Course number: EES 261/461 (4 credits)
Course title: Stable Isotope Geochemistry: Fractionation Equations and Models
Term: Spring 2017
Meeting times and location: Hutchison 329, Tuesday & Thursday 9:40-10:55am

Course Description

Most courses in stable isotope geochemistry highlight the analytical techniques and classic applications of stable isotopes. While several of these topics will be introduced here, the primary focus of this course will be on the fundamental equations and models used to interpret stable isotope data obtained from natural environmental samples. Guided by several pioneering applications, not only will we learn the equations used, but we will also scrutinize their underlying assumptions as we set-up and derive these models. The goal of this course is to equip students with the fundamental knowledge needed to both dissect as well as manipulate traditional stable isotope models so that they can analyze their own data in the most appropriate and intelligent fashion.

The first portion of this course will be theory based, investigating and manipulating stable isotope equations and models. The second portion of this course will be research based, investigating and interpreting stable isotope data with newly developed models and equations.

Prerequisites

MTH 161-162 and CHM 131-132

Learning Outcomes

The primary objective of this course is to familiarize students with mixing, equilibrium, and kinetic isotope equations and models used when investigating earth system processes with stable isotope data. The goal of this course is to equip students with strategies on how they can appropriately interpret the stable isotope data they may collect so that they can answer the question “what does my stable isotope data tell us about how this specific geosystem is functioning?”

More specifically, at the end of this course, the student will be able to:
1) define parameters that may be influencing the isotope distributions in various geological systems,
2) formulate and solve equations that adequately characterize the parameters influencing stable isotope values and distributions,
3) establish measurement and experimentation plans to adequately test stable isotope models,
4) synthesize measurement and model results to establish a more thorough understanding of a geosystem.
Instructor Information

Name: Professor John Kessler
Office location: Hutchinson Hall, Room 210
Email address: john.kessler@rochester.edu
Telephone number: (585) 273-4572
Office hours: When I am not teaching or in the lab, my office door is almost always open. Please feel free to just stop by or you can make an appointment

Textbook and/or Resource Material

No textbook is required for this course, however, reading material from the following sources will be distributed as the course progresses. Additionally, the lecture slides, reading assignments, homework assignments, and additional course material will be posted on BlackBoard as needed.

1) Kessler Notes: I have written class notes in a textbook like fashion that I will distribute.
6) Various publications like Rayleigh, 1896; Bigeleisen and Wolfsberg, 1958; Dansgaard, 1964; Keeling 1958 & 1961, Reese, 1974; Monson and Hayes, 1980; etc.

Grading Policies

Grading will be based on the following: homework and class participation (20%), 3 exams (15% each), class project/presentation (20%), and a final exam (15%). The class project/presentation consists of a 5-page written report and a 15-minute presentation to the class.

Course Topics, Calendar of Activities, Major Assignment Dates

<table>
<thead>
<tr>
<th>In Class</th>
<th>At Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 3 (Tuesday, January 31 – Thursday, February 2) Isotope Mixing Models and Keeling Plots Introduction to isotope fractionation</td>
<td>Due Tuesday, January 31: HW #1 Reading Assignment: Kessler Notes, Keeling, Pataki</td>
</tr>
<tr>
<td>Week 4 (Tuesday, February 7 – Thursday, February 9) Introduction to isotope fractionation: Fractionation from diffusion</td>
<td>Due Tuesday, February 7: HW #2 Reading Assignment: Kessler Notes, Criss, & Hoefs</td>
</tr>
</tbody>
</table>
| Week 5 (Tuesday, February 14 – Thursday, February 16) | Due Tuesday, February 14: HW #3
Reading Assignment: Rayleigh, 1896; Bigeleisen and Wolfsberg, 1958; Broecker and Oversby, 1971
Potential Energy Curve, Isotope Exchange Reactions
Kinetic Isotope Fractionation:
Fractionation Factors & Rayleigh Fractionation
Kinetic Isotope Fractionation:
Fractionation Factors & Rayleigh Fractionation
|
Week 6 (Tuesday, February 21 – Thursday, February 23) | Reading Assignment:
Kessler Notes
Tuesday, February 21: In-Class Exam 1
Kinetic Isotope Fractionation
|
Week 7 (Tuesday, February 28 – Thursday, March 2) | Due Tuesday, February 28: HW #4
Reading Assignment:
Kessler Notes, Monson and Hayes, (1980), Sigman and Casciotti, (2001)
Kinetic Isotope Fractionation:
Fractionation Factors & Rayleigh Fractionation
The water cycle: Evaporation/Condensation Isotope Fractionation
|
Week 8 (Tuesday, March 7 – Thursday, March 9) | Due Tuesday, March 7: HW #5
Read Kessler notes
Kinetic Isotope Fractionation: Open Systems (Steady-State)
|
Week 9 (Tuesday, March 14 – Thursday, March 16) | Relax
SPRING BREAK – No Classes
|
Week 10 (Tuesday, March 21 – Thursday, March 23) | Due Thursday, March 23: HW #6
Read Kessler notes
Reese, 1974; Monson and Hayes, 1980
Kinetic Isotope Fractionation: Open Systems (Non-Steady-State)
|
Week 11 (Tuesday, March 28 – Thursday, March 30) | Read Kessler notes
Reese, 1974; Monson and Hayes, 1980
Tuesday, March 28: In-Class Exam 2
Kinetic Isotope Fractionation: Open Systems (Non-Steady-State)
|
Week 12 (Tuesday, April 4 – Thursday, April 6) | Due Tuesday, April 4: HW #7
Read Kessler notes
Fractionation with biogeochemical processes
|
Week 13 (Tuesday, April 11 – Thursday, April 13) | Due Tuesday, April 11: HW #8
Read Kessler notes
Kinetic Isotope Fractionation: Different Reaction Orders
|
Week 14 (Tuesday, April 18 – Thursday, April 20) | Due Tuesday, April 18: HW #9
Read Kessler notes
Kinetic Isotope Fractionation: Different Reaction Orders
Fractionation with biochemical processes
|
Week 15 (Tuesday, April 25 – Thursday, April 27) |
Tuesday, April 25: In-Class Exam 3
Presentation of Laboratory Results
|
Week 16 (Tuesday, May 2) |
Presentation of Laboratory Results
Review for Final Exam
|
Week 17 (Thursday, May 11, 4:00 – 6:00PM) | Comprehensive
Final Exam
|
Americans with Disabilities Act (ADA)

Center for Excellence in Teaching and Learning (CETL), 107 Lattimore Hall, 585-275-9049
http://www.rochester.edu/college/cetl

The Center for Excellence in Teaching and Learning (CETL) offers a variety of disability services for undergraduates and graduate students in Arts, Sciences & Engineering. These services aim to provide an inclusive experience and equal access to academic content and program requirements. Their approach relies on collaboration among students, CETL staff, and instructors. Students are invited to make an appointment to meet with a disability support coordinator to get acquainted and talk about classroom accommodations. CETL also provides transition support and self-advocacy skill development.

In addition, students can find information on other University accommodations and services, including transportation and campus accessibility at:
http://www.rochester.edu/ada/

Academic Honesty

All assignments and activities associated with this course must be performed in accordance with the University of Rochester’s Academic Honesty Policy. Unless otherwise noted, I encourage collaboration when studying and investigating assignments. However, all individual assignments must be completed independently. In short, study together but write separately. A comprehensive description of the University of Rochester’s Academic Honesty Policy is available at:
www.rochester.edu/College/Honesty