ray path), and thus, just as in the
vibroseis example discussed above, Ps can often be revealed by deconvolving the P

pulse from the rest of the seismogram. The deconvolved waveform is termed the
receiver function. For the steeply incident ray paths of distant teleseisms, P appears
most strongly on the vertical component and Ps on the radial component. Thus, the
simplest approach extracts the direct P pulse from the vertical channel and performs
the deconvolution on the radial component. However, somewhat cleaner results can
be obtained by applying a transformation to estimate the upcoming P and SV wave
field from the observed vertical and radial components. This transformation must
include the effect of the free-surface reflected phases (i.e., the downgoing P and
SV pulses) on the observed displacement at the surface.

Following Kennett (1991) and Bostock (1998), we may express the upcoming
P and SV components at the surface as

[
P

SV

]
=
[

pβ2/α (1 − 2β2p2)/2αηα
(1 − 2β2p2)/2βηβ −pβ

] [
UR

UZ

]
, (7.34)

where UR and UZ are the radial and vertical components, p is the ray parameter, α
and β are the P and S velocities at the surface, and the P and S vertical slownesses
are given by ηα =

√
α−2 − p2 and ηβ =

√
β−2 − p2. Note that here we adopt the

sign convention, opposite to that in Bostock (1998), that the incident P wave has
the same polarity on the vertical and radial seismometer components.

This transformation has been applied to the vertical and radial channels in Figure
7.14 and shows how the resulting P and SV components isolate the different phases.
In particular, note that the direct P arrival appears only on the P component, while
Ps appears only on the SV component. The reverberated phases are seen separately
on the P and S components according to whether the upcoming final leg beneath
the receiver is P or SV . The resulting receiver function is plotted at the bottom of
Figure 7.14, and in this case has pulses at times given by the differential times of Ps,
PpPs and PpSs with respect to the direct P arrival. In general, the receiver-function
pulse shapes are more impulsive and symmetric than that of the P waveform, but
their exact shape will depend on the deconvolution method and the bandwidth of
the data.

Analysis of receiver functions is similar to reflection seismology in many re-
spects. Both methods study seismic phases resulting from velocity jumps at inter-
faces beneath receivers and require knowledge of the background seismic velocities
to translate the timing of these phases into depth. Both often use deconvolution and
stacking to improve the signal-to-noise ratio of the results. When closely spaced
seismic receivers are available (for example, a seismometer array), migration meth-
ods can be used to image lateral variations in structure and correct for scattering
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Figure 7.14 Seismograms showing the response of a simple model of a 35 km thick crust to an
upcoming mantle P wave.The bottom trace shows the receiver function computed by
deconvolving the windowed P pulse on the P-component trace from the S-component trace.The
time scale for the top four traces is the same, but the receiver function timing is relative to the P
arrival, which is why the receiver function pulses are shifted compared to the pulses in the other
traces.

artifacts. However, receiver function analysis is complicated by the multiple arrivals
generated by single interfaces (see Figure 7.14), and when several discontinuities
are present at different depths, it can be difficult to separate out the effects of Ps

phases from possible reverberations from shallower discontinuities.
If results are available for sources at different epicentral distances from the re-

ceiver (i.e., which will arrive at different ray parameters), it is sometimes possible
to distinguish the reverberated phases from Ps by noting their different moveout
with distance. In particular, the differential time TPs − TP shrinks with epicentral
distance (i.e., decreasing ray parameter) while TPpPs −TP and TPpSs −TP increase
with epicentral distance. For shallow discontinuities (less than about 150 km), the
timing of these arrivals can safely be computed using a plane-wave approximation
for the incident P wave, which assumes that all of the arrivals have the same ray
parameter. However, for deeper features, such as the transition-zone discontinuities
near 410 and 660 km depth, the curvature of the wavefront should be taken into
account (Lawrence and Shearer, 2006).

The P-to-SV converted Ps phase is sensitive almost entirely to the S velocity
jump at interfaces, whereas the reverberated phases are also sensitive to the P
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Figure 7.15 A cross-section of the Himalayan crust, produced from a common conversion point
(CCP) stack of receiver functions computed for a line of seismic stations crossing Nepal. A clear
Moho conversion is seen, indicating that the crustal thickness increases from ∼45 km under India
to ∼75 km beneath Tibet. Figure adapted from Schulte-Pelkum et al. (2005).

velocity and density jumps. Thus, in principle integrated analysis of the complete
P coda wavefield can provide much more information than simple receiver function
studies of Ps alone. Bostock et al. (2001) describe a theory for how this can be done
to image crust and upper-mantle structure by processing three-component data from
seismic arrays.

Receiver functions have become one of the most popular methods in the global
seismologist’s toolbox because they are relatively simple to compute and can pro-
vide valuable results even from only a single station. They have been used to resolve
crustal thickness and depths to the 410 and 660 km discontinuities beneath seis-
mic stations all over the world, and, in subduction zones, to resolve the top of the
subducting slab. Where seismic arrays are present, often from temporary seismic
experiments, they can produce dramatic images of crust and lithospheric structure
as illustrated in Figure 7.15 for a cross-section under the Himalayas.

7.7 Kirchhoff theory†

A more rigorous treatment of Huygens’principle was given by Kirchhoff and forms
the basis for a number of important techniques for computing synthetic seismo-
grams. Descriptions of applications of Kirchhoff methods to seismology may be
found in Scott and Helmberger (1983) and Kampmann and Müller (1989). Kirch-
hoff theory was first developed in optics and our derivation until equation (7.56)
largely follows that of Longhurst (1967). Consider the scalar wave equation (e.g.,
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equation (3.31) where φ is the P-wave potential)

∇2φ = 1
c2

∂2φ

∂t2 , (7.35)

where c is the wave velocity. Now assume a harmonic form for φ, that is, at a
particular frequency ω we have the monochromatic function

φ = ψ(r)e−iωt = ψ(r)e−ikct, (7.36)

where r is the position and k = ω/c is the wavenumber. Note that we have separated
the spatial and temporal parts of φ. We then have

∇2φ = e−ikct∇2ψ (7.37)

and

∂2φ

∂t2 = −k2c2ψe−ikct (7.38)

and (7.35) becomes

∇2ψ = −k2ψ. (7.39)

This is a time-independent wave equation for the space-dependent part of φ. It is
also sometimes termed the Helmholtz equation.

Next, recall Green’s theorem from vector calculus. If ψ1 and ψ2 are two contin-
uous single-valued functions with continuous derivatives, then for a closed surfaceS

∫

V
(ψ2∇2ψ1 − ψ1∇2ψ2) dv =

∫

S

(
ψ2
∂ψ1

∂n
− ψ1

∂ψ2

∂n

)
dS, (7.40)

where the volume integral is over the volume enclosed by S, and ∂/∂n is the deriva-
tive with respect to the outward normal vector to the surface. Now assume that both
ψ1 and ψ2 satisfy (7.39), that is,

∇2ψ1 = −k2ψ1, (7.41)

∇2ψ2 = −k2ψ2. (7.42)

In this case, the left part of (7.40) vanishes and the surface integral must be zero:
∫

S

(
ψ2
∂ψ1

∂n
− ψ1

∂ψ2

∂n

)
dS = 0. (7.43)

Now suppose that we are interested in evaluating the disturbance at the point P ,
which is enclosed by the surface S (Fig. 7.16). We set ψ1 = ψ, the amplitude of
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Figure 7.16 A point P surrounded by a
surface S of arbitrary shape. Kirchhoff’s
formula is derived by applying Green’s
theorem to the volume between S and an
infinitesimal sphere " surrounding P.

the harmonic disturbance. We are free to choose any function for ψ2, provided it
also satisfies (7.39). It will prove useful to define ψ2 as

ψ2 = eikr

r
, (7.44)

where r is the distance from P . This function has a singularity at r = 0 and so
the point P must be excluded from the volume integral for Green’s theorem to be
valid. We can do this by placing a small sphere , around P . Green’s theorem may
now be applied to the volume between , and S; these surfaces, together, make up
the integration surface. On the surface of the small sphere the outward normal to
this volume is opposite to the direction of r and thus ∂/∂n can be replaced with
−∂/∂r and the surface integral over , may be expressed as

∫

,

(
ψ2
∂ψ

∂n
− ψ

∂ψ2

∂n

)
dS =

∫

,

[
−eikr

r

∂ψ

∂r
+ ψ

∂

∂r

(
eikr

r

)]

dS

=
∫

,

[
−eikr

r

∂ψ

∂r
+ ψ

(
−eikr

r2 + ikeikr

r

)]

dS.

(7.45)

Now let us change this to an integral over solid angle- from the point P , in which
dS on , subtends d- and dS = r2 d-. Then

∫

,
=
∫

around P

(
−reikr ∂ψ

∂r
− ψeikr + rikψeikr

)
d-. (7.46)

Now consider the limit as r goes to zero. Assuming that ψ does not vanish, then
only the second term in this expression survives. Thus as r → 0

∫

,
→
∫

−ψeikrd-. (7.47)
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As the surface, collapses around P , the value ofψ on the surface may be assumed
to be constant and equal to ψP , its value at P . Thus

∫

,
→

∫
−ψPeikrd- (7.48)

= −ψP

∫
eikrd- (7.49)

= −ψP

∫
d- since eikr → 1 as r → 0 (7.50)

= −4πψP . (7.51)

From (7.43) we know that
∫
S+, = 0, so we must have

∫
S = +4πψP , or

4πψP =
∫

S

[
eikr

r

∂ψ

∂n
− ψ

∂

∂n

(
eikr

r

)]

dS (7.52)

=
∫

S

[
eikr

r

∂ψ

∂n
− ψeikr ∂

∂n

(
1
r

)
− ikψeikr

r

∂r

∂n

]

dS, (7.53)

since ∂
∂n = ∂

∂r
∂r
∂n . This is often called Helmholtz’s equation. Since φ = ψe−ikct

(7.35), we have

ψ = φeikct (7.54)

and (7.53) becomes

φP = 1
4π

e−ikct

∫

S

[
eikr

r

∂ψ

∂n
− ψeikr ∂

∂n

(
1
r

)
− ikψeikr

r

∂r

∂n

]

dS

= 1
4π

∫

S

[
e−ik(ct−r)

r

∂ψ

∂n
− ψe−ik(ct−r) ∂

∂n

(
1
r

)
− ikψe−ik(ct−r)

r

∂r

∂n

]

dS.

(7.55)

This expression gives φ(t) at the point P . Note that the term ψe−ik(ct−r) =
ψe−ikc(t−r/c) is the value of φ at the element dS at the time t − r/c. This time
is referred to as the retarded value of φ and is written [φ]t−r/c. In this way, we can
express (7.55) as

φP = 1
4π

∫

S

(
1
r

[
∂φ

∂n

]

t−r/c

− ∂

∂n

(
1
r

)
[φ]t−r/c + 1

cr

∂r

∂n

[
∂φ

∂t

]

t−r/c

)

dS,

(7.56)
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Figure 7.17 The ray
geometry for a single point
on a surface dS separating a
source and receiver.

where we have used ∂φ/∂t = −ikcψe−ikct . Equation (7.56) is a standard form for
what is often termed Kirchhoff’s formula; it is found in many optics textbooks and
is also given in Scott and Helmberger (1983). We see that the disturbance at P can
be computed from the conditions of φ over a closed surface surrounding P where
r/c represents the time taken for the disturbance to travel the distance r from dS to
P . We need to know both the value of φ and its normal derivative on dS to compute
this integral.

This is not an especially convenient form to use directly in most seismic appli-
cations. Suppose the value of φ at each point on the surface could be obtained from
a source time function f(t) a distance r0 from dS. Then on dS we have

φ = 1
r0

f(t − r0/c), (7.57)

∂φ

∂t
= 1

r0
f ′(t − r0/c), (7.58)

where the 1/r0 term comes from the geometrical spreading of the wavefront.
If θ0 and θ are the angles of the incoming and outgoing ray paths from the surface

normal (Fig. 7.17), then

∂r0

∂n
= cos θ0 and

∂r

∂n
= cos θ, (7.59)

∂φ

∂n
= ∂φ

∂r0

∂r0

∂n
(7.60)

= ∂φ

∂r0
cos θ0, (7.61)



7.7 K I R C H H O F F T H E O R Y 207

and

∂

∂n

(
1
r

)
= ∂r

∂n

∂

∂r

(
1
r

)
(7.62)

= − 1
r2 cos θ. (7.63)

We can evaluate ∂φ/∂r0 using the chain rule:

∂

∂r0

(
1
r0

f(t − r0/c)

)
= − 1

r2
0

f(t − r0/c) − 1
cr0

f ′(t − r0/c) (7.64)

since ∂
∂r0

= ∂t
∂r0

∂
∂t = −1

c
∂
∂t . Putting (7.57)–(7.64) into (7.56), we have

φP(t) = 1
4π

∫

S

(
−1

rr2
0

cos θ0 + 1
r2r0

cos θ

)

f(t − r/c − r0/c) dS

+ 1
4π

∫

S

( −1
crr0

cos θ0 + 1
crr0

cos θ
)

f ′(t − r/c − r0/c) dS. (7.65)

The negative signs arise from our definition of n̂ in the direction opposing r0; these
terms are positive since cos θ0 is negative. Equation (7.65) may also be expressed
in terms of convolutions with f(t) and f ′(t):

φP(t) = 1
4π

∫

S
δ

(
t − r + r0

c

)(−1

rr2
0

cos θ0 + 1
r2r0

cos θ

)

dS ∗ f(t)

+ 1
4π

∫

S
δ

(
t − r + r0

c

)( −1
crr0

cos θ0 + 1
crr0

cos θ
)

dS ∗ f ′(t).

(7.66)

Notice that the f(t) terms contain an extra factor of 1/r or 1/r0. For this reason
they are most important close to the surface of integration and can be thought of as
near-field terms. In practice, the source and receiver are usually sufficiently distant
from the surface (i.e., λ ≪ r, r0) that φP is well approximated by using only the
far-field f ′(t) terms. In this case we have

φP(t) = 1
4πc

∫

S
δ

(
t − r + r0

c

)
1

rr0
(− cos θ0 + cos θ) dS ∗ f ′(t). (7.67)

This formula is the basis for many computer programs that compute Kirchhoff
synthetic seismograms.
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Figure 7.18 Kirchhoff theory can be used to compute the effect of an irregular boundary on
both transmitted and reflected waves.

7.7.1 Kirchhoff applications

Probably the most common seismic application of Kirchhoff theory involves the
case of an irregular interface between simpler structure on either side. Kirchhoff
theory can be used to provide an approximate solution for either the transmitted or
reflected wavefield due to this interface (Fig. 7.18). For example, we might want to
model the effect of irregularities on the core–mantle boundary, the Moho, the sea
floor, or a sediment–bedrock interface. In each case, there is a significant velocity
contrast across the boundary.

Let us consider the reflected wave generated by a source above an undulating
interface. Assume that the incident wavefield is known and can be described with
geometrical ray theory. Then we make the approximation that the reflected wave-
field just above the interface is given by the plane-wave reflection coefficient for
the ray incident on the surface. This approximation is sometimes called the Kirch-
hoff, physical optics, or tangent plane hypothesis (Scott and Helmberger, 1983).
Each point on the surface reflects the incident pulse as if there were an infinite
plane tangent to the surface at that point. Considering only the far-field terms, we
then have

φP(t) = 1
4πc

∫

S
δ

(
t − r + r0

c

)
R(θ0)

rr0
(cos θ0 + cos θ) dS ∗ f ′(t), (7.68)

where R(θ0) is the reflection coefficient, θ0 is the angle between the incident ray
and the surface normal, and θ is the angle between the scattered ray and the surface
normal (see Fig. 7.19).

If the overlying layer is not homogeneous, then the 1/r and 1/r0 terms must be
replaced with the appropriate source-to-interface and interface-to-receiver geomet-
rical spreading coefficients. In some cases, particularly for obliquely arriving rays,
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Figure 7.19 Ray angles relative to the surface normal for a reflected wave geometry.
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corner
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Figure 7.20 This structure will produce both a direct reflected pulse and a diffracted pulse for
the source−receiver geometry shown.

the reflection coefficient R may become complex. If this occurs, then this equation
will have both a real and an imaginary part. The final time series is obtained by
adding the real part to the Hilbert transform of the imaginary part.

The Kirchhoff solution will correctly model much of the frequency dependence
and diffracted arrivals in the reflected wavefield. These effects are not obtained
through geometrical ray theory alone, even if 3-D ray tracing is used. For example,
consider a source and receiver above a horizontal interface containing a verti-
cal fault (Fig. 7.20). Geometrical ray theory will produce only the main reflected
pulse from the interface, while Kirchhoff theory will provide both the main pulse
and the secondary pulse diffracted from the corner. However, Kirchhoff theory
also has its limitations, in that it does not include any multiple scattering or
diffractions along the interface; these might be important in more complicated
examples.
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7.7.2 How to write a Kirchhoff program

As an illustration, let us list the steps involved in writing a hypothetical Kirchhoff
computer program to compute the reflected wavefield from a horizontal interface
with some irregularities.

1. Specify the source and receiver locations.
2. Specify the source-time function f(t).
3. Compute f ′(t), the derivative of the source-time function.
4. Initialize to zero a time series J(t), with sample interval dt, that will contain the output

of the Kirchhoff integral.
5. Specify the interface with a grid of evenly spaced points in x and y. At each grid point,

we must know the height of the boundary z and the normal vector to the surface n̂. We
also require the surface area, dA, corresponding to the grid point. This is approximately
dx dy where dx and dy are the grid spacings in the x and y directions, respectively (if a
significant slope is present at the grid point, the actual surface area is greater and this
correction must be taken into account). The grid spacing should be finer than the scale
length of the irregularities.

6. At each grid point, trace rays to the source and receiver. Determine the travel times to
the source and receiver, the ray angles to the local normal vector (θ0 and θ), and the
geometrical spreading factors g0 (source-to-surface) and g (surface-to-receiver).

7. At each grid point, compute the reflection coefficient R(θ0) and the factor cos θ0 +cos θ.
8. At each grid point, compute the product R(θ0)(cos θ0 + cos θ)dA/(4πcg0g). Add the

result to the digitized point of J(t) that is closest to the total source-surface-receiver
travel time, after first dividing the product by the digitization interval dt.

9. Repeat this for all grid points that produce travel times within the time interval of
interest.

10. Convolve J(t) with f ′(t), the derivative of the source-time function, to produce the final
synthetic seismogram.

11. (very important) Repeat this procedure at a finer grid spacing, dx and dy, to verify that
the same result is obtained. If not, the interface is undersampled and a finer grid must
be used.

Generally the J(t) function will contain high-frequency numerical “noise’’ that is
removed through the convolution with f ′(t). It is computationally more efficient
to compute f ′(t) and convolve with J(t) than to compute J ′(t) and convolve with
f(t), particularly when multiple receiver positions are to be modeled.

7.7.3 Kirchhoff migration

Kirchhoff results can be used to implement migration methods for reflection seismic
data that are consistent with wave propagation theory. For zero-offset data, θ0 = θ
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and r0 = r and (7.68) becomes

φP(t) = 1
2πc

∫

S
δ

(
t − r + r0

c

)
R(θ0)

r2 cos θ dS ∗ f ′(t). (7.69)

To perform the migration, the time derivative of the data is taken and the traces
for each hypothetical scattering point are multiplied by the obliquity factor cos θ,
scaled by the spherical spreading factor 1/r2 and then summed along the diffraction
hyperbolas.

7.8 Exercises

1. (COMPUTER) Recall equation (7.17) for the vibroseis sweep function:

v(t) = A(t) sin[2π(f0 + bt)t].

(a) Solve for f0 and b in the case of a 20-s long sweep between 1 and 4 Hz. Hint:
b = 3/20 is incorrect! Think about how rapidly the phase changes with time.

(b) Compute and plot v(t) for this sweep function. Assume that A(t) =
sin2(πt/20) (this is termed a Hanning taper; note that it goes smoothly to
zero at t = 0 and t = 20 s). Check your results and make sure that you have
the right period at each end of the sweep.

(c) Compute and plot the autocorrelation of v(t) between −2 and 2 s.
(d) Repeat (b) and (c), but this time assume that A(t) is only a short 2-s long taper

at each end of the sweep, that is, A(t) = sin2(πt/4) for 0 < t < 2, A(t) = 1
for 2 ≤ t ≤ 18, and A(t) = sin2[π(20 − t)/4] for 18 < t < 20. Note that this
milder taper leads to more extended sidelobes in the autocorrelation function.

(e) What happens to the pulse if autocorrelation is applied a second time to
the autocorrelation of v(t)? To answer this, compute and plot [v(t) ⋆ v(t)] ⋆
[v(t) ⋆v(t)] using v(t) from part (b). Is this a way to produce a more impulsive
wavelet?

2. A reflection seismic experiment produces the CMP gather plotted in Figure 7.21.
Using the t2(x2) method, determine the approximate rms velocity of the material
overlying each reflector. Then compute an approximate depth to each reflector.
Note: You should get approximately the same velocity for each reflector; do not
attempt to solve for different velocities in the different layers.

3. Consider a simple homogeneous layer over half-space model (as plotted in
Fig. 7.22) with P velocity α1 and S velocity β1 in the top layer and P veloc-
ity α2 in the bottom layer.
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Figure 7.21 P-wave reflections from an individual CMP gather. Note the increase of
travel time with source−receiver distance.
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Figure 7.22 The P and Ps ray geometry for an upcoming plane wave incident on a
constant velocity layer.

(a) Assuming a layer thickness of h and a ray parameter of p, derive an equation
for the differential time (TPs − TP ) between P and Ps at the surface. Hint:
the travel time is equal along the wavefront shown by the dashed line in the
bottom layer.
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10 km

10 km

2 km

Source + Receiver

Figure 7.23 The geometry for Exercise 4, constructing a reflected pulse as a sum
of secondary sources.

(b) What is TPs − TP for h = 40 km, α1 = 6.3 km/s, β1 = 3.6 km/s, α2 = 8 km/s,
and p = 0.06 s/km?

4. (COMPUTER) A common pulse shape used in reflection seismic modeling is the
Ricker wavelet, defined as

sR(t) =
(

1 − 2π2f 2
pt2
)

e−π2f 2
pt2 , (7.70)

where fp is the peak frequency in the spectrum of the wavelet.

(a) Using a digitization rate of 200 samples/s and assuming fp = 4 Hz, make a
plot of sR(t) and its time derivative between −0.5 and 0.5 s.

(b) Following Huygens’principle, model the plane reflector shown in Figure 7.23
as a large number of point sources. Use a velocity of 4 km/s, and a coinci-
dent source and receiver located 2 km from the center of a 10 km by 10 km
plane, with secondary Huygens sources spaced every 0.1 km on the plane
(i.e., 101 points in each direction, for a total of 10 201 sources). Construct
and plot a synthetic seismogram representing the receiver response to the
Ricker wavelet from part (a) by summing the contribution from each sec-
ondary source. At each point, compute the two-way travel time from/to the
source/receiver and the geometric spreading factor 1/r2. Add the Ricker
wavelet, centered on the two-way time and scaled by the geometric spread-
ing factor, to your synthetic time series for each of the 10 201 points. Note
that the resulting waveform for the reflected pulse is not the same shape as
the Ricker wavelet.

(c) Repeat part (b), but this time use the Kirchhoff result of (7.68) and Section
7.7.2 that the secondary sources are given by the derivative of the Ricker
wavelet. Assume that R(θ) = 1 for this example. Show that the synthetic
reflected pulse has the correct shape.
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(d) Verify that the reflected pulse from part (c) has an amplitude of 0.25, the same
as the predicted amplitude of a pulse 4 km away from a point source that has
unit amplitude at r = 1.

(e) Note: Because convolution is a linear operation, parts (b) and (c) can be
performed more efficiently by summing over the 10 201 points assuming a
simple spike source (s(t) = 1/r2 at the t = 0 point only) and then convolving
the resulting time series with the Ricker wavelet or its time derivative to obtain
the final synthetic seismogram. The intermediate time series will contain
considerable high frequency noise but this is removed by the convolution.

(f) The main reflected pulse should arrive at t = 1 s. What is the origin of the
small pulse at about 2.7 s?



8

Surface waves and normal modes

Our treatment to this point has been limited to body waves, solutions to the seismic
wave equation that exist in whole spaces. However, when free surfaces exist in a
medium, other solutions are possible and are given the name surface waves. There
are two types of surface waves that propagate along Earth’s surface: Rayleigh waves
and Love waves. For laterally homogeneous models, Rayleigh waves are radially
polarized (P/SV) and exist at any free surface, whereas Love waves are transversely
polarized and require some velocity increase with depth (or a spherical geometry).
Surface waves are generally the strongest arrivals recorded at teleseismic distances
and they provide some of the best constraints on Earth’s shallow structure and
low-frequency source properties. They differ from body waves in many respects –
they travel more slowly, their amplitude decay with range is generally much less,
and their velocities are strongly frequency dependent. Surface waves from large
earthquakes are observable for many hours, during which time they circle the Earth
multiple times. Constructive interference among these orbiting surface waves, to-
gether with analogous reverberations of body waves, form the normal modes, or
free oscillations of the Earth. Surface waves and normal modes are generally ob-
served at periods longer than about 10 s, in contrast to the much shorter periods
seen in many body wave observations.

8.1 Love waves

Love waves are formed through the constructive interference of high-order SH
surface multiples (i.e., SSS, SSSS, SSSSS, etc.). Thus, it is possible to model Love
waves as a sum of body waves. To see this, consider monochromatic plane-wave
propagation for the case of a vertical velocity gradient in a laterally homogeneous
model, a situation we previously examined in Section 6.4. In this case, a plane
wave defined by ray parameter p will turn at the depth where β = 1/p. Along the

215
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X(t)

surface the plane wave will propagate with horizontal slowness defined by p. If the
surface bouncepoints are separated by a distance X(t), then the travel time along the
surface between bouncepoints is given by pX(p). This follows from our definition
of a plane wave and does not depend upon the velocity model. In contrast, the travel
time along the ray paths is given by T(p) and is a function of the velocity–depth
profile. Because these travel times are not the same, destructive interference will
occur except at certain fixed frequencies. Along the surface, the phase (0 to 2π) of
a harmonic wave will be delayed by ωpX(p), where ω is the angular frequency of
the plane wave. The phase along the ray path is delayed by ωT(p)−π/2, where the
−π/2 comes from the WKBJ approximation for the phase advance at the plane-
wave turning point (see Section 6.4). The requirement for constructive interference
is thus

ωpX(p) = ωT(p) − π

2
− n2π, (8.1)

where n is an integer. Rearranging, we obtain

ω = n2π + π/2
T(p) − pX(p)

= n2π + π/2
τ(p)

, (8.2)

where the delay time τ(p) = T(p) − pX(p) (see Section 4.3.2). The wave travels
along the surface at velocity c = 1/p; thus (8.2) defines the c(ω) function for the
Love waves, often termed the dispersion curve. The values of ω given for n = 0
are termed the fundamental modes; higher modes are defined by larger values of
n. The frequency dispersion in the Love waves results from the ray geometry and
does not require any frequency dependence in the body wave velocity β. Love
wave dispersion is much stronger than the small amount of dispersion in S-wave
velocities that results from intrinsic attenuation (see equation (6.91)).

The velocity defined by c = 1/p is the velocity with which the peaks and troughs
at a given frequency move along the surface and is termed the phase velocity. When
the phase velocity varies as a function of frequency, as in (8.2), the wave is dispersed
and the group velocity (the velocity that energy propagates) will be different from
the phase velocity. In this example, the energy must move along the actual ray paths
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Figure 8.1 Love waves can be constructed as a sum of S surface multiples.The dashed lines
show the group and phase velocities at a fixed value of the ray parameter p; the phase velocity is
faster than the group velocity.

and thus the group velocity U is defined by

U = X(p)

T(p)
. (8.3)

For a prograde travel time curve (concave down), U will always be less than c. The
relationship between phase and group velocity for Love waves is shown graphically
in Figure 8.1 as a sum of SH surface multiples.

The group velocity is also often defined directly from the c(ω) dispersion rela-
tionship. To obtain this form, rewrite (8.1) in terms of the wavenumber k = ωp,
producing

ωT − kX = π/2 + n2π. (8.4)

Taking the derivative of this expression, we obtain

dω T + ω dT − dk X − k dX = 0
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r1b1

r2b2

Figure 8.2 Love waves within a homogeneous layer can result from constructive interference
between postcritically reflected body waves.

or

dω T − dk X + ω dX(dT/dX − k/ω) = 0. (8.5)

Since p = k/ω = dT/dX, the rightmost term drops out, and we have

dω

dk
= X

T
= U, (8.6)

and we see that the group velocity is also given by dω/dk.
Equation (8.2) is not very accurate at small values of n since a high frequency

approximation was used to determine the phase shift at the turning point. However, it
does give some understanding of how Love waves are formed through the positive
interference of S surface multiples. More accurate Love wave calculations are
generally performed using homogeneous layer techniques. In these methods, the
plane wave response of a stack of layers is computed at a series of values of ray
parameter; the frequencies of the different Love wave branches are then identified
as the eigenvalues of the resulting set of equations.

8.1.1 Solution for a single layer

An exact equation may be derived for Love wave dispersion within a homogeneous
layer. Consider a surface layer overlying a higher velocity half-space (Fig. 8.2).
Equation (8.2) is still applicable, provided we replace the approximate π/2 phase
shift at the turning point with the phase shift, φS̀Ś , resulting from the SH reflection
off the bottom of the layer:

ω = n2π − φS̀Ś

τ(p)
. (8.7)

From (4.33), we may express the delay time τ as

τ(p) = 2h

√
1/β2

1 − p2, (8.8)
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where h is the layer thickness and β1 is the shear velocity in the top layer. For
postcritical reflections, it can be shown from (6.46) and (6.59) that

φS̀Ś = −2 tan−1

⎡

⎢⎣
µ2

√
p2 − 1/β2

2

µ1

√
1/β2

1 − p2

⎤

⎥⎦ . (8.9)

Substituting (8.8) and (8.9) into (8.7), we have

2hω

√
1/β2

1 − p2 − n2π = 2 tan−1

⎡

⎢⎣
µ2

√
p2 − 1/β2

2

µ1

√
1/β2

1 − p2

⎤

⎥⎦

or

tan
[
hω

√
1/β2

1 − p2
]

=
µ2

√
p2 − 1/β2

2

µ1

√
1/β2

1 − p2
. (8.10)

This defines the dispersion curves for Love wave propagation within the layer.
Note that the phase velocity, c = 1/p, varies between β1 and β2 (c > β2 is
not postcritical). For every value of c, there are multiple values of ω because of
the periodicity in the tangent function. The smallest of the ω values defines the
fundamental mode, the second smallest is the first higher mode, etc. There is no
analytical solution to (8.10) for c; the c(ω) values must be determined numerically
(see Exercise 8.1).

8.2 Rayleigh waves

For SH polarized waves, the reflection coefficient at the free surface is one, and the
interference between the downgoing SH waves and those turned back toward the
surface produces Love waves. The P/SV system is more complicated because
the surface reflections involve both P and SV waves. In this case, the upgoing
and downgoing body waves do not sum constructively to produce surface waves.
However, a solution is possible for inhomogeneous waves trapped at the interface;
the resulting surface waves are termed Rayleigh waves. The displacements of Love
and Rayleigh waves are compared in Figure 8.3.

Let us begin by examining what occurs when P and SV waves interact with a
free surface. For a laterally homogeneous medium, the displacements for harmonic
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Figure 8.3 Fundamental Love (top) and Rayleigh (bottom) surface wave displacements (highly
exaggerated) for horizontal propagation across the page. Love waves are purely transverse
motion, whereas Rayleigh waves contain both vertical and radial motion. In both cases, the wave
amplitude decays strongly with depth.

plane waves propagating in the +x direction are given by

u = Ae−iω(t−px−ηz), (8.11)

where p is the horizontal slowness and η =
√

1/c2 − p2 is the vertical slowness for
wave velocity c. From Section 3.3.1, recall that we may express the displacement
in terms of a P-wave scalar potential φ and a S-wave vector potential''', that is,

u = ∇φ + ∇ ×'''. (8.12)



8.2 R A Y L E I G H W A V E S 221

Now from (8.11), consider plane wave solutions for φ and 'y (the only part of '''
that produces SV motion for plane wave propagation in the x direction):

φ = Ae−iω(t−px−ηαz), (8.13)

'y = Be−iω(t−px−ηβz), (8.14)

where A and B are the amplitudes of the P and SV waves respectively, and the
vertical slownesses are given by

ηα = (1/α2 − p2)1/2, (8.15)

ηβ = (1/β2 − p2)1/2. (8.16)

The ray parameter p is constant; both P and SV are assumed to have the same
horizontal slowness. Noting that ∂y and uy are zero for our P/SV plane wave
geometry, the P-wave displacements are

uP
x = ∂xφ= pAiωe−iω(t−px−ηαz), (8.17)

uP
z = ∂zφ= ηαAiωe−iω(t−px−ηαz), (8.18)

and the SV-wave displacements are

uS
x = −∂z'y = −ηβBiωe−iω(t−px−ηβz), (8.19)

uS
z = ∂x'y = pBiωe−iω(t−px−ηβz). (8.20)

Now consider the boundary conditions at a free surface z = 0. Both the normal and
shear tractions must vanish: τxz = τzz = 0. From (3.13), we have

τxz = µ(∂zux + ∂xuz), (8.21)

τzz = λ(∂xux + ∂zuz) + 2µ∂zuz. (8.22)

Substituting (8.17)–(8.20) into (8.21) and (8.22), we obtain

τP
xz = −A(2µpηα)ω

2e−iω(t−px−ηαz), (8.23)

τP
zz = −A

[
(λ+ 2µ)η2

α + λp2
]
ω2e−iω(t−px−ηαz), (8.24)

τSxz = −Bµ
(
p2 − η2

β

)
ω2e−iω(t−px−ηβz), (8.25)

τS
zz = −B(2µηβp)ω2e−iω(t−px−ηβz). (8.26)
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At the free surface, we require

τxz = τP
xz + τS

xz = 0, (8.27)

τzz = τP
zz + τS

zz = 0. (8.28)

Substituting (8.23)–(8.26) into (8.27) and (8.28) at z = 0, and canceling the com-
mon terms, we obtain

A(2pηα) + B
(
p2 − η2

β

)
= 0, (8.29)

A
[
(λ+ 2µ)η2

α + λp2]+ B(2µηβp) = 0. (8.30)

The equations for τzz can be written in terms of the P and S velocities by substituting
λ+ 2µ = ρα2, µ = ρβ2, and λ = ρ(α2 − 2β2) to give

A[2pηα] + B
[
p2 − η2

β

]
= 0, (8.31)

A
[
α2 (η2

α + p2)− 2β2p2]+ B[2β2ηβp] = 0. (8.32)

This coupled set of equations describes the free surface boundary condition for P-
and SV -waves with horizontal slowness p. Recall that the vertical slownesses are
given by ηα = (1/α2 −p2)1/2 and ηβ = (1/β2 −p2)1/2. When p < 1/α, there are
two real solutions, a positive value of ηα for downgoing P waves and a negative
value for upgoing P waves (assuming the z axis points downward). Similarly, when
p < 1/β, then ηβ is real and there exist both downgoing and upgoing SV waves.
By defining different amplitude coefficients for the downgoing and upgoing waves,
one could use (8.31) and (8.32) to solve for the P/SV reflection coefficients at the
free surface.

However, our interest is in the case where p > β−1 > α−1 and both ηα and ηβ
are imaginary. From (8.11), if we factor out the depth dependence, we obtain

u = Aeiωηze−iω(t−px), (8.33)

and we see that imaginary values of ηwill lead to real values in the exponent. In this
case we have the evanescent waves discussed in Chapter 6, for which amplitude
grows or decays exponentially as a function of depth. The sign of η is chosen to
give the solution that decays away from z = 0. For single imaginary values of ηα
and ηβ, the linear system of equations for A and B given in (8.31) and (8.32) has a
non-trivial solution only when the determinant vanishes, that is, when

(
p2 − η2

β

) [
α2(η2

α + p2) − 2β2p2
]

− 4β2p2ηαηβ = 0. (8.34)
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Substituting for ηα and ηβ, we can express this entirely in terms of p and the P and
S velocities:

(
2p2 − 1

β2

)2

+ 4p2
(

1
α2 − p2

)1/2 ( 1
β2 − p2

)1/2

= 0, (8.35)

after canceling a common factor of β2. For imaginary ηα and ηβ (p > β−1 > α−1),
this can be rewritten as

(
2p2 − 1

β2

)2

− 4p2
(

p2 − 1
α2

)1/2 (
p2 − 1

β2

)1/2

= 0. (8.36)

This is termed the Rayleigh function and has a single solution, with the exact value
of p depending upon β and α. The corresponding phase velocity, c = 1/p, is always
slightly less than the shear velocity, with c = 0.92β for a Poisson solid. This result,
obtained by Rayleigh over 100 years ago, shows that it is possible for two coupled
inhomogeneous P and SV waves to propagate along the surface of a half-space.

By substituting the solution for p into (8.15), (8.16), (8.31), and (8.32), we may
obtain the relative amplitudes of the P and SV components, and then substitution
into (8.17)–(8.20) will give the vertical and horizontal displacements. Rayleigh
wave particle motion for the fundamental mode is shown in Figure 8.4. The vertical

Figure 8.4 Particle motion for the fundamental Rayleigh mode in a uniform half-space,
propagating from left to right. One horizontal wavelength (!) is shown; the dots are plotted at a
fixed time point. Motion is counter clockwise (retrograde) at the surface, changing to purely
vertical motion at a depth of about !/5, and becoming clockwise (prograde) at greater depths.
Note that the time behavior at a fixed distance is given by looking from right to left in this plot.
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and horizontal components are out of phase by π/2; the resulting elliptical motion
changes from retrograde at the surface to prograde at depth, passing through a node
at which there is no horizontal motion. For Rayleigh waves propagating along the
surface of a uniform half-space there is no velocity dispersion (since there is no
scale length in the model). However, in the Earth velocity dispersion results from
the vertical velocity gradients in the crust and upper mantle; longer period waves
travel faster since they sense the faster material at greater depths. As in the case of
Love waves, Rayleigh wave dispersion curves for vertically stratified media may
be computed using propagator matrix methods.

8.3 Dispersion

When different frequency components travel at different phase velocities, pulse
shapes will not stay the same as they travel but will become dispersed as the
frequencies separate. This leads to interference effects that cancel the wave energy
except at particular times defined by the group velocity of the wave. This may
be illustrated by considering the sum of two harmonic waves of slightly different
frequency and wavenumber:

u(x, t) = cos(ω1t − k1x) + cos(ω2t − k2x). (8.37)

Relative to an average frequency ω and wavenumber k, we have

ω1 = ω − δω, k1 = k − δk, (8.38)

ω2 = ω + δω, k2 = k + δk. (8.39)

Substituting into (8.37), we obtain

u(x, t) = cos(ωt − δωt − kx + δkx) + cos(ωt + δωt − kx − δkx)

= cos [(ωt − kx) − (δωt − δkx)] + cos [(ωt − kx) + (δωt − δkx)]

= 2 cos(ωt − kx) cos(δkx − δωt), (8.40)

where we have used the identity 2 cos A cos B = cos(A + B) + cos(A − B).
The resulting waveform consists of a signal with the average frequency ω whose
amplitude is modulated by a longer period wave of frequency δω (Fig. 8.5).

In acoustics, this phenomenon is termed beating and may be observed when two
musical notes are slightly out of tune. The short-period wave travels at velocityω/k

and the longer period envelope travels at velocity δω/δk. The former is the phase
velocity c; the latter is the group velocity U. In the limit as δω and δk approach
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Figure 8.5 The sum of two
waves of slightly different
frequencies results in a
modulated wave.The group
velocity is the velocity of the
wave packets; the phase velocity
is the velocity of the individual
peaks.

zero, we thus have

U = dω

dk
, (8.41)

which agrees with our previous result in (8.6). Using the various relationships
between the harmonic wave parameters (see Table 3.1), the group velocity may be
alternatively expressed as

U = dω

dk
= c + k

dc

dk
= c

(
1 − k

dc

dω

)−1

. (8.42)

For Earth, the phase velocity c of both Love and Rayleigh waves generally in-
creases with period; thus dc/dω is negative and from (8.42) it follows that the
group velocity is less than the phase velocity (U < c). Figure 8.6 plots Love
and Rayleigh dispersion curves computed from the PREM model. A minimum or
maximum point on the group velocity dispersion curve will result in energy from
a range of periods arriving at nearly the same time. This is termed an Airy phase
and occurs in Earth for Rayleigh waves at periods of about 50 and 240 s.
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Figure 8.6 Fundamental Love and Rayleigh dispersion curves computed from the isotropic
PREM model (courtesy of Gabi Laske).

8.4 Global surface waves

Love and Rayleigh waves in Earth travel along great circle paths radiating away
from the source. Since they are confined to the surface of a sphere, geometrical
spreading effects are reduced compared to body waves (which spread within a
volume). At a given receiver location, the first surface wave arrival will travel
along the minor (shorter) great circle arc and a later arrival will result from the
major arc path on the opposite side of Earth (Fig. 8.7). The second arrival is due
to surface waves that have passed through the antipode, the point directly opposite
the source. The first and second arriving Love wave arrivals are termed G1 and G2,
respectively, while the corresponding Rayleigh waves are called R1 and R2. The
waves do not stop at the receiver, but continue traveling around the globe and these
multiple orbits produce a series of later arrivals that can be observed for many hours
following large earthquakes. The odd-numbered surface waves (e.g., R1, R3, R5,
etc.) leave the source in the minor arc direction, while the even numbered waves
depart in the major arc direction.

This is illustrated in Figure 8.8, which plots three components of motion from an
earthquake at 230 km depth in the Tonga subduction zone recorded by the IRIS/IDA
station NNA in Peru. Notice that the SH polarized Love wave arrivals appear most
prominently on the transverse component, while theP/SVpolarized Rayleigh waves
are seen mostly on the vertical and radial components.Attenuation of surface waves
can be seen in the decay of the amplitude of the arrivals with time.
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Figure 8.7 Ray paths for the first
three Rayleigh wave arrivals.
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Figure 8.8 The vertical, radial, and transverse components of motion for a March 11, 1989,
earthquake at 230 km depth in the Tonga trench recorded at IRIS/IDA station NNA in Peru. P, SV,
and Rayleigh waves are most visible on the vertical and radial components; SH and Love waves
appear on the transverse component.
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At long periods, Rayleigh waves are sufficiently coherent that it is possible to
stack records from many different events to produce a global picture (Fig. 8.9) of
the seismic wavefield that images the surface wave arrivals (Shearer, 1994). This
vertical-component image illustrates many of the concepts that we have developed
in this chapter. The dispersion of the Rayleigh waves is clearly apparent, particularly
in the later part of the image. Very long period (≥ 300 s) waves travel the fastest,
arriving before the pronounced shorter-period banding in the Airy phase. The high
amplitude of the Airy phase results from a local minimum in the group velocity
dispersion curve near 240 s. The difference between phase and group velocity can
be seen clearly in the image of the Airy phase. The lines of constant phase, defined
by the peaks and troughs in the seismograms, are not parallel to the overall direction
of energy transport. Rather, they cut across at a slightly more horizontal orientation,
since the phase velocity is higher than the group velocity.

The major P and SV body-wave phases can also be seen in this image, in the
triangular shaped region before the first Rayleigh wave (R1).Additional body-wave
arrivals are visible between R1 and the second Rayleigh wave (R2). These include
some P phases, but most prominent are the high-order S surface multiples and the
families of S-to-P converted phases that they spawn upon each surface reflection.
These can be traced to beyond 720◦ and are the major source of seismic energy
between the Rayleigh wave arrivals. In the surface wave literature, these arrivals are
termed overtone packets and are sometimes referred to as X phases (e.g., Tanimoto,
1987).

8.5 Observing surface waves

Surface waves are generally the strongest arrivals at teleseismic distances and con-
tain a great deal of information about crust and upper mantle structure as well as
the seismic source. Much of the power of surface wave observations comes from
the fact that velocity can be measured at a number of different frequencies from a
single seismogram, providing direct constraints on the velocity versus depth pro-
file everywhere along the source–receiver path. In contrast, the corresponding body
wave observations provide only a single travel time per phase, and recovering the
complete velocity structure requires stations at a wide range of source–receiver
distances.

A major goal in most surface wave studies is to determine the group or phase
velocity at a number of periods. This can be done in several ways. If the location
and origin time of the source are known, then the group velocity may be estimated
from a surface wave record at a single station by measuring the travel time to the
station for energy at a particular frequency. This can be done by applying narrow
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Figure 8.9 An image of Earth’s long-period seismic response on vertical component
seismographs as a function of time and distance to an earthquake. Positive amplitudes are
shown as black, and negative amplitudes are shown as white.The Rayleigh wave arrivals R1 and
R2 are visible in the left panel showing the first 3 hours of data, whereas R3 and R4 are seen on
the right panel.
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passband filters to the record to isolate the wave packet for a target frequency,
or, more crudely, by measuring the time between successive peaks in a single
dispersed seismogram. The same approach can be used to determine the group
velocity between two stations along a great circle ray path through the source by
measuring the difference in the arrival times at the stations. In this case (the two-
station method), precise details of the source are not required, provided the location
is approximately correct.

Many modern surface wave analyses measure the phase velocity rather than the
group velocity. This is done by computing the Fourier spectrum of the record to
determine the phase of each frequency component. If the phase is known at the
source (this requires the focal mechanism or moment tensor for the event), then
phase velocity measurements are possible from a single receiver; alternatively the
two-station method can be used to determine the phase velocity between a pair of
receivers. The tricky part of phase velocity measurements is that the observed phase
φ at a particular frequency varies only between 0 and 2π and there will typically be
many cycles between observation points, so that the total phase shift - is actually
2πn + φ, where n is an integer.

For example, consider measuring the Rayleigh wave phase velocity in Fig. 8.9
at a period of 240 s (close to the dominant period of the high-amplitude Airy phase)
using stations at 90◦ and 120◦. Phase measurements at these ranges alone do not tell
us how many cycles, n, occurred between the stations; the phase velocity cannot be
determined without independent knowledge of n.At long periods this is not a signif-
icant problem since n can be accurately estimated from standard one-dimensional
Earth models. However, at shorter periods it becomes increasingly difficult to cal-
culate n with confidence, since lateral velocity variations in the upper mantle cause
n to vary with position as well as range. In this case, a useful approach is to measure
the phase velocity at the longest periods first, and then gradually move to shorter
periods, keeping track of the total accumulated phase shift -. This will work pro-
vided the phase velocity dispersion curve is a smooth and continuous function of
frequency.

Comprehensive studies of surface wave phase velocities, using a global distri-
bution of sources and receivers, can be used to invert for maps of phase velocity
for both Love and Rayleigh waves. This is done separately for each period using
techniques analogous to the body-wave velocity inversion problem discussed in
Chapter 5. The structure seen in these maps is related to Earth’s lateral velocity
variations; the depth dependence in this heterogeneity is constrained by the results
at different periods. Inverting surface-wave phase velocity observations is currently
one of the best ways to resolve three-dimensional velocity variations in the upper
few hundred kilometers of the mantle.



Thus far we have considered the propagation of body and surface waves largely
as if the Earth were of infinite extent. However, the Earth is a finite body in which
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Figure 8.10 Rayleigh wave phase velocity at (top) 50 s and (bottom) 150 s period.The right
panels have been corrected for crustal thickness variations using the model CRUST 2.0 (Laske
et al., http://mahi.ucsd.edu/Gabi/rem.dir/crust/crust2.html).Velocity perturbations are contoured
at 2.5% intervals, with black indicating regions that are 2.5% faster than average, and white
indicating velocities over 2.5% slower than average. Maps produced by Guy Masters (personal
communication) using measurements from Ekström et al. (1997).

Figure 8.10 plots maps of Rayleigh wave phase velocity at 50 and 150 s period.
Notice the ocean-continent signal is enhanced after corrections are applied for varia-
tions in crustal thickness. In general, the thicker crust beneath continents compared
to the oceans causes slower surface-wave velocities, but this is counteracted by
generally faster upper-mantle velocities beneath continents, which are especially
strong in shield regions. When corrections for variations in crustal properties are
applied (to obtain what the velocity would be for a globally uniform crust), the
fast continental roots become even more prominent, particularly at shorter periods,
which are more sensitive to shallow structure. Global mantle tomography mod-
els rely heavily on surface-wave analyses to constrain upper-mantle heterogeneity.
Notice the similarity between the 50 s crustal-corrected phase velocity map and the
velocity structure at 150 km depth in Figure 1.7.

8.6 Normal modes
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Figure 8.11 The first four modes of vibration of a string between fixed endpoints.

all wave motions must be confined. Body waves are reflected from the surface;
surface waves orbit along great circle paths. At a particular point on the Earth’s
surface, there will be a series of arrivals of different seismic phases. The timing
between these arrivals will result in constructive and destructive interference such
that only certain frequencies will resonate over long time intervals. These resonant
frequencies are termed Earth’s normal modes and provide a way of representing
wave propagation that is an alternative to the traveling wave approach.

The vibrations of a string fixed at both ends provide an analogy that may be
familiar from your physics classes. The string will resonate only at certain frequen-
cies (Fig. 8.11). These are termed the standing waves for the string and any motion
of the string can be expressed as a weighted sum of the standing waves. This is
an eigenvalue problem; the resonant frequencies are termed the eigenfrequencies;
the string displacements are termed the eigenfunctions. In a musical instrument
the lowest frequency is called the fundamental mode; the higher modes are the
overtones or harmonics. For the vibrating string, the eigenfunctions are sines and
cosines and it is natural to use a Fourier representation.

Normal modes for the Earth are also specified by their eigenfrequencies and
eigenfunctions. A detailed treatment of normal mode theory for the Earth is beyond
the scope of this book, and computation of eigensolutions for realistic Earth models
is a formidable task. However, it is useful to remember some of the properties of
the eigenfunctions of any vibrating system:

1. They are complete. Any wave motion within the Earth may be expressed as a sum of
normal modes with different excitation factors.

2. They are orthogonal in the sense that the integral over the volume of the Earth of the prod-
uct of any two eigenfunctions is zero. This implies that the normal mode representation
of wave motion is unique.

What do Earth’s normal modes look like? For a spherically symmetric solid, it can
be shown that there are two distinctly different types of modes: spheroidal modes,
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which are analogous to P/SV and Rayleigh wave motion, and toroidal modes, which
are analogous to SH and Love wave motion. The Earth’s departures from spherical
symmetry mean that this separation is not complete, but it is a very good first-order
approximation. Toroidal modes involve no radial motion and are sensitive only
to the shear velocity, whereas spheroidal modes have both radial and horizontal
motion and are sensitive to both compressional and shear velocities. Spheroidal
mode observations at long periods are also sensitive to gravity and provide the best
direct seismic constraints on Earth’s density structure.

The lateral variations in normal mode eigenfunctions are best described in terms
of spherical harmonics, which provide an orthogonal set of basis functions on a
spherical surface (spherical harmonics are useful in many areas of geophysics for
representing functions on the surface of a sphere, and descriptions are available in
many of the standard texts; see Aki and Richards (1980, 2002) or Lay and Wallace
(1995) for treatments focusing on seismology). A common normalization for the
spherical harmonics is

Ym
l (θ,φ) = (−1)m

[
2l + 1

4π
(l − m)!
(l + m)!

]1/2

Pm
l (cos θ)eimφ (8.43)

where θ and φ are spherical polar coordinates (θ is the polar angle) and Pm
l is the

associated Legendre function. The spherical harmonic function is written as Ym
l ,

where l is termed the angular order number and m is the azimuthal order number.
The index l is sometimes also termed the spherical harmonic degree and is zero
or a positive integer up to any value. The angular order number, m, may take on
2l + 1 integer values between ±l. The order numbers determine the number of
lines of zero crossings that are present in the function. The total number of zero
crossings is given by l; the number of zero crossings through the pole is given by
|m|. Figure 8.12 plots examples of Ym

l for some of the lower harmonic degrees.
Note that the harmonics are defined relative to a particular coordinate system

and depend upon the location of the poles. If the coordinate system is rotated, any
spherical harmonic function in the old coordinate system may be expressed as a
sum of spherical harmonics of the same l but differing m in the new coordinate
system. A rotation of coordinates does not affect the angular order number but will
change the relative weights of the azimuthal order numbers. For example, a rotation
of 90◦ can change Y0

1 to Y1
1 .

Expansions of global observations in terms of spherical harmonics are common
in geophysics. Examples include Earth’s surface geoid and seismic velocity per-
turbations at a particular depth. For Earth’s normal modes, we are interested in
displacement, which is a vector quantity and most conveniently expressed in terms



234 8. S U R F A C E W A V E S A N D N O R M A L M O D E S

l = 0 l = 1 l = 2 l = 3

m = –3

m = –2

m = –1

m =  0

m =  1

m =  2

m =  3

Figure 8.12 Spherical harmonic functions Ym
l up to degree l = 3. Positive values are shown as

white, negative as black, with near-zero values as gray.There are 2l + 1 values of m at each
degree. Note that the negative m harmonics are rotated versions of the positive m harmonics.
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of the vector spherical harmonics, which are defined as

Rm
l (θ,φ) = Ym

l r̂ (8.44)

Sm
l (θ,φ) = 1√

l(l + 1)

[
∂Ym

l

∂θ
θ̂θθ + 1

sin θ
∂Ym

l

∂φ
φ̂φφ

]
(8.45)

Tm
l (θ,φ) = 1√

l(l + 1)

[
1

sin θ
∂Ym

l

∂φ
θ̂θθ − ∂Ym

l

∂θ
φ̂φφ

]
(8.46)

where r̂, θ̂θθ, and φ̂φφ are unit vectors in the r, θ, and φ directions, respectively. The
vector fields associated with Earth’s spheroidal motions can be expressed in terms
of R and S, while the toroidal motions are are expressed with T.

Earth’s normal modes are specified in terms of the spherical harmonic order
numbers l and m and a radial order number, n, that describes the number of zero
crossings in radius that are present. Toroidal modes are thus designated nT

m
l and

spheroidal modes as nS
m
l . The solutions for n = 0 are called the fundamental

modes; the solutions for n > 0 are termed overtones. For a spherically symmetric
Earth the eigenfrequencies at constant n and l are identical for all values of m and
it is common to denote modes only by their radial and angular order numbers, that
is, as nTl and nSl and the corresponding frequencies as nωl.

The fundamental spheroidal mode 0S0 is termed the “breathing’’ mode and rep-
resents a simple expansion and contraction of the Earth. It has a period of about
20 minutes. 0S1 is not used in seismology since it describes a shift in the center of
mass of the Earth; this cannot result from purely internal forces. 0S2 has a period of
about 54 minutes and represents an oscillation between an ellipsoid of horizontal
and vertical orientation (Fig. 8.13). This is sometimes termed the “rugby’’ mode

Figure 8.13 A highly exaggerated picture of the normal mode 0S2.This mode has a period of
about 54 minutes; the two images are separated in time by 27 minutes.
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for obvious reasons. The toroidal mode 0T1 represents a change in Earth’s rotation
rate; this can happen but occurs at such long time intervals that it is unimportant in
seismology. The toroidal mode 0T2 has a period of about 44 minutes and describes a
relative twisting motion between the northern and southern hemispheres. Because
of the fluid outer core, toroidal modes do not penetrate below the mantle.

Although theoretical solutions for the normal modes of a solid sphere date back to
Lamb in 1882, definitive observations for the Earth did not occur until the great 1960
earthquake in Chile. The enormous size of this event (the largest since seismographs
began recording about a century ago), together with improvements in instrument
design at long periods, made it possible to identify a few dozen normal modes.
The next two decades were perhaps the golden age in normal mode seismology as
over a thousand modes were identified (e.g., Gilbert and Dziewonski, 1975) and
new methods were derived for inverting the observations for Earth structure (e.g.,
Backus and Gilbert, 1967, 1968, 1970).

The normal mode eigenfrequencies are identical for different azimuthal order
number m only for a spherically symmetric solid (this is called degeneracy in the
eigenfrequencies). Earth’s small departures from spherical symmetry (e.g., ellip-
ticity, rotation, general 3-D velocity variations) will cause the eigenfrequencies to
separate. This is termed splitting; a single spectral peak will split into a multiplet
composed of the separate peaks for each value of m. Earth’s rotation rate and el-
lipticity are well known, but splitting due to 3-D structure is also observed, so
measurements of mode splitting can be using to constrain three-dimensional veloc-
ity variations.

As an example of normal mode observations, Figure 8.14 plots the spectrum of
240 hours of data from the 2004 Sumatra-Andaman earthquake recorded on the
vertical component of station ARU in Russia. The low-order spheroidal modes
(labeled) are seen with excellent signal-to-noise because of the size of this earth-
quake (MW = 9.1, the largest since the 1964 Alaskan earthquake and the first
giant subduction zone earthquake to be recorded by modern broadband seismome-
ters). Many of the modes are clearly split and 0S2 is shown at an expanded
scale to illustrate its splitting into five peaks, corresponding to its five m val-
ues, i.e., 0S

−2
2 , 0S

−1
2 , etc. The regular spacing of these peaks in the 0S2 multi-

plet is characteristic of splitting due to Earth’s rotation. Modes 3S1 and 1S3 have
slightly different center frequencies but overlap so much that they cannot be
separately resolved.

Since wave motion in the Earth can be described to equal precision with either
traveling waves or normal modes, what is the advantage of the normal mode ap-
proach? Largely it comes from analysis of long time series from large events, where
the multiplicity of different phase arrivals makes a traveling wave representation
awkward. For example, it would be extremely difficult to attempt to model all of the
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Figure 8.14 Low-order spheroidal modes visible in the spectrum of 240 hours of data from the
2004 Sumatra-Andaman earthquake (MW = 9.1) recorded at station ARU at Arti, Russia (courtesy
of Guy Masters). Mode 0S2 is plotted at an expanded scale from 0.29 to 0.33 mHz to show its
splitting into a five-peaked multiplet, corresponding to azimuthal order number (m) values from
-2 to 2.

arrivals visible in Figure 8.9 with a time domain approach. However, by taking the
Fourier transform of individual records and measuring the position of the spectral
peaks (and any splitting that can be observed), it is possible to identify the various
modes and use them to constrain Earth structure. This is the only practical way to
examine records at very long periods (> 500 s) and provides information about the
Earth’s density structure that cannot be obtained any other way. Normal modes also
are able to examine Earth properties, such as the shear response of the inner core,
that are difficult to observe directly with body waves. Attenuation causes the mode
amplitudes to decay with time, and so normal mode observations help to constrain
Q at very long periods. Finally, normal modes provide a complete set of basis
functions for the computation of synthetic seismograms that naturally account for
Earth’s sphericity. Computing synthetic seismograms by summing normal modes
is standard practice in surface-wave and long-period body-wave seismology. The
number of modes required increases rapidly at higher frequencies, but with mod-
ern computers, normal mode summation is an increasingly attractive alternative to
other methods.
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8.7 Exercises

1. (a) Show how (8.9) follows from (6.46) and (6.59) by proving that if

reiθ = a − ib

a + ib
(8.47)

then

r = 1, (8.48)

θ = −2 tan−1 b

a
. (8.49)

(b) Model the crust as a simple layer over a half-space as in Figure 8.2, with h =
40 km, ρ1 = 2.7 g/cm3, ρ2 = 3.3 g/cm3, β1 = 3.5 km/s, and β2 = 4.5 km/s.
Find the lowest value ofω (i.e., the fundamental mode) that satisfies equation
(8.10) at values of phase velocity (c = 1/p) of 3.8, 4.0, 4.2, and 4.4 km/s.
Convertω to period, T , and list your results in a table with the c and T values.
Hint: Make sure that you use consistent units in computing the µ values in
(8.10).

(c) (COMPUTER) Make a plot of the c(ω) dispersion curve for the fundamental
and first two higher modes for values of c from β1 to β2. Include many more
points than your result from (b).

2. (COMPUTER) Solve equation (8.36) numerically and plot the ratio of the Rayleigh
wave phase velocity to the shear velocity (i.e., c/β) as a function of the P-to-S
velocity ratio (α/β) for α/β values between 1.5 and 2.0.

3. Figure 8.15 shows a surface wave from the 2002 MW 7.9 Denali earthquake in
Alaska recorded near São Paulo in Brazil on a vertical-component station.

(a) Is this most likely a Rayleigh or a Love wave? Why?

(b) Measure the average time and the time separation between successive wave-
form troughs over the interval from 3200 s to 3600 s. Use your results to make
a table of velocity as a function of the wave period (Hint: 1◦ = 111.19 km).
Is this a measure of group or phase velocity? How do your results compare
to the PREM predictions in Figure 8.6?

4. (COMPUTER) Assume that the Rayleigh wave phase velocity at periods between
50 and 500 s can be approximated by the polynomial representation

c(T) = 4.020 − 1.839 × 10−3 T + 3.071 × 10−5 T 2 − 3.549 × 10−8 T 3,

where c is the phase velocity in km/s and T is the period in seconds.
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Figure 8.15 The 2002 Denali earthquake recorded at GEOSCOPE station SPB (vertical
component) in Brazil at an epicentral distance of 115.4◦.Time is from the earthquake
origin time.

(a) Plot both the group and phase velocity dispersion curves as a function of
period for T = 50 to 500 s, using (8.42) to generate the U(T) curve (this can
be done either analytically or through numerical differencing on the computer
after converting c(T) points to ω(k) points).

(b) Use this relationship to write a computer program to compute Rayleigh wave
synthetic seismograms at source–receiver ranges of 0, 30, 90, and 150 de-
grees. Define your seismograms to be 1.5 hours long with a digitization inter-
val of 5 s. Construct the synthetics as a sum of cosine functions at frequencies
from 0.002 to 0.02 Hz with a frequency spacing of 0.0002 Hz. Apply a phase
shift to each frequency component to account for the propagation distance.
Make a plot of the synthetic seismogram at each range.

(c) Pick two adjacent peaks in your synthetic Rayleigh wave at 150◦ and measure
their time separation. Using this as an approximation for the period T , show
that the arrival time is in reasonable agreement with the group velocity curve
plotted in part (a).

(d) Note: You may notice a “wrap-around’’phase at 5000 s at zero distance. Note
that 5000 = 1/df where df = 0.0002 Hz. To get rid of this phase, use a smaller
value for df (which will push it back to later times) or simply window it out
of your plot. Your synthetics will not be accurate past 180◦ unless a π/2 phase
advance is added to correct for the effect of the focusing at the antipode (see
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Aki and Richards, 2002, p. 351). An additional π/2 phase advance occurs for
each additional epicentral or antipodal passage.
Hint: Here is the key part of a FORTRAN program to solve this problem:

a0= 4.02
a1=-1.839e-3
a2= 3.071e-5
a3=-3.549e-8

(initialize dt,npts,f1,f2,df,delta, set y array
to zero)

pi=3.1415927
x=delta*111.19 !convert degrees to km
do i=1,npts

time(i)=float(i-1)*dt
do f=f1,f2,df

t=1./f
pvel=a0+a1*t+a2*t**2+a3*t**3
toff=x/pvel
om=2.*pi*f
hann=sin(pi*(f-f1)/(f2-f1))**2
y(i)=y(i)+cos(om*(time(i)-toff))*hann

enddo
enddo

(output time(i),y(i) for i=1,npts)
In this case, we apply a Hanning taper (sin2 function) to smoothly reduce
the amplitudes close to the frequency limits. This minimizes ringing and
other artifacts in the final synthetic seismogram that are caused by the finite
bandwidth. If you are curious why your synthetics are missing the fast waves
at very long periods, try removing the Hanning taper. You will now see the
early-arriving, long-period energy, but your synthetics will suffer ringing
from the abrupt frequency limits in the calculation.

5. Comment on the validity of the following argument: “The earthquake source may
be thought of as a delta function that generates energy at all frequencies. However,
Earth’s lowest normal mode has a period of 54 minutes. Thus, the normal mode
representation for seismic displacements is incomplete because it cannot represent
very long period energy generated by the source (i.e., periods longer than 54
minutes).’’
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Earthquakes and source theory

In the preceding chapters we have described methods for modeling the propagation
of seismic waves, but we have largely neglected the question of where the waves
come from and how the radiated seismic energy relates to the physical properties
of the source. These topics can often be ignored if our interest is solely in learning
about details of Earth structure outside of the source regions, such as travel time
studies of velocity structure. However, in many cases resolving seismic structure
requires some knowledge of the source characteristics, and, of course, resolving
source properties is fundamental to any real understanding of earthquakes. Because
seismic source theory can be very complex, we will not formally derive most of the
equations in this chapter; instead we will summarize many of the important results
that are of practical use in seismology and refer the reader to Aki and Richards
(2002), Stein and Wysession (2002), or Kanamori and Brodsky (2004) for more
details.

9.1 Green’s functions and the moment tensor

Amajor goal in this chapter is to understand how the observed seismic displacements
at some distance from a seismic event can be related to the source properties. Let
us begin by recalling the momentum equation for an elastic continuum

ρ
∂2ui

∂t2 = ∂jτij + fi, (9.1)

where ρ is the density, ui is the displacement, τij is the stress tensor, and fi is the
body force term. Now consider the displacement field in a volume V bounded by
a surface S. The displacements within V must be a function solely of the initial
conditions, the internal forces within V , and the tractions acting on S. A more

241
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formal statement of this fact is termed the uniqueness or representation theorem
and is derived in Section 2.3 of Aki and Richards (2002). It turns out that specifying
either the tractions or the displacement field on S, together with the body forces f ,
is sufficient to uniquely determine u throughout V .

Solving (9.1) in general is quite difficult if we include the fi term, and in Chapter
3 we quickly dropped it to concentrate on the homogeneous equation of motion. Let
us now explore how the properties of the source can be modeled and related to the
seismic displacements observed in the Earth. Consider a unit force vector f(x0, t0)

applied at point x0 at time t0. By itself, this is not a realistic seismic source; rather,
it is what would result if the hand of God could reach inside the Earth and apply a
push to a particular point. Nonetheless, the unit force function is a useful concept
because more realistic sources can be described as a sum of these force vectors.
Consider the displacement u(x, t) measured at a receiver at position x that results
from this source. In general, u(x, t) will be a complicated function of the Earth’s
seismic velocity and density structure and will include multiple seismic phases
and reverberations. The u(t) function will vary for different source and receiver
positions. However, for every f(x0, t0) and x, there is a unique u(t) that describes
the Earth’s response, which could be computed if we knew the Earth’s structure to
sufficient accuracy.

In considering this problem, it is helpful to develop a notation that separates
the source terms from all the other details of the wave propagation. This is done
by defining a Green’s function G(x, t) that gives the displacement at point x that
results from the unit force function applied at point x0. In general we may write

ui(x, t) = Gij(x, t; x0, t0)fj(x0, t0), (9.2)

where u is the displacement, f is the force vector, andG is termed the elastodynamic
Green’s function. The actual computation of G is quite complicated and involves
taking into account all of the elastic properties of the material and the appropriate
boundary conditions, and we defer discussion of specific forms for G until later.
However, assuming that G can be computed, notice the power of this equation.
Because it is linear, the displacement resulting from any body-force distribution
can be computed as the sum or superposition of the solutions for the individual
point sources. It also implies that knowledge of the displacement field may permit
us to invert for the body-force distribution.

An earthquake is usually modeled as slip on a fault, a discontinuity in displace-
ment across an internal surface in the elastic media. This parameterization cannot
be used directly in (9.2) to model ground motion. Fortunately, however, it can be
shown that there exists a distribution of body forces that produces exactly the same
displacement field as slip on an internal fault. These are termed the equivalent body
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d

d

Force Couples Double Couple

Figure 9.1 Force couples are opposing point forces separated by a small distance. A double
couple is a pair of complementary couples that produce no net torque.

forces for the fault model. Before describing the relationship between these forces
and the fault slip, let us first explore the different types of body forces that can
occur within Earth.

For now, consider sources small enough compared to the wavelength of the
radiated energy that they can be thought of as point sources. A single force acting
at a point could only result from external forces; otherwise momentum would not
be conserved. Internal forces resulting from an explosion or stress release on a
fault must act in opposing directions so as to conserve momentum. For example,
we could have two force vectors of magnitude f , pointing in opposite directions,
separated by a distance d (Fig. 9.1). This is termed a force couple or vector dipole.
Alternatively, the vectors could be separated in a direction perpendicular to the
force orientation. In this case angular momentum is not conserved unless there
also exists a complementary couple that balances the forces. The resulting pair of
couples is termed a double couple.

We define the force couple Mij in a Cartesian coordinate system as a pair of
opposing forces pointing in the i direction, separated in the j direction. The nine
different force couples are shown1 in Figure 9.2.

The magnitude of Mij is given by the product fd and is assumed constant as d

goes to zero in the limit of a point source. It is then natural to define the moment
tensorM as

M =

⎡

⎣
M11 M12 M13

M21 M22 M23

M31 M32 M33

⎤

⎦ . (9.3)

1 Alert readers will notice that our coordinate system has flipped again, so that x3 points upward as it did in
Chapters 2 and 3, rather than downward as it did in Chapters 4–8. An upward pointing x3 axis is the usual
convention in source studies.
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Figure 9.2 The nine different force couples that make up the components of the moment tensor.

The condition that angular momentum be conserved requires thatM is symmetric
(e.g., that Mij = Mji). ThereforeM has only six independent elements. The moment
tensor provides a general representation of the internally generated forces that can
act at a point in an elastic medium. Although it is an idealization, it has proven to be
a good approximation for modeling the distant seismic response for sources that are
small compared with the observed seismic wavelengths. Larger, more complicated
sources can also be modeled using the moment tensor representation by considering
a sum of point forces at different positions.

Using (9.2), we may express the displacement resulting from a force couple at
x0 in terms of the point-force Green’s function as

ui(x, t) = Gij(x, t; x0, t0)fj(x0, t0) − Gij(x, t; x0 − x̂kd, t0)fj(x0, t0)

= ∂Gij(x, t; x0, t0)

∂(x0)k
fj(x0, t0)d, (9.4)

where the force vectors fj are separated by a distance d in the x̂k direction. The
product fjd is the kth column of Mjk and thus

ui(x, t) = ∂Gij(x, t; x0, t0)

∂(x0)k
Mjk(x0, t0), (9.5)
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and we see that there is a linear relationship between the displacement and the
components of the moment tensor that involves the spatial derivatives of the point-
force Green’s functions. The synthetic seismogram algorithms discussed in Chap-
ter 3 can be used to calculate the Green’s functions, which include all the body-
and surface-wave phases connecting x0 and x. Given a specified moment tensor,
source location and Earth model, it is possible to compute displacement functions
(i.e., seismograms) anywhere within the Earth. Because (9.5) is linear, once the
Green’s functions are computed for a reference Earth model, it is straightforward
to use seismic observations, u(x, t), to invert for the components of the moment
tensor. This is now done routinely for globally recorded earthquakes by several
groups. The most widely used moment tensor catalog is from the Global Centroid
Moment Tensor (CMT) project (see http://www.globalcmt.org/CMTsearch.html).
This project was started by Adam Dziewonski and for many years was called the
Harvard CMT catalog (e.g., Dziewonski and Woodhouse, 1983). The CMT solution
provides the moment tensor and also a centroid time and position that represents
the average time/space origin of the long-period seismic radiation. The centroid
location should not be confused with the earthquake hypocenter, which is usually
determined from short-period P arrival times and which represents the starting
point of the earthquake rupture.

9.2 Earthquake faults

Let us now consider models of slip on earthquake faults and how they relate to
the moment tensor formalism that we have just discussed. Earthquakes may be
idealized as movement across a planar fault of arbitrary orientation (Fig. 9.3). The
fault plane is defined by its strike (φ, the azimuth of the fault from north where
it intersects a horizontal surface) and dip (δ, the angle from the horizontal). For
non-vertical faults, the lower block is termed the foot wall; the upper block is the
hanging wall. The slip vector is defined by the movement of the hanging wall
relative to the foot wall; the rake, λ, is the angle between the slip vector and the
strike. Upward movement of the hanging wall is termed reverse faulting, whereas
downward movement is called normal faulting. Reverse faulting on faults with dip
angles less than 45◦ is also called thrust faulting; nearly horizontal thrust faults are
termed overthrust faults. In general, reverse faults involve horizontal compression
in the direction perpendicular to the fault strike whereas normal faults involve
horizontal extension. Horizontal motion between the fault surfaces is termed strike–
slip and vertical motion is called dip–slip. If an observer, standing on one side of a
fault, sees the adjacent block move to the right, this is termed right-lateral strike–
slip motion (with the reverse indicating left-lateral motion). To define the rake for
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Figure 9.3 A planar fault is defined by the strike and dip of the fault surface and the
direction of the slip vector.

vertical faults, the hanging wall is assumed to be on the right for an observer looking
in the strike direction. In this case, λ = 0◦ for a left-lateral fault and λ = 180◦ for a
right-lateral fault. The SanAndreas Fault is a famous example of a right-lateral fault.
Parts of California to the west of the fault are moving northward (right) relative to
the rest of the United States.

The strike (0 ≤ φ < 360◦), the dip (0 ≤ δ ≤ 90◦), the rake (0 ≤ λ < 360◦),
and the magnitude of the slip vector, D, define the most basic seismic model of
faulting or event focal mechanism. It can be shown that the seismic energy radiated
from such a fault can be modeled with a double-couple source, the equivalent body-
force representation of the displacement field. For example, right-lateral movement
on a vertical fault oriented in the x1 direction corresponds to the moment tensor
representation

M =

⎡

⎣
0 M0 0

M0 0 0
0 0 0

⎤

⎦ , (9.6)

where M0 is defined as the scalar seismic moment and is given by

M0 = µDA, (9.7)
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where µ is the shear modulus, D is the average fault displacement, and A is the
area of the fault. Scalar seismic moment was defined by Aki (1966) and is the most
fundamental and widely used measure of earthquake strength. The reader should
verify that the units for M0 are N m, the same as for the force couples defined
earlier.2 More generally, M0 can be computed from any moment tensor from

M0 = 1√
2

(∑

ij

M2
ij

)1/2

. (9.8)

The connection between scalar moment as defined in (9.7) and the components of
the moment tensor is complicated to prove (e.g., Aki and Richards, 2002, pp. 42–8),
but is one of the most important results in seismology because it relates a real, phys-
ical property of the earthquake source to the double-couple model and ultimately
to seismic observations. From the orientations of the different force couples, it is
easy to see how any fault in which the strike, dip, and rake are multiples of 90◦

can be defined with a moment tensor representation. However, more generally, a
fault plane and slip of any orientation can be described with a suitable rotation of
the moment tensor in (9.6). Because Mij = Mji, there are two fault planes that
correspond to a double-couple model. For example, (9.6) is also appropriate for a
left-lateral strike–slip fault oriented in the x2 direction (Fig. 9.4). Both faults have

M12

1

2

3

M21

1

2

3

Right lateral Left lateral

Figure 9.4 Owing to the symmetry of the moment tensor, these right-lateral and left-lateral
faults have the same moment tensor represention and the same seismic radiation pattern.

2 Older references sometimes express M0 in dyne-cm. Note that 1 N = 105 dyne and thus 1 Nm = 107 dyne-cm.
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Figure 9.5 The douple-couple pair on the left is represented by the off-diagonal terms in the
moment tensor, M12 and M21. By rotating the coordinate system to align with the P and T axes,
the moment tensor in the new coordinate system is diagonal with opposing M11 and M22 terms.

the same moment tensor representation. This is a fundamental ambiguity in invert-
ing seismic observations for fault models. In general, there are two fault planes that
are consistent with distant seismic observations in the double-couple model. The
real fault plane is termed the primary fault plane; the other is termed the auxiliary
fault plane. This ambiguity is not a defect of the double-couple model (which has
been shown to provide an excellent match to seismic observations) but reflects the
fact that both faults produce exactly the same seismic displacements in the far field.
Distinguishing between the primary and auxiliary fault planes requires examina-
tion of factors that go beyond a point source model (e.g., considering different parts
of the rupture plane) or use of other information, such as aftershock locations or
observed surface rupture.

Because the moment tensor is symmetric, it can be diagonalized by computing
its eigenvalues and eigenvectors and rotating to a new coordinate system (just as we
did for the stress and strain tensors in Chapter 2). For the example moment tensor
given in (9.6), the principal axes are at 45◦ to the original x1 and x2 axes (Fig. 9.5),
and the rotated moment tensor becomes

M′ =

⎡

⎣
M0 0 0
0 −M0 0
0 0 0

⎤

⎦ . (9.9)

The x′
1 coordinate is termed the tension axis, T , and x′

2 is called the pressure axis,
P . The two sets of force couples plotted in Figure 9.5 are equivalent; they have the
same moment tensor representation and they produce the same seismic radiation.

9.2.1 Non-double-couple sources

Double-couple sources arising from shear fracture have a specific moment tensor
representation, in which both the trace and determinant of M are zero. However,
the moment tensor is a more general description of possible sources than double-
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couple sources alone, and moment tensors computed from seismic data may include
contributions from other types of events.The trace of the moment tensor is a measure
of volume changes that accompany the event and is always zero for simple shear
sources. In contrast, the moment tensor for an isotropic source (e.g., an explosion)
has the form

M =

⎡

⎣
M11 0 0

0 M22 0
0 0 M33

⎤

⎦ , (9.10)

where M11 = M22 = M33.
From a general moment tensor, we can extract the isotropic part as

M0 = 1
3(tr M)I (9.11)

and decomposeM into isotropic and deviatoric parts:

M = M0 +M′ (9.12)

where tr M′ = 0. The deviatoric moment tensor,M′, is free of any isotropic sources
but may contain additional non-double-couple components. We can diagonalizeM′

by computing its eigenvalues and eigenvectors and rotating to coordinates defined
by its principal axes. We then have

M′ =

⎡

⎣
σ1 0 0
0 σ2 0
0 0 σ3

⎤

⎦ , (9.13)

where the eigenvalues are ordered such that σ1 > σ2 > σ3. Because tr M′ = 0, we
also have σ2 = −σ1 −σ3. For a pure double-couple source, σ2 = 0 and σ3 = −σ1.
Following Knopoff and Randall (1970) we can further decompose M′ into a best-
fitting double-couple,MDC, and a second term called a compensated linear vector
dipole,MCLVD

M′ = MDC +MCLVD

=

⎡

⎣
1
2(σ1 − σ3) 0 0

0 0 0
0 0 −1

2(σ1 − σ3)

⎤

⎦+

⎡

⎣
−σ2/2 0 0

0 σ2 0
0 0 −σ2/2

⎤

⎦ . (9.14)

The complete decomposition of the originalM is thus

M = M0 +MDC +MCLVD. (9.15)
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Figure 9.6 Example of the decomposition of a moment tensor into isotropic, best-fitting double
couple, and compensated linear vector dipole terms.

Note that the decomposition ofM′ intoMDC andMCLVD is unique only because
we have defined MDC as the best-fitting double-couple source, that is, we have
minimized the CLVD part. There are alternative decompositions that will give
a larger CLVD component and a correspondingly smaller double-couple moment
tensor. Here is an example of the separation of a moment tensor into the components
in (9.15), assuming it has already been rotated into its principal axes coordinates:

M =

⎡

⎣
9 0 0
0 1 0
0 0 −1

⎤

⎦ =

⎡

⎣
3 0 0
0 3 0
0 0 3

⎤

⎦+

⎡

⎣
5 0 0
0 0 0
0 0 −5

⎤

⎦+

⎡

⎣
1 0 0
0 −2 0
0 0 1

⎤

⎦

as displayed in Figure 9.6. Alternatively, M′ can be decomposed into two double-
couple sources

M′ =

⎡

⎣
σ1 0 0
0 σ2 0
0 0 σ3

⎤

⎦ =

⎡

⎣
σ1 0 0
0 −σ1 0
0 0 0

⎤

⎦+

⎡

⎣
0 0 0
0 −σ3 0
0 0 σ3

⎤

⎦ , (9.16)

where we have used σ2 = −σ1 − σ3. The larger and smaller of the two terms are
called the major and minor double couples, respectively. This decomposition has
the peculiar property that the major and minor double couples become nearly equal
in size as σ2 approaches zero; thus in most cases the decomposition of (9.15) is
preferred.

Most earthquakes are well-described with double-couple sources, but the search
for possible non-double-couple contributions has been a significant area of research
(e.g., see reviews by Julian et al., 1998, and Miller et al., 1998). At one time it was
hypothesized that deep focus earthquakes might involve volume changes caused by
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sudden implosive phase changes in minerals within the subducting slabs. However,
results have generally indicated that these events do not have significant isotropic
components (e.g., Kawakatsu, 1991). Moment tensor inversions will sometimes
impose the constraint that M is purely deviatoric; this reduces the number of free
parameters and can often lead to more stable results.Ameasure of the misfit between
M′ and a pure double-couple source is provided by the ratio of σ2 to the remaining
eigenvalue with the largest magnitude

ϵ = σ2/max(|σ1|, |σ3|), (9.17)

where ϵ = 0 is obtained for a pure double-couple and ϵ = ±0.5 is obtained for a
pure compensated linear vector dipole.

Physically, non-double-couple components can arise from simultaneous faulting
on faults of different orientations or on a curved fault surface. For example, CMT
solutions for some Iceland earthquakes near Bardarbunga volcano suggest reverse
faulting on outward dipping cone-shaped faults associated with caldera structures
(Nettles and Ekström, 1998). Magma injection events can cause both isotropic
and compensated linear vector dipole terms. For example, Kanamori et al. (1993)
identified a dominant CLVD source for a 1984 earthquake near Tori Shima island
in the Izu-Bonin arc. Perhaps the most exotic sources of all are volcanic eruptions
(e.g., Kanamori et al., 1984), landslides, such as Mt. St. Helens (Kanamori and
Given, 1982), and glacial sliding events, such as the Greenland quakes recently
discovered by Ekstöm et al. (2003). Seismic data from these events cannot be fit
with standard force couples and moment tensor analysis and require single force
models.

9.3 Radiation patterns and beach balls

To use the equivalent body-force representation to predict displacements, we need
to know the elastodynamic Green’s function,G, in (9.2). In general, solving forG is
rather complicated. However, some insight into the nature of the solutions that are
obtained may be found by considering the simple case of a spherical wavefront from
an isotropic source. In Chapter 3, we described how the solution for the P-wave
potential in this case is given by

φ(r, t) = −f(t − r/α)

r
, (9.18)

whereα is theP velocity, r is the distance from the point source, and 4πδ(r)f(t) is the
source-time function. Note that the amplitude of the potential diminishes as 1/r,



252 9. E A R T H Q U A K E S A N D S O U R C E T H E O R Y

as we derived earlier from geometrical spreading considerations for a spherical
wavefront. The displacement field is given by the gradient of the displacement
potential

u(r, t) = ∂φ(r, t)

∂r
=
(

1
r2

)
f(t − r/α) −

(
1
r

)
∂f(t − r/α)

∂r
. (9.19)

Defining τ = t − r/α as the delay time, where r/α is the time that it takes a P wave
to travel the distance r from the source, we have

∂f(t − r/α)

∂r
= ∂f(t − r/α)

∂τ

∂τ

∂r
= −1

α

∂f(t − r/α)

∂τ
,

and so (9.19) can be expressed as

u(r, t) =
(

1
r2

)
f(t − r/α) +

(
1
rα

)
∂f(t − r/α)

∂τ
. (9.20)

This equation is relatively simple because it applies only to P waves and involves
no radiation pattern effects as the source is assumed to be spherically symmetric.
The first term decays as 1/r2 and is called the near-field term since it is important
only relatively close to the source. It represents the permanent static displacement
due to the source. The second term decays as 1/r and is called the far-field term
because it will become dominant at large distances from the source. It represents
the dynamic response – the transient seismic waves that are radiated by the source
that cause no permanent displacement. These waves have displacements that are
given by the first time derivative of the source-time function.

More complicated expressions arise for point force and double-couple sources,
but these also involve near- and far-field terms. Most seismic observations are made
at sufficient distance from faults that only the far-field terms are important. The far-
field P-wave displacement from the jk component of a moment tensor source at
x = 0 in a homogeneous whole space is given by

uP
i (x, t) = 1

4πρα3

xixjxk

r3

1
r
Ṁjk

(
t − r

α

)
, (9.21)

where r2 = x2
1 + x2

2 + x2
3 is the squared distance to the receiver and Ṁ is the time

derivative of the moment tensor. This is a general expression that gives the far-field
P displacements for any moment tensor representation of the source.

Now let us consider the more specific example of a fault described by a double-
couple source. Without loss of generality we may assume that the fault is in the (x1,
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Figure 9.7 Spherical coordinates for a
vector relative to a fault in the (x1, x2)
plane with slip in the x1 direction.

x2) plane with motion in the x1 direction (Fig. 9.7). We then have M13 = M31 = M0

and

uP
i (x, t) = 1

2πρα3

xix1x3

r3

1
r
Ṁ0

(
t − r

α

)
. (9.22)

Note that the factor of two difference from (9.21) is due to the sum over M13 and
M31. If we define spherical coordinates relative to the fault as shown in Figure 9.7,
we have

x3/r = cos θ,

x1/r = sin θ cosφ, (9.23)

xi/r = r̂i,

and thus, substituting for x in (9.22) and using cos θ sin θ = 1
2 sin 2θ, we have

uP = 1
4πρα3 sin 2θ cosφ

1
r
Ṁ0

(
t − r

α

)
r̂. (9.24)

The P-wave radiation pattern is illustrated in Figure 9.8. Note that the fault plane
and the auxiliary fault plane (the plane perpendicular to the fault plane and the slip
vector) form nodal lines of zero motion that separate the P-wave polarities into four
quadrants. The outward pointing vectors represent outward P-wave displacement
in the far field (assuming Ṁ is positive); this is termed the compressional quadrant.
The inward pointing vectors occur in the dilatational quadrant. The tension (T
axis) is in the middle of the compressional quadrant; the pressure (P axis) is in the
middle of the dilatational quadrant. (Yes, it’s confusing! The tension axis is in the
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Figure 9.8 The far-field radiation pattern for P waves (top) and S waves (bottom) for a
double-couple source.The orientation of the small arrows shows the direction of first motion;
their length is proportional to the wave amplitude.The primary and auxiliary fault planes are
shown as heavy lines; the compressional quadrants are shaded. P-wave first motions are outward
in the compressional quadrant and inward in the dilatational quadrant with nodal lines in
between. S-wave first motions are generally away from the pressure axis and toward the tension
axis; there are six nodal points and no nodal lines in S. Because of the ambiguity between the
primary and auxiliary fault planes, the positions of the slip and fault normal vectors in the top
plot could be reversed.
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compressional quadrant; compressional in this case refers to the outward direction
of P first motion.)

For S waves the equations are only slightly more complicated. The far-field S

displacements as a function of Mjk are given by

uS
i (x, t) = (δij − γiγj)γk

4πρβ3

1
r
Ṁjk

(
t − r

β

)
, (9.25)

where β is the shear velocity and the direction cosines are γi = xi/r. For a double-
couple source with the geometry shown in Figure 9.7, we may rewrite this as

uS(x, t) = 1
4πρβ3 (cos 2θ cosφ θ̂θθ − cos θ sin φ φ̂φφ)

1
r
Ṁ0

(
t − r

β

)
, (9.26)

where θ̂θθ and φ̂φφ are unit Cartesian vectors in the θ and φ directions. The resulting
S-wave radiation pattern is illustrated in Figure 9.8. There are no nodal planes,
but there are nodal points. S-wave polarities generally point toward the T axis and
away from the P axis.

The first motions of P waves have long been used to determine earthquake fo-
cal mechanisms using the double-couple model. The advantages of this approach,
compared to more sophisticated methods of moment tensor inversion, are that only
vertical component instruments are required, amplitude calibration is not needed,
and the sense of the first P motion (i.e., up or down) can be easily noted from the
seismogram at the same time the arrival time is picked, even on analog records.
The initial motion of the P wave determines whether the ray left the source in a
compressional (upward first motion at a surface receiver) or dilatational quadrant
(downward first motion), regardless of sensor type (e.g., displacement, velocity, or
acceleration). Ray theory is then used to project the rays from all of the observations
back to the angle at which they left the source. The results are plotted on what is
termed the focal sphere, an imaginary sphere surrounding the source that shows the
takeoff angles of the rays. Usually only the lower hemisphere of the focal sphere is
plotted, as most rays at teleseismic distances depart downward from the source. (P
first motions for upward propagating rays may be plotted on the appropriate oppos-
ing point on the lower hemisphere, as the P-wave radiation pattern is symmetric
about the origin.)

If enough polarity measurements are plotted, it is possible to divide the focal
sphere into compressional and dilatational quadrants. The focal mechanism is then
determined by finding two orthogonal planes and their great circle projections onto
the focal sphere that separate these quadrants. As discussed above, there is no way
to tell from these observations alone which of these planes is the true fault plane and
which is the auxiliary fault plane. In the old days, this method was implemented
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Strike Slip

Normal

Reverse

Oblique

Figure 9.9 Examples of focal spheres and their corresponding fault geometries.The lower half
of the focal sphere is plotted to the left, with the compressional quadrants shaded.The block
diagrams on the right show the two fault geometries (the primary and auxiliary fault planes) that
could have produced the observed radiation pattern.

by hand on special map projections. Today, it is fairly simple to find the focal
mechanism using a computer to perform a grid search on the three parameters that
define the focal mechanism (strike, dip, rake), directly identifying those solutions
that fit the polarity observations most closely.

The focal sphere is also used as a means of displaying focal mechanisms. The
lower hemisphere is plotted and the compressional quadrants are shaded to produce
the traditional “beach ball’’image. This is illustrated in Figure 9.9 for different types
of focal mechanisms. In interpreting these plots, remember that the shaded regions
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1989 Loma Prieta

1994 Northridge 1992 Landers

1983 Borah Peak

1992 Cape Mendocino

Figure 9.10 Selected focal mechanisms from the Global CMT catalog in the southwestern
United States.

represent P waves leaving downward from the source with outward first motions
that will produce upward first motions at the receivers, while the unshaded regions
will result in downward first motions at the receivers. The tension axis is in the
middle of the shaded region; the pressure axis is in the unshaded region. Normal and
reverse faulting may be distinguished in beach ball plots by noting if the center of the
plot is white or black. If it is white in the middle with black edges, then it represents
a normal fault and a probable region of extension, whereas black in the center with
white edges indicates a reverse or thrust fault and a likely compressional regime.
Examples of strike–slip, normal, and reverse faulting earthquakes are shown in
Figure 9.10, which plots global CMT results for the southwestern United States.

Note that the pressure and tension axes give the directions of maximum com-
pression and tension in the Earth only if the fault surface corresponds to a plane
of maximum shear. Because this is usually not true, the fault plane solution does
not uniquely define the stress tensor orientation (although it does restrict the max-
imum compression direction to a range of possible angles). However, if multiple
focal mechanisms are available at different orientations within a volume in which
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Figure 9.11 Selected focal mechanisms from the Global CMT catalog.
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the stress can be assumed homogeneous, then it is possible to estimate the stress
tensor orientation (e.g., Gephart and Forsyth, 1984; Michael, 1987). This approach
has been used to constrain the principal stress directions in many areas of active
seismicity and address questions such as the possible rotation of the stress tensor
near active faults.

Focal mechanisms began to be computed from first motions on a routine basis fol-
lowing the establishment of the WWSSN seismic network in the early 1960s. These
results confirmed the double-couple theory for earthquake sources and showed that
the earthquake mechanisms in different regions were consistent with the emerging
theory of plate tectonics. Most earthquakes occur along the boundaries that sep-
arate the rigid plates. Strike–slip events are found along active transform faults,
such as the San Andreas Fault in California, where the plates are sliding past each
other. Reverse fault earthquakes are seen in subduction zones and normal faults in
extensional regimes.

The radiation pattern equations presented here are for body waves. Analo-
gous equations are used to describe the generation of surface waves and normal
modes. Analyses of longer-period data for source characteristics typically involve
a waveform fit and direct inversion for the components of the moment tensor as
described earlier. Usually the moment tensor obtained is very close to a pure dou-
ble couple, and, for convenience, the Global CMT catalog (see Section 9.1 or
www.globalcmt.org/CMTsearch.html) provides the strike, dip, and rake for the
best-fitting double-couple source. Examples of global focal mechanisms from this
catalog between 1976 and 2005 are plotted in Figures 9.10 and 9.11. The complete
catalog contains thousands of events; these figures plot the largest earthquakes in
each region.

9.3.1 Example: Plotting a focal mechanism

Assume we are given that the strike, dip and rake of an earthquake are 30◦,
60◦, and 40◦ respectively and want to sketch the focal mechanism. Figure 9.12
shows how this is done. The left plot is an equal-area lower-hemisphere map
of the focal sphere. The numbers around the outside circle show the fault strike
in degrees. The circles show fault dip angles with 0◦ dip (a horizontal fault)
along the outer circle and 90◦ dip (a vertical fault) at the center point. The
fault strike of 30◦ defines point A at 30◦ and point C at 30 + 180 = 210◦. The
fault dip of 60◦ defines point B, which is on the 60◦ dip contour on the right
side of the line from C to A (recall that faults always dip to the right of the
strike direction; see Figure 9.3). The curved line ABC shows the intersection
of the fault with the focal sphere. But this is just one of the two fault planes
that define the focal mechanism. With a bit of algebra, we can compute the



260 9. E A R T H Q U A K E S A N D S O U R C E T H E O R Y

0

90

180

270

60

30

60

120

150210

240

300

330

80

40

20

A

B

C

D

E

F

X

Figure 9.12 An example showing how a focal mechanism is plotted using a lower hemisphere
projection.

orientation of the auxiliary plane from the strike, dip, and rake of the first
plane. This is described on pp. 228–9 of Stein and Wysession (2002) and is
also provided in the subroutine GETAUX in Appendix D. The strike, dip, and
rake of this plane are 277.2◦, 56.2◦ and 143.0◦ and are used to plot curve DEF.

The two curves divide the focal sphere into four parts and the final step is
to shade in the correct two quadrants to create the beach ball plot on the right
side of Figure 9.12. To get this right, refer again to Figure 9.3 and consider
the first fault plane. The rake of 40◦ gives the angle along the fault plane from
the strike direction that the hanging wall side of the fault moves. In lower-
hemisphere projections, the hanging wall side is the side that does not include
the center point of the plot, i.e., the side to the right of ABC in this example.
Because the rake is less than 90◦, this side is moving crudely in the direction
of point A and thus the area AXF must be in the compressional quadrant and
is shaded. The other side of the fault moves in the opposite direction and thus
area DEXBC is also shaded. The bottom focal mechanism of Figure 9.9 is
close to the orientation of this example and may help in visualizing the slip
geometry.

9.4 Far-field pulse shapes

The displacement that occurs on opposite sides of a fault during an earthquake is
permanent; the Earth does not return to its original state following the event. Thus,
the equivalent body force representation of the displacement field must involve a
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Figure 9.13 The relationships between near-field displacement and far-field displacement and
velocity for time series (left two panels) and spectra (right panel).

permanent change in the applied forces. In addition, the displacement is not instan-
taneous but occurs over some finite duration of rupture. We can accommodate these
properties by generalizing our moment tensor representation to be time dependent.
For instance, one of the components of the moment tensor could be expressed as
M(t) and might have the form shown at the top left of Figure 9.13. This is what
the near-field displacement would look like; for example, this might describe the
path of a house near the San Andreas Fault during a large earthquake. These dis-
placements are permanent and can be measured at some distance away from large
earthquakes by geodetic means (such as surveying or GPS) after the shaking has
subsided. The strain changes at Piñon Flat following the 1992 Landers earthquake
that we examined in the exercises for Chapter 2 are an example of this.

The expressions for the far-field displacements from isotropic or double-couple
sources (9.20–9.26) all involve the time derivative of the moment tensor. The time
derivative of M(t) is proportional to the far-field dynamic response (the middle
panel of Figure 9.13), such as would be observed in a P- or S-wave arrival. Note
that this is a displacement pulse and that there is no permanent displacement after
the wave passes. Most seismometers measure velocity u̇(t) rather than displacement
u(t), in which case what is actually recorded will have an additional time derivative.
In problems of Earth structure, it generally matters little whether we use velocity
rather than displacement provided we assume an extra derivative for the source
when we are modeling the waveforms. However, when studying seismic sources,
velocity is almost always converted to displacement. This is done by integrating the
velocity record and normally also involves a correction for the instrument response.
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The aim is to recover an unbiased record of Ṁ(t) at the source. We will assume for
most of this section that we are measuring far-field displacement.

The spectrum of the far-field displacement pulse (see top right of Figure 9.13)
at low frequencies will be flat at a level, .0, equal to the area beneath the pulse.
The displacement spectrum will then roll off at higher frequencies, with the corner
frequency, fc, inversely proportional to the pulse width, τ. In the frequency domain
the effect of the time derivatives is to multiply the spectrum by f . Thus velocity
records are enhanced in high frequencies relative to displacement records.

The long-period spectral level,.0, is proportional to the scalar seismic moment,
M0. In the case of body waves, integrating (9.24) and (9.26) over time, we obtain

M0 = 4πρc3r.0

Uφθ
(9.27)

where ρ is the density, c is the wave velocity, r is the distance from the source,
and Uφθ is the radiation pattern term. This equation is for spherical wavefronts ex-
panding in a whole space but can be applied to more complicated velocity models
using ray theory if the r factor is replaced with the appropriate term for geometrical
spreading. If .0 is measured from a station at the Earth’s surface, then corrections
must be applied to account for the wave amplification that occurs from the surface
reflections. There are analogous expressions for computing M0 from surface waves.
These equations are important because they show how a fundamental property of
the earthquake source – scalar moment – can be obtained directly from seismic
wave observations at great distances. Because .0 is measured at the lowest possi-
ble frequency, it is relatively insensitive to the effects of scattering and attenuation,
making scalar moment estimates more reliable than measurements of source prop-
erties that require higher frequency parts of the spectrum. However, note that (9.27)
does require knowledge of the focal mechanism owing to the Uφθ term. If a focal
mechanism is not available, sometimes M0 is estimated by averaging results from
many stations and replacing Uφθ with the mean radiation term over the focal sphere
(0.52 and 0.63 for P and S waves, respectively). Of course, if the complete moment
tensor is computed using (9.5), then the scalar moment can be obtained directly
using (9.8).

9.4.1 Directivity

Consider a point source characterized by a ramp function in M(t). The corre-
sponding Ṁ(t) function and the far-field displacement pulse u(t) will be a boxcar
(Fig. 9.14). This is sometimes termed the Haskell source and is the simplest realistic
representation of a source. The duration of the boxcar pulse τr is called the rise
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Figure 9.14 The Haskell source model.

time. For earthquakes that can be approximated as point sources, the Haskell source
often provides a good description of the far-field response. Note that in this case
the amplitude of the observed boxcar pulse will vary with azimuth as a function of
the radiation pattern, but the duration of the pulse remains constant.

vr

rupture

L

However, for larger events in which the rupture is
extended in time and space we generally must include
directivity effects. An important principle in seismol-
ogy is that of linear superposition, which states that the
response of a large fault can be described as the sum
of the response from a number of individual pieces of
the fault. Thus we can model a fault by integrating over
individual point-source displacements on the fault surface. Let us examine how this
works in the case of a long, narrow fault. We assume that the rupture propagates
along the fault of length L from left to right at a rupture velocity vr. In the far field
we will observe the rupture from each point on the fault at a different time. For
example, in the case where the fault is rupturing directly toward us, the apparent
rupture duration time τd for P waves is given by

τd(toward) = L

(
1
vr

− 1
α

)
, (9.28)

whereas the observed time for rupture directly away from us would be

τd(away) = L

(
1
vr

+ 1
α

)
. (9.29)

In general τd is a function of the orientation of the fault relative to the receiver and
the direction and velocity of the rupture. The changes in τd as a function of receiver
location are termed directivity effects. For example, for a vertical, strike–slip fault
such as the SanAndreas we would expect to see an azimuthal dependence in τd . The
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rupture velocity vr is generally observed to be somewhat less than the shear-wave
velocity, although sometimes much slower ruptures occur and the possibility of
occasional ruptures faster than the shear velocity (termed super shear) is a current
research topic. Because P waves travel faster than the rupture, the hypocenter,
which represents the point of rupture initiation, can be unambiguously located
using P-wave arrivals.

Now imagine that the actual slip at a point on the fault can be described by
a ramp function in displacement as the rupture passes by. The shape of the far-
field displacement pulse will be given by the convolution of two boxcar functions,
one of width τr, the rise time, and the other of width τd , the apparent rupture
duration time (seeAppendix E for a review of time series analysis and convolution).
The resulting pulse will be a trapezoid (Fig. 9.15). This is termed the Haskell
fault model and is valid for a simple model of a line source. The width of the
trapezoid will vary with azimuth to the fault as the apparent rupture duration time
τd changes. However, the shorter pulses are larger in amplitude, such that the area
of the trapezoid,.0, is preserved. Thus we should expect to see higher amplitudes
and shorter durations for pulses propagating in the direction of rupture propagation
and weaker amplitudes and longer durations for pulses radiating in the opposite
direction (Fig. 9.16). Because .0 is constant, however, these differences do not
affect estimates of the scalar seismic moment, M0, derived from these pulses (this

!r !r!d

!d

* =

Figure 9.15 The Haskell fault model consists of the convolution of two boxcar functions with
widths given by the rise time and rupture duration time.

awaytoward

Figure 9.16 Displacement pulses radiated in the direction of rupture propagation will be higher
in amplitude, but shorter in duration, than pulses radiated in the opposite direction.
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comparison assumes that factors that affect .0, such as geometrical spreading and
the radiation pattern are constant between the two paths).

9.4.2 Source spectra

Let us now consider the characteristics of far-field pulses in the frequency domain.
Those readers who require a review of Fourier analysis of time series should consult
Appendix E. The Fourier transform of a boxcar of unit height and width is given by

F[B(t)] =
∫ 1/2

−1/2
eiωtdt = 1

iω

(
eiω/2 − e−iω/2

)

= 1
iω

[i sin(ω/2) − i sin(−ω/2) + cos(ω/2) − cos(−ω/2)]

= 1
iω

2i sin(ω/2) = sin(ω/2)

ω/2
. (9.30)

The function sin x/x is commonly referred to as sinc x. Using the scale rule for
Fourier transforms we can express the Fourier transform of a boxcar of unit height
and width τr as

F[B(t/τr)] = τrsinc(ωτr/2). (9.31)

This is illustrated in Figure 9.17. Note that the first zero crossing occurs at ω =
2π/τr, corresponding to the frequency f = 1/τr. The Haskell fault model, given by
the convolution of two boxcars of widths τr and τd , may be expressed as a product
of two sinc functions in the frequency domain:

F[B(t/τr) ∗ B(t/τd)] = τrτd sinc(ωτr/2)sinc(ωτd/2). (9.32)

Fourier
Transform

Time domain Frequency domain

τr

τr

2π/τr

ω

Figure 9.17 A boxcar pulse in the time domain produces a sinc function in the frequency
domain.
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Thus, the far-field amplitude spectrum |A(ω)| for the Haskell fault model may be
expressed as

|A(ω)| = gM0 |sinc(ωτr/2)| |sinc(ωτd/2)| , (9.33)

where g is a scaling term that includes geometrical spreading, etc. Source spectra
are usually plotted using a log–log scale. Taking the logarithm of (9.33) we have

log |A(ω)| = G + log(M0) + log |sinc(ωτr/2)| + log |sinc(ωτd/2)| , (9.34)

where G = log g. We can approximate |sinc x| as 1 for x < 1 and 1/x for x > 1.
We then obtain

log |A(ω)| − G = log M0, ω < 2/τd

= log M0 − log
τd

2
− logω, 2/τd < ω < 2/τr

= log M0 − log
τdτr

4
− 2 logω, 2/τr < ω (9.35)

where we have assumed τd > τr. Thus we see that in the case of the spectrum of
a trapezoidal source-time function, we should expect to see a low-frequency part
that is flat at a level proportional to M0, a ω−1 segment at intermediate frequencies,
and a ω−2 fall off at high frequencies (Fig. 9.18).

The frequencies corresponding to ω = 2/τr and ω = 2/τd are called the cor-
ner frequencies and divide the spectrum into the three different parts. By studying
the spectra of real earthquakes we can, in principle, recover M0, τr, and τd for this
model. However, we often can only identify a single corner, defined by the intersec-
tion of the ω0 and ω−2 asymptotes. Caution should be applied in any interpretation
of an observed spectrum directly in terms of source properties, since attenuation
and near-surface effects can distort the spectrum, particularly at higher frequencies.

Many different theoretical earthquake source models have been proposed and
they predict different shapes for the body-wave spectra. Brune (1970) described
one of the most influential models, in which the displacement amplitude spectrum
is given by

A(f) = .0

1 + (f/fc)2 (9.36)

where fc is the corner frequency. Note that the high-frequency falloff rate agrees
with the Haskell fault model. A more general model is

A(f) = .0

[1 + (f/fc)γn]1/γ
(9.37)
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Figure 9.18 The amplitude spectrum for the Haskell fault model.The spectrum is the product of
two sinc functions, corresponding in the time domain to the convolution of two boxcar functions
of durations τd and τr.The spectral amplitudes fall off as ω−1 for 2/τd < ω < 2/τr and as ω−2 for
ω > 2/τr. For the spectrum plotted in this figure,τd = 8τr.

which was found by Boatwright (1980) with γ = 2 to provide a better fit to the
sharper corners that he found in his data. Equations (9.36) and (9.37) with n = 2 are
often calledω−2 source models. Some theoretical source models, particularly those
which consider elongated fault geometries, predict ω−3 fall off at high frequencies.
However, studies of both globally and locally recorded earthquakes over a wide
range of sizes have generally shown that their average high-frequency falloff rate
is close to ω−2, although individual earthquakes often have quite different spectral
behavior.

9.4.3 Empirical Green’s functions

One of the challenging aspects of studying seismic spectra is separating out what
originates from the source and what is caused by attenuation or other path effects.
For example, for a simple constant Q model the spectra will drop off exponentially
at high frequencies

A(f) = A0(f)e−πft/Q. (9.38)
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In principle, this falloff has different curvature than the power law decay with
frequency of theoretical source models and one approach has been to use (9.38)
together with (9.36) or (9.37) to simultaneously solve for Q and fc (and sometimes
n and γ as well). However, with the irregular spectra and limited bandwidth of real
data it can be difficult to separately resolve the source and attenuation contributions
and there is often a tradeoff between them.

Another approach is to use records from a smaller earthquake near the target
earthquake to compute an empirical path and attenuation correction. The assump-
tion is that the second quake is small enough that its corner frequency is above the
observation band and its spectrum is nearly flat, i.e., it is effectively a delta-function
source. In this case one can either deconvolve its waveform from the target earth-
quake record in the time domain or simply correct the observed spectrum in the
frequency domain. This is called the empirical Green’s function or EGF method
(e.g., Müeller, 1985; Hough, 1997) and is widely used in source studies. It does,
however, require that there be a suitable event close enough to the target earthquake
that the path effects will be approximately the same.

9.5 Stress drop

The seismic moment, M0 = µDA, does not distinguish between an earthquake
involving small slip on a large fault and one with large slip on a small fault, provided
the product of the average slip (D) and fault area (A) remains constant. However,
these earthquakes would change the stress on the fault by very different amounts.
This change may be defined as the stress drop, which is the average difference
between the stress3 on a fault before an earthquake to the stress after the earthquake:

0σ = 1
A

∫

S

[σ(t2) − σ(t1)] dS , (9.39)

where the integral is performed over the surface of the fault and A is the fault area.
Analytical solutions for the stress drop have been derived for a few specialized
cases of faults embedded within homogeneous material. For a circular fault in a
whole space, Eshelby (1957) obtained

0σ = 7πµD

16r
= 7M0

16r3 , (9.40)

3 In this section “stress’’ refers specifically to the shear stress across the fault plane.
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where r is the fault radius,µ is the shear modulus, andD is the average displacement.
For strike–slip motion on a shallow, rectangular fault of length L and width w

(L ≫ w), Knopoff (1958) obtained

0σ = 2µD

πw
= 2M0

πw2L
. (9.41)

More generally, we may write

0σ = Cµ

[
D

L̃

]

, (9.42)

where L̃ is a characteristic rupture dimension (r in the case of the circular fault,
w for the long rectangular fault) and C is a non-dimensional constant that depends
upon the geometry of the rupture. Notice that physically it makes sense that the
shear stress change on the fault will be proportional to the ratio of the displacement
to the size of the fault. Large slip on a small fault will cause more stress than small
slip on a large fault. It should be noted that these solutions assume smooth forms
for the slip function on the fault surface and thus represent only approximations
to the spatially averaged stress drop on real faults, for which the displacement and
corresponding stress drop may vary in complicated ways owing to non-uniform
elastic properties and initial stresses. A widely used result to obtain results for
faults made up of arbitrary rectangular slip patches is the half-space solution of
Okada (1992).

For large earthquakes for which the fault geometry can be constrained from
surface rupture or aftershock studies, the stress drop can then be estimated from the
moment. For large, shallow earthquakes, 0σ varies from about 1 to 10 MPa (10
to 100 bars in the units often used in older studies) with no observed dependence
on moment for M0 variations from 1018 to 1023 N m (Kanamori and Anderson,
1975; Kanamori and Brodsky, 2004). Earthquakes near plate boundaries (interplate
events) generally have been observed to have somewhat lower stress drops than
those that occur in the interior of plates (intraplate events) (e.g., Kanamori and
Anderson, 1975; Kanamori and Allen, 1986). Average 0σ for interplate quakes is
about 3 MPa compared to about 6 MPa for intraplate events (Allmann and Shearer,
2009). This implies that intraplate faults are “stronger’’in some sense than interplate
faults and have smaller fault dimensions for the same moment release.

For small earthquakes, direct observations of the rupture geometry are not pos-
sible so the fault dimensions must be estimated from far-field observations of the
radiated seismic waves. In this case it is necessary to make certain assumptions
about the source properties. In particular, these methods generally assume that the
source dimension is proportional to the observed body-wave pulse width (after
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correcting for attenuation). The first quantitative model for estimating stress drop
in this way was derived by Brune (1970), who assumed a simple kinematic model
for a circular fault with effectively infinite rupture velocity and showed that the
expected high-frequency spectral falloff rate is ω−2 and that the corner frequency
is inversely proportional to the source radius. This result, together with a number
of other proposed rupture models, predicts that the fault radius varies as

r = kβ

fc
, (9.43)

where r is the fault radius, fc is the observed corner frequency (see Figure 9.13)
and k is a constant that depends upon the specific theoretical model. Currently,
perhaps the most widely used result is from Madariaga (1976), who performed
dynamic calculations for a circular fault using finite differences. Assuming that the
rupture velocity is 90% of the shear-wave velocity (vr = 0.9β), he obtained k =
0.32 and 0.21 for the P- and S-wave corner frequencies, respectively, with an ω−2

high-frequency falloff rate. His model predicts a P-wave corner frequency about
50% higher than the S-wave corner frequency (fP

c ≃ 1.5fS
c ). Figure 9.19 plots

predicted P-wave spectra for the Madariaga (1976) model for a wide range of M0,
assuming a constant stress drop of 3 MPa. Note that the corner frequency varies as
M

−1/3
0 , with higher corner frequencies for smaller earthquakes.
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Figure 9.19 Predicted P-wave spectra from the Madariaga (1976) source model, assuming a
constant stress drop of 3 MPa.The spectra have been scaled such that their amplitudes at low
frequency are equal to their moments, M0.The circles show the corner frequencies (fc). Individual
spectra are for moment magnitudes, MW, from 1 to 8 (see (9.73) for the definition of MW).
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From (9.40) and (9.43), we have

0σ = 7
16

(
fc

kβ

)3

M0 . (9.44)

This is how stress drop can be estimated directly from far-field body-wave spectra
using corner-frequency measurements, together with measurements of M0 (which
can be computed from the low-frequency part of the spectrum; see .0 in Figure
9.13). Because this equation involves the cube of the (fc/kβ) term, the computed
0σ is extremely sensitive to differences in the assumed theoretical model (which
determines the value of k and in general depends upon the assumed rupture velocity)
and to variations in the estimated corner frequency fc. The Brune (1970) model
has a k value about 1.7 times larger than the Madariaga (1976) model, which
translates to stress drop estimates about 5 times smaller. The corner frequency, fc,
can be tricky to measure from individual spectra, which are rarely as smooth as the
theoretical models predict, and are sensitive to corrections for attenuation effects.
Published stress drop values exhibit considerable scatter and it can be difficult to
determine what part of these variations are real and what part may be attributed to
differences in the modeling assumptions and analysis methods. However, there are
large variations in individual earthquake stress drops even within single studies,
suggesting that much of the observed scatter is real. For example, Shearer et al.
(2006) analyzed P-wave spectra from over 60 000 small earthquakes in southern
California using the Madariaga (1976) model and obtained 0σ values from 0.2 to
20 MPa, with the bulk of the events between 0.5 to 5 MPa.

In principle, stress drop, like moment, is essentially a static measurement of per-
manent changes caused by an earthquake. However, the methods for estimating
stress drops for small earthquakes are derived from body-wave pulse shapes and
assumptions about the dynamics of the source. Because these are not direct mea-
surements of static stress drop, they are sometimes termed Brune-type stress drops,
although they may not be computed exactly as in Brune (1970). It is important to
remember that these measurements involve a number of modeling assumptions that
may not be true for individual earthquakes. For example, variations in rupture speed
will cause a change in corner frequency even if the stress drop remains constant.
Finally, note that measurements of the stress drop do not constrain the absolute
level of stress. The absolute level of stress in the crust near faults is currently a
topic of controversy that we will discuss later in this chapter.

9.5.1 Self-similar earthquake scaling

The fact that earthquake stress drops appear to be at least approximately con-
stant over a wide range of earthquake sizes has implications for earthquake scaling
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relationships. Aki (1967) proposed that the physics of large and small earthquakes
may be fundamentally similar, in which case we should expect scale-invariance or
self-similarity of the rupture process. This implies that regardless of which theoret-
ical earthquake source model is correct, the properties of the source will change in
predictable ways as a function of earthquake size.

This is illustrated in Figure 9.20, which shows the expected change in pulse shape
and spectrum when an earthquake rupture plane is increased in size by a factor b.
Assuming the dimensions of the larger rupture are scaled proportionally, then the
fault area, A, will increase by a factor b2, the displacement, D, will increase by b,
and the moment, M0 = µDA, will increase by a factor of b3. Stress drop remains
constant because it is proportional to DA−1/2. It follows that moment will scale
with fault area as

M0 ∝ A3/2 (9.45)

and such a scaling is observed to be approximately correct for large earthquakes
(e.g., Kanamori and Anderson, 1975; Kanamori and Brodsky, 2004).

For an identical source–receiver geometry, no attenuation, and constant rupture
velocity (predicted from self-similarity), the far-field displacement pulse will in-
crease in duration by a factor of b and in amplitude by a factor of b2. Note that the
area under the pulse,.0, also increases by b3, as expected since.0 is proportional

(a) (b) (c)

x b
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Figure 9.20 Illustration of the effects of self-similarity when an earthquake is increased in size
by a factor b, showing the behavior of (a) rupture area and moment, (b) far-field displacement
pulses, and (c) displacement spectra. Figure adapted from Prieto et al. (2004).
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to M0. It follows that the displacement pulse, u∗, recorded by the second earthquake
can be expressed as

u∗(t) = b2u(t/b), (9.46)

where u(t) is the recorded displacement pulse of the first earthquake. The radiated
seismic energy, ER, in the recorded pulse will be proportional to

∫
u̇2(t) dt (the

integrated square of the slope of the pulse), so the second pulse will contain a factor
b3 more energy than the first pulse. Thus the radiated seismic energy to moment
ratio (ER/M0) remains constant.

Using the similarity theorem for the Fourier transform, it follows that the spec-
trum of the second earthquake is given by

u∗(ω) = b3u(bω) (9.47)

where u(ω) is the spectrum of the first earthquake. This relationship predicts that
the shape of all spectra on a log-log plot will be identical, but offset along a line of
ω−3 (Fig. 9.20c). This means that corner frequency will vary as

fc ∝ M
−1/3
0 (9.48)

as is seen in Figure 9.19.
Self-similarity appears to be at least roughly true for average earthquake prop-

erties, although this has been a subject of considerable debate and there are large
variations among individual earthquakes. It should be noted that self-similarity may
break down for very large earthquakes that rupture through the entire seismogenic
zone. In this case, ruptures are much longer than they are wide, with aspect ratios
of 10 or more, which might make them behave differently than the less elongated
rupture planes expected of smaller earthquakes (e.g., Scholz, 1982, 1997; Heaton,
1990). For example, the 1906 San Francisco earthquake ruptured for about 450 km
to a depth of no more than 10 km (Thatcher, 1975).

9.6 Radiated seismic energy

Seismic moment and static stress drop are fundamental properties of the slip
geometry of an earthquake, but they say nothing directly about the dynamics of
the event, such as how fast the rupture propagated or how fast the two sides of
the fault moved. This is why it is possible to estimate M0 and 0σ from geodetic
measures of Earth deformation long after an earthquake; they are measures of the
permanent static displacements across faults. Fault creep events that are too slow
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to radiate seismic energy at observable frequencies can nonetheless have signifi-
cant moments and stress drops (although as noted in Section 9.5, some methods
of actually computing stress drops require seismic wave observations and make
assumptions about source dynamics).

In contrast, one of the most fundamental measures of earthquake dynamics is the
total radiated energy, ER, which represents the seismic energy that would propagate
to the far field in a whole space with no attenuation. Recalling the expressions for
seismic energy flux in Section 6.1, we have (e.g., Venkataraman et al., 2006)

ER = ρ

∫

S

∫ ∞

−∞

[
αu̇2

α(t, θ,φ) + βu̇2
β(t, θ,φ)

]
dt dS, (9.49)

where u̇α and u̇β are velocity seismograms for P and S waves, respectively, and S

is a spherical surface at a large distance around the source. Of course, we cannot
integrate over the entire focal sphere; we must use seismic observations from a
discrete number of seismic stations. Using ray theory, we can correct the observed
amplitudes for varying amounts of geometrical spreading and determine the ray
takeoff angles, θ and φ, at the source. Because of radiation pattern effects, u̇α and u̇β
vary greatly over the surface of the sphere and thus a large number of observations
from different seismic stations would be necessary to estimate ER reliably from
(9.49) directly. However, if the focal mechanism and thus the radiation pattern is
known, then single station estimates are possible, i.e.,

ER = EP
R + ES

R = 4πραr2 ⟨PUφθ
2⟩

PUφθ
2 IP + 4πρβr2 ⟨SUφθ

2⟩
SUφθ

2 IS (9.50)

where PUφθ and SUφθ are the P and S radiation pattern terms and ⟨Uφθ2⟩ is the
mean over the focal sphere of (Uφθ)

2 (⟨PUφθ
2⟩ = 4/15 for P waves and ⟨SUφθ

2⟩ =
2/5 for S waves), and IP and IS are the time-integrated values of u̇2

α and u̇2
β, as

corrected for geometrical spreading and any near-receiver effects (e.g., free-surface
reflections or amplifications from slow velocities in shallow layers) to what they
would be at a uniform distance r in the absence of attenuation.

IP and IS are usually computed in the frequency domain from body-wave spectra
because it is easier to correct for attenuation and instrument response effects, as
well as to check for adequate signal-to-noise properties. From Parseval’s theorem,
we have

I =
∫ ∞

−∞
|v(t)|2 dt =

∫ ∞

−∞
|v(f)|2 df. (9.51)

In principle, the integration is performed to infinite frequency. However, the velocity
spectrum peaks near the corner frequency (see Figure 9.13), and this peak becomes
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even stronger when the velocity is squared. For the ω−2 model, calculations have
shown that 90% of the total energy is obtained if the integration is performed out
to 10 times the corner frequency (Ide and Beroza, 2001). Often data do not have
this much bandwidth, which can lead to underestimation of the energy. To correct
for this, the integration can be extrapolated beyond the observed bandwidth of the
data by assuming that the spectral fall off continues at a fixed rate. However, in this
case the result is no longer a direct measurement from the data because it relies on
assumptions about the nature of the source.

The ratio of S-wave energy to P-wave energy is defined as

q = ES
R/EP

R . (9.52)

For a point-source model in which the P- and S-wave pulses have identical shapes
(and thus identical corner frequencies fP

c and fS
c ), we have from (9.24), (9.26),

(9.50), and the values of ⟨PUφθ
2⟩ and ⟨SUφθ

2⟩, that q = 1.5(α/β)5 ≃ 23.4 for
a Poisson solid. However, many theoretical finite source models predict that the
P-wave pulse will be shorter in duration than the S-wave pulse (i.e., fP

c > fS
c ),

which will result in lower values for q. For example, the Madariaga (1976) model
has fP

c ≃ 1.5fS
c , from which one can compute that q is about 7 (Boatwright and

Fletcher, 1984). Observations have generally suggested average q values between
9 and 25, with a large amount of scatter for individual earthquakes.

Measuring ER is much more difficult than measuring M0 and results among
different groups for the same earthquakes often differ by factors of 2 or more. This
is because ER is derived from high-frequency parts of the source spectrum where
corrections for attenuation are critically important. Most of the energy is radiated as
S waves, which are particularly sensitive to attenuation. If only EP

R measurements
are available,ER can still be estimated if a fixed value of q is assumed, but once again
this detracts from the directness of the observation. Because energy is proportional
to the square of the wave amplitudes, the effects of the radiation pattern are more
severe for ER calculations compared to M0 calculations. The Uφθ terms in the
denominators of (9.50) go to zero at the nodes in the radiation pattern. This can
lead to artificially high energy estimates if measurable wave amplitudes are seen
near the nodes, which can happen due to scattering, 3-D structure, or inaccuracies
in the focal mechanism. Finally, rupture directivity does not affect M0 estimates
(because .0 is preserved despite changes in the pulse amplitudes) but produces
large variations in IP and IS (e.g., Ma and Archuleta, 2006). If directivity effects
are important, then (9.50) is incomplete and can produce biased results, depending
upon whether or not the critical takeoff angles with the highest amplitudes are
included in the available data.
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The ratio of the radiated energy to the moment

ẽ = ER

M0
= 1

µ

ER

DA
(9.53)

is called the scaled energy and is dimensionless (note that 1 joule = 1 N m).
The parameter µẽ = ER/DA has units of stress and has traditionally been called
apparent stress but this term can be confusing because it is not directly related
to either absolute stress or stress drop. The scaled energy, ẽ, is proportional to the
energy radiated per unit fault area and per unit slip. As noted in the previous section,
if earthquakes are self-similar then ẽ should be constant as a function of moment.
Whether this is indeed the case has been the subject of some controversy (e.g., see
recent review by Walter et al., 2006). Some have argued that average ẽ grows with
moment approximately as M

1/4
0 (e.g., Mayeda and Walter, 1996) while others have

maintained that average ẽ is seen to be nearly constant with M0 when one carefully
corrects for possible biases in the data analysis (e.g., Ide and Beroza, 2001). Figure
9.21 plots ẽ versus M0, showing results from a number of different studies. Note
that there is a great deal of scatter in the ẽ estimates, which span over an order
of magnitude even at the same moment. However, there is some evidence for an
increase in ẽ with moment, particularly for the smaller earthquakes. Ide and Beroza
(2001) have argued, however, that this may be an artifact of the data selection
method in the Abercrombie (1995) study. An important issue is the fact that energy
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Figure 9.21 The observed radiated seismic energy to moment ratio, ẽ = ER/M0, plotted as a
function of moment.The M1/4

0 trend noted in some studies is plotted for reference.
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estimates derived from teleseismic data tend to be about 10 times smaller than those
obtained from local records (Singh and Ordaz, 1994; Mayeda and Walter, 1996).
This can be seen in Figure 9.21, noting that Perez-Campos and Beroza (2001) is the
only teleseismic study plotted. If these points are excluded, the M

1/4
0 trend becomes

much clearer.

9.6.1 Earthquake energy partitioning

The total strain and gravitational energy released during an earthquake is given by

E = 1
2(σ1 + σ2)DA, (9.54)

where σ1 is the initial stress, σ2 is the final stress, D is displacement, A is the fault
area, and the overbar means the spatial average. Note that 1

2(σ1 + σ2) = σ is the
average shear stress on the fault so this is analogous to “work = force × distance’’
from basic physics. As discussed in Kanamori and Brodsky (2004) and Kanamori
and Rivera (2006), this is usually approximated as

E = σDA = 1
20σDA + σ2DA, (9.55)

where the average stress drop 0σ = σ1 − σ2. The total energy can be partitioned
into three parts:

E = ER + EF + EG (9.56)

where ER is the radiated seismic energy, EF is the frictional energy (often released
as heat), and EG is the energy used to fracture the rock, although the separation
between EF and EG is not always clear cut. In principle, ER and EG can be estimated
from seismic data. However, EF cannot be measured from direct seismic wave
observations and depends upon the absolute level of stress on the fault, which is
difficult to determine (see Section 9.9).

This energy balance is shown graphically in Figure 9.22 for two idealized earth-
quakes on faults of unit area and total displacement D. In the first example, the
Orowan fault model (e.g., Orowan, 1960; Kostrov, 1974), the stress on the fault,
σf , drops abruptly to σ2 as soon as the fault starts moving. In this case, there is no
fracture energy, EG, and σ2 represents the dynamic frictional stress on the fault.
The total energy released is the shaded trapezoid, which is the sum of ER and EF.
Generalizing to a fault of area A, we have

ER = 1
2(σ1 − σ2)DA = 1

20σDA, (9.57)

EF = σ2DA. (9.58)
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Figure 9.22 The shear stress,σf, on a point on a fault as a function of slip for the Orowan fault
model and a simple example of a slip-weakening fault model.σ1 and σ2 are the initial and final
stresses, D is the total slip, DC is the critical slip, ER is the radiated seismic energy, EF is the
frictional energy dissipated, and EG is the fracture energy released.

In this case, the stress drop can be expressed as

0σ(Orowan) = 2ER

DA
= 2µER

M0
= 2µẽ (9.59)

and we see that this model predicts a very simple relationship between stress drop
and scaled energy, ẽ. This is sometimes termed the Orowan stress drop to make clear
that it only represents the true stress drop if the earthquake obeys this simple model.
Assuming 0σ = 3 MPa and µ = 30 GPa (typical values for crustal earthquakes),
the Orowan model predicts ẽ = 5 × 10−5, which is in rough agreement with direct
observations of ẽ for large earthquakes (see Fig. 9.21).

In general, however, we expect the rupture process to be more involved than
the Orowan model and the σf function may follow a complicated trajectory. In
some models, σf rises above σ1 at the onset of rupture to what is termed the
yield stress before dropping as slip begins. It is also possible for σf to fall below
σ2 during part of the rupture and for σf to end at a value above or below the
final stress state once the earthquake is completely over (the latter phenomena are
called overshoot and undershoot, respectively, and are predicted by some theoretical
models).

The right part of Figure 9.22 shows an example of a slip-weakening model in
which the stress drops from σ1 to σ2 over a distance DC (sometimes called the
critical slip) and then continues at a constant stress σf = σ2. The radiated seismic



9.6 R A D I A T E D S E I S M I C E N E R G Y 279

energy, ER, is reduced by the area to the left of the curve, which represents the
fracture energy EG. In this case we have

EG = E − EF − ER = 1
20σDA − ER = 0σ

2µ
M0 − ER (9.60)

and

0σ = 2µ(ER + EG)

M0
≥ 0σ(Orowan) (9.61)

and we see that in principle we can estimate the fracture energy EG if we are able
to separately measure M0,0σ and ER, and that the Orowan stress drop represents
the minimum possible stress drop, given values of ER and M0, at least for simple
models in which σf ≥ σ2. It should be noted that σf for real earthquakes may
follow more complicated trajectories than those plotted in Figure 9.22, in which
case EF is not determined by the final stress and the partitioning in (9.60) and (9.61)
between EF and EG does not necessarily have physical significance in the faulting
process.

The radiation efficiency is defined as the ratio

ηR = ER

ER + EG
(9.62)

and is an important measure of the dynamic properties of earthquakes. Note that
ηR = 1 for the Orowan fault model. For our simple slip-weakening model, it can
be expressed as

ηR = ER
1
20σDA

= 2µ

0σ

ER

M0
= 2µ

ẽ

0σ
, (9.63)

and thus is proportional to the ratio between the scaled energy and the stress drop.As
discussed in Kanamori and Brodsky (2004), the radiation efficiency can be related
to the rupture velocity, vr, in theoretical crack models:

ηR = 1 − g(vr) (9.64)

where g(vr) is a function that depends upon the specific crack model and the ratio
of vr to the Rayleigh or shear wave velocity. For example, for Mode III (transverse
shear) cracks,

g(v) =
√

1 − vr/β

1 + vr/β
, (9.65)



280 9. E A R T H Q U A K E S A N D S O U R C E T H E O R Y

in which case ηR approaches 1 and the fracture energy, EG, goes to zero as the
rupture velocity approaches the shear wave velocity. For about 30 earthquakes of
6.6<MW <8.3, Venkataraman and Kanamori (2004) obtained radiation efficiency
estimates generally between 0.25 and 1.0. One class of earthquakes that appear to
have ηR <0.25 are tsunami earthquakes, which involve slow rupture and generate
large tsunamis relative to their moment.

The radiation efficiency should not be confused with the seismic efficiency, η,
defined as the fraction of the total energy that is radiated into seismic waves:

η = ER

E
= ER

σDA
= µER

σM0
= µẽ

σ
. (9.66)

The seismic efficiency is more difficult to estimate than the radiation efficiency
because it depends upon the poorly constrained absolute stress level on the fault.

In the extreme case where we assume that the earthquake relieves all of the stress
on the fault, then σ2 = 0 and we say that the stress drop is total. In this case, EF = 0
and we have

Emin = 1
20σDA = 0σ

2µ
M0. (9.67)

This represents the minimum amount of energy release for an earthquake with a
given stress drop and moment.

The theories that describe how slip on a fault initiates, propagates, and comes to
a halt can be very complicated, even for idealized models with uniform pre-stress
and elastic properties. Much of the recent work in this area has involved theory and
observations of rate and state friction (e.g., Dieterich, 1994) in which the frictional
properties are time and slip dependent. Because these models vary in their behavior
and it is likely that real earthquakes span a range of different rupture properties, it is
important to keep in mind the distinction between parameters that are more-or-less
directly estimated (e.g., moment, geodetically-determined static stress drop, and ra-
diated energy) and those that depend upon modeling assumptions (e.g., Brune-type
and Orowan stress drops) and thus are not truly independent measurements. For ex-
ample, it would make little sense to use (9.60) to estimate EG if both0σ and ER are
derived from fitting the observed body-wave spectra to the same theoretical model.

9.7 Earthquake magnitude

For historical reasons the most well-known measure of earthquake size is the earth-
quake magnitude. There are now several different types of magnitude scales, but
all are related to the largest amplitude that is recorded on a seismogram. This is one
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of the easiest things to measure and is one reason for the continued popularity of
magnitude scales. A recent comprehensive review of magnitude scales is contained
in Utsu (2002b).

In the 1930s, Charles Richter introduced what is now called the local magnitude
ML. This was determined by measuring the largest amplitude A recorded on a
standard instrument, the Wood–Anderson seismograph. Richter noticed that plots
of log A versus epicentral distance for different earthquakes generally exhibited a
similar decay rate (Fig. 9.23). This suggested that a distance-independent measure
of earthquake size could be provided by the offset in log A from a reference event
at the same range,

ML = log10 A(X) − log10 A0(X), (9.68)

where A0 is the amplitude of the reference event and X is the epicentral distance.
At each seismic station, a value of ML may be obtained from the measured am-
plitude A and the value of log10 A0 at the appropriate source–receiver distance
(Richter made a table of log10 A0 at different ranges). From the table of values of
A0(X), an approximate empirical formula has been derived (e.g., Bullen and Bolt,
1985):

ML = log10 A + 2.56 log10 X − 1.67, (9.69)

where A is the displacement amplitude in microns (10−6 m) and X is in kilometers.
The formula is valid for 10 < X < 600 km. For the Wood–Anderson torsion in-
strument the largest amplitude generally comes from the S-wave arrival. Individual

log(A)

event 2

event 1

event 3
X

Figure 9.23 Different earthquakes are observed to have a similar falloff in log(amplitude) with
distance.
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estimates of ML will exhibit some scatter owing to directivity, radiation pattern,
focusing, and other effects. However, a stable estimate can generally be obtained
by averaging the results from different stations.

Richter defined a fairly small reference event so that the magnitudes of all but
the tiniest earthquakes are positive. Events below about ML = 3 are generally
not felt. Significant damage to structures in California begins to occur at about
ML = 5.5. The magnitude scale is logarithmic to account for the wide range in
observed amplitudes. A ML = 6.0 event implies a recorded amplitude 100 times
greater than a ML = 4.0 event.

The Richter magnitude scale provided a practical method of quickly determining
the relative size of different events in California. Since the dominant period of the
Wood–Anderson intrument (0.8 s) is close to that of many structures, the ML scale
has proven especially useful in engineering seismology. The local magnitude scale
is also important because all subsequent magnitude scales have been tied to it.
However, the portability of ML is limited since it is based upon an amplitude
versus range relationship that was defined specifically for southern California, and
it depends on an intrument that is now rarely used. Caltech and Berkeley kept some
Wood–Anderson seismographs operating into the 1990s just to maintain continuity
of the magnitude scale. However, these venerable instruments have now been retired
since the Wood–Anderson response can be simulated through suitable filtering of
modern broadband data. Related to ML for local earthquakes is the coda magnitude
(e.g., Suteau and Whitcomb, 1979), which is derived from the amplitude of the
scattered waves or coda that follow the direct P and S arrivals, and which has been
calibrated to agree with the local magnitude scale. In many cases, coda magnitudes
are more stable than ML because the scattered energy that makes up the coda
waves averages out spatial variations and provides a more uniform coverage of the
radiation pattern.

A general magnitude scale used for global seismology is the body-wave magni-
tude, which is defined as

mb = log10(A/T) + Q(h,0), (9.70)

where A is the ground displacement in microns, T is the dominant period of the
measured waves, 0 is the epicentral distance in degrees, and Q is an empirical
function of range and event depth h (e.g., Veith and Clawson, 1972). The Q function
includes the details of the average amplitude versus epicentral distance and source
depth behavior of the Earth. The measurement is normally made on the first few
cycles of the P-wave arrival on short-period vertical-component intruments, for
which the dominant wave period is usually about 1 s. As with the local magnitude
scale, mb estimates for the same event will vary between stations, with scatter of up
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to about ±0.3. This is due to radiation pattern, directivity, and local station effects.
A station correction term is often used to account for stations that consistently give
higher or lower mb values.

Another global seismology scale is the surface wave magnitude, which may be
defined as

MS = log10(A/T) + 1.66 log100+ 3.3 (9.71)

for Rayleigh wave measurements on vertical instruments. Since the strongest
Rayleigh wave arrivals are generally at a period of 20 s, this expression is often
written as

MS = log10 A20 + 1.66 log100+ 2.0. (9.72)

Note that this equation is applicable only to shallow events; surface wave amplitudes
are greatly reduced for deep events.

The mb and MS scales were designed to agree with the ML scale for local events
in California. However, it is not possible to align the scales for all size events. This
is because the magnitude scales are obtained at different periods and the frequency
content of events changes as a function of event size. Consider the examples in
the previous sections, in which the source spectrum falls as f−2 above a certain
corner frequency. The corner frequency fc generally moves to lower frequencies
for larger events. If we assume stress drop is constant, then the fault dimension
and corresponding rupture duration will scale approximately as M

1/3
0 . The corner

frequency is inversely proportional to the rupture duration and will scale as M
−1/3
0 .

In this case the position of the corner will fall off as f−3 (Fig. 9.24).
At frequencies below fc there is a linear relationship between magnitude (log10 of

the measured amplitude) and moment. However, at higher frequencies this linearity
breaks down and the magnitude scale does not fully keep up with the increasing
size of the events. This phenomenon is called magnitude saturation. At a given
measurement frequency (e.g., 1 Hz for mb) this begins to occur when the event
size becomes large enough to move the corner frequency below the measurement
frequency. Of course, not all earthquake spectra fall off exactly atf−2 but any degree
of falloff will lead to some saturation of the magnitude scale. Another contributing
factor to magnitude saturation can be the fixed window length used to measure the
amplitudes, which may not be long enough to capture the true amplitude of larger
events (e.g., Houston and Kanamori, 1986). Observed mb values begin to saturate
at about mb = 5.5 and MS values (measured at longer period) at about MS = 8. For
this reason it is rare for mb to exceed 7 or for MS to exceed 8.5, even for extremely
large events.
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Figure 9.24 For larger events, the corner in the source spectrum moves to lower frequencies,
reducing the observed amplitude increase at the fixed frequencies used to estimate MS and mb.

The saturation of the mb and ML scales for large events helped motivate develop-
ment of the moment magnitude MW by Kanamori (1977) and Hanks and Kanamori
(1979). The moment magnitude is defined as

MW = 2
3

[
log10 M0 − 9.1

]
, (9.73)

where M0 is the moment measured in N m (for M0 in dyne-cm, replace the 9.1
with 16.1)2. The moment magnitude is derived entirely from the moment, with a
scaling such that MW is in approximate agreement with MS for many events. The
advantage of the MW scale is that it is clearly related to a physical property of
the source and it does not saturate for even the largest earthquakes. It is simply
another way to express the moment, which provides units that are easier to quickly
comprehend than M0 numbers like 8.2 × 1019 N m.

However, (9.73) can be misused if it is naively applied to estimate M0 from an
earthquake magnitude. This is because the ML, mb, and MS magnitudes exhibit
considerable scatter among events of the same moment and even their average
values do not agree with MW over the full range of event sizes. To see this, consider
MS measurements and the self-similar ω−2 source spectra plotted in Figure 9.24.

2 A minor source of confusion has existed in definitions of MW , arising from a lack of precision in the final term.
The original Hanks and Kanamori paper defined moment magnitude as 2/3 log M0 −10.7 (dyne-cm). However,
many authors, including Aki and Richards (2002), use log M0 = 1.5MW + 16.1, which is slightly different
(note that 1.5 × 10.7 = 16.05). Additional slight precision loss can occur in translating from dyne-cm to N m
because of the 2/3 factor. Here we use the Aki and Richards definition of MW .
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For small earthquakes (MW < 6), the measured amplitude at 20 s will scale linearly
with moment and thus MS ∝ log10 M0. For larger earthquakes (MW > 8), the result
of the f−3 corner frequency falloff and f−2 high-frequency spectral falloff is that
MS ∝ 1

3 log10 M0. MW was defined to agree with MS mainly for events between
M 6 and 8, where a slope of 2/3 is approximately correct. Thus, we should expect
MS to underpredict MW at both small and large magnitudes. A similar phenomenon
should occur for mb measurements, but shifted to smaller earthquakes because of
the higher frequency of the mb observations.

This is illustrated in Figure 9.25, which plots as gray corridors the distribution
of MS and mb measurements from the US Geological Survey’s Preliminary De-
termination of Epicenter (PDE) catalog as a function of M0 values for the same
earthquakes from the Global CMT catalog between 1976 and 2005. For reference,
the straight line shows MW values from (9.73), which has a slope of 2/3 on the log
plot. MS agrees approximately with MW at magnitudes between about 6.5 and 7.5,
but underpredicts MW outside of this interval. The mb values agree with MW near
magnitude 5, but increasingly underpredict MW at larger magnitudes. The aver-
age mb and MS values agree exactly only near magnitude 5.5, where they slightly
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Figure 9.25 Magnitude as a function of moment, M0, for mb, MS, and MW, compared to
predictions of log(amplitude) for an ω−2 source model at periods of 1 and 20 s.The gray
corridors show mb and MS values (± one standard deviation) from the USGS PDE catalog versus
M0 from the Global CMT catalog, compared to the definition of MW (straight solid line).The
dashed lines are predicted P-wave amplitudes for the Madariaga (1976) source model, assuming
a stress drop of 3 MPa.
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underpredict the MW value of 5.8. This behavior can be explained nicely with an
ω−2 source model, assuming constant stress drop. This model predicts that log10(A)

will vary as M0 for small events, as M
2/3
0 for events with corner frequencies near

the observation frequency, and as M
1/3
0 for larger events. Predicted log10 ampli-

tudes at the mb measurement period of 1 s and the MS measurement period of 20 s
exhibit similar behavior to the data.

Figure 9.25 makes clear how the 2/3 factor in the definition of MW serves to
make MW values comparable on average to standard magnitudes over a fairly wide
range of event sizes, provided mb is used for earthquakes less than about 5.5 and MS

is used for larger events. However, this correspondence increasingly fails outside
of 4 < MW < 8. Moment is not routinely estimated for earthquakes below about
MW = 4, which are only recorded locally. However, because ML is computed at
a similar frequency to mb, we should not expect the MW and ML scales to agree
very well for small earthquakes. Results for the slope of ML versus log10(M0) have
varied among different studies, but a systematic analysis of over 60 000 southern
California earthquakes of 1 ≤ ML ≤ 3 by Shearer et al. (2006) gave a best-fitting
slope of 0.96, close to the unit slope predicted from Figure 9.25.

The various seismic magnitude scales are important because they are ingrained
in the history and practice of seismology. But if earthquake size is to be quanti-
fied with a single number, it is far better to use the moment because it is directly
related to a fundamental physical property of the source, which can also be used
in geodetic studies of earthquakes and comparisons to long-term geological slip
rates. Although it is possible to understand the average behavior of the various
magnitude scales with respect to moment, it should be remembered that ML, mb,
and MS measurements exhibit large scatter among individual events of the same
moment. These differences are presumably not random and may reflect variations
in stress drop or other source properties, and appear in some cases to have sys-
tematic regional variations (e.g., Ekstrom and Dziewonski, 1988). This is why it is
better whenever possible to compute moment directly from the lowest frequency
part of the seismic spectra rather than to use magnitude measurements as a proxy for
moment.

From (9.73), a one unit increase in MW corresponds to a 103/2 ≃ 32 times
increase in moment. As we saw in Section 9.6, the average radiated seismic energy
is approximately proportional to moment so this means that seismic energy also
goes up by a factor of 32. Thus, on average a MS = 7 earthquake releases about 32
times more energy than a MS = 6 event and 1000 times more than a MS = 5 event.
This is consistent with the classic empirical Gutenberg-Richter relation between
ER and MS

log10 ER (joules) ≃ 4.8 + 1.5MS. (9.74)
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Table 9.1: Some big earthquakes (M0 in 1020 N m)

Date Region mb MS MW M0

1960 May 22 Chile 8.3 9.5 2000

1964 March 28 Alaska 8.4 9.2 820

2004 Dec 26 Sumatra-Andaman 6.2 8.5 9.1 680

1957 March 9 Aleutian Islands 8.2 9.1 585

1965 Feb 4 Aleutian Islands 8.7 140

2005 March 28 Sumatra 7.2 8.4 8.6 105

1977 Aug 19 Indonesia 7.0 7.9 8.3 36

2003 Sept 25 Hokkaido, Japan 6.9 8.1 8.3 31

1994 Oct 4 Shitokan, Kuriles 7.4 8.1 8.2 30

1994 June 9 Bolivia (deep) 6.9 8.2 26

2004 Dec 23 Macquarie Ridge 6.5 7.7 8.1 16

1989 May 23 Macquarie Ridge 6.4 8.2 8.2 20

1985 Sept 19 Michoacan, Mexico 6.5 8.3 8.0 14

1906 April 18 San Francisco 8.2 7.9 10

2008 May 12 Eastern Sichuan 6.9 8.0 7.9 9

2002 Nov 3 Denali, Alaska 7.0 8.5 7.8 7

2001 Nov 14 Kokoxili, Kunlun 6.1 8.0 7.8 6

1992 June 28 Landers, California 6.2 7.6 7.5 2

However, this agreement is not really a coincidence because this equation was one
of the contributing reasons for the 2/3 factor in the definition of MW (Kanamori,
1977; Hanks and Kanamori, 1979). If we substitute MW from (9.73) into this
equation, we can obtain ER/M0 ≃ 6 × 10−5, in rough agreement with the average
ẽ values plotted in Figure 9.21, at least over the 6 < MW < 8 interval in which
MW ≃ MS. However, it should be emphasized that the radiated energy ER is
best obtained through direct observations; the Gutenberg–Richter relation (9.74)
provides a crude estimate, but it can be in error by more than an order of magnitude
for individual events.

Table 9.1 lists some of the biggest earthquakes that have been recorded seis-
mically, as well as some smaller strike–slip events for comparison purposes, and
Figure 9.26 plots global CMT results between 1976 and 2005, scaled by moment.
The listed mb and MS values show some of the effects of magnitude saturation. The
largest earthquakes of MW 8.5 and greater occur in subduction zones where the fault
area (= length × width) can be very large. Examples include the 1960 Chile earth-
quake, the 1964 Alaska earthquake, and the 2004 Sumatra-Andaman earthquake.
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Figure 9.26 The largest earthquakes from 1976 to 2005, with the focal mechanism area
proportional to seismic moment, as estimated from the Global CMT catalog.

In contrast, crustal strike–slip earthquakes generally do not exceed about MW = 8
because their fault widths are limited to the upper crust. Recent examples of large
strike–slip earthquakes include the 1989 and 2004 Macquarie Ridge earthquakes,
the 1998 Antarctic Plate earthquake, the 2001 Kokoxili (China) earthquake, and
the 2002 Denali (Alaska) earthquake. Most very large earthquakes are shallow; a
notable exception was the 1994 Bolivian earthquake at 630 km depth.

9.7.1 The b value

Smaller earthquakes occur much more frequently than large earthquakes. This trend
may be quantified in terms of a magnitude–frequency relationship. Gutenberg and
Richter noted that this relationship appears to obey a power law3 and obtained the
empirical formula

log10 N = a − bM, (9.75)

3 A power-law distribution for earthquake energy had earlier been suggested by K. Wadati.
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where N is the number of events with magnitudes greater than or equal to M. In
this equation, a describes the total number of earthquakes, while the parameter b is
called the b-value and measures the relative number of large quakes compared to
small quakes. The b-value is generally found to lie between 0.8 and 1.2 for a wide
variety of regions and different magnitude scales (for a review, see Utsu, 2002a).
As we will discuss in Chapter 10, the b value is often used to estimate the fractal
dimension of fault systems (e.g., Aki, 1981; Turcotte, 1997). At b = 1 the number
of earthquakes increases by a factor of 10 for every unit drop in magnitude. For
example, if there is 1 M = 6 events per year in a region then we should expect
about 10 M = 5 events per year, 100 M = 4 events, etc.

Figure 9.27 shows N(MW) computed for the global CMT catalog from 1976 to
2005. Between MW values 5.5 and 7.5, the distribution is well fit with b = 1. At
smaller magnitudes the increase in N drops off because earthquakes below about
MW = 5 are too small to be well recorded by the global seismic networks. Plots
like this are often used to evaluate catalog completeness – the lowest magnitude
to which a network or catalog includes all of the earthquakes. For MW > 7.5, the
numbers also drop below the b = 1 line, which may represent a change in the power
law or a temporary deficit in the number of very large global earthquakes. Because
moment increases by ∼30 for every unit increase in MW , while the number of events
only decreases by a factor ∼10, the total moment release from all of the seismicity
in a region is dominated by the largest events, rather than the accumulated sum
of many smaller events. Fortunately for humanity, (9.75) cannot remain valid for

b = 1
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Figure 9.27 N(MW) for the global CMT catalog from 1976 to 2005, compared to the predictions
of a power law decay with b value of 1.
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Table 9.2:The modified Mercalli scale, adapted from the abridged version in Bolt (1993).

I Not felt except by a few under especially favorable circumstances.
II Felt only by a few persons at rest, especially on upper floors of buildings. Delicately suspended

objects may swing.
III Felt quite noticeably indoors, especially on upper floors of buildings, but many people do not

recognize it as an earthquake.Parked cars may rock slightly.Vibration like passing of truck.Duration
can be estimated.

IV During the day felt indoors by many, outdoors by few. At night some awakened. Dishes, windows,
doors disturbed, walls make creaking noise. Parked cars rocked noticeably. (0.015–0.02 g)

V Felt by nearly everyone, many awakened. Some dishes, windows, etc., broken; a few instances of
cracked plaster; unstable objects overturned. Disturbance of trees, poles and other tall objects
sometimes noticed. (0.03–0.04 g)

VI Felt by all; many frightened and run outdoors. Some heavy furniture moved, a few instances of
fallen plaster or damaged chimneys. Damage slight. (0.06–0.07 g)

VII Everybody runs outdoors. Damage negligible in buildings of good design and construction; slight-
to-moderate damage in well-built ordinary structures; considerable in poorly built or badly de-
signed structures; some chimneys broken. Noticed by people driving cars. (0.10–0.15 g)

VIII Damage slight in specially designed structures; considerable in ordinary substantial buildings, with
partial collapse; great in poorly built structures. Panel walls thrown out of frame structures. Fall of
chimneys, factory stacks, columns, monuments, walls. Heavy furniture overturned. Sand and mud
ejected in small amounts. Changes in well water. Disturbs people driving cars. (0.25–0.30 g)

IX Damage considerable in specially designed structures; well-designed frame structures thrown out
of plumb; great in substantial buildings, with partial collapse. Buildings shifted off foundations.
Ground cracked conspicuously. Underground pipes broken. (0.5–0.55 g)

X Some well-built wooden structures destroyed; with foundations; ground badly cracked. Rails bent.
Landslides considerable from river banks and steep slopes. Shifted sand and mud. Water splashed
over banks. (> 0.6 g)

XI Few, if any, masonry structures remain standing. Bridges destroyed. Broad fissures in ground. Un-
derground pipelines completely out of service. Earth slumps and land slips in soft ground. Rails
bent greatly.

XII Damage total. Waves seen on ground surfaces. Lines of sight and level distorted. Objects thrown
upward into the air.

arbitrarily large earthquakes because the finite extent of Earth’s faults means there
is a maximum possible earthquake size. We need not fear a MW = 11 earthquake
every 1000 years.

9.7.2 The intensity scale

Another measure of the earthquake strength is the seismic intensity, which describes
the local strength of ground shaking as determined by damage to structures and the
perceptions of people who experienced the earthquake. The intensity scale most
often used today in the United States is the modified Mercalli scale, in which
intensity ranges from I to XII (Roman numerals). As shown in Table 9.2, a value
of I indicates shaking that is felt only by a few people, V is felt by almost every-
one, VIII causes great damage in poorly built structures, and XII indicates total
destruction. Although approximate peak accelerations can be assigned to these lev-
els, the great advantage of the Mercalli scale is that it can be used to examine
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historic earthquakes that were not recorded by modern instruments. This is often
done by interviewing witnesses and studying old newspaper accounts. Once the
intensity has been estimated at a number of different sites, a contour map of the
intensities can be constructed. The earthquake location is then identified from this
map as the spot of maximum intensity, and an approximate magnitude can be esti-
mated from the area surrounded by the different intensity contours. This technique
provides the only practical way to obtain probable locations and magnitudes for
many older events. The importance of these estimates is illustrated by the seis-
micity in the eastern United States, where no large earthquake was recorded in the
twentieth century. However, several large events occurred in the nineteenth cen-
tury, including a series of three large earthquakes that struck in 1811–1812 near
New Madrid along the Mississippi River in Missouri. By studying and mapping
accounts of these events, which were felt across much of the eastern United States,
it is possible to constrain their sizes and locations and make estimates of the impact
of a future earthquake in the same area. For many years the New Madrid events
were thought to be about magnitude 8, but a recent reanalysis of intensity data by
Hough et al. (2000) indicates that they were more likely MW 7 to 7.5.

Amodern way to quickly estimate earthquake intensities is the “Did You Feel It?’’
website maintained by the United States Geological Survey (USGS), in which users
are asked to answer a short series of questions about how strongly they felt the shak-
ing and to identify their location (http://earthquake.usgs.gov/eqcenter/dyfi.php).
These responses are then compiled into an intensity map that can provide surpris-
ing detail, as shown in Figure 9.28 for the 2003 M 6.5 San Simeon earthquake in
central California. Spatial resolution in the United States is currently limited to zip
code boundaries, but in the future it is likely that more precise user locations will
make possible more detailed maps.

9.8 Finite slip modeling

Up to this point, we have described seismic sources with a limited number of
parameters, such as the moment tensor or focal mechanism, the scalar moment, the
duration or corner frequency, the rupture velocity and direction, the stress drop,
and the radiated energy. These represent averages over the source region and for
small earthquakes this is most of what we can hope to learn because of the limited
bandwidth of far-field seismic records. However, for large earthquakes it is often
possible to invert for more detailed source properties because it it possible to sep-
arately resolve the seismic radiation from different parts of the fault. A common
approach is to discretize the fault into a series of rectangular cells, solve for the
Green’s function that gives the response at each of the available seismic stations,
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Figure 9.28 Ground shaking intensities for the 2003 San Simeon earthquake in California, as
measured from 17 204 responses to the USGS ‘‘Did You Feel It?’’ website.

and then set up an inverse problem using the superposition principle to solve for
the time-dependent slip distribution that best fits all of the data. If geodetic data are
also available, these can also be included in the inversion to provide constraints on
the total slip. As in the tomographic inversions for 3-D velocity structure discussed
in Chapter 5, the inverse problem often is stabilized by applying regularization con-
straints, such as only permitting slip in one direction and solving for the smoothest
or the minimum slip solution.

The resulting finite slip models typically show that large earthquakes have irreg-
ular slip distributions and that their total moment is dominated by one or two large
slip regions where the stress drop is much higher than surrounding parts of the fault.
Rupture velocity is also not always constant during earthquakes. As an example,
Figure 9.29 shows the Custodio et al. (2005) model of the 2004 Parkfield earth-
quake obtained from an inversion of the strong motion data. From the hypocenter
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Figure 9.29 The Custodio et al. (2005) slip model for the 2004 Parkfield earthquake.The star
shows the hypocenter location.The contours show the slip onset times at 1 s intervals.

the rupture propagated northwest along the San Andreas Fault for about 10 s. There
were two major areas of slip, one near the hypocenter and the other 10 to 20 km to
the northwest at a depth between 2 and 8 km.

Finite slip models provide detailed constraints on rupture dynamics that are
valuable for understanding earthquake physics. Results so far point to highly
heterogeneous faulting processes with large variations in moment release and stress
drop. But there are problems with non-uniqueness in many of the inversions and
results from different groups for the same earthquake do not always agree very
well. As inversions move to higher frequencies, propagation path effects on strong
motion data become increasingly important and link the rupture inversion problem
to the 3-D velocity inversion problem. This is an active area of research and even-
tually improved modeling methods and denser seismic and geodetic networks will
help to provide clearer images of fault rupture.

9.9 The heat flow paradox

As discussed in Section 9.6.1, the frictional and fracture energy release during
faulting is given by

EF = σf DA (9.76)
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where σf is the resisting shear stress on the fault, D is the average displacement,
and A is the fault area. We can estimate σf from Byerlee’s law

σf =
{

0.85σn, σn < 200 MPa,

50 + 0.6σn, σn > 200 MPa,
(9.77)

where σn is the normal stress on the fault. Byerlee’s law has been found to be valid
for a wide variety of rock types in laboratory experiments.

In general, we expect σn to grow rapidly with depth in the crust to support the
weight of the overlying rock. The lithostatic stress for a crust of uniform density is
given by

σlitho = ρgz (9.78)

where ρ is the density, g is the acceleration due to gravity (about 10 m s−2 near
Earth’s surface), and z is the depth. In the absence of topography or other lateral
density gradients, the lithostatic stress is equal to the vertical normal force, σv, on a
horizontal plane (the τzz component of the stress tensor). Assuming ρ = 2.7 Mg/m3,
then σv = 270 MPa at 10 km depth. However, the effective vertical stress, σ′

v in the
crust can be reduced by the ambient pore pressure, P , such that

σ′
v = σv − P. (9.79)

Assuming that the crust is fluid-saturated within an interconnected network of cracks
(this is termed hydrostatic pore pressure conditions), then P = ρf gz, where the fluid
densityρf is typically assumed to be 1.0 Mg/m3 (i.e., the value for water). For crustal
rocks of ρ = 2.7 Mg/m3, this results in effective vertical stresses for wet, saturated
rocks that are 63% of their values under dry conditions. For a crust without shear
stresses (i.e., behaving as a fluid), this would also give the normal force, or pressure,
across planes of any orientation. However, for an elastic crust with tectonic forces
producing deviatoric (non-hydrostatic) stresses, the situation is more complicated.
In this case, one can compute the orientation of planes that, for a given coefficient
of friction, will slip at the minimum value of deviatoric stress. Andersonian faulting
theory (which assumes that one of the three principal stresses is vertical owing to
the free-surface boundary condition) can be used to compute the shear stress on
such optimally oriented faults. The result for vertical, strike–slip faults at 10 km
depth is that σf = 80 MPa for water-saturated (hydrostatic pore pressure) faults and
σf = 130 MPa for dry faults (e.g., Brune and Thatcher, 2002). At the same depth the
shear stress is about 40% lower for normal faults and about 250% larger for thrust
faults.
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Using these predicted values of shear stress in (9.76) together with appropriate
values for the long-term slip rate, one can predict the average frictional heat gener-
ated on a fault as a function of time. This has been done for the San Andreas Fault
in California and the predicted heat flow anomaly near the fault greatly exceeds the
observed heat flow. Heat flow measurements above the thrust fault of the Cascadia
subduction zone also are much less than standard laboratory faulting theory would
predict. This discrepancy has been termed the heat flow paradox and has been a
source of controversy for many years (for a recent review, see Brune and Thatcher,
2002).

Note that the large values of shear stress on the fault inferred from Byerlee’s law
would require that the seismic efficiency, η, of most observed earthquakes be very
low. From (9.57) and (9.66), we have

η = ER

E
= ER

σDA
=

1
20σDA − EG

σDA
= 0σ

2σ
− EG

σDA
, (9.80)

where E is the total energy release, ER is the radiated seismic energy, EG is the
fracture energy, and σ = 1

2(σ1 + σ2) is the average of the starting and ending
stresses. Assuming the stress drop 0σ = 3 MPa (a typically observed value) and
the absolute stress level is 100 MPa, then from (9.80) the inferred seismic efficiency
is 1.5% or less.

The lack of observed heat flow anomalies near faults, together with the relatively
low stress drops observed for earthquakes, has led most researchers to conclude
that the shear stress on faults is lower than Byerlee’s law suggests. The laboratory
rock friction experiments are simply not applicable to large-scale faulting in the
real Earth (although for an opposing view, see Scholz, 2000). This conclusion has
been supported by measurements of stress levels near the San Andreas fault that
suggest average shear stress levels of 10 to 20 MPa (e.g., Zoback et al., 1987).

These low values of shear stress imply that the fault zones are relatively weak,
with effective coefficients of friction less than those obtained in laboratory exper-
iments. The puzzle has now become to understand how slip on faults can occur
so easily despite the low values of shear stress compared to the normal stresses
pushing the two sides of the fault together. One explanation is that fluids, perhaps
released during the faulting, are overpressured enough to “lubricate’’ the fault (e.g.,
Lachenbruch, 1980). Another suggested mechanism is elastohydrodynamic lubri-
cation (Brodsky and Kanamori, 2001), in which material in a narrow and slightly
rough fault zone acts as a viscous fluid and reduces friction for large events. In
other models, friction-induced melting is predicted along the fault surface and
rocks called pseudotachylytes, which are occasionally found in exhumed faults,
are thought to be a result of this melting. However, the rarity of pseudotachylyte
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observations suggests that this is not a widespread phenomenon. Exotic properties
have also been suggested for the fault gouge material, but these have not been seen
in most laboratory experiments. However, laboratory experiments are generally
performed at much lower slip rates than occur during earthquakes. Recent exper-
iments on quartz rocks using higher slip rates have found a dramatic decrease in
friction associated with the formation of a thin layer of silicon gel (Di Toro et al.,
2004).

The dynamics of earthquake rupture are also important and are not necessarily
captured in traditional laboratory experiments. Heaton (1990) has found observa-
tional evidence that rupture during large earthquakes occurs in a narrow self-healing
pulse of slip and that the effective friction on the fault surface is inversely related
to the local slip velocity. A possible mechanism for reducing shear friction during
rupture is “chatter’’ or movement normal to the fault plane. This process can dy-
namically reduce the normal stress on pieces of the fault (or even cause separation
of the fault surfaces), an idea developed by Jim Brune based on his experiments that
simulated earthquakes as sliding between two large blocks of foam rubber (e.g.,
Brune et al., 1993). Fault chatter might be expected from collisions between local
bumps and asperities on the fault surfaces, resulting in interface vibrations normal
to the fault plane.

The problem of reconciling crustal faulting with the absence of heat flow anoma-
lies and apparently low shear stresses has similarities to the mystery regarding the
origin of subduction zone earthquakes at depths of 400 km and more. Seismic obser-
vations from these events are well fit by simple double-couple models, suggesting
that the sources involve slip along a fault surface. However, at such great depths, the
normal stresses due to the high pressures should prevent any simple form of fric-
tional sliding at the expected levels of shear stress. Thus more exotic mechanisms
have been invoked, such as a sudden changes in crystal structure (e.g., Kirby et al.,
1991; Green, 1994) or lubrication of the fault surface through melting of the rock
(Kanamori et al., 1998). However, these issues are far from settled and fundamental
questions remain regarding exactly how and why earthquakes, at a wide range of
depths, appear to occur at relatively low shear stresses.

9.10 Exercises

1. Assuming the following moment tensor,

M =

⎡

⎣
6 0 0
0 −6 0
0 0 3

⎤

⎦ ,
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(a) compute M0, the scalar seismic moment, (b) give the decomposition of M
into M0, MDC, and MCLVD and compute the scalar moment of each part, and (c)
compute ϵ, the measure of how well the double-couple model fits the deviatoric
part ofM.

2. An interesting seismic event occurred near Tori Shima, Japan, on June 13, 1984,
which generated an unusually large tsunami for its size. Kanamori et al. (1993)
argued that it was probably caused by magma injection and obtained the following
components for the moment tensor: M11 = −1.8, M22 = −1.9, M33 = 3.7,
M12 = −0.38, M31 = −0.96, M32 = 0.62 (all numbers in 1017 N m). To obtain
stable results, they constrained the isotropic component to be zero.

(a) Compute M0 and MW for this event.

(b) Compute the eigenvalues σ1, σ2, and σ3 (sorted such that σ1 > σ2 > σ3) and
expressM in its principal axes coordinates.

(c) Compute the parameter ϵ, the measure of the misfit with a double-couple
source. Is its value close to that expected for a pure double-couple (DC)
source or a pure compensated linear vector dipole (CLVD) source?

(d) DecomposeM intoMDC andMCLVD using equation (9.14) and compute the
scalar moment of each part.

(e) Devise an alternative decomposition ofM into MDC and MCLVD that maxi-
mizes the CLVD part and compute the scalar seismic moment of each part.

(f) Explain your results in (a), (d), and (e) in terms of your computed ϵ parameter
in (c).

3. For the fault geometry shown in Figure 2.7, what is the expected P first motion
(up or down) at PFO from the Landers earthquake?

4. Using (9.24) and (9.26) for a double-couple source, what is the ratio of maximum
expected S-wave amplitude to maximum P-wave amplitude? Note: these need not
be at the same takeoff angle, just compare the maximum in each case.

5. Make a photocopy of Figure 9.11. Using different colors for the different faulting
types, circle five examples each of (a) normal faults, (b) reverse faults, and (c)
strike–slip faults.

6. Table 9.3 is a list of earthquakes with double-couple fault plane solutions from the
Global CMT catalog. Following the moment magnitude MW for each event, the
first three numbers give the strike, dip, and rake for one of the nodal planes; the final
three numbers repeat this for the second nodal plane. Sketch lower-hemisphere fo-
cal spheres for each event, showing the orientation of the two possible fault planes.
Shade in the compressional quadrants. Identify the dominant type of faulting for
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Table 9.3: Some focal mechanisms from the Global CMT catalog

Date Region MW φ1 δ1 λ1 φ2 δ2 λ2

10/28/83 Borah Peak, Idaho 7.0 304 29 -103 138 62 -83

09/19/85 Michoacan, Mexico 8.0 301 18 105 106 73 85

10/18/89 Loma Prieta, Calif. 6.9 235 41 29 123 71 128

06/20/90 Western Iran 7.4 200 59 160 300 73 32

07/16/90 Luzon, Phillipines 7.7 243 86 178 333 88 4

06/28/92 Landers, Calif. 7.3 318 88 178 48 88 2

01/17/94 Northridge, Calif. 6.7 278 42 65 130 53 111

06/09/94 Northern Bolivia 8.2 302 10 -60 92 81 -95

01/16/95 Kobe, Japan 6.9 324 70 12 230 79 160

each event (i.e., strike–slip, normal, reverse, or oblique). For the strike–slip faults,
indicate with arrows the type of slip expected on each of the two possible fault
planes (i.e., left-lateral or right-lateral).

7. Your borehole seismic experiment obtains the P-wave spectra plotted in Fig-
ure 9.30 at a distance of 10 km from an earthquake. Using a ruler, crudely estimate
.0 and fc from the plot. Assuming that the density is 2700 kg/m3, the P velocity
is 6 km/s, and the S velocity is 3.46 km/s, compute the moment, M0, the moment
magnitude, MW , the source radius, r, and the stress drop,0σ, for this event. State
any modeling assumptions that you make. Do not confuse the source radius r in
Section 9.5 with the source–receiver distance r in equation (9.27). The recording
station is deep enough that you may assume that the effect of the free surface can
be ignored and that the rock properties are uniform between the earthquake and the
station. You may also assume that attenuation is negligible (or that the spectrum
has already been corrected for attenuation) and that the radiation pattern term is
simply its average P-wave value of 0.52.

8. Estimate the radius and average displacement of a circular fault for MW values
ranging from −2 to 8 (make a table at unit increments). Use (9.40) and (9.73), a
constant stress drop of 3 MPa, and a shear modulus, µ, of 30 GPa.

9. Suppose a fault existed completely around Earth’s equator to a depth of 30 km and
ruptured in a single earthquake with 20 m of slip. Estimate MW for this event.

10. From Figure 9.21, estimate the average seismic energy radiated by a earthquake
with MW = 8. How does this compare with: (1) the US annual electricity produc-
tion, and (2) the energy released during a major hurricane?

11. The Republic of Temblovia commisions you to estimate how often they should
expect a MW > 8 earthquake to occur. You study the available seismic data and
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Figure 9.30 A P-wave spectrum from a borehole seismic experiment.

find that Temblovia has 100 events per year at 3.5 ≤ MW ≤ 4 (data from larger
events are classified!). What do you tell them? Please state any assumptions that
you make.

12. An earthquake occurs during a dinner party in Los Angeles. When the shaking
subsides, Joe attempts to impress the other guests by proclaiming, “It felt like a
5.5 to me.’’ Even assuming that Joe can reliably estimate the local ground accel-
erations, what vital piece of information does he lack that limits the accuracy of
his magnitude estimate?





10

Earthquake prediction

Despite their usefulness as a research tool for illuminating Earth structure, earth-
quakes are generally considered harmful because of their potential for causing death
and destruction. It is therefore unfortunate that the most useful thing that seismol-
ogists could do – predict earthquakes – is what they are least able to do. Although
many ideas for earthquake prediction have been explored, the sad truth is that reli-
able prediction of damaging earthquakes is not currently possible on any time scale.
In this section we will present some of the terminology and concepts in earthquake
occurrence modeling and discuss possible reasons why major earthquakes are so
difficult to predict.

10.1 The earthquake cycle

The idea that earthquakes represent a sudden release of accumulated stress in the
crust was first documented by H. F. Reid, who examined survey lines taken be-
fore and after the 1906 earthquake in San Francisco. His results led to the elastic
rebound theory of earthquake occurrence, in which stress and strain increase grad-
ually and are then released during an earthquake by sudden movement along a
fault (Fig. 10.1). This mechanism is now recognized to be the primary cause of
earthquakes in the crust. Earthquakes occur mostly along the boundaries between
Earth’s surface plates (see Fig. 1.2), releasing the stress that results from the relative
tectonic motion between the different plates. Observations of surface deformations,
using ground- and satellite-based surveying techniques, can be used to monitor the
slow strain changes that are seen in seismically active regions (often termed the sec-
ular strain rate) and the sudden change that occurs in the deformation field during
earthquakes (these are termed co-seismic changes). Co-seismic changes in the strain
field are often observed even at considerable distances away from earthquakes and
can be used to constrain the distribution of slip on subsurface faults.

301
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t = 0 years
t = 100 years
(before quake)

t = 100 years
(after quake)

fault

Figure 10.1 The elastic rebound model of earthquakes. In this example, a strike−slip earthquake releases
the stress and strain that had built up slowly along the fault.

What causes faults to fail when they do? It is natural to imagine that there might
be some threshold value of stress that represents the maximum shear stress that the
fault can withstand. When the long-term stress accumulation reaches this level, the
earthquake occurs.

A simple model of this kind of behavior is a block pulled by a spring. In this
case we assume that the static friction coefficient µs is greater than the dynamic
friction coefficient µd and that the spring is pulled at a rate v. The block will
exhibit stick–slip behavior – when the force exerted by the spring exceeds the static
friction, the block will slide until the dynamic friction balances the reduced level of
stress.

If µs, µd, and v are all constant, then the “earth-
quakes’’ will repeat at regular intervals (commonly called
recurrence intervals) and the system is completely pre-
dictable. This can be illustrated in plots of stress and
accumulated slip on the block versus time (Fig. 10.2).
During the time between events, no slip occurs and

v

spring

stress steadily builds up to a maximum value σ2 (related to µs). Slip then occurs
and the stress drops to a lower value σ1 (related to µd).

We can add some additional complexity to this model by considering the case
where µs or µd is not constant. For a model in which the dynamic friction µd
randomly varies between events, the “size’’ of each event is not predictable but
the time of occurrence can be predicted; thus this model is called time predictable.
The time until the next event is proportional to the amount of slip in the last event
(Fig. 10.2).Alternatively, the static friction µs might randomly vary between events,
in which case the occurrence times cannot be predicted, but the amount of slip for
an event at any time can be predicted; this is called a slip predictable model. The
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Figure 10.2 Simple models of recurring earthquakes parameterized by a threshold stress level σ2 (related
to the static friction on the fault) and a post earthquake stress level σ1 (related to the dynamic friction on the
fault).This diagram is based on Shimazaki and Nakata (1980).

amount of slip on the current event is proportional to the time since the last event
(Fig. 10.2). Finally, both µs and µd might randomly vary between events, in which
case neither the time nor the amount of slip is predictable.

A fundamental assumption in this type of model is that individual fault segments
can be treated in isolation and a characteristic earthquake will occur at fairly regular
intervals. In this case, long-term earthquake prediction might be feasible, although
the exact time and date of future events would remain unknown. Unfortunately the
real Earth is typically much more complicated than these simple models.Ahumbling
example of this is provided by a sequence of earthquakes on the San Andreas Fault
at Parkfield, California, where mb > 5.5 events occurred in 1857, 1881, 1901,
1922, 1934, and 1966 (Fig. 10.3). The waveforms from many of these events are
almost identical, suggesting that the same segment of fault ruptured each time.
This pattern led the National Earthquake Prediction Evaluation Council (NEPEC)
to “predict’’ in 1984 that a mb ∼ 6 event would occur before 1993 (the anomalous
time of the 1934 quake was explained as a premature triggering of an expected
1944 quake). But the expected earthquake did not occur until 2004. What went
wrong?

Some researchers have questioned whether the earliest events in the sequence
plotted in Figure 10.3 truly were at Parkfield because they were before the instru-
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Figure 10.3 Significant earthquakes at Parkfield, California, have repeated at fairly regular intervals since
1850, leading to predictions of another event before 1993. However the earthquake did not occur until
2004.

mental era and their exact locations are unknown. For example, the 1983 M 6.7
Coalinga earthquake, 40 km to the north, might have been counted as a Parkfield
earthquake had it occurred before 1900. More generally, however, a problem with
the characteristic earthquake hypothesis is that it ignores the interactions with
adjacent segments on the same fault, as well as interactions with other faults. Some
of the effects of these interactions can be modeled using an expanded version of
the block-slider model, in which a series of blocks are connected by springs to each
other and a bar pulled at a constant rate (Fig. 10.4).

This type of model was first explored in a classic paper by Burridge and Knopoff
(1967) and now has been studied in many different variations. Slip on one block
can trigger slip on adjacent blocks and lead to larger events. For certain values
of the spring constants and the individual friction coefficients, this type of model
will produce a wide range of event sizes and a Gutenberg-Richter b-value close to
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v

Figure 10.4 The sliding block model for simulating earthquakes.

that observed for real seismicity.1 Under some conditions, the larger events occur at
fairly regular intervals but it is not difficult to devise models in which the seismicity
is chaotic with no clearly defined characteristic event size or recurrence time. This
behavior is typical of non-linear dynamical systems. Indeed, even a two-block
model has been shown to exhibit chaotic behavior under some conditions (e.g.,
Narkounskaia and Turcotte, 1992).

Real fault systems involve not just single faults but entire systems of faults.
For example, in California the San Andreas Fault (SAF) is the dominant fault.
But since the SAF is not straight, it is clear that other somewhat smaller faults
must be involved to account for features such as the “Big Bend,’’ a kink in the
fault beneath the Transverse Ranges in southern California. These faults in turn
create complications in the strain field that require the existence of smaller faults,
and so on. The complex systems of faults of varying sizes in many regions ap-
pear to be self-similar and obey a fractal scaling relationship. Self-similarity is
apparent in the power-law distribution of seismicity rates (the b-value relation-
ship) and in the nearly constant value of stress drop over a wide range of earth-
quake sizes (implying that the displacement scales linearly with the size of the
fault; see equation (9.42)). The fractal dimension D of a seismicity distribution can
be shown to be approximately twice the b value (see the discussion in Turcotte,
1997, p. 59).

The events in real earthquake catalogs occur at apparently random times, with
the exception of aftershock sequences. Earthquake times over large regions can
be modeled reasonably well as a Poisson process, that is, the probability of an
earthquake at any given time is constant and independent of the time of the last

1 However, Rice and Ben-Zion (1996) make the important point that the observed Gutenberg-Richter (G-R)
relation obtained for block slider models occurs for discretized systems with cell sizes much larger than the
expected slip weakening distance for real faults. They were unable to obtain G-R behavior for smooth faults.
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event.2 However, at small scales there is a noticeable clustering of earthquakes
in time and space that violates the simple Poisson model. Much of this can be
explained as aftershock triggering, but some features, such as swarms without a
clear mainshock, appear to require other mechanisms. In general, it is difficult to
completely separate aftershocks from other earthquakes because even small events
increase the probability of future events to some extent.

For small earthquakes, it is comparatively easy to test statistical models of earth-
quake occurrence since lengthy catalogs of events are available. However, larger
earthquakes occur much less frequently, and some researchers have argued that
great earthquakes (MW > 8) may have more regular recurrence intervals. Since
the average time spacing between these events on a particular fault may be hundreds
of years or more, it is difficult to evaluate this hypothesis using modern seismicity
catalogs. However, in some cases it is possible to detect ancient earthquakes by
careful examination of the local geology along faults. Strike–slip faults commonly
produce offset stream channels and other geomorphological features that, when
dated, can yield earthquake occurrence times and long-term slip rates. Figure 10.5
shows a well-known example of offset stream channels along the San Andreas
Fault in California. In other cases, examining fault scarps or trenches dug across
the fault in areas of high sedimentation rate provides a means to measure and date
observed offsets. These techniques, termed paleoseismology, only work at selected
sites and cannot be applied everywhere along a fault. Statistical analysis of paleo-
seismic results is challenging because of the substantial error bars in the data for
many of the events and uncertainties in correlating events among different sites.
However, results for the southern San Andreas fault indicate that great earthquakes
occur at irregular intervals with some tendency to cluster in time, arguing against
a characteristic repeat time for these events (e.g., Sieh, 1996; Grant, 2002).

Since fairly simple block-slider models exhibit chaotic behavior, it seems rea-
sonable that the much more complicated systems of faults in the real world will
also lead to chaos. This would imply that very long term earthquake prediction
is fundamentally impossible. But it is important to recognize that this limitation
does not necessarily prevent earthquake prediction on shorter time scales. A useful
analogy is weather forecasting, in which chaotic behavior is also important. Meteo-
rologists are unlikely to ever be able to predict the time of an individual storm a year
in advance. But storms can be predicted up to a week in advance and forecasting
becomes quite precise at the level of hours in advance. Indeed there are numerous
short-term precursors to storms (the barometer drops, the wind increases, etc.).

2 For example, see Gardner and Knopoff, 1974, “Is the sequence of earthquakes in southern California, with
aftershocks removed, Poissonian?’’ This paper is famous for having the shortest abstract in the geophysical
literature – it simply says “Yes.’’
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Figure 10.5 A LIDAR (Light Detection and Ranging) image of the San Andreas Fault at Wallace Creek,
California, showing offset stream channels caused by the right-lateral movement along the fault. Contour
interval is 5 feet (∼1.5 m). Image courtesy of David Raleigh and Ken Hudnut.

Unfortunately, observations to date indicate that earthquakes very rarely produce
definitive short-term precursors (see Section 10.3).

Chaotic behavior alone does not necessarily impose a fundamental limitation on
predicting the next major earthquake or series of earthquakes in a region on time
scales of years to tens of years. Given sufficient knowledge of the crustal stress and
strain fields and the strengths of the existing faults, it is possible that reasonable
predictions could be made as to where and when the next fault segment is likely to
break. One assumption that seems intuitively reasonable and is often made is that
the occurrence of a major earthquake on a fault temporarily relieves the stress on
that fault, so that one should not expect another large quake on the same fault until
the stress has had a chance to build up again. However, an earthquake will tend to in-
crease the stress on adjacent segments of the fault and make them more likely to fail.

Reasoning along these lines has gone into the seismic gap hypothesis, which pro-
poses that the probability of a large quake on an individual fault segment is greater
for those segments that have not slipped in a long time. Since the continuous long-
term slip rate is often known from far-field geodetic measurements, some estimates
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can be made of likely recurrence intervals for events with a given value of slip. The
verdict on the usefulness of seismic gap reasoning is currently uncertain. In 1988,
the Working Group on California Earthquake Probabilities (WGCEP) produced a
conditional probability map for some of the major faults in California. Probabilities
were ranked high for the Parkfield segment of the SAF, a section of the SAF near
Santa Cruz just south of where the 1906 rupture from the San Franciso earthquake
ended, and a section of the San Jacinto Fault. The 1989 M 7.1 Loma Prieta earth-
quake occurred near the location of the WGCEP “prediction’’ for the SAF near
Santa Cruz, but it had a large thrust component, which was not expected for the
predicted “characteristic’’ strike–slip event. The anticipated Parkfield earthquake
did not occur until 2004 and no large earthquakes have occurred yet on the San
Jacinto fault. In the meantime, the 1992 M 7.3 Landers, the 1994 M 6.7 Northridge,
the 1999 M 7.1 Hector Mine, and the 2003 M 6.5 San Simeon earthquakes have
occurred on “minor’’ faults not considered in the WGCEP report.

The seismic gap idea has also been applied to global seismology and the like-
lihood of subduction zone events related to the historical record of fault breaks.
McCann et al. (1979) used this approach to map the probabilities of large earth-
quakes along the major plate boundaries. Kagan and Jackson (1991; see also Rong
et al., 2003) analyzed the McCann et al. paper and claimed that the seismic gap
hypothesis was not supported by the subsequent record of events. Instead, Kagan
and Jackson advocated a contrarian hypothesis – that the probability of an event
is highest in the vicinity of recent earthquakes and that the event probability drops
as the interval without an earthquake increases. This model is consistent with the
earthquake triggering ideas that we will develop in the next section.

Although the seismic gap model in its original form is not supported by statisti-
cal tests of its global significance, many seismologists continue to believe that at
least part of it remains true for the very largest earthquakes. The idea is that these
earthquakes relieve so much of the stress that they create a stress shadow, in which
major earthquakes are not likely to occur for some time. The 1906 San Francisco
earthquake on the San Andreas fault is often cited as supporting the stress shadow
concept because there were many more M ≥ 5.5 earthquakes in the San Francisco
Bay Area in the 50 years before 1906 than the 50 years after (e.g., Bakun, 1999).
However, Felzer and Brodsky (2005) argue that similar changes in seismicity rate
occurred outside of the Bay Area at the same time, casting doubt as to whether the
drop in seismicity really supports the stress shadow hypothesis.

One problem with making reliable earthquake probability estimates for individ-
ual fault segments is that stress and strain fields in the crust are likely to be hetero-
geneous at many length scales and we currently can only make estimates as to their
values at points so widely separated that spatial aliasing is a problem. This situa-
tion will improve as GPS (Global Positioning System, a method for determining



10.2 E A R T H Q U A K E T R I G G E R I N G 309

precise locations using satellites) measurements become more common. Another
promising technology is synthetic aperture radar (SAR), in which interferometer
techniques are used to measure displacement changes between images taken at two
different times. The ultimate goal is to obtain a complete picture of the surface
strain field with high temporal and spatial resolution. Such an image might reveal
subtleties in both the secular and co-seismic strain evolution that could provide
clues regarding where future earthquakes are likely to occur.

10.2 Earthquake triggering

The most obvious example of non-random earthquake occurrence is the existence of
aftershock sequences after large earthquakes. Although the exact timing of individ-
ual events is still random, an increased rate of activity is observed that is temporally
and spatially correlated with the mainshock. The seismicity rate decays with time,
following a power law relationship, called Omori’s law after Omori (1894),

n(t) = K

t + c
, (10.1)

where n(t) is the number of aftershocks per unit time above a given magnitude, t

is the time measured from the mainshock, and K and c are constants. This is often
generalized to the modified Omori’s law

n(t) = K(t + c)−p, (10.2)

which permits a more general power law relation, but in which the exponent p is
typically close to 1.

As an example, Figure 10.6 plots the aftershock rate following the 1994
Northridge, California, earthquake (MW = 6.7), which is well fitted by Omori’s
law with c = 3.3 days and p = 1. The parameter c is related to a relative deficit of
aftershocks immediately following the earthquake compared with a simple uniform
power law. For the Northridge example, this is mainly caused by the inability of
the seismic network to detect and locate the large number of events occurring in the
first few days after the earthquake (e.g., Kagan and Houston, 2005). When care is
taken to obtain a more complete catalog, the deficit in early aftershocks lasts only
a few minutes after the mainshock (Peng et al., 2007).

Earthquakes are thought to trigger aftershocks either from the dynamic effects
of their radiated seismic waves or the resulting permanent static stress changes
(for reviews, see Harris, 2002; Freed, 2005). A common assumption based on
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Figure 10.6 Aftershock rate for the 1994 Northridge, California, earthquake as a function of time after the
mainshock.The line shows the Omori’s law prediction for K = 2230, c = 3.3 days, and p = 1. Data are from the
Southern California Seismic Network catalog within a lat/lon window of (34.2◦ , 34.45◦ , −118.75◦ , −118.3◦).

rock behavior in laboratory experiments is that earthquake occurrence on a fault is
promoted by increases in the Coulomb failure function (CFF)

CFF = |τs| + µ(τn + P), (10.3)

where τs is the shear traction on the fault, τn is the normal traction (positive for
tension), P is the pore fluid pressure, and µ is the coefficient of static friction
(don’t confuse this with the shear modulus!). The second term is negative because
in our sign convention τn is negative for the hydrostatic compression forces at
depth. Thus, increases in shear stress or decreases in fault normal compression
(which “unclamp’’ the fault) will encourage failure, and the opposite changes will
discourage failure. Numerous studies have searched for possible spatial correla-
tions between aftershock occurrence and the sign of the CFF change predicted
by mainshock slip models, and many have found that there tend to be more af-
tershocks in regions where the static stress changes should promote earthquakes
(e.g., Reasenberg and Simpson, 1992; Harris and Simpson, 1992; Stein et al., 1992;
Stein, 1999). However, these correlations are not perfect and some aftershocks oc-
cur even in areas where the CFF changes are negative. The relative importance
of static and dynamic triggering for aftershocks is also not yet firmly established.



10.2 E A R T H Q U A K E T R I G G E R I N G 311

Dynamic stress changes from seismic waves often trigger earthquakes at large dis-
tances from mainshocks and some have argued that dynamic effects could be the
dominant triggering mechanism for near-field aftershocks as well (e.g., Kilb et al.,
2000; Felzer and Brodsky, 2006).

An obvious and important aspect of aftershocks is that they don’t all occur in-
stantly at the time of the mainshock – they have a time dependence that is described
by Omori’s law. This indicates that whatever their triggering mechanism, it must
initiate a time-dependent failure process that causes events to occur at a wide range
of times following the mainshock. There cannot simply be a precise threshold stress
that, when exceeded, immediately triggers earthquakes (i.e., as shown in the sim-
ple models of Fig. 10.2). Additional evidence for this come from the lack of an
obvious correlation between earthquake occurrence time and the solid Earth tides.
Daily variations in crustal stresses caused by the tides greatly exceed the daily ac-
cumulation of stress from tectonic loading. Thus, any threshold level of stress will
be first exceeded only at certain times in the tidal cycle, which might be expected
to produce strong periodicities in earthquake occurrence times. Many researchers
have searched for tidal signals in earthquake catalogs, but the most careful studies
(e.g., Vidale et al., 1998) have found little or no correlation between earthquakes
and tidal stresses.

Omori’s law does not say anything about the magnitude distribution of the af-
tershocks or their spatial relationship to the mainshock. However, by combining
Omori’s law with the Gutenberg–Richter magnitude–frequency law (9.75) and other
empirical relationships, one can develop general models that predict the probability
of future events based on the record of previous seismicity. The most well-known
of these is called the Epidemic Type Aftershock-Sequences or ETAS model (for
reviews, see Ogata, 1999; Helmstetter and Sornette, 2002). In the ETAS model,
every earthquake, no matter how small, increases the probability of future nearby
events. The increased probability is greatest immediately after an earthquake and
then decreases following Omori’s law until it reaches a background level of seis-
micity. These models do not require that aftershocks always be smaller than the
triggering event. Sometimes mainshocks can be considered really big aftershocks
of a foreshock, a smaller preceding earthquake that is spatially and temporally near
the mainshock. Thus when any earthquake occurs, the possibility that it might be
a foreshock increases the probability that a larger earthquake will soon follow. In
California, for example, it has been estimated that an M 5.3 earthquake on the San
Gorgonio Pass segment of the San Andreas Fault would produce a 1% chance of a
much larger earthquake occurring within the next 3 days (Agnew and Jones, 1991).

The ETAS model in its original form does not include any spatial constraints
on aftershock probabilities, that is the observed decay in aftershock density with
distance from the mainshock. Felzer and Brodsky (2006) have explored this decay
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rate, and incorporating their result into the ETAS model of Ogata (1999), a general
equation for estimated earthquake probability is

λ(x, t) = λ0 +
∑

i

κ10α(mi−m0)(ti + c)−pr
−q
i (10.4)

where λ(x, t) is the predicted event density (events per unit volume and unit time)
at position x and time t, λ0 is a background rate (untriggered), which in general
may be spatially varying, κ is a triggering productivity parameter, the summation
is taken over all events in the catalog prior to t, mi is the magnitude of each earth-
quake, m0 is the minimum magnitude of the counted events, α (≈ 1) accounts for
the fact that larger earthquakes trigger more events, ti is the time from the ith event
to t, c and p (≈ 1) are the Omori decay constants, ri is the distance from the ith
event to x, and q defines the decay with distance. This type of model is an attempt
to quantify the clustering in time and space of seismicity, i.e., the common observa-
tion that earthquakes are most likely to occur near recent earthquake activity. Note
that this equation approximates earthquakes as point sources and would require
modification to accurately predict aftershock density around the extended rupture
of a large earthquake. By including the Gutenberg–Richter b-value relation (9.75),
these models can also be used to estimate the probability as a function of earthquake
size. Most of these models are purely empirical, but there have also been attempts
to create physical models based on time-dependent failure mechanisms, such as
the rate-and-state friction laws of Dieterich (1994). Although this work is unlikely
to lead to deterministic predictions of individual events, understanding how earth-
quake occurrence relates to prior events is important for developing more accurate
earthquake probability forecasts.

An example of this is the US Geological Survey sponsored effort to provide
realtime estimates of the probability of significant ground shaking in California. As
shown in Figure 10.7, the probability of earthquake occurrence increases following
every earthquake, but then decays back to the background rate. Large earthquakes
increase the risk of future events more than small earthquakes. Using seismicity
catalogs it is possible to use such a model to predict the instantaneous probability of
earthquake occurrence of a given magnitude as a function of location. This can be
combined with the known relationship between earthquake magnitude and shak-
ing intensity in California, as measured, for example, by the Mercalli scale (see
Table 9.2). Integrating over all locations, the result can be plotted as the probability
of ground motion exceeding a specified Mercalli intensity within a one-day period.
An example of the results of this calculation is shown in Figure 10.8, comparing just
before to just after the September 28, 2004 Parkfield earthquake (M 6). The proba-
bility of damaging shaking is greatly increased in a large region around Parkfield,
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Figure 10.7 A cartoon illustrating how earthquake probability increases immediately after prior events,
and then decays back to the background seismicity rate. Figure adapted from web material at:
http://pasadena.wr.usgs.gov/step/.
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Figure 10.8 The probability of local ground motions of modified Mercalli intensity 6 or greater within a
24-hour period, immediately before and after the 2004 Parkfield earthquake in California. Source:
http://pasadena.wr.usgs.gov/step/

reflecting the chance that the Parkfield earthquake might be a foreshock of a larger
earthquake.

Although space–time clustering of earthquakes is clearly observed, the physics
behind this clustering is not well understood. Some earthquake clusters, such as
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mainshock–aftershock sequences are most likely caused by triggering of events by
previous events (although whether this occurs primarily as a result of static or dy-
namic stress changes is still debated). In other cases, such as earthquake swarms that
lack an initiating mainshock, it seems more likely that the earthquakes are triggered
by some underlying physical process, such as slow creep or fluid movement (e.g.,
Vidale and Shearer, 2006). These questions are also relevant to when foreshock se-
quences are observed prior to large earthquakes. Do the mainshocks occur simply
because the foreshock activity itself increases the likelihood of a big earthquake,
or could they be symptomatic of an underlying physical process that ultimately
causes the larger event? The latter scenario provides more hope for prediction of
large earthquakes, if the physical process could be understood more completely.

10.3 Searching for precursors

Short- to intermediate-term prediction (minutes to months) has proven especially
problematic. Here the focus has been to search for anomalous behavior that can be
observed prior to earthquakes that would provide warning that an event was immi-
nent. Despite extensive searches for possible precursors, extremely few reliable ex-
amples have been found. This is not to say that claims for evidence of precursory
phenomena have not been made. In the history of seismology such claims have oc-
curred many times, often receiving great attention, only to be later discredited upon
more careful and comprehensive study. Geller (1997) reviews much of this history.

One of the most famous examples occurred in the early 1970s, when several
studies seemed to observe large (10 to 20%) changes in seismic velocity before
earthquakes (e.g., Semenov, 1969; Aggarwal 1973; Aggarwal et al., 1975; Whit-
comb et al., 1973; Robinson et al., 1974). Such observations appeared to have a
physical basis in laboratory studies of rock samples, which showed that when rocks
are compressed until they fracture, a phenomenon termed dilatancy often occurs for
a short time interval immediately before failure. Dilatancy is caused by microcracks
forming in the sample, resulting in a slight volume increase and a change in the bulk
seismic velocities. These results formed the basis of the dilatancy theory of earth-
quake prediction (e.g., Nur, 1972; Scholz et al., 1973; Anderson and Whitcomb,
1975), which briefly was the focus of great excitement.

However, it soon became apparent that accurate measurements of changes in
seismic velocity are difficult using naturally occurring events. Much greater pre-
cision can be achieved using artificial sources with nearly identical locations and
waveforms. Studies of records from quarry blasts and nuclear explosions found no
evidence for velocity changes before earthquakes down to levels of 1 to 2% (e.g.,
McEvilly and Johnson, 1974; Boore et al., 1975; Kanamori and Fuis, 1976; Bolt,
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1977; Chou and Crosson, 1978), providing upper limits that are an order of magni-
tude smaller than the changes that were claimed in the earlier studies. In addition
to these observational constraints, it is also now thought that the average stress
level on faults is surprisingly low (see Section 9.9), much lower than that used in
laboratory experiments to fracture unbroken rocks. This implies that dilatancy, if
it occurs before earthquakes, is likely to be confined to small areas of high stress
concentration and not spread over significant volumes of rock where it would more
readily be observed.

Other possible precursors that have received varying degrees of attention over the
past few decades are changes in seismicity patterns, variations in the rate of radon
gas emissions, and electromagnetic anomalies. Tantalizing suggestions of precur-
sory behavior have often been seen for individual events, but more comprehensive
studies have not been able to establish clear evidence for a link to the earthquakes.
The history of these studies shows a familiar, if depressing, pattern. An apparent
precursor will receive publicity as a possible method to predict earthquakes. Only
rarely is there a clearly defined physical mechanism that might be causing the pre-
cursory behavior, and so the debate centers on the character of the observations and
if the anomalies can indeed be correlated with earthquake occurrence. A number
of papers will appear, some supporting the method and others challenging it. Typi-
cally the discussion then becomes embroiled in statistical arguments regarding the
significance of the result and the exact way in which the method should be applied.
These exchanges eventually become so technical as to be of little interest to anyone
outside of the groups involved. The end result is that, even if the proposed method
is not completely discredited, it becomes sufficiently clouded that most researchers
move on to other things.

One of the best data sets to look for precursors resulted from the 2004 Parkfield
earthquake. As discussed above, this region was identified in the 1980s as the likely
site of a future M 6 earthquake and a large number of instruments were deployed to
capture the event in detail. These included a borehole seismic array, high-resolution
strain meters, electric and magnetic field sensors, and water well level meters.
Although the earthquake occurred much later than anticipated, fortunately these
instruments were still operating in 2004 and provided a wealth of information about
the mainshock rupture and its aftershocks, as well as ongoing seismicity and creep
events in the region. However, nothing unusual occurred before the mainshock –
there were no notable precursory signals recorded on any of the sensors (Harris and
Arrowsmith, 2006). Thus, one of the best instrumented earthquakes ever recorded
did not exhibit any detectable precursors.

The only definitively established earthquake precursor is the occasional occur-
rence of foreshocks, events close in time and space to a subsequent mainshock.
These occur far too often to be attributed to random chance; they must be related
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in some way to the larger event (just as the aftershocks that follow the mainshock
are not randomly occurring). The existence of foreshocks made possible the most
important earthquake prediction of recent times – the Chinese order to evacuate
the city of Haicheng prior to the MS = 7.4 earthquake of February 4, 1975. A se-
ries of small events occurred immediately prior to the mainshock, and, when the
earthquake struck, most of the population had left their homes and relatively few
lives were lost. At the time this was touted as a great achievement for the Chinese
earthquake prediction program, but the outcome owes its success mostly to the
existence of the foreshock swarm and other precursory anomalies.

Unfortunately, most large earthquakes are not signaled by easily recognized
foreshock sequences. In some cases, there are no foreshocks, while in others the
foreshocks are small in magnitude and not distinguishable from the many naturally
occurring clusters of events that do not lead to larger earthquakes. On July 27, 1976,
a MS = 7.8 earthquake struck the Chinese city of Tangshan, only 200 km away
from Haicheng. No foreshocks preceded this event and the population received no
warning. The death toll was the greatest of any earthquake in modern times; the
official count is 255 000 people killed, with unofficial estimates going much higher.

10.4 Are earthquakes unpredictable?

In California, no clearly recognizable precursor has been observed prior to any of
the large earthquakes in the past few decades, despite the widespread deployment
of seismometers and other instrumentation. Why should this be so? Why should
such incredibly powerful events as major earthquakes apparently have no detectable
precursors?

One possible explanation was described by Brune (1979), who proposed that
earthquakes may be inherently unpredictable since large earthquakes start as smaller
earthquakes, which in turn start as smaller earthquakes, and so on. In his model,
most of the fault is in a state of stress below that required to initiate slip, but it can
be triggered and caused to slip by nearby earthquakes or propagating ruptures. Any
precursory phenomena will only occur when stresses are close to the yield stress.
However, since even small earthquakes are initiated by still smaller earthquakes,
in the limit, the region of rupture initiation where precursory phenomena might be
expected is vanishingly small. Even if every small earthquake could be predicted,
one is then still faced with the monumental task of deciding which of the thousands
of small events will lead to a runaway cascade of rupture composing a large event.

Brune proposed his model only as a possible scenario for earthquake unpre-
dictability, but subsequent results have tended to support his idea. The average
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level of shear stress on major faults is now thought to be quite low (see Section
9.9 on the heat flow paradox), far below the levels at which laboratory experiments
suggest rock failure and precursory phenomena should occur. Modern ideas about
self-organized criticality in non-linear systems suggest that it is to be expected that
faults should be in a stress state such that even small events can initiate rupture to
long distances. (The classic physical model for self-organized criticality is a sand
pile in which individual grains of sand are continually added. The slope of the pile
reaches an angle close to the maximum angle of repose. Additional sand grains
may then trigger landslides of varying sizes, but it is difficult to predict in advance
which grains will cause the largest slides.) Block-slider models have been devised
that exhibit self-organized criticality (e.g., Bak and Tang, 1989).

Finally, studies of the beginnings of earthquakes of varying size have shown
no difference between small and large events (e.g., Anderson and Chen, 1995;
Mori and Kanamori, 1996). That is, there is no way to tell from the initial part
of a seismogram how large the event will eventually become. This supports the
notion that large earthquakes do not necessarily originate in anomalous source
regions but are triggered by rupture from a smaller event (for an opposing view,
see Ellsworth and Beroza, 1995; Olson and Allen, 2005). If Brune’s hypothesis
holds up, and the evidence for it is particularly strong in California, then short-
term earthquake prediction may inherently be so difficult as to be impossible in
practice. Barring dramatic new developments, an earthquake prediction program
that promises timely, accurate warnings of future events, with a minimal number
of false alarms, is unlikely to be achieved in the forseeable future.

In any case, seismology’s most direct benefits to society are more likely to be
achieved through identifying those regions most at risk from major earthquakes
and encouraging suitable engineering and construction practices. People are rarely
killed directly by earthquakes; rather the casualties arise from the failure of build-
ings and other structures. Through well-designed and rigorously enforced building
codes, the death toll from earthquakes can be minimized. An example is provided
by a comparison between two recent earthquakes: the MW = 6.8 Armenian earth-
quake of December 7, 1988, and the MW = 6.7 Northridge (southern California)
earthquake of January 17, 1994. The Armenian event killed over 25 000 people and
left 500 000 homeless, whereas only 60 were killed at Northridge. The shaking was
slightly stronger in Armenia (maximum intensity of X on the modified Mercalli
scale, compared to IX at Northridge), but most of the difference in the outcome can
be attributed to the weaker construction practices that prevailed in Armenia. Future
earthquakes are inevitable and there are few, if any, areas in the world that are
completely free of earthquake risk. However, catastrophic loss of life can be mini-
mized through sensible land use planning and the construction and maintenance of
earthquake resistant structures.
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10.5 Exercises

1. From Omori’s law, derive an equation for the total number of aftershocks as a
function of time after the mainshock. At what time will half of the total aftershocks
have occurred for: (a) c = 1 day, (b) c = 10 minutes?

2. An often heard “rule of thumb’’ is that the largest aftershock is usually about a
magnitude unit smaller than the mainshock (this was termed Bäth’s law by Richter,
1958).Assuming this is true, estimate how many aftershocks a local network would
record of M ≥ 1.5, following a M 6.5 mainshock. Hint: Assume a b-value of 1.

3. (COMPUTER) Write a computer program to simulate the block-slider model of
earthquake occurrence (Fig. 10.4). Consider a model with n blocks. If the displace-
ment of the ith block is xi and the displacement of the driving block is d, then we
may use Hooke’s law to express the force on the ith block as

Fi = k(xi−1 − xi) + k(xi+1 − xi) + k(d − xi)

= k(d + xi−1 + xi+1 − 3xi), (10.5)

where k is the spring constant (in this case assumed constant for all springs in
the model). The static and dynamic friction coefficients for the ith block may be
expressed as µS

i and µD
i , respectively. At each time step, the ith block will move

only if the force exceeds the resistance provided by the static friction, that is, if

Fi > µS
i , (10.6)

where we have assumed a unit mass for all blocks. The moving block will assume
a new equilibrium position defined by the dynamic coefficient of friction

xi = 1
3

[
d + xi−1 + xi+1 − µD

i /k
]
, (10.7)

which follows from (10.5), substituting µD for µS.

(a) Apply your program to the case where n = 50, k = 1, µS is randomly
distributed between 0.05 and 0.55 (a different value for each block), µD is
set to 1/3 of the value of µS at each block, and the driving block moves
a distance of 0.001 at each time step. Keep things simple by assuming that
blocks move instantly to new equilibrium positions before they trigger any
adjacent blocks. If a block moves during a time step, continue computing until
no blocks are moving. Output each “quake’’and plot the results for 1000 time
steps. Figure 10.9 shows an example of how you may wish to display your
results.
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(b) One characteristic of chaos is the extreme sensitivity of a system to small
changes in initial conditions. Test your program by making a small change to
one of the x values after 500 generations. How much does the output differ
after 1000 generations? After 5000 generations? Is the system more sensitive
to changes to high-friction blocks or to changes to low-friction blocks?

(c) Compute a measure of the seismic moment, M0, for each event as the sum
of the slip on all of the blocks. Define event magnitudes as

M = 2
3
M0 + d, (10.8)
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Figure 10.9 Output from a block-slider model of earthquake occurrence.The thickness of
the black bars in the top plot is proportional to the amount of slip for each block during
events.The lower plot shows the assumed values of the coefficient of static friction.
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where the constant d is chosen so that the magnitudes have reasonable values.
Make a histogram of the number of events as a function of magnitude. Can
you estimate a b-value for your sequence? How could the model be changed
to obtain a larger spread in event sizes?

(d) One unrealistic aspect of this type of model is the absence of aftershock
sequences following large events. Suggest some possible modifications to
the model that might result in aftershock behavior.

(e) Hint: Here is the key part of a FORTRAN program to solve this problem:

(set icount,d,x,xold to zero)
(initialize fric,dyfric arrays)

n=50
velplate=0.001
k=1.0 !real variable!

10 icount=icount+1
d=d+velplate
do i=1,n

xold(i)=x(i)
enddo
idump=0

30 iquake=0
do 40 i=1,n

ileft=i-1
if (ileft.lt.1) ileft=n
iright=i+1
if (iright.gt.n) iright=1
force=k*(d+x(ileft)+x(iright)-3.*x(i))
if (force.lt.fric(i)) go to 40
iquake=1
idump=1
x(i)=(d+x(ileft)+x(iright)-dyfric(i)/k)/3.

40 continue
if (iquake.eq.1) go to 30
if (idump.eq.0) go to 10

(output details of quake, defined as difference between x and xold)
go to 10

Note that “wraparound’’ boundary conditions are imposed at the end-
points.
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Instruments, noise, and anisotropy

Presented here are some important topics that do not easily fit into the structure of
the first ten chapters.

11.1 Instruments

Throughout this book, we have often discussed Earth motion in terms of the
displacement field, u(x, t), but have not mentioned how these movements are actu-
ally measured. A device that detects seismic wave motion is termed a seismometer;
the entire instrument package, including the recording apparatus, is called a seismo-
graph. The most common type of seismometer is based on the inertia of a suspended
mass, which will tend to remain stationary in response to external vibrations.

As an example, Figure 11.1 shows a simple seismometer design that will detect
vertical ground motion. A mass is suspended from a spring and connected to a lever
such that it can move only in the vertical direction. Motions of the lever are damped
using a “dashpot’’ to prevent excessive oscillations near the resonant frequency of
the system. The differential motion between the mass and the seismometer case
(which is rigidly connected to Earth) is measured using the voltage induced in a
coil by the motion of a magnet. The induced voltage is proportional to the velocity
of the mass for the instrument shown in Figure 11.1. In alternative seismometer
designs, the displacement or acceleration of the mass may be recorded. As we will
see later, the frequency response of the seismometer is a strong function of whether
the displacement, velocity, or acceleration of the mass is measured.Asimilar design
to that shown in Figure 11.1 can be used to detect horizontal ground motion; in this
case the mass is suspended as a pendulum. Both vertical and horizontal suspended
mass instruments are sometimes called inertial seismometers.

The motion of the suspended mass is related to Earth motion through a response
function that includes the effects of the various forces that act on the mass. This
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Figure 11.1 A simple inertial seismometer for measuring vertical motion. Movement of the
suspended magnet induces a voltage in the coil; this signal is then amplified and recorded.

function is easily derived for simple inertial seismometers such as that shown in
Figure 11.1. Let u(t) be the vertical Earth displacement and z(t) be the displace-
ment of the mass with respect to Earth, each relative to their rest positions. The
seismometer case is assumed to be rigidly connected to Earth, and so z(t) also
represents the displacement with respect to the case. The absolute displacement of
the mass is given by the sum u(t) + z(t). The force on the mass from the spring,
Fs, will oppose the mass displacement and is given by

Fs = −kz, (11.1)

where k is the spring constant. The viscous damping force, Fd, is proportional to
the mass velocity and is given by

Fd = −D
dz

dt
, (11.2)

where D is the damping constant. From F = ma, we thus have

−kz(t) − D
dz(t)

dt
= m

d2

dt2

[
u(t) + z(t)

]
, (11.3)
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where m is the mass. Rearranging, we may write

z̈ + D

m
ż + k

m
z = −ü. (11.4)

It is convenient to define ω2
0 = k/m, where ω0 is the resonant angular frequency

of the undamped system (D = 0). We also define a damping parameter ϵ, such that
2ϵ = D/m. These substitutions give

z̈ + 2ϵż + ω2
0z = −ü. (11.5)

This equation shows that the Earth acceleration, ü(t), can be recovered by measuring
the displacement of the mass, z(t), and its time derivatives.

The response function of the seismometer can also be expressed in the frequency
domain. Consider harmonic Earth displacement of the form:

u(t) = U(ω)e−iωt, (11.6)

where ω = 2πf is the angular frequency (see Appendix B for a description of
how complex numbers are used to represent harmonic waves). The displacement
response of the seismometer mass can be expressed as

z(t) = Z(ω)e−iωt . (11.7)

We then have

ü = −ω2U(ω)e−iωt, (11.8)

ż = −iωZ(ω)e−iωt, (11.9)

z̈ = −ω2Z(ω)e−iωt . (11.10)

Substituting into (11.5) and dividing by the common factor of e−iωt , we obtain

−ω2Z(ω) − 2ϵiωZ(ω) + ω2
0Z(ω) = ω2U(ω), (11.11)

or

Z(ω) = ω2

ω2
0 − 2ϵiω − ω2

U(ω) = Z(ω)U(ω), (11.12)

where Z(ω) is the frequency response function of the sensor (Z(ω) = Z(ω) when
U(ω) = 1). The response function Z(ω) is complex; in polar form it can be ex-
pressed as

Z(ω) = A(ω)eiφ(ω), (11.13)

where the amplitude, A(ω) = |Z(ω)|, and the phase lag, φ, are real numbers.
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Figure 11.2 The amplitude
and phase response functions
for a seismometer of 1 Hz
natural resonance at various
levels of damping.The
damping constant, h, is one
for critical damping.

The strength of the damping relative to the stiffness of the spring may be described
by h = ϵ/ω0, where h is the damping constant. When h = 1 (ϵ = ω0), the system
is said to be critically damped. Under critical damping, a displaced mass will
return to its rest position in the least possible time, without “overshooting’’ and
oscillating about its rest position. Seismometers generally perform optimally at
values of damping close to critical. Figure 11.2 plots amplitude and phase response
curves for a seismometer with a natural (undamped) resonant frequency of 1 Hz (a
typical short-period sensor) for values ofh ranging from 1/4 to 4.At high frequencies
(ω ≫ ω0), Z(ω) → −1, as follows from (11.12); the amplitude response is near
unity and the phase response is close to π (180◦), representing a polarity reversal
in the motion. In this case the motion of the mass, relative to the Earth, is simply
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opposite to the ground motion; the sensor stays in the same place while the Earth
moves.The amplitude response falls off at frequencies below the resonant frequency
and the 1-Hz sensor has little sensitivity at periods longer than 5 s (i.e., 0.2 Hz). For
small values of the damping parameter (e.g., h = 1/4), a resonant peak occurs in
the response spectrum near 1 Hz.

The frequency response function (11.12) relates the Earth displacement, u, to
the sensor mass displacement, z. In the case of a seismometer that measures mass
velocity, ż, such as that shown in Figure 11.1, the response function describes
the sensor response to ground velocity, u̇. In general, seismometers may measure
the displacement, velocity, or acceleration of the sensor mass, and we may be
interested in recovering the displacement, velocity, or acceleration of the ground.
It is important to be aware of which combination is involved. Each time derivative
introduces a factor of −iω in the frequency domain. Thus, all other things being
equal, velocity and (especially) acceleration will be enriched in high frequencies
relative to displacement.

This is illustrated in Figure 11.3, which shows the h = 1 amplitude response
for a 1-Hz sensor, as multiplied by different powers of ω. These curves provide
the appropriate response for different combinations of displacement, velocity, and
acceleration. Each time derivative applied to the sensor motion multiplies the re-
sponse by ω1, while each time derivative applied to the Earth motion multiplies the
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Figure 11.3 The amplitude
response for a critically
damped seismometer of 1 Hz
natural frequency, multiplied
by powers of ω from −2 to 2.
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response by ω−1. Thus, for example, the response of sensor acceleration to ground
displacement is provided by theω2 curve; the response of sensor velocity to ground
acceleration is given by the ω−1 curve. Notice that all of the curves cross at ω = 1
(f = 1/2π).

In two cases, the response function is flat over a wide frequency band. As dis-
cussed above, the first occurs for the ω0 curve at high frequencies (ω≫ω0). The
second occurs for the ω−2 curve at low frequencies, representing the response of
a displacement sensor to ground acceleration. Defining Ü(ω) as the acceleration
spectrum, the response of such a sensor to ground acceleration is given by substi-
tuting U(ω) = −ω−2Ü(ω) into (11.12):

Z(ω) = −1

ω2
0 − 2ϵiω − ω2

Ü(ω). (11.14)

In the low frequency limit, we have

Z(ω) = − 1

ω2
0

Ü(ω) for ω ≪ ω0. (11.15)

This result also follows from (11.5) by considering that, at long periods, the z term
will dominate over the ż and z̈ terms, and thus

ω2
0z = −ü, for ω ≪ ω0,

z = −ü/ω2
0, (11.16)

= −üT 2
0 /(2π)2, (11.17)

where T0 = 2π/ω0 is the undamped period of the instrument. Thus, the sensitivity
of the sensor to long-period ground acceleration is proportional to the square of the
natural period of the sensor.

In this way, measurements of the mass displacement can provide significant sensi-
tivity to Earth acceleration at frequencies below the natural seismometer resonance
frequency. Vertical-component instruments of this type can serve as gravimeters
because they are sensitive to changes in gravity (which can be thought of as accel-
eration of infinitely long period). Similarly, tilt changes for horizontal component
instruments can cause sensor displacements that mimic apparent horizontal accel-
erations.

The frequency band over which seismic waves are recorded is roughly divided
into two parts by the microseism ground noise peak (see next section) that occurs at
periods of approximately 6 to 8 s (0.12 to 0.17 Hz). Common usage refers to short-
period records as those obtained at frequencies above the microseism peak, whereas
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long-period records are at frequencies below the peak. (Seismologists have become
accustomed to using frequency, f , and period, T = 1/f , almost interchangeably.
Frequency is used most often above 1 Hz, while period is typically used below
1 Hz. Remember: Short period and high frequency mean the same thing, just as
long period and low frequency are equivalent.) Short-period sensors are well suited
for recording high-frequency body-wave arrivals; the timing of these arrivals can
be used both to locate earthquakes and to perform tomographic inversions for three-
dimensional velocity structure. In addition, P first-motion data, used to compute
earthquake focal mechanisms, are best obtained at short periods. However, sur-
face wave analyses, detailed studies of source properties, and waveform modeling
require data at longer periods (15 to 100 s).

Instrument sensitivity to long-period seismic waves can be achieved most simply
by increasing the natural period of the sensor, either by lowering the spring constant
or increasing the mass (recall that ω2

0 = k/m). Unfortunately, both approaches
tend to increase the size and expense of long-period seismometers compared to
their short-period counterparts. A breakthrough was achieved in 1935 when Lucien
LaCoste invented the “zero-length’’ spring that permitted stable inertial seismome-
ters at long natural periods. Today, typical long-period inertial seismometers have
periods between 15 and 30 s.

11.1.1 Modern seismographs

The best modern instruments are more sophisticated than the simple mechanical
seismograph illustrated in Figure 11.1. They are designed to achieve a linear re-
sponse to Earth motions over a wide range of both amplitude and frequency.

The dynamic range of a seismograph is the difference between the smallest and
largest amplitudes that are accurately recorded. It is desirable for the instrument
to have sensitivity below typical Earth noise levels so as to record the smallest
detectable events, while remaining on-scale for the largest earthquakes. The sen-
sitivity to small motions can be improved both by the mechanical design of the
instrument and through the use of low-noise amplifiers. The ultimate limit to the
sensitivity is the noise due to the Brownian motion of the atoms in the sensor. For
strong ground motions, the problem is to prevent non-linearity or clipping in the
response. Mechanical non-linearity can arise from the finite length of the springs
and levers used in the design. For example, the design shown in Figure 11.1 will
be linear only for small excursions of the mass compared with the length of the
lever arm. Linearity is often maintained in modern instruments through the use of
force-feedback designs in which the mass is maintained at a fixed position. The
seismograph records a measure of the force that is required to keep the mass at
rest; this force is directly related to the Earth acceleration. Because the mass moves
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very little, this makes possible much more compact designs, including, for ex-
ample, instruments sensitive to long periods that are small enough to deploy in
boreholes.

Dynamic range must also be maintained in the electronics and the recording
media. Analog instruments and digital systems with limited precision (e.g., 12- or
16-bit digitizers) often have insufficient range and clip at large amplitudes. The use
of 24-bit digitizers has largely eliminated these problems and the need for separate
channels of differing sensitivity. However, even with the best modern designs, few
general-purpose seismographs can reliably record ground motion near the epicen-
ters of shallow earthquakes with magnitudes of 7 and greater, where accelerations
can exceed 1 g. Thus in many urban areas, separate networks of strong motion
instruments have been established. These are typically low-cost accelerometers
of limited sensitivity that provide on-scale records from large earthquakes. They
are primarily used to provide data for the design of earthquake resistant structures.
They also provide valuable near-source records for use in modeling the rupture
history along the fault surface for major events.

A seismograph that provides useful sensitivity over a wide range of frequencies
is termed broadband. The use of force-feedback techniques can greatly increase in-
strument bandwidth compared to purely mechanical designs and has made possible
seismographs that record motion from periods of hundreds of seconds to frequen-
cies of 10 Hz or greater. Figure 11.4 compares the frequency response of a modern
broadband seismograph with some older designs. The original IDA (International
Deployment of Accelerometers) network was the first digital global seismic net-
work. IDA used gravimeters designed to record Earth’s normal modes at very long
periods and recorded one sample every 10 s. Data from the Global Digital Seismo-
graph Network (GDSN) began to become available in the late 1970s. The GDSN
long-period channel recorded at one sample per second; the GDSN short-period
channel recorded at 20 samples per second. The GDSN response functions were
designed to avoid the microseism noise peak at 5 to 8 s period (see Section 11.2).
Broadband instruments began to be widely deployed in the late 1980s and early
1990s; the broadband stations in the IRIS and GEOSCOPE networks have very
wide frequency responses.

Electronics have become an integral part of seismograph design; amplifiers and
filters are used to modify the response and anti-aliasing filters are required for
digital recording. Data may be recorded locally using a tape recorder, hard drive,
or other storage medium, or they can be telemetered to a remote recording site.
Modern seismic research often requires timing accuracy of 0.01 s or better to make
full use of the data. Timing errors are much less common in modern instruments
owing to the use of crystal oscillators with relatively constant drift rates and/or
synchronization to satellite signals.
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Figure 11.4 Velocity response functions for four different vertical-component instruments (old
IDA station ALE, long and short-period channels for the GDSN station COL, and IRIS/IDA station
ALE).

The instrument response can be defined in terms of the relationship between the
digital counts in the recorded time series and the actual Earth motion. The gain of
an instrument is the ratio between the digital counts and some measure of Earth
motion; thus a high-gain instrument is more sensitive than a low-gain instrument.
However, since seismograph sensitivity is frequency dependent, the concept of gain
is only meaningful at a fixed frequency. A more complete description is provided
by the frequency response function, Z(ω), which specifies the amplitude and phase
response continuously as a function of frequency. Instrument response can also be
described by the impulse response function, which shows the seismograph output in
the time domain from a delta-function input. Figure 11.5 plots the impulse response
functions for four different instruments. In general, the impulse response function
will more closely approximate a delta function as the instrument becomes more
broadband.

There are tradeoffs in instrument design. The ideal seismograph has a flat re-
sponse over a broad frequency band and sensitivity over a wide dynamic range.
However, it is also sturdy, portable, low-power, and inexpensive, posing many chal-
lenges to instrument designers. For some purposes (e.g., local earthquake location),
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Figure 11.5 Impulse response functions for four different vertical-component instruments,
showing the seismograph response to a delta-function input at zero time.The frequency
response of these intruments is plotted in Figure 11.4.

large numbers of cheap instruments of limited capability may be more effective than
a few state-of-the-art, but expensive, broadband seismographs. In other cases (de-
tailed waveform modeling), there is no substitute for broadband records. Whatever
the instrument design, the importance of accurate and reliable calibration infor-
mation cannot be overemphasized. A raw seismogram alone is not very useful for
research, without knowledge of the precise instrument location, the orientation of
the horizontal sensors, the digitization rate, the time of the first sample, and the
complete instrument response function.

11.2 Earth noise

Sensitive seismographs will record ground motions even in the absence of earth-
quakes. These motions, sometimes called microseisms, result from seismic waves
generated primarily by wind and cultural noise at high frequencies and ocean waves
and atmospheric effects at longer periods. Although microseisms are sometimes
studied for their own intrinsic interest, seismologists generally consider them noise
because they hamper observations of small and/or distant earthquakes. Typical
noise levels will vary greatly between different sites and different frequencies. This
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(adapted from Astiz, 1997). Note the microseism peak at 5 to 8 s period and the relatively low
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is illustrated in Figure 11.6, which plots typical noise levels for over 100 different
stations from the global seismic networks (Astiz, 1997).

Alarge noise peak occurs at periods of about 5 to 8 s; this is termed themicroseism
peak. The source of the microseism peak involves seismic waves generated in the
oceans; the peak is observed most strongly along the coast and is weaker near the
middle of continents. However, the physical mechanism that generates these waves
was a mystery for many years, as the typical period of surface gravity waves in
the ocean is about 12 to 15 s, roughly twice the period of the main microseism
peak. Thus, mechanisms such as waves breaking onto the shore cannot explain
the observations (although near-shore interactions are probably responsible for the
small, secondary microseism peak near 15 s period). The main microseism peak
was first explained by Longuet-Higgins (1950), who showed that it results from
standing waves created in the open ocean by interactions between ocean waves
traveling in different directions.

These microseisms are often formed in areas of intense storm activity. During
the 1940s, microseisms received considerable study and it was proposed that small
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arrays of seismometers could be used to determine the source locations of micro-
seisms and potentially track the paths of hurricanes before they reached land. This
scheme did not work very well, and, in any case, is now made obsolete by satellite
observations. In the 1970s through the 1990s, microseism studies were relatively
rare, although there was some research into their use for characterizing near-surface
velocities and the site response of seismic stations. Recently, however, the field has
been revitalized by the exciting discovery that cross-correlation of noise recorded
at two different stations over long time periods can yield the station-to-station
surface-wave Green’s function (Campillo and Paul, 2003). This surprising result
has now been verified by both experimental and theoretical studies and provides
a new way to study Earth structure, free of the limitations imposed by the distri-
bution of natural earthquakes. The best results are obtained when the microseisms
are propagating at a variety of azimuths among the stations, i.e., not limited to a
particular source region. By measuring these surface waves between multiple sta-
tion pairs within an array of stations, high-resolution surface-wave tomography is
possible (e.g., Shapiro et al., 2005).

Current interest in microseisms also involves studying how to reduce their influ-
ence on seismic observations of earthquakes. Noise levels in seismometer installa-
tions vary greatly between sites (see Figure 11.6); a quiet site is capable of detecting
and recording many more earthquakes than a noisy site. Noise levels on the conti-
nents are generally lowest at greater distances from the coast, whereas the noisiest
sites are located on the seafloor and oceanic islands (for a review of seafloor noise
observations, see Webb, 1998). Some improvement in noise levels can be achieved
with borehole or mine shaft installations compared with near-surface vaults.

At extremely low frequencies, the largest signals are the solid Earth tides, which
occur at periods of 12 and 24 hours and are seen only with sensors that are stable
at these periods. As in the case of the ocean tides, they result from the gravitational
effect of the Sun and the Moon on the Earth’s mass. Compared with the ocean
tides, they have smaller amplitudes (about 0.7 m peak-to-peak displacement) and
a near-zero phase lag relative to the forcing function. Earth tides can be used to
help calibrate very long period seismographs and strain meters; they can be readily
predicted with standard Earth models, but care must be taken near coastlines to
include the loading due to oceanic tides.

11.3 Anisotropy†

Most seismological modeling assumes that the Earth is isotropic, that is, seismic
velocities do not vary with direction. In contrast, individual crystals and most
common materials are observed to be anisotropic, with elastic properties that vary
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with orientation. Thus it would be surprising if the Earth was completely isotropic,
but for many years seismologists were somewhat reluctant to consider the effects of
anisotropy. There were several reasons for this, including the greater computational
complexity required for anisotropic calculations, the difficulty in inverting data for
a greater number of elastic constants, and, in many cases, the lack of compelling
evidence for the existence of anisotropy. However, it has now become apparent that
significant anisotropy is present in many parts of the Earth, and anisotropy studies
are becoming an increasingly important part of seismology research (see Maupin
and Park, 2007, for a recent review). Let us now explore some of the complications
that arise when anisotropy is considered. Details on the theoretical background for
this section can be found in the books by Cerveny (2001) and Chapman (2004).

Consider the wavefront generated by a point source in a homogeneous anisotropic
material. The rays travel in straight lines out from the source, but the wavefront
is not spherical because velocity varies as a function of ray angle (Figure 11.7).
At most points on the wavefront, this means that the ray is not perpendicular to
the wavefront. The implications of this are the origin of much of the complexity
in anisotropic wave propagation. The ray is the direction of energy transport and
represents the group velocity of the wave. In contrast, the phase velocity is the
local velocity of the wavefront in the direction perpendicular to the wavefront.
The group velocity is what would be measured by the wavefront arrival time at
a single instrument (assuming the origin time of the pulse was known), while
the phase velocity is what would be measured with travel times collected from a

wavefront
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Figure 11.7 The wavefront generated by a point source in an anisotropic material, showing how
the phase velocity, group velocity, and particle motion vectors point in different directions for a
quasi-compressional wave (except along a symmetry plane of the anisotropy where they will
coincide).The phase velocity vector v points in the same direction as the slowness vector s (see
text).
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small array of instruments during the local passage of the wavefront through the
array. In general, the phase and group velocity directions are different for waves in
anisotropic media. To complicate things still further, the particle motion direction
is not simply related to either the group or phase velocity directions (see Fig. 11.7).

A more quantitative understanding of these properties can be derived from the
momentum equation. Recall from Chapter 2 that the general, linear stress–strain
equation is

τij = cijklekl, (11.18)

where τij is the stress tensor, ekl is the strain tensor, and cijkl is the elastic tensor.
The tensor cijkl has the following symmetries:

cijkl = cjikl since τij = τji,

= cijlk since eij = eji, (11.19)

= cklij from thermodynamic considerations.

These symmetries reduce the number of independent elastic constants in cijkl to 21
in the most general case. Often additional symmetries are considered, which further
reduce the number of elastic constants. For example, crystals with orthorhombic
symmetry have nine elastic constants; those with hexagonal symmetry have five
elastic constants (assuming the orientation of the symmetry axis is known). Since
ekl = 1

2(∂kul + ∂luk), we can use (11.19) to write (11.18) as

τij = cijkl∂luk. (11.20)

Using this expression for τij , we can write the momentum equation in the form

ρüi = (∇ · τ)i = ∂jτij = ∂j(cijkl∂luk) = cijkl∂j∂luk, (11.21)

where we have assumed that cijkl is constant within a homogeneous layer.
Now assume a steady-state plane-wave solution for the displacement u of the

form

u = ge−iω(t−s·x), (11.22)

where s is the slowness vector, x is the position vector, and g is a polarization vector
that gives the direction of particle motion. Note that s is orthogonal to the wavefront
because s·x is unchanged for variations in x perpendicular to s. Thus s is in the same
direction as the phase velocity vector v and we have u = |s| = 1/c = 1/|v|, where
u is the slowness and c is the phase velocity. Within a homogeneous layer, s and



11.3 A N I S O T R O P Y 335

g are constant. Substituting (11.22) into (11.21) and canceling the −ω2e−iω(t−s·x)

terms, we obtain

ρgi = gkcijklsjsl, (11.23)

or

(cijklsjsl − ρδik)gk = 0. (11.24)

Now if we define the density-normalized elastic tensor

)ijkl = cijkl

ρ
(11.25)

and let s = ŝ/c, where ŝ is the unit slowness vector and c is the phase velocity, we
have

(
)ijklŝj ŝl − c2δik

)
gk = 0. (11.26)

Now define

Mik = )ijklŝj ŝl (11.27)

so that we can write (11.26) as

(
Mik − c2δik

)
gk = 0. (11.28)

This is an eigenvalue equation for which there are three solutions for c2 in a
given direction ŝ. In isotropic media, (11.28) reduces to three separate second-
order equations, corresponding to P waves and two types of S waves (e.g., SV
and SH). However, in the general anisotropic case, there is no simple analytic
expression for c(ŝ). For every direction ŝ, there are three solutions that are obtained
by computing the eigenvalues and eigenvectors of Mik. The eigenvalues correspond
to the allowed values for the phase velocity squared, c2, while the eigenvectors, g,
specify the polarizations of the waves. Note that this eigenvalue problem must be
solved for each direction for which a solution is required. There will generally be
three solutions: a single quasi-P wave (qP) and two quasi-S waves (qS).

A useful aid for visualizing the allowed slownesses in anisotropic media is the
slowness surface. This is constructed by connecting all the points in slowness
space that satisfy (11.26). For isotropic media, the slowness surface consists of
three concentric spheres, one with radius uα and two, which are coincident, with
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Figure 11.8 The slowness (inverse phase velocity) and group velocity surfaces computed for an
example of anisotropic material with hexagonal symmetry (x1 symmetry axis).The group
velocity surfaces are the same shape as the wavefronts that would be generated by a point
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= 20.83 km2 s−2.These values are computed from the Kumazawa and Anderson (1969)
measurements of olivine, assuming a fixed olivine a axis and random b and c axis orientations
(see Shearer and Orcutt, 1986).

radius uβ. However, in general the three slowness surfaces are separate and non-
spherical (see Fig. 11.8), and they can have many interesting and complex shapes.
The slowness surface is a measure of the directional dependence of the phase
velocity, and the phase velocity direction is always perpendicular to the wavefront. It
can also be shown that the group velocity direction is perpendicular to the slowness
surface. Thus, the wavefront and the slowness surface have an interesting reciprocal
relationship (Fig. 11.9).

In principle we could compute the group velocity directions graphically from
the slowness surface. However, in practice it is easier to use (e.g., Cerveny, 2001;
Chapman, 2004)

Ui = )ijklĝjskĝl, (11.29)

where U is the group velocity vector, s is the slowness vector, and ĝ is the unit nor-
malized polarization vector. Note that s and ĝ can be obtained from the eigenvalue
equation (11.28). The group velocity and slowness vectors are related by

Uisi = 1 . (11.30)
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Figure 11.9 The relationship between the wavefront and slowness surface for anisotropic
material.

11.3.1 Snell’s law at an interface

We can determine the plane waves that couple at a horizontal interface in the
same way that we did for isotropic media in Chapter 4 – by conserving horizontal
slowness. If we rotate our coordinate system such that s = (p, 0, s3) where p is
the horizontal slowness s1, we can then plot the slowness surfaces on both sides of
the interface in the ps3 plane (also called the sagittal plane). For a given horizontal
slowness p there are six solutions for the vertical slowness s3, corresponding to
upgoing and downgoing qP and qS waves (Fig. 11.10a). At an interface, p must be
conserved so these are the six possible solutions for the reflected and transmitted
waves at an interface. As for isotropic media, values of p larger than a particular
slowness surface represent waves that have turned above the layer; solutions in this
case still exist but are imaginary, representing evanescent waves.

Note that the actual ray (group velocity) directions are generally not the same
as the slowness directions and need not be confined to the sagittal plane. Various
pathological examples are possible, such as that shown in Figure 11.10b. In this case
there are four solutions for vertical slowness from a single slowness surface and
the phase velocity vector can be downward pointing even while the ray direction
is upward. More details concerning this example are contained in Shearer and
Chapman (1989).

11.3.2 Weak anisotropy

For weakly anisotropic material, Backus (1965) used first-order perturbation theory
to show that qPwave phase and group velocity variations within a plane are nearly
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Figure 11.10 (a) For a given value of the horizontal slowness p, there are six possible values for
the vertical slowness. (b) For severely anisotropic material, parts of the slowness surface can be
concave outward, producing multiple solutions for the vertical slowness.

equal and can be approximated as

V 2
p = A + B cos 2θ + C sin 2θ + D cos 4θ + E sin 4θ, (11.31)

where θ is the azimuth of wave propagation. The constants A, B, C, D, and E are
related to the components of the elastic tensor by

8A = 3)1111 + 3)2222 + 2)1122 + 4)1212,

2B = )1111 − )2222,

C = )1112 + )2212,

8D = )1111 + )2222 − 2)1122 − 4)1212,

2E = )1112 − )2212, (11.32)

where )ijkl is the density-normalized elastic tensor and we have assumed that θ
is measured from the x1 axis in the plane perpendicular to the x3 axis. There are
similar equations for qS-wave velocity variations. These equations have become
widely used because they provide a way to model anisotropy by fitting azimuthal
travel time variations with simple 2θ and 4θ curves.

Perhaps the first definitive evidence of seismic anisotropy in the Earth was found
by Hess (1964), who noticed that upper mantle velocities as measured by Pn ar-
rival times from marine refraction experiments in the Pacific tended to be faster in
directions parallel to the fossil spreading direction. Subsequent observations from
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Figure 11.11 A cartoon illustrating typical observations of oceanic upper mantle Pn anisotropy.
The azimuthal dependence of velocity is well-described with a cos 2θ curve, where θ is the angle
from the original plate spreading direction.

additional experiments (e.g., Raitt et al., 1969) have confirmed this relationship
and Pn anisotropy has now been observed at a large number of sites around the
world, including both oceanic and continental regions (e.g., Bamford, 1977). The
anisotropic velocity variations are well modeled with the Backus theory for weak
anisotropy, with the 2θ terms being dominant (Figure 11.11). Uppermost mantle
anisotropy beneath the oceans most likely results from a preferred alignment of
olivine crystals within the mantle that occurred during the formation of oceanic
lithosphere at spreading ridges. Such alignments have also been observed in equiv-
alent upper mantle material from ophiolites (pieces of old oceanic crust and upper
mantle now exposed on land).

11.3.3 Shear-wave splitting

In isotropic media, SV and SH waves travel at the same speed. However, in
anisotropic media, the two quasi-shear waves will typically travel at different speeds
and arrive at slightly different times. Since the polarizations of the two qS waves
are approximately orthogonal this can lead to shear-wave splitting in which a pulse
will be split into two orthogonal components that will arrive at slightly different
times (see Fig. 11.12).

If the time separation between the split shear waves is greater than the duration of
the original pulse, then two distinct arrivals will be observed. Shear-wave splitting
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Figure 11.12 An S wave that travels through an anisotropic layer can split into two S waves with
orthogonal polarizations; this is due to the difference in speed between the qS waves in the
anisotropic material.

has been observed for both crustal and upper mantle anisotropy. Particularly good
examples of shear-wave splitting are seen in teleseismic SKS arrivals (e.g., Kind
et al., 1985; Silver and Chan, 1991). In this case, the polarization of the incident
S-wave is known to be purely SV, as a result of the P leg traveling in the fluid outer
core. The delay times between the split shear waves are typically 1 to 2 seconds for
SKS waves; the splitting is most likely caused primarily by azimuthal anisotropy
within the upper mantle beneath the stations.

Shear-wave splitting is an especially valuable way to observe anisotropy, be-
cause anisotropy can often be detected on a single seismogram. In contrast, travel
time analyses typically require a large number of sources and receivers at different
positions in order to observe directional velocity variations, and, even with good
data coverage, it can be difficult to separate the effects of anisotropy from lateral
heterogeneity. Shear-wave splitting, however, is uniquely diagnostic of anisotropy
because it is very difficult to produce the observed effect (two shear pulses of sim-
ilar shape, observed on orthogonal components at slightly different times) without
anisotropy somewhere along the ray path.

Shear-wave splitting observations typically provide two numbers – the direction
of the fast qS polarization and the delay time between the two qS pulses, from
which the orientation and strength of the anisotropy can be inferred. However,
there is typically a tradeoff in SKS splitting analyses between the strength and
thickness of the anisotropic layer; a thin highly anisotropic layer can produce the
same delay time as a thick weakly anisotropic layer. Receiver function analysis
can sometimes provide better depth resolution if splitting can be identified in Ps

converted phases from discontinuities, because the splitting is restricted to the layer
above the discontinuity. This provides a means to discriminate between anisotropy
in the crust and upper mantle.
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11.3.4 Hexagonal anisotropy

The most general form of anisotropy has 21 free parameters that are consistent with
the required symmetries in the elastic tensor, cijkl.The number of independent elastic
constants is reduced if additional symmetries are present in the elastic tensor. In
seismology, the most commonly considered of these specialized cases has rotational
symmetry about a vertical axis and is termed transverse isotropy because velocities
vary only with incidence angle and not with azimuth (Figure 11.13).

In this case, cijkl contains only five independent elastic constants. Transverse
isotropy is a particularly simple form of anisotropy to study because the two quasi-
shear wave polarizations correspond to SH and SV, and the qSH and qP/qSV systems
can be treated separately in the case of horizontally layered media. Transverse
isotropy is often found in reflection seismic surveys of sedimentary layering in
the crust, and this can bias estimates to reflector depths that are based on isotropic
models. The upper mantle is sometimes modeled as transversely isotropic to explain
discrepancies between Love and Rayleigh surface wave velocities (e.g., Forsyth,
1975).The PREM model (Dziewonski andAnderson, 1981) is transversely isotropic
between 80 and 220 km depth, withSHwaves traveling slightly faster thanSVwaves
(Figure 11.14). The predicted shear-wave splitting in PREM is about 5 s at source–
receiver ranges between 13◦ and 20◦ but is reduced at longer ranges where the
rays pass more steeply through the anisotropic layer. No splitting is predicted for
vertically traveling S waves propagating through transversely isotropic media. Note
that this form of anisotropy does not remove the spherical symmetry in PREM, as
the local symmetry axis always points in the radial direction.

The name “transverse isotropy’’ is somewhat unfortunate, because it only indi-
rectly describes the nature of the anisotropy, but for historical reasons and lack of a

symmetry axis

φ

φ

θ

θvelocity varies with
not with

Figure 11.13 Seismic velocities in transversely isotropic materials vary only with incidence
angle, not with azimuth.There is rotational symmetry about the vertical axis.
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Figure 11.14 SH and SV travel time curves as predicted by the transversely isotropic PREM
model (plot adapted from Shearer, 1991).The triplications in the travel time curves are due to the
400 and 670-km velocity discontinuities.

better label, it is likely to continue to be used. Strictly speaking, the term transverse
isotropy should be used only for the case where the symmetry axis is vertical, but
this restriction is often ignored. A more general name for transverse isotropy with
an arbitrary symmetry axis orientation is hexagonally symmetric anisotropy and
this is used in the crystallography literature (e.g., Musgrave, 1970).

General hexagonal anisotropy is specified by a symmetry axis direction and five
independent elastic constants (for a total of seven free parameters). Velocities vary
only with angle from the symmetry axis; there is rotational symmetry about the
symmetry axis. For a non-vertical symmetry axis, velocities will vary with azimuth
(this is termed azimuthal anisotropy) and the qS polarizations in general do not
correspond to SH and SV. For hexagonal anisotropy with an x1 symmetry axis, we
have the following elastic constants (e.g., Musgrave, 1970):

c1111,

c2222 = c3333,

c2233,

c1212 = c1313,

c1122 = c1133,

2c2323 = c3333 − c2233. (11.33)
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11.3.5 Mechanisms for anisotropy

Anisotropy in rocks can arise in two fundamentally different ways, which have been
termed: (1) shape-preferred orientation (SPO), in which the material is isotropic at
very fine scales, but has anisotropic heterogeneity, which causes seismic anisotropy
at long wavelengths compared to the scale of the heterogeneity, and (2) lattice-
preferred orientation (LPO), in which the anisotropy arises from a preferred orien-
tation of intrinsically anisotropic mineral crystals.

Examples of SPO anisotropy include thin alternating layers of fast and slow
material or small aligned cracks within an isotropic rock, which can cause effective
hexagonal anisotropy when the seismic wavelength is substantially greater than the
layer or crack spacing (Fig. 11.15). In these cases the slow qP direction is parallel
to the symmetry axis, while the fast directions are parallel to the layers or cracks.
For alternating layer anisotropy (sometimes termed periodic thin-layer, or PTL,
anisotropy), relationships between the layer parameters and the effective elastic
constants were derived by Backus (1962). This mechanism is not very efficient at
generating anisotropy because quite large velocity contrasts are required between
the layers to produce significant anisotropic velocity variations at long wavelengths.
However, this type of anisotropy is sometimes important in sedimentary rocks,
where, for example, alternating layers of sandstone and shale might be present.

Preferred crack orientation is a more efficient way to produce anisotropy, and
large porosities are not required because the cracks can be very thin. Relationships
between crack parameters and the elastic constants for the bulk material are com-
plex; theoretical results have been derived by Hudson (1980) and other authors.
The strength of the anisotropy depends upon the crack density, the crack aspect

symmetry axis

Figure 11.15 Two SPO mechanisms that can cause hexagonal anisotropy at long wavelengths
in material that is isotropic at small scales: (left) alternating layers of fast and slow material, and
(right) randomly distributed cracks with a single preferred orientation.
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Figure 11.16 Individual olivine crystals are highly anisotropic and will cause bulk anisotropy in
rocks if they crystalize with a preferred alignment of one or more of their axes.The fastest P-wave
velocities occur in the direction of the a axis, which tends to align parallel to the fossil spreading
direction in the oceanic upper mantle and cause Pn anisotropy. If the b and c axes are randomly
aligned, the resulting material is hexagonally symmetric with a horizontal symmetry axis.

ratio, whether the cracks are wet or dry, and the degree of crack alignment. Cracks
with no preferred orientation will not cause anisotropy but will reduce the isotropic
P and S velocities of the bulk material. Aligned cracks provide the most likely
explanation for many observations of azimuthal anisotropy in the shallow crust.

Individual crystals are typically highly anisotropic, with seismic velocities often
differing by 20% or more among the different directions defined by the crystal
symmetry axes. For example, olivine crystals are orthorhombic with an a-axis qP

velocity of 9.89 km/s, b-axis velocity of 7.73 km/s, and c-axis velocity of 8.43 km/s
(Kumazawa and Anderson, 1969). Isotropic bulk properties can nonetheless re-
sult if the crystals are randomly aligned within a rock, but if some fraction of the
crystals have a preferred alignment then anisotropy is produced, as illustrated for
olivine in Figure 11.16. The form of the anisotropy can be as complicated as that
within the individual crystals. Preferred mineral alignments can produce hexagonal
anisotropy if there is a single preferred orientation direction, with random orien-
tations in the other two coordinates, even when the individual crystals have more
general anisotropy. Azimuthal anisotropy is required to explain shear-wave split-
ting observed in teleseismic S and SKS arrivals and is often thought to result from
a preferred alignment of olivine crystals in the upper mantle, a model that can also
explain observations ofPn anisotropy. In this case the fast direction for horizontally
traveling P waves corresponds to the polarization direction of the faster of the two
vertically traveling qS waves.

11.3.6 Earth’s anisotropy

Anisotropy is observed in Earth at a number of different depths, arising from a
variety of different mechanisms (e.g., Maupin and Park, 2007). In the shallow
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crust, transverse anisotropy (i.e., a vertical symmetry axis) is often seen in reflection
seismology data and can be caused by, for example, fine-scale horizontal layering
of sandstone and shale. In this case, the velocity for vertically propagating P waves
will be less than the velocity for horizontally propagating waves and the moveout
equations of Chapter 7 will produce inaccurate depth estimates to the reflectors
unless the anisotropy is taken into account. Azimuthal anisotropy in the shallow
crust is also observed, most often in shear-wave splitting observations, and can
result from preferred crack or mineral alignment. For material with thin cracks
of random orientation, one should expect more “open’’ cracks (which affect the
seismic velocities) for crack orientations perpendicular to the axis of minimum
compressional stress and this has indeed been observed in laboratory experiments
(Nur and Simmons, 1969). Open vertical cracks in a strike–slip regime will therefore
tend to align parallel to the maximum compressive stress direction. In this case the
fast polarization direction in crustal shear-wave splitting observations will align
with the crack direction and this is sometime used as a measure of the direction
of maximum compression in the crustal stress field. The anisotropy symmetry axis
is horizontal and corresponds to the slow qP direction. Anisotropy in the mid- to
lower-crust is also sometimes observed, most likely a result of preferred alignment
of minerals such as biotite and hornblende.

Azimuthal upper-mantle anisotropy is observed in both Pn travel time studies
and SKS splitting studies and is thought to result mainly from a preferred alignment
of olivine crystals. In most cases, the observations can be largely explained with
hexagonally symmetric models with a near-horizontal symmetry axis correspond-
ing to the fast P-wave direction, although details in the observations sometimes
suggest a dipping symmetry axis or a two-layer anisotropy model (Schulte-Pelkum
and Blackman, 2003). It should be noted that Pn is sensitive to the very top of the
mantle whereasSKS splitting delay times typically integrate the effects of azimuthal
anisotropy within the top few hundreds of kilometers. Global surface-wave obser-
vations generally require transverse isotropy in the upper mantle with a vertical
symmetry axis (corresponding to the slow P-wave direction) to explain both Love
and Rayleigh wave data. For example, the PREM model is transversely isotropic be-
tween 24.4 km and 220 km. Transversely isotropic models predict no Pn anisotropy
or SKS splitting, so at first glance there might appear to be a contradiction between
the surface-wave results and other data sets. However, surface waves propagat-
ing over long paths will tend to average out the azimuthal anisotropy that may be
present locally at varying orientations, resulting in globally averaged material prop-
erties that appear transversely isotropic. Many surface-wave tomography studies
now solve for lateral variations in azimuthal anisotropy in the upper mantle, and
these results show some agreement with SKS splitting results, although the limited
lateral resolution of the surface-wave models makes detailed comparisons difficult
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(e.g., Montagner et al., 2000). Developing upper-mantle tomography models that
fully incorporate 3D velocity variations and general anisotropy is a challenging
task, given the large number of additional parameters than anisotropic models re-
quire. However, resolving the orientation and strength of upper-mantle anisotropy
is important because anisotropy provides valuable insights into mantle fabric and
past and current deformation and geodynamic processes (see Savage, 1999; Fouch
and Rondenay, 2006, for reviews of mantle anisotropy). The increasing seismic
station density in many regions should help to resolve anisotropy on much finer
scales than has previously been possible, at least beneath continents.

Anisotropy is observed to be relatively weak in the deeper mantle below 300 km
and weak to nonexistent in the mid mantle below the 660-km discontinuity and
above the D′′ region near the core (e.g., Karato, 1998). The absence of mid-mantle
anisotropy is consistent with some mineral physics results that predict the lack
of preferred crystal alignment during deformation of silicate perovskite at mid-
mantle conditions (Meade et al., 1995). However, anisotropy is again observed
in the bottom few hundred kilometers of the mantle in the D′′ region, based on
shear-wave splitting observations (e.g., Kendall and Silver, 1996; Moore et al.,
2004). Splitting for paths within D′′ can be complicated but usually occurs with SH

velocities faster than SV velocities (VSH > VSV ), similar to the globally averaged
anisotropy (i.e., transverse isotropy) in the upper mantle for which SH waves are
also faster (see Fig. 11.14). Proposed mechanisms for D′′ anisotropy include SPO
models with partial melt (Kendall and Silver, 1996) or aligned perovskite plus
magnesiowüstite aggegrates (Karato, 1998). The fluid outer core appears to be
isotropic, but anisotropy was discovered in the solid inner core from observations
of PKP travel times and anomalous splitting of normal modes (Morelli et al.,
1986; Woodhouse et al., 1986), which indicate the P velocity is fastest for directions
parallel to the rotation axis. Inner-core anisotropy is believed to be due to a preferred
orientation of iron crystals within the inner core, but the mechanism for causing
this alignment is uncertain (see Song, 1997, for a review of inner-core anisotropy).

11.4 Exercises

1. Show that the amplitude and phase of the complex function Z(ω) in equation
(11.12) are given by

|Z(ω)| = ω2
√

(ω2 − ω2
0)

2 + 4ϵ2ω2
, (11.34)

φ(ω) = π − tan−1 2ϵω

ω2 − ω2
0

. (11.35)



11.4 E X E R C I S E S 347

2. (COMPUTER) Use equation (11.12) to compute response curves at frequencies
between 0.001 and 1 Hz. Plot your results for: (a) the amplitude response curve
(sensor displacement as a function of ground displacement) for a seismometer of
20 s natural period with damping constant h = 0.7 and (b) the mass displacement
as a function of ground acceleration response curve for the same sensor.

3. What will be the displacement of a suspended mass of 20 s natural period subject
to a change in gravity of 1 milligal (= 10−5 m/s2)?

4. Jake is driving his new sport utility vehicle when a large earthquake occurs.Assume
his suspension is critically damped with a natural period of 1 Hz and a travel of
±20 cm.

(a) How large a vertical acceleration at 1 Hz can he experience before his sus-
pension bottoms out? Express your answer in g (1 g = 9.8 m/s2).

(b) How much closer to the ground would his vehicle ride if he were to travel to
a planet where the gravity is 20% stronger than on Earth?

5. From Figure 11.8, what is the approximate difference in speeds between two
vertically traveling qS waves in this material? Assuming that the upper mantle
contains an anisotropic layer with pure olivine aligned as in this plot, how thick
would the layer have to be to produce shear-wave splitting in vertical SKS waves
with a 2 s delay time between the split shear waves?

6. From equation (11.31), sketch the azimuthal variation of qPwaves for the follow-
ing non-zero values of the harmonic constants (in km2/s2): (a) A = 64, B = 8, (b)
A = 64, D = 8, (c) A = 64, B = 4, D = 4.

7. For hexagonal anisotropy, how many of the 81 components of cijkl have zero
values?

8. For the values of )ijkl listed in Figure 11.8, compute the Backus coefficients A,
B, C, D, and E in equation (11.32). You will need to use the relationships for
hexagonal symmetry listed in equation (11.33). Make a plot of P velocity versus
azimuth.

9. (COMPUTER) Assume density-normalized elastic constants for elastic wave
propagation within an iron crystal. This crystal has cubic symmetry with )1111 =
)2222 = )3333 = 29.64 km2 s−2, )1122 = )1133 = )2233 = 17.71 km2 s−2, and
)2323 = )1313 = )1212 = 14.78 km2 s−2 (values from Musgrave, 1970).

(a) Using the symmetry relationships (11.19), fill in all 81 values of )ijkl. Here is
a handy subroutine that does this:

SUBROUTINE FILLOUT(c)
real c(3,3,3,3)
do i=1,3
do j=1,3
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do k=1,3
do l=1,3

if (c(i,j,k,l).eq.0.) c(i,j,k,l)=c(j,i,k,l)
if (c(i,j,k,l).eq.0.) c(i,j,k,l)=c(i,j,l,k)
if (c(i,j,k,l).eq.0.) c(i,j,k,l)=c(j,i,l,k)
if (c(i,j,k,l).eq.0.) c(i,j,k,l)=c(k,l,i,j)
if (c(i,j,k,l).eq.0.) c(i,j,k,l)=c(l,k,i,j)
if (c(i,j,k,l).eq.0.) c(i,j,k,l)=c(k,l,j,i)
if (c(i,j,k,l).eq.0.) c(i,j,k,l)=c(l,k,j,i)

enddo
enddo
enddo
enddo
return
end

(b) Compute and plot the slowness surfaces in the s1–s3 plane. Label the
qP and two qS waves. Note: You will need to construct the Mik matrix
at a range of slowness directions using equation (11.27) and then find
the eigenvalues of this matrix with an appropriate subroutine or software
package. Depending upon how the eigenvalues are sorted, you may find it
difficult to draw lines between the points without switching between the
different surfaces. If so, simply plot a symbol at each point and do not
attempt to connect the points.

(c) Compute and plot the wavefronts resulting from a point source after
1 s. You will need to use equation (11.29).

(d) Test your program by repeating steps (a)–(c) for the olivine model of
Figure 11.8, using the elastic constants listed in the figure caption and the
hexagonal symmetry conditions given in equations (11.33).



Appendix A
The PREM model

For many years the most widely used 1-D model of Earth’s seismic velocities has been
the Preliminary Reference Earth Model (PREM) of Dziewonski and Anderson (1981).
This model was designed to fit a variety of different data sets, including free oscillation
center frequency measurements, surface wave dispersion observations, travel time data
for a number of body-wave phases, and basic astronomical data (Earth’s radius, mass,
and moment of inertia). In addition to profiling the P and S velocities, PREM specifies
density and attenuation as functions of depth. Although these parameters are known less
precisely than the seismic velocities, including them is important because it makes the model
complete and suitable for use as a reference to compute synthetic seismograms without
requiring additional assumptions. In order to simultaneously fit Love and Rayleigh wave
observations, PREM is transversely isotropic between 80 and 220 km depth in the upper
mantle. This is a spherically symmetric form of anisotropy in which SH and SVwaves travel
at different speeds. For simplicity, the table here lists only values from an isotropic version
of PREM. The true PREM model is also specified in terms of polynomials between node
points; linear interpolation between the 100 km spacing of values in this table will produce
only approximate results. All current Earth models have values that are reasonably close to
PREM; the largest differences are in the upper mantle, where, for example, a discontinuity
at 220 km is not found in most models.

349
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Table A.1: Preliminary reference Earth model (isotropic version)

Depth Radius Vp Vs ρ Qµ Qκ P
(km) (km) (km/s) (km/s) (g/cc) (GPa)
0.0 6371.0 1.45 0.00 1.02 0.0 57823.0 0.0
3.0 6368.0 1.45 0.00 1.02 0.0 57823.0 0.0
3.0 6368.0 5.80 3.20 2.60 600.0 57823.0 0.0

15.0 6356.0 5.80 3.20 2.60 600.0 57823.0 0.3
15.0 6356.0 6.80 3.90 2.90 600.0 57823.0 0.3
24.4 6346.6 6.80 3.90 2.90 600.0 57823.0 0.6
24.4 6346.6 8.11 4.49 3.38 600.0 57823.0 0.6
71.0 6300.0 8.08 4.47 3.38 600.0 57823.0 2.2
80.0 6291.0 8.08 4.47 3.37 600.0 57823.0 2.5
80.0 6291.0 8.08 4.47 3.37 80.0 57823.0 2.5

171.0 6200.0 8.02 4.44 3.36 80.0 57823.0 5.5
220.0 6151.0 7.99 4.42 3.36 80.0 57823.0 7.1
220.0 6151.0 8.56 4.64 3.44 143.0 57823.0 7.1
271.0 6100.0 8.66 4.68 3.47 143.0 57823.0 8.9
371.0 6000.0 8.85 4.75 3.53 143.0 57823.0 12.3
400.0 5971.0 8.91 4.77 3.54 143.0 57823.0 13.4
400.0 5971.0 9.13 4.93 3.72 143.0 57823.0 13.4
471.0 5900.0 9.50 5.14 3.81 143.0 57823.0 16.0
571.0 5800.0 10.01 5.43 3.94 143.0 57823.0 19.9
600.0 5771.0 10.16 5.52 3.98 143.0 57823.0 21.0
600.0 5771.0 10.16 5.52 3.98 143.0 57823.0 21.0
670.0 5701.0 10.27 5.57 3.99 143.0 57823.0 23.8
670.0 5701.0 10.75 5.95 4.38 312.0 57823.0 23.8
771.0 5600.0 11.07 6.24 4.44 312.0 57823.0 28.3
871.0 5500.0 11.24 6.31 4.50 312.0 57823.0 32.8
971.0 5400.0 11.42 6.38 4.56 312.0 57823.0 37.3

1071.0 5300.0 11.58 6.44 4.62 312.0 57823.0 41.9
1171.0 5200.0 11.73 6.50 4.68 312.0 57823.0 46.5
1271.0 5100.0 11.88 6.56 4.73 312.0 57823.0 51.2
1371.0 5000.0 12.02 6.62 4.79 312.0 57823.0 55.9
1471.0 4900.0 12.16 6.67 4.84 312.0 57823.0 60.7
1571.0 4800.0 12.29 6.73 4.90 312.0 57823.0 65.5
1671.0 4700.0 12.42 6.78 4.95 312.0 57823.0 70.4
1771.0 4600.0 12.54 6.83 5.00 312.0 57823.0 75.4
1871.0 4500.0 12.67 6.87 5.05 312.0 57823.0 80.4
1971.0 4400.0 12.78 6.92 5.11 312.0 57823.0 85.5
2071.0 4300.0 12.90 6.97 5.16 312.0 57823.0 90.6
2171.0 4200.0 13.02 7.01 5.21 312.0 57823.0 95.8
2271.0 4100.0 13.13 7.06 5.26 312.0 57823.0 101.1
2371.0 4000.0 13.25 7.10 5.31 312.0 57823.0 106.4
2471.0 3900.0 13.36 7.14 5.36 312.0 57823.0 111.9
2571.0 3800.0 13.48 7.19 5.41 312.0 57823.0 117.4
2671.0 3700.0 13.60 7.23 5.46 312.0 57823.0 123.0
2741.0 3630.0 13.68 7.27 5.49 312.0 57823.0 127.0
2771.0 3600.0 13.69 7.27 5.51 312.0 57823.0 128.8
2871.0 3500.0 13.71 7.26 5.56 312.0 57823.0 134.6
2891.0 3480.0 13.72 7.26 5.57 312.0 57823.0 135.8
2891.0 3480.0 8.06 0.00 9.90 0.0 57823.0 135.8
2971.0 3400.0 8.20 0.00 10.03 0.0 57823.0 144.2
3071.0 3300.0 8.36 0.00 10.18 0.0 57823.0 154.8
3171.0 3200.0 8.51 0.00 10.33 0.0 57823.0 165.2
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Table A.1: Continued

Depth Radius Vp Vs ρ Qµ Qκ P
(km) (km) (km/s) (km/s) (g/cc) (GPa)

3271.0 3100.0 8.66 0.00 10.47 0.0 57823.0 175.5
3371.0 3000.0 8.80 0.00 10.60 0.0 57823.0 185.7
3471.0 2900.0 8.93 0.00 10.73 0.0 57823.0 195.8
3571.0 2800.0 9.05 0.00 10.85 0.0 57823.0 205.7
3671.0 2700.0 9.17 0.00 10.97 0.0 57823.0 215.4
3771.0 2600.0 9.28 0.00 11.08 0.0 57823.0 224.9
3871.0 2500.0 9.38 0.00 11.19 0.0 57823.0 234.2
3971.0 2400.0 9.48 0.00 11.29 0.0 57823.0 243.3
4071.0 2300.0 9.58 0.00 11.39 0.0 57823.0 252.2
4171.0 2200.0 9.67 0.00 11.48 0.0 57823.0 260.8
4271.0 2100.0 9.75 0.00 11.57 0.0 57823.0 269.1
4371.0 2000.0 9.84 0.00 11.65 0.0 57823.0 277.1
4471.0 1900.0 9.91 0.00 11.73 0.0 57823.0 284.9
4571.0 1800.0 9.99 0.00 11.81 0.0 57823.0 292.3
4671.0 1700.0 10.06 0.00 11.88 0.0 57823.0 299.5
4771.0 1600.0 10.12 0.00 11.95 0.0 57823.0 306.2
4871.0 1500.0 10.19 0.00 12.01 0.0 57823.0 312.7
4971.0 1400.0 10.25 0.00 12.07 0.0 57823.0 318.9
5071.0 1300.0 10.31 0.00 12.12 0.0 57823.0 324.7
5149.5 1221.5 10.36 0.00 12.17 0.0 57823.0 329.0
5149.5 1221.5 11.03 3.50 12.76 84.6 1327.7 329.0
5171.0 1200.0 11.04 3.51 12.77 84.6 1327.7 330.2
5271.0 1100.0 11.07 3.54 12.82 84.6 1327.7 335.5
5371.0 1000.0 11.11 3.56 12.87 84.6 1327.7 340.4
5471.0 900.0 11.14 3.58 12.91 84.6 1327.7 344.8
5571.0 800.0 11.16 3.60 12.95 84.6 1327.7 348.8
5671.0 700.0 11.19 3.61 12.98 84.6 1327.7 352.3
5771.0 600.0 11.21 3.63 13.01 84.6 1327.7 355.4
5871.0 500.0 11.22 3.64 13.03 84.6 1327.7 358.0
5971.0 400.0 11.24 3.65 13.05 84.6 1327.7 360.2
6071.0 300.0 11.25 3.66 13.07 84.6 1327.7 361.8
6171.0 200.0 11.26 3.66 13.08 84.6 1327.7 363.0
6271.0 100.0 11.26 3.67 13.09 84.6 1327.7 363.7
6371.0 0.0 11.26 3.67 13.09 84.6 1327.7 364.0





Appendix B
Math review

This appendix is not intended to teach anyone vector calculus or complex number theory,
but simply to list some of the important definitions to assist those whose skills may have
become rusty. Many of the equations are expressed in both standard vector notation and the
index notation used in this book.

B.1 Vector calculus

Consider a Cartesian coordinate system with x, y, and z axes. The length, or magnitude, of
a vector u is written as ∥u∥. A vector may be expressed in terms of its components as

u = uxx̂ + uyŷ + uzẑ, (B.1)

where x̂, ŷ, and ẑ are unit length vectors in the x, y, and z directions. The dot product of
two vectors is a scalar (a single number) and is defined as

λ = u · v = ∥u∥∥v∥ cos θ (B.2)

= uxvx + uyvy + uzvz, (B.3)

where θ is the angle between the two vectors. It follows that u · v = 0 when u and v are
orthogonal and that for unit vectors x̂ · x̂ = 1. Note that for a unit vector û, the dot product
û · v gives the length of the orthogonal projection of v onto û.

The cross-product between two vectors is a third vector that points in a direction per-
pendicular to both (according to the right-hand rule). The cross-product can be expressed
in component form as

u × v = (uyvz − uzvy)x̂ + (uzvx − uxvz)ŷ + (uxvy − uyvx)ẑ, (B.4)

and the length of this vector may be expressed as

∥u × v∥ = ∥u∥∥v∥ sin θ. (B.5)
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v

u

θ
v  u =  v cos(θ)

Figure B.1 The dot product of
a vector with a unit vector is
the length of the projection
onto the unit vector.

Note that the dot product is commutative, but not the cross-product, that is

u · v = v · u, (B.6)

u × v = −(v × u). (B.7)

A second-order tensor, U, is a linear operator that produces one vector from another,
that is,

u = Uv, (B.8)

ui = Uijvj (sum over j = 1, 2, 3).

Here we introduce the use of index notation; i and j are assumed to take on the values 1,
2, and 3 for the x, y, and z components, respectively. Notice that in a Cartesian coordinate
system, the second-order tensor U has the form of a 3 × 3 matrix. We also begin using
the summation convention; repeated indices in a product are assumed to be summed over
values from 1 to 3.

The projection property of the dot product can be used to express a vector in a different
(i.e., rotated) Cartesian coordinate system. If the new coordinate axes are defined by the
orthogonal unit vectors x̂′, ŷ′, and ẑ′ (expressed in the original x,y,z coordinates), then the
x′ coordinate of a vector v is given by x̂′ · v. In this way the vector in the new coordinate
system is given by

v′ =

⎡

⎣
x̂′

1 x̂′
2 x̂′

3
ŷ′

1 ŷ′
2 ŷ′

3
ẑ′

1 ẑ′
2 ẑ′

3

⎤

⎦ v ≡ Av, (B.9)

where A is the transformation tensor with components equal to the cosines of the an-
gles between the primed and unprimed axes. We can express the same equation in index
notation as

v′
i = Aijvj. (B.10)
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Because the rows of A are orthogonal unit vectors it follows that

ATA =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ = I, (B.11)

where I is the identity matrix.
We often will also want a way to transform a Cartesian tensor to a new coordinate system.

This can be obtained by applying the transformation tensor A to both sides of (B.8)

u = Uv (B.12)

Au = AUv (B.13)

Au = AU(ATA)v (B.14)

Au = AUAT(Av) (B.15)

u′ = AUATv′ (B.16)

and we see that the tensor operator that produces u′ from v′ in the primed coordinate system
is given by

U′ = AUAT (B.17)

which we can use to convert U to U′. In Chapter 2, we use the eigenvector matrix N to rotate
the stress tensor into its principal axes coordinate system. The definition of N is similar to
A except that the unit vectors are set to the columns rather than the rows. Thus NT = A
and in this case the transformation equation is

U′ = NTUN (B.18)

Useful matrix identities include

A(B + C) = AB + AC (B.19)

(A + B)T = AT + BT (B.20)

(AB)T = BTAT (B.21)

(AB)−1 = B−1A−1 (B.22)

(A−1)T = (AT)−1 (B.23)

where for the last two we assume the existence of inverses of A and B.
Functions that vary with position are termed fields; we can have scalar fields, vector

fields, and tensor fields. In this case we may define spatial derivatives, such as the gradient,
divergence, Laplacian, and curl.
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The gradient of a scalar field, written ∇λ, is a vector field, defined by the partial deriva-
tives of the scalar in x, y, and z directions:

u = ∇λ = ∂λ

∂x
x̂ + ∂λ

∂y
ŷ + ∂λ

∂z
ẑ, (B.24)

ui = ∂iλ,

where ∂i is shorthand notation for ∂/∂x, ∂/∂y, and ∂/∂z for i = 1, 2, and 3 respectively. The
gradient vector, ∇λ, is normal to surfaces of constant λ.

The gradient of a vector field is a tensor field:

U = ∇u, (B.25)

Uij = ∂iuj.

The divergence of a vector field, written ∇ · u, is a scalar field:

λ = ∇ · u = ∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
(B.26)

= ∂iui (sum over i = 1, 2, 3).

The divergence of a second-order tensor field is a vector field:

u = ∇ · U, (B.27)

uj = ∂iUij (sum over i = 1, 2, 3).

The Laplacian of a scalar field, written ∇2λ, is a scalar field:

φ = ∇2λ = ∇ · ∇λ = ∂2λ

∂x2 + ∂2λ

∂y2 + ∂2λ

∂z2 (B.28)

= ∂j∂jλ (sum over j = 1, 2, 3).

The Laplacian of a vector field is a vector field:

u = ∇2v = ∇ · ∇v, (B.29)

ui = ∂j∂jvi (sum over j = 1, 2, 3).

The curl of a vector field is a vector field:

u = ∇ × v =
(
∂vz

∂y
− ∂vy

∂z

)
x̂

+
(
∂vx

∂z
− ∂vz

∂x

)
ŷ

+
(
∂vy

∂x
− ∂vx

∂y

)
ẑ. (B.30)
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The operator ∇ is distributive, that is,

∇(λ+ φ) = ∇λ+ ∇φ, (B.31)

∇ · (u + v) = ∇ · u + ∇ · v, (B.32)

∇ × (u + v) = ∇ × u + ∇ × v. (B.33)

A vector field defined as the gradient of a scalar field is curl free, that is,

∇ × (∇λ) = 0. (B.34)

A vector field defined as the curl of another vector field is divergence free, that is,

∇ · (∇ × u) = 0. (B.35)

The following identities are often useful:

∇ · λu = λ∇ · u + u · ∇λ, (B.36)

∇ × λu = λ∇ × u + ∇λ× u, (B.37)

∇ × (∇ × u) = ∇∇ · u − ∇2u. (B.38)

The identity matrix I can be written in index notation as δij where

δij =
{

1 for i = j,

0 for i ̸= j.
(B.39)

When δij appears as part of a product in equations, it can be used to switch the indices
of other terms, that is,

∂iδijuk = ∂juk. (B.40)

Of great importance in continuum mechanics is Gauss’s theorem, which equates the
volume integral of a vector field to the surface integral of the orthogonal component of the
vector field:

∫

V
∇ · u dV =

∫

S
u · n̂ dS, (B.41)

where n̂ is the outward normal vector to the surface.
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Re(z)

Im(z)

x

y
r

z

Figure B.2 The complex number z
can be represented as a point in the
complex plane.

B.2 Complex numbers

We use complex numbers in this book mostly as a shorthand way to keep track of the phase
and amplitude of harmonic waves. The imaginary number i is defined as

i2 = −1. (B.42)

It follows that

√
−1 = ±i and 1/i = −i. (B.43)

A complex number can be written as

z = x + iy, (B.44)

where x = Re(z) is the real part of z and y = Im(z) is the imaginary part of z (note
that y itself is a real number). Complex numbers obey the commutative, associative, and
distributive rules of arithmetic. The complex conjugate of z is defined as

z∗ = x − iy. (B.45)

Complex numbers may be represented as points on the complex plane (see Fig. B.2),
either in Cartesian coordinates by x and y, or in polar coordinates by their phase, θ, and
their magnitude, r = |z|. These forms are related by

z = reiθ = r(cos θ + i sin θ) = x + yi. (B.46)

The magnitude |z| is also sometimes referred to as the absolute value of z. Note that

y/x = tan θ (B.47)

and that

zz∗ = (x + iy)(x − iy) = x2 + y2 = |z|2. (B.48)

Now let us illustrate the convenience of complex numbers for describing wave motion. A
harmonic wave of angular frequency ω is defined by its amplitude a and phase delayφ
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(Fig. B.3), that is,

f(t) = a cos(ωt − φ). (B.49)

Using a trigonometric identity for cos(ωt − φ), this can be rewritten

f(t) = a cosφ cosωt + a sin φ sinωt (B.50)

= a1 cosωt + a2 sinωt, (B.51)

where a1 ≡ a cosφ and a2 ≡ a sin φ. This is a more convenient form because it is a linear
function of the coefficients a1 and a2. A harmonic wave of arbitrary phase can always
be expressed as a weighted sum of a sine and a cosine function. Two waves of the same
frequency can be summed by adding their sine and cosine coefficients. Note that a and φ
may be recovered from the new coefficients using

a2 = a2
1 + a2

2 and φ = tan−1(a2/a1). (B.52)

We can obtain the same relationships using a single complex coefficient A by writing
the function f(t) as a complex exponential function

f(t) = Re
[
Ae−iωt

]
. (B.53)

Expanding this, we have

f(t) = Re [A (cos(−ωt) + i sin(−ωt))]

= Re [A(cosωt − i sinωt)] . (B.54)

Now consider the real and imaginary parts of A = x + iy:

f(t) = Re [(x + iy)(cosωt − i sinωt)] . (B.55)

a

t

Figure B.3 The amplitude a and phase delay φ of a cosine function.
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The real terms give

f(t) = x cosωt + y sinωt. (B.56)

This is identical to (B.51) if we assume

a1 = x = Re(A), (B.57)

a2 = y = Im(A). (B.58)

In this way a single complex number can keep track of both the amplitude and phase of
harmonic waves. For convenience, equations such as (B.53) usually do not explicitly include
the Re function; in these cases the reader should keep in mind that the real part must always
be taken before the equation has a physical meaning. This applies, for example, to equation
(3.36) in Chapter 3.



Appendix C
The eikonal equation

Consider the propagation of compressional waves in heterogeneous media. From (3.31),
we have

∇2φ − 1
α2

∂2(φ)

∂t2 = 0, (C.1)

where the scalar potential for compressional waves, φ, obeys the relationship u = ∇φ
where u is displacement. The P-wave velocity, α, is a function of position, α = α(x). Now
assume a harmonic solution of the form

φ(t) = A(x)e−iω[t−T(x)], (C.2)

where T is a phase factor and A is the local amplitude. We can expand the spatial derivatives
of φ as

∇φ = ∇A e−iω[t−T(x)] − iωA ∇Te−iω[t−T(x)], (C.3)

∇2φ = ∇2A e−iω[t−T(x)] − iω∇T · ∇A e−iω[t−T(x)]

−iω∇A · ∇Te−iω[t−T(x)] − iωA ∇2Te−iω[t−T(x)]

−ω2A∇T · ∇Te−iω[t−T(x)]

=
(
∇2A − ω2A|∇T |2 − i[2ω∇A · ∇T + ωA ∇2T ]

)
e−iω[t−T(x)] (C.4)

and the time derivatives as

∂2(φ)

∂t2 = −Aω2e−iω[t−T(x)]. (C.5)

Substituting into (C.1) and dividing out the constant e−iω[t−T(x)] factor, we obtain

∇2A − ω2A|∇T |2 − i[2ω∇A · ∇T + ωA∇2T ] = −Aω2

α2 . (C.6)
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From the real part of this equation we have

∇2A − ω2A|∇T |2 = −Aω2

α2 (C.7)

and from the imaginary part we have

2ω∇A · ∇T + ωA∇2T = 0

or

2∇A · ∇T + A∇2T = 0. (C.8)

Dividing (C.7) by Aω2 and rearranging, we obtain

|∇T |2 − 1
α2 = ∇2A

Aω2 . (C.9)

We now make the high-frequency approximation that ω is sufficiently large that the 1/ω2

term can be ignored. We thus have

|∇T |2 = 1
α2 . (C.10)

A similar equation can be derived for S waves. Thus a more general form for this equation
is

|∇T |2 = 1
c2 , (C.11)

where c is either the local P-wave speed,α, or the local S-wave speed, β. This is the standard
form for the eikonal equation (e.g., equation 4.41 in Aki and Richards, 2002). This equation
can also be expressed as

|∇T |2 = u2, (C.12)

where u = 1/c is called the slowness. Since the velocity, c, typically appears in the denom-
inator in ray tracing equations, we will find that it is usually more convenient to use the
slowness. The phase factor, T , is also sometimes called the travel time function. We can
write (C.12) in expanded form as

|∇T |2 = (∂xT)2 + (∂yT)2 + (∂zT)2 = u2. (C.13)

Note that the phase factor T has a gradient whose amplitude is equal to the local slowness.
The function T(x) = constant defines surfaces called wavefronts. Lines perpendicular to
T(x) or parallel to ∇T(x) are termed rays. The ray direction is defined by the gradient of T ,

∇T = uk̂ = s, (C.14)



A P P E N D I X C . T H E E I K O N A L E Q U A T I O N 363

where k̂ is the unit vector in the local ray direction and s is the slowness vector. The function
T(x) has units of time and, because the wavefronts propagate with the local slowness in a
direction parallel to the rays, it is simply the time required for a wavefront to reach x.

The eikonal equation forms the basis for ray theoretical approaches to modeling seismic
wave propagation, which are discussed in Chapter 4. It is an approximate solution, valid
at high frequencies so that the terms in the wave equation that involve spatial velocity
gradients in the Lamé parameters (see equation (3.18)) and the wave amplitude (C.9) can
be neglected. Thus it is valid only at seismic wavelengths which are short compared to the
distances in the medium over which velocity and amplitude change significantly. However,
because this is often the case in the Earth, ray theoretical methods based on the eikonal
equation have proven to be extremely useful.

Now recall equation (C.8 ), the imaginary part of (C.6):

2∇A · ∇T + A∇2T = 0, (C.15)

where A is the wave amplitude and T is the phase factor or travel time for the wavefront.
Remembering that ∇T = uk̂ where u is the local wave slowness and k̂ is the unit vector in
the ray direction, we have

2uk̂ · ∇A = −∇ · (uk̂)A, (C.16)

or

A = −2u∇A · k̂
∇ · (uk̂)

. (C.17)

Integrating along the ray path in the direction k̂, a solution to (C.17) is provided by

A = exp

(

−1
2

∫ ∇ · (uk̂)
u

ds

)

. (C.18)

Substituting this expression into (C.2) for the compressional wave potential we can write

φ(ω) = Ae−iωT(r) = exp

(

−1
2

∫

path

∇ · (uαk̂)
uα

ds

)

exp
(

−iω

∫

path
uα ds

)
. (C.19)

Here uα ds is the travel time along the path and represents the usual oscillatory wave motion
encountered previously. The exponent in the first exponential, however, is negative and real.
Thus it represents a decay in amplitude along the ray path. This exponent can be further
manipulated:

−1
2

∫

path

∇ · (uαk̂)
uα

ds = −1
2

∫

path

(
k̂ · ∇uα

uα
+ ∇ · k̂

)

ds



364 A P P E N D I X C . T H E E I K O N A L E Q U A T I O N

= −1
2

∫

path

(
1
uα

duα

ds
+ ∇ · k̂

)
ds

= −1
2

∫

path

duα

uα
− 1

2

∫

path
∇ · k̂ ds

= −1
2

ln u

∣∣∣∣
uα

u0

− 1
2

∫

path
∇ · k̂ ds

= −1
2

ln
(

uα

u0

)
− 1

2

∫

path
∇ · k̂ ds. (C.20)

Here u0 is the slowness at the source where the radiation first began. If we substitute (C.20)
into (C.19) we find:

φ(ω) = (u0/uα)
1/2e

− 1
2
∫

path ∇·k̂ ds
e
−iω

∫
path uα ds

. (C.21)

This equation describes the effect of geometrical spreading on wave amplitudes. ∇ · k̂, the
divergence of the unit vector parallel to the ray, represents the curvature of the wavefront
and, when large, leads to a large amplitude reduction.

small amplitude reduction large amplitude reduction

To illustrate the effect of the geometrical
spreading term, consider a spherical wave di-
verging in a homogeneous whole space. In this
case, wavefronts are spheres while rays are radii
(k̂ = r̂). Recalling the expression for the diver-
gence in spherical coordinates we can write:

∇ · k̂ = 1
r2 ∂r(r

2) = 2
r
. (C.22)

Substituting for the first exponential term in
(C.21), we obtain

ray

wavefront

−1
2

∫

path
∇ · k̂ ds = −1

2

∫

path

2ds

r
= −

∫ r

r0

dr

r
= ln

( r0

r

)
(C.23)
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and thus from (C.21), and because u0 = uα from homogeneity, we obtain

φ(ω) =
( r0

r

)
e
−iω

∫
path uα ds =

( r0

r

)
e−iωuαr. (C.24)

Thus, in a homogeneous medium (a whole space), the amplitude decays as r−1. This result
also follows from energy considerations (see Chapter 6) since the area of the wavefront
grows as r2.





Appendix D
Fortran subroutines

The following FORTRAN77 subroutines are required for some of the exercises.

! LAYERXT calculates dx and dt for a ray in a layer with a linear
! velocity gradient. This is a highly modified version of a
! subroutine in Chris Chapman’s WKBJ program.
!
! Inputs: p = horizontal slowness
! h = layer thickness
! utop = slowness at top of layer
! ubot = slowness at bottom of layer
! Returns: dx = range offset
! dt = travel time
! irtr = return code
! = -1, zero thickness layer
! = 0, ray turned above layer
! = 1, ray passed through layer
! = 2, ray turned in layer, 1 leg counted in dx,dt
!

subroutine LAYERXT(p,h,utop,ubot,dx,dt,irtr)

if (p.ge.utop) then !ray turned above layer
dx=0.
dt=0.
irtr=0
return

else if (h.eq.0.) then !zero thickness layer
dx=0.
dt=0.
irtr=-1
return

end if

u1=utop
u2=ubot
v1=1./u1
v2=1./u2
b=(v2-v1)/h !slope of velocity gradient

eta1=sqrt(u1**2-p**2)

if (b.eq.0.) then !constant velocity layer
dx=h*p/eta1
dt=h*u1**2/eta1
irtr=1
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return
end if

x1=eta1/(u1*b*p)
tau1=(alog((u1+eta1)/p)-eta1/u1)/b

if (p.ge.ubot) then !ray turned within layer,
dx=x1 !no contribution to integral
dtau=tau1 !from bottom point
dt=dtau+p*dx
irtr=2
return

end if

irtr=1

eta2=sqrt(u2**2-p**2)
x2=eta2/(u2*b*p)
tau2=(alog((u2+eta2)/p)-eta2/u2)/b

dx=x1-x2
dtau=tau1-tau2

dt=dtau+p*dx

return
end

! RTCOEF calculates P/SV reflection/transmission coefficients
! for an interface between two solid layers, based on the
! equations on p. 149-150 of Aki and Richards. This version
! is modified from an older routine provided by Tom Sereno.
!
! Inputs: vp1 = P-wave velocity of layer 1 (top layer)
! (real) vs1 = S-wave velocity of layer 1
! den1 = density of layer 1
! vp2 = P-wave velocity of layer 2 (bottom layer)
! vs2 = S-wave velocity of layer 2
! den2 = density of layer 2
! hslow = horizontal slowness (ray parameter)
! Returns: rt(1) = down P to P up (refl)
! (complex) rt(2) = down P to S up (refl)
! rt(3) = down P to P down (tran)
! rt(4) = down P to S down (tran)
! rt(5) = down S to P up (refl)
! rt(6) = down S to S up (refl)
! rt(7) = down S to P down (tran)
! rt(8) = down S to S down (tran)
! rt(9) = up P to P up (tran)
! rt(10) = up P to S up (tran)
! rt(11) = up P to P down (refl)
! rt(12) = up P to S down (refl)
! rt(13) = up S to P up (tran)
! rt(14) = up S to S up (tran)
! rt(15) = up S to P down (refl)
! rt(16) = up S to S down (refl)
!
! NOTE: All input variables are real.
! All output variables are complex!
! Coefficients are not energy normalized.
!
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SUBROUTINE RTCOEF(vp1,vs1,den1,vp2,vs2,den2,hslow,rt)
implicit complex (a-h,o-z)
complex rt(16)
real vp1,vs1,den1,vp2,vs2,den2,hslow

alpha1=cmplx(vp1,0.)
beta1=cmplx(vs1,0.)
rho1=cmplx(den1,0.)
alpha2=cmplx(vp2,0.)
beta2=cmplx(vs2,0.)
rho2=cmplx(den2,0.)
p=cmplx(hslow,0.)

cone=cmplx(1.,0.)
ctwo=cmplx(2.,0.)

term1=(cone-ctwo*beta1**2*p**2)
term2=(cone-ctwo*beta2**2*p**2)
a=rho2*term2-rho1*term1
b=rho2*term2+ctwo*rho1*beta1**2*p**2
c=rho1*term1+ctwo*rho2*beta2**2*p**2
d=ctwo*(rho2*beta2**2-rho1*beta1**2)

! compute signs and cosines, allowing for complex incidence angles
si1=alpha1*p
si2=alpha2*p
sj1=beta1*p
sj2=beta2*p
ci1=csqrt(cone-si1**2)
ci2=csqrt(cone-si2**2)
cj1=csqrt(cone-sj1**2)
cj2=csqrt(cone-sj2**2)

E=b*ci1/alpha1+c*ci2/alpha2
F=b*cj1/beta1+c*cj2/beta2
G=a-d*ci1*cj2/(alpha1*beta2)
H=a-d*ci2*cj1/(alpha2*beta1)
DEN=E*F+G*H*p**2

trm1=b*ci1/alpha1-c*ci2/alpha2
trm2=a+d*ci1*cj2/(alpha1*beta2)
rt(1)=(trm1*F-trm2*H*p**2)/DEN !refl down P to P up

trm1=a*b+c*d*ci2*cj2/(alpha2*beta2)
rt(2)=(-ctwo*ci1*trm1*p)/(beta1*DEN) !refl down P to S up

rt(3)=ctwo*rho1*ci1*F/(alpha2*DEN) !trans down P to P down

rt(4)=ctwo*rho1*ci1*H*p/(beta2*DEN) !trans down P to S down

trm1=a*b+c*d*ci2*cj2/(alpha2*beta2)
rt(5)=(-ctwo*cj1*trm1*p)/(alpha1*DEN) !refl down S to P up

trm1=b*cj1/beta1-c*cj2/beta2
trm2=a+d*ci2*cj1/(alpha2*beta1)
rt(6)=-(trm1*E-trm2*G*p**2)/DEN !refl down S to S up

rt(7)=-ctwo*rho1*cj1*G*p/(alpha2*DEN) !trans down S to P down

rt(8)=ctwo*rho1*cj1*E/(beta2*DEN) !trans down S to S down
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rt(9)=ctwo*rho2*ci2*F/(alpha1*DEN) !trans up P to P up

rt(10)=-ctwo*rho2*ci2*G*p/(beta1*DEN) !trans up P to S up

trm1=b*ci1/alpha1-c*ci2/alpha2
trm2=a+d*ci2*cj1/(alpha2*beta1)
rt(11)=-(trm1*F+trm2*G*p**2)/DEN !refl up P to P down

trm1=a*c+b*d*ci1*cj1/(alpha1*beta1)
rt(12)=(ctwo*ci2*trm1*p)/(beta2*DEN) !refl up P to S down

rt(13)=ctwo*rho2*cj2*H*p/(alpha1*DEN) !trans up S to P up

rt(14)=ctwo*rho2*cj2*E/(beta1*DEN) !trans up S to S up

trm1=a*c+b*d*ci1*cj1/(alpha1*beta1)
rt(15)=(ctwo*cj2*trm1*p)/(alpha2*DEN) !refl up S to P down

trm1=b*cj1/beta1-c*cj2/beta2
trm2=a+d*ci1*cj2/(alpha1*beta2)
rt(16)=(trm1*E+trm2*H*p**2)/DEN !refl up S to S down

return
end

! GETAUX returns auxiliary fault plane, given strike,dip,rake
! of main fault plane.
!
! Inputs: strike1, dip1, rake1 (degrees, primary fault plane)
! Returns: strike2, dip2, rake2 (degrees, auxiliary fault plane)
!

subroutine GETAUX(strike1,dip1,rake1,strike2,dip2,rake2)
degrad=180./3.1415927
s1=strike1/degrad
d1=dip1/degrad
r1=rake1/degrad

d2=acos(sin(r1)*sin(d1))

sr2=cos(d1)/sin(d2)
cr2=-sin(d1)*cos(r1)/sin(d2)
r2=atan2(sr2,cr2)

s12=cos(r1)/sin(d2)
c12=-1./(tan(d1)*tan(d2))
s2=s1-atan2(s12,c12)

strike2=s2*degrad
dip2=d2*degrad
rake2=r2*degrad

if (dip2.gt.90.) then
strike2=strike2+180.
dip2=180.-dip2
rake2=360.-rake2

end if
if (strike2.gt.360.) strike2=strike2-360.

return
end



Appendix E
Time series and Fourier transforms

The following is a summary of the time series concepts that are used in this book. For more
details, the reader should consult Bracewell (1978) or other texts on time series analysis.

E.1 Convolution

Consider two time series u(t) and v(t). The convolution of these functions is defined as

u(t) ∗ v(t) =
∫ ∞

−∞
u(τ)v(t − τ) dτ. (E.1)

Convolution with simple pulses generally results in a smoothing of the original time series.
For example, convolution with a boxcar function will produce the same result as averaging
the adjacent points (Fig. E.1).

Convolution is commutative and associative, that is,

u(t) ∗ v(t) = v(t) ∗ u(t), (E.2)

u(t) ∗ [v(t) ∗ w(t)] = [u(t) ∗ v(t)] ∗ w(t). (E.3)

It also follows from (E.1) that

∂

∂t
[u(t) ∗ v(t)] = [u(t) ∗ v(t)]′ = u′(t) ∗ v(t) = u(t) ∗ v′(t). (E.4)

Convolution provides a convenient way to describe the construction of synthetic seismo-
grams (the predicted ground motion at a particular site as a function of the seismic source
and a specified Earth model). For example, the seismogram could be written

u(t) = s(t) ∗ G(t) ∗ a(t) ∗ r(t), (E.5)
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* =

* =
Figure E.1 Examples of convolution with a boxcar function.

* =
t0

(t)

t0 t0

Figure E.2 Convolution with a delta function does not change the shape of a function, but shifts
it in time to align with the position of the delta function.

where s(t) is the effective source-time function, G(t) is the elastic Green’s function that
connects the source and receiver (the hard part to compute!), a(t) is an attenuation operator
that approximates the effect of Q along the ray path, and r(t) is the response of the receiver.

The delta function, δ(t), is often useful and is defined as

δ(t) = 0 for t ̸= 0,

∫ ∞

−∞
δ(t) dt = 1. (E.6)

Convolution with a delta function leaves the original function unchanged, that is,

u(t) ∗ δ(t) = u(t). (E.7)

The delta function may act to produce a time shift in the original time series (Fig. E.2):

u(t) ∗ δ(t − t0) = u(t − t0). (E.8)
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E.2 Fourier transform

There are many definitions of the Fourier transform. Here we assume the transform is
defined by

F[u(t)] = u(ω) =
∫ ∞

−∞
u(t)eiωt dt (E.9)

and the inverse Fourier transform is

F−1[u(ω)] = u(t) = 1
2π

∫ ∞

−∞
u(ω)e−iωt dω. (E.10)

The function u(t) is said to be in the time domain; the corresponding function u(ω) is in
the frequency domain. From these definitions, various useful relationships may be derived.
The scale rule is

F[u(t/a)] = |a|u(aω), (E.11)

u(t/a) = |a|F−1[u(aω)]. (E.12)

The differentiation rule is

F[u̇(t)] = −iωu(ω). (E.13)

The shift theorem is

F [u(t + a)] = u(ω)e−iωa. (E.14)

Finally, the convolution rule is

F[u(t) ∗ v(t)] = u(ω)v(ω), (E.15)

F−1[u(ω)v(ω)] = u(t) ∗ v(t). (E.16)

In other words, the convolution of two functions in the time domain is equivalent to the
product of the corresponding functions in the frequency domain.

E.3 Hilbert transform

A phase shift of π in the frequency domain is equivalent to a polarity reversal in the time
domain (multiplying the time series by −1). In this case the pulse shapes are not changed.
However, a frequency-independent phase shift that is not equal to a multiple of π will cause
pulse distortion. An example that occurs frequently in seismology is the Hilbert transform,
which results from a π/2 phase advance.
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(t)

t0

-1
t

Figure E.3 The Hilbert transform of a delta function.

A forward and inverse Fourier transform will reproduce the original time series

u(t) = F−1 (F[u(t)])

= 1
2π

∫ ∞

−∞

[∫ ∞

−∞
u(ξ)eiωξ dξ

]
e−iωt dω. (E.17)

We may define the Hilbert transform of u(t) as ū(t), by inserting a −π/2 phase shift1 in the
outer integral:

ū(t) = 1
2π

∫ ∞

−∞

[∫ ∞

−∞
u(ξ)eiωξ dξ

]
sgn(ω)

i
e−iωt dω, (E.18)

where the sgn(ω) keeps the time series real. Rearranging and evaluating the ω integral, one
can show

ū(t) = 1
π

∫ ∞

−∞

u(ξ)

ξ − t
dξ, (E.19)

in which the singularity at ξ = t is handled by taking the Cauchy principle value of the
integral. The Hilbert transform of a delta function is

δ̄(t) = 1
π

∫ ∞

−∞

δ(ξ)

ξ − t
dξ = − 1

πt
(E.20)

and is illustrated in Figure E.3.
Thus the Hilbert transform may also be expressed as a convolution

ū(t) = u(t) ∗
(

− 1
πt

)
. (E.21)

1 The sign of the phase shift depends upon the sign of iω in the Fourier transform; here we assume the sign
convention of (E.9) and (E.10).
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u(t) u(t)

Figure E.4 The Hilbert transform of a typical seismic pulse.

Note also that

f ∗ g = f ∗ ḡ = f̄ ∗ g. (E.22)

Equations (E.18), (E.19), and (E.21) are all equivalent definitions of the Hilbert transform
of u(t). In practice, Hilbert transforms are most easily calculated with a computer by using
(E.18) and a Digital Fourier Transform.

Any frequency-independent phase shift may be expressed as a linear combination of a
function and its Hilbert transform (an extension to all frequency components of the fact that
a phase shift for a harmonic wave can be expressed as a linear combination of a sine and
cosine wave; the Hilbert transform of a sine wave is a cosine wave). Applying the Hilbert
transform twice produces a polarity reversal in the time series (a π phase shift); applying
the Hilbert transform four times reproduces the original time series. The Hilbert transform
does not change the amplitude spectrum of a time series; only the phase of the different
frequency components is affected.

The Hilbert transform of a delta function is acausal in the sense that a precursory tail
extends to −∞ in time. In seismology, of course, energy cannot arrive prior to the time
of source initiation (and in most cases cannot arrive before the time of the direct P-wave
arrival). This is explained by the fact that the Hilbert transformed pulses occur on secondary
arriving branches (such as PmP, PP, etc.) and that the Hilbert transform is predicted only
as a high-frequency approximation to the true pulse shape. In practice, with bandlimited
data, the Hilbert transform does not produce notably acausal pulse shapes (Fig. E.4).

Another useful function is the analytic time series, defined as:

U(t) = u(t) + iū(t). (E.23)

In a sense, U(t) bears the same resemblance to u(t) as does eiωt to cos(ωt). We also have
the envelope time function, defined as:

E(t) =
[
u2(t) + ū2(t)

]1/2
. (E.24)

The envelope time function is useful as a local estimate of the amplitude that is not sensitive
to individual zero crossings in the seismogram.
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regional earth structure based on three-dimensional reference models, Geophys. J. Int.,
95, 2066–80.

Zoback, M. D., Zoback, M. L., Mount, V. S., Suppe, J., Eaton, J. P., Healy, J. H.,
Oppenheimer, D., Reasenberg, P., Jones, L., Raleigh, C. B., Wong, I. G., Scotti, O., and
Wentworth, C. (1987). New evidence on the state of stress of the San Andreas fault
system, Science, 238, 1105–11.





INDEX

Abel transform, 104
absorption band model, 168–71
Airy phase, 225
Aki, Keiiti, 13
analytic time series, 375
Andersonian faulting theory, 294
anisotropy, 30, 332–46

aligned crack, 343
azimuthal, 342
crustal, 344–5
hexagonal, 341–4
inner core, 346
lower mantle, 346
mechanisms for, 343–4
mineral aligned, 344
observations in Earth, 344–6
periodic-thin layer, 343
phase vs. group velocity, 334
Pn, 338
shear-wave splitting, 339–40
slowness surfaces, 335
upper mantle, 338, 345–6
wavefronts, 333
weak, 337–9

antipodal phase advance, 240
antipode, 226
apparent stress, 276
Armenian earthquake, 317
arrival time, 90
attenuation, 163–77

absorption band model, 168–71
global politics, 177
in Earth, 173–5
non-linear, 176–7
nuclear test sites, 177
observing, 175–6
velocity dispersion, 167

autocorrelation, 191, 211
auxiliary fault plane, 248, 370

b-value, 288–90
banana-doughnut kernels, 126
baseline correction, 175

beach balls, 251–60
Bessonova method, 113
block-slider model, 304, 317–20
body forces, 19
broadband seismographs, 328
Brune fault model, 270
Brune, James, 266, 270, 296, 316–17
Brune-type stress drop, 271
bubble pulse, 189
bulk modulus, 31
Bullen, K. E., 3, 5
Bullen, K.E., 90
Byerlee’s law, 294, 295

catalog completeness, 289
Cauchy tetrahedron, 19
caustics, 72, 144
Cecchi, Filippo, 2
centroid moment tensor (CMT), 245, 297
chaotic behavior, 305, 306
characteristic earthquake hypothesis, 303, 306
checkerboard test, tomography, 123
chi-squared statistics, 130–1
Chilean earthquake, 8
co-seismic strain field, 301
Coalinga earthquake, 304
coda Q, 176
common-midpoint stacking, 5, 184–8
compensated linear vector dipole (CLVD), 249, 251
complex numbers, review, 358–60
complex plane, 358
compressional quadrant, 253
computers, importance in seismology, 10
constitutive relationships, 30–3
continental drift, 5
convolution, 188, 191, 210, 371–3
core, 3

seismic phases, 87
core–mantle boundary, 3
corner frequencies, 266
Coulomb failure function, 37, 310
critical angle, 154
critical damping, seismometer, 324

391



392 I N D E X

critical slip, 278
cross-correlation, 190–1

of noise, 332
cross-product, vector, 353
crossover point, 86
crust, 3

seismic phases, 86
curl, vector field, 27, 356

damped least squares, 121
damping, seismometer, 321–2
deaths from earthquakes, 13
Debye peak, 172
deconvolution, 184, 188–91, 200
deep earthquakes, 6, 296
delay time, 73–6, 216, 218, 252
delta functions, 51, 154, 188, 240, 329, 372, 374, 375
density structure, Earth’s, 5
depth phases, 88
Did You Feel It website, 291
diffraction, 193
diffraction hyperbolas, 193–5
digital seismographs, 10, 328
dilatancy, as earthquake predictor, 314–15
dilatation, 27
dilatational quadrant, 253
dinner party, Los Angeles, 299
dip, fault plane, 245
dip-slip faults, 245
directivity, source, 262
discrete modeling methods, 53–6
dispersion, 167, 216, 219, 224–5, 238–9
displacement field, 25
divergence, 356
dot product, vector, 353
double-couple source, 6, 243–60

major and minor decomposition, 250
double-difference location method, 135
dynamic friction, 302
dynamic range, seismograph, 327

Earth
internal structure, 3, 173–5, 349
pressure of interior, 24
seismic velocities, 3, 349

Earth-flattening transformation, 80, 82–3
earthquake energy partitioning, 277–80
earthquake triggering, 309–14
earthquakes

deep, 296
distribution of, 5–7
how to locate, 127–35, 138
magnitude, 280–8
precursors, 314–6
prediction of, 301–17
table of large, 287
unpredictability of, 316–17

East Pacific Rise, 12
eikonal equation, 65, 361–5
elastic moduli, 31–3

units, 32

elastic rebound theory, 13, 301
elastic tensor, 30, 334

density normalized, 335
symmetries, 334, 342

elastohydrodynamic lubrication, 295
empirical Green’s functions (EGF), 267–8
energy

in seismic waves, 139–42
partitioning in earthquakes, 277–80
radiated from source, 273–7

envelope time function, 375
epicenter, 127
equation of motion, 42
equivalent body forces, 243
error ellipse, earthquake location, 130–1
Eshelby circular fault stress drop, 268
ETAS model, 311, 312
Eulerian description of motion, 25
evanescent waves, 154, 222, 337
Ewing, James, 2
exploding reflector model, 193

far-field term, 252
faults

as seismic sources, 245–60
fractal distribution of, 305
stress level on, 315

Fermat’s principle, 67, 119
finite-difference methods, 43, 52, 54–62
finite-difference ray tracing, 86, 119
finite-element methods, 52, 55
finite-frequency tomography, 125–7
finite-slip modeling, 291–3
focal mechanisms, 246–60, 297, 298

plotting, 259–60
focal sphere, 255–7
fold, reflection seismology, 188
foot wall, fault, 245
force couple, 243
force-feedback seismometers, 327, 328
foreshocks, 311, 314–6
Fortran examples, 63, 240, 320, 347, 367–70
Fourier transforms, 155, 165, 189, 237, 265, 373
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