Solubility of CO₂ and Carbonate Equilibrium "Carbonic acid" $CO_2(g) \leftrightarrow CO_2(aq) \leftrightarrow H_2CO_3 \leftrightarrow HCO_3^- \leftrightarrow CO_3^{2-}$ $CO_2(g) \leftrightarrow CO_2(aq) + H_2O \leftrightarrow H_2CO_3$ $H_2CO_3 \leftrightarrow HCO_3^- + H^+$ $HCO_3^- \leftrightarrow CO_3^{2-} + H^+$ $H_2O \leftrightarrow H^+ + OH^-$

Solubility of CO₂ and Carbonate Equilibrium

$$\begin{array}{ccc} \mathsf{K}_{\mathsf{H}} & \mathsf{K}_{1} & \mathsf{K}_{2} \\ & & \mathsf{CO}_{2}(\mathsf{g}) \leftrightarrow \mathsf{CO}_{2}(\mathsf{aq}) \leftrightarrow \mathsf{H}_{2}^{2}\mathsf{CO}_{3} \leftrightarrow \mathsf{HCO}_{3}^{-} \leftrightarrow \mathsf{CO}_{3}^{2-} \end{array}$$

1. $K_{H} = [H_{2}CO_{3}]/P_{CO2}$	= 3 x 10 ⁻² M atm ⁻¹ = 10 ^{-1.5} M atm ⁻¹
2. K ₁ = [HCO ₃ ⁻][H ⁺]/[H ₂ CO ₃]	= 9 x 10 ⁻⁷ M = 10 ^{-6.1} M
3. K ₂ = [CO ₃ ²⁻][H ⁺]/[HCO ₃ ⁻]	= 2.7 x 10 ⁻¹⁰ M = 10 ^{-9.6} M
4. K _w = [H ⁺][OH ⁻]	= 10 ⁻¹⁴ M ²

Note: Values of these equil. constants are sensitive to temperature and ionic strength of the solution; these values are appropriate to seawater.

CO₂ Partitioning Atmosphere - Ocean

pH of Natural Waters

So we want to understand what controls pH...

KKC Box Fig. 8-2

At least six unknowns:

- H⁺, OH⁻
- *P*_{CO2}
- H₂CO₃, HCO₃⁻, CO₃²⁻
- : Need at least six equations:
 - Equilibrium expressions 1 4
 - Typically, constraint on either P_{CO2} ("open system") or total moles carbon ("closed system")
 - Charge balance; Σn[iⁿ⁺] = Σm[j^{m-}]

Pure water in contact with atmosphere

- o Six unknowns
- o Equilibrium expressions (4 equations)
- $P_{CO2} = 3.5 \times 10^{-4}$ atm (1 more equation)
- Charge balance (6th equation):

 $[H^+] = [HCO_3^-] + 2[CO_3^2] + [OH^-]$

 Strategy: Rewrite charge balance equation in terms of [H⁺] and known quantities...

 $[H^{+}] = K_1 K_H P_{CO2} / [H^{+}] + 2K_1 K_2 K_H P_{CO2} / [H^{+}]^2 + K_w / [H^{+}]$

Can solve rigorously for [H⁺]. Alternatively, make a simplifying assumption:

 $[CO_3^{2-}] << [HCO_3^{-}]$

In this case: $[H^+] = K_1 K_H P_{CO2}/[H^+] + K_w/[H^+]$ or $[H^+]^2 = K_1 K_H P_{CO2} + K_w$ This is easily solved: For pure water @25°C: $K_1 = 4.45 \times 10^{-7} \text{ M}$; $K_H = 3.39 \times 10^{-2} \text{ M/atm}$ $\therefore [H^+] = 2.4 \times 10^{-6} \text{ M}$ pH = 5.62

∴ "Acid rain" is a term applied to pH < 5

PH of Natural Waters Assess simplifying assumption...

Is it fair to assume $[CO_3^{2-}] \leq [HCO_3^{-}]?$

 $K_{2} = [CO_{3}^{2-}][H^{+}]/[HCO_{3}^{-}] = 10^{-10.33} \text{ (pure water, 25^{\circ}C)}$ So: $[CO_{3}^{2-}]/[HCO_{3}^{-}] = 10^{-10.33}/[H^{+}]$ Clearly, $[CO_{3}^{2-}]/[HCO_{3}^{-}] << 1 \text{ as long as } [H^{+}] >> 10^{-10.33}$ *i.e.,* as long as pH << 10.33

This is true in most natural waters

O_2 Solubility, HCO₃⁻ and CO₃²⁻

Another perspective

 $CO_{2} + H_{2}O \leftrightarrow H_{2}CO_{3}$ $H_{2}CO_{3} \rightarrow H^{+} + HCO_{3}^{-}$ Net direction if pH >~ 6 $H^{+} + CO_{3}^{2-} \rightarrow HCO_{3}^{-}$ Net direction if pH <~ 10 $CO_{2} + CO_{3}^{2-} + H_{2}O \rightarrow 2HCO_{3}^{-}$

Consider CO₂ Solubility (again)

- $= [H_2CO_3]/K_H$
- $= [H^+][HCO_3^-]/(K_1K_H)$
- = $(K_2[HCO_3^-]/[CO_3^2-])([HCO_3^-]/(K_1K_H))$
- = $K_3[HCO_3^-]^2/[CO_3^2^-]; (K_3 = K_2/(K_1K_H))$

P_{CO2}

So what?

- o Imagine we dissolve some CaCO₃ in the system
- Now: $2[Ca^{2+}] + [H^+] = [HCO_3^{-}] + 2[CO_3^{2-}] + [OH^-]$
- In this case, [H⁺] is free to have lower values (pH > 7) as long as [Ca²⁺] is present

Not all cation sources will work this way...

- Imagine we dissolve some NaCl into the system
- Now: [Na⁺] + [H⁺] = [HCO₃⁻] + 2[CO₃²⁻] + [Cl⁻] + [OH⁻] But: [Na⁺] = [Cl⁻], right?
- o So, no effect on charge balance equation
- To cope: Distinguish between "conservative" and "nonconservative" ions...

- **Conservative ions**: Ions whose concentrations are *not* affected by pH (or pressure or temperature; not important variables here)
 - Examples: Ca²⁺, Na⁺, NO₃⁻, K⁺, Cl⁻, etc.
- Nonconservative ions: lons whose concentrations are affected by pH
 - Examples: CO₃²⁻, HCO₃⁻, NH₄⁺, B(OH)₄⁻, H⁺, OH⁻
- "Alkalinity" $\equiv \Sigma n[i^{n+}] \Sigma m[j^{m-}]$ where i and j are only conservative ions; alkalinity is what's left over after these are accounted for.
 - Units: equiv./liter

- If we consider only HCO_3^- , CO_3^{-2-} , OH^- and H^+ and conservative ions, then we may write:
- $\Sigma n[i^{n+}] + [H^+] = [HCO_3^{-}] + 2[CO_3^{2-}] + [OH^-] + \Sigma m[j^{m-}]$
- $\Sigma n[i^{n+}] \Sigma m[j^{m-}] = [HCO_3^{-}] + 2[CO_3^{2-}] + [OH^{-}] [H^{+}]$
- Alkalinity = $[HCO_3^{-1}] + 2[CO_3^{2-1}] + [OH^{-1}] [H^{+1}]$
- Typically, Alkalinity ~ $[HCO_3^-] + 2[CO_3^{2-}] \equiv Alk_{carb}$
- For seawater, Alkalinity ~ 2.3×10^{-3} equiv/liter
- o Fresh waters , Alkalinity 0 to 5 meq/liter

- Alkalinity of seawater allows it to dissolve more CO₂
- Higher alkalinity leads to lower [H⁺] and higher pH
- Any reaction that introduces [H⁺] lowers alkalinity

• e.g., $NH_4^+ + 2O_2 \rightarrow NO_3^- + H_2O + 2H^+$

• Any reaction that raises $[CO_3^{2-}]$ or $[HCO_3^{-}]$ raises alkalinity

• -e.g., CaCO₃ + H₂O + CO₂ \rightarrow Ca²⁺ + 2HCO₃⁻

O₂ Solubility, HCO₃- and CO₃2- $P_{co2} = K_3[HCO_3^-]^2/[CO_3^2^-]$

This is the equilibrium expression for the reaction: $CO_2 + CO_3^{2-} + H_2O \leftrightarrow 2HCO_3^{--}$ i.e., solubility of CO_2 consumes $CO_3^{2^2}$, produces $HCO_3^{2^2}$;

Note that addition of CO₂ itself does *not* affect Alkalinity (gain 2 moles HCO_3^- for every CO_3^{2-})

Note also that capacity for CO₂ uptake determined by [CO₃²⁻]

CO_2 Solubility, HCO₃⁻ and CO₃²⁻

Alk ~
$$[HCO_3^-] + 2[CO_3^{2-}]$$

 $\Sigma CO_2 = [H_2CO_3] + [HCO_3^-] + [CO_3^{2-}]$

~
$$[HCO_3^-] + [CO_3^2^-]$$

$$P_{CO2} = K_3[HCO_3^{-1}]^2/[CO_3^{2-1}]^2$$

Algebra...

$$[CO_3^{2-}] = Alk - \Sigma CO_2$$

[HCO_3⁻] = 2 \Sigma CO_2 - Alk
P_{CO2} = K_3(2 \Sigma CO_2 - Alk)^2/(Alk - \Sigma CO_2)

i.e., P_{CO2} is controlled by Alk and ΣCO_2

Figure 9.1 Fetter, Applied Hydrogeology 4th Edition

Organic acids (e.g.. Oxalic acid)

Organic material breaks down and releases acids (pH ~ 5). These natural acids play an important role in weathering in absence of human activity; behaves very much like carbonic acid

 $4H_2C_2O_4$ (oxalic acid) + $2O_2 \rightarrow 8CO_2 + 4H_2O_2$ $H_2CO_3^{--}$

<u>CO₂ in three forms in ocean</u> (H_2CO_3 , HCO_3 -, CO_3 =): CO₂ (aq)(H_2CO_3) = 10-5 M = kPCO₂ = 10^{-1.5} x 10^{-3.5} • HCO₃- = 10^{-2.8} M Dominant pH 6.3 - 10.3 • CO₃= = 10^{-3.8} M

 CO_2 is in equilibrium at the surface of the ocean $[CO_2] = kP_{CO2}$ pH = 8.4 $[H^+] = 10^{-8.4}$

$H_{2}CO_{3} + H^{+} + HCO_{3}^{-}$ $K_{1} = \underline{[HCO_{3}-][H+]} = 10^{-6.3} , pK_{1} = 6.3$ $[H2CO_{3}]$

(When $A + B \rightarrow C + D$, K = products/reactants = [C][D]/[A] [B]).

```
When [HCO_3-] = [H_2CO_3]
then [HCO_3-] = 1
[H_2CO_3]
and H^+ = 10^{-6.3} and pH = 6.3
```

 $pK_2 = 10.3$ HCQ₃- H⁺ + CO₃ = (K₂ found by using same method as for K₁)

This balance is controlled by H⁺, pK₁, pK₂, charge balance

Surface Ocean $Ca^{++} + CO_3^{--} \rightarrow CaCO_3$ (s) (a percentage sinks and redissolves) <u>CO₂ Removal</u> CO₂ + H₂O \rightarrow CH₂O + O₂ $H_2CO_3 + CO_3 = \rightarrow 2HCO_3 -$ **Photosynthesis** More CO₂ will dissolve from atmosphere $[CO_2] = kPCO_2$ **<u>Deep Water</u>** \rightarrow <u>Respiration</u> $CH_2O + O_2 \rightarrow CO_2 + H_2O$ $H_2CO_3 + CO_3 = \rightarrow 2 HCO_3 -$ Shifts pH down, increases [H+] Higher H_2CO_3 or $(PCO_2) \rightarrow 3 - 5$ times pH, CO₃ = pH decreases, 8.4 at surface Lower 7.8 deep water (Pacific)

o 1. Lack of CaCO₃

2. Thin or no soil = high surface flow into lakes 3. Thick soil: large exchangeable pool of Ca²⁺

Review of Equilibrium:

$$xA + yB \rightarrow zC + wD$$
 $K_{eq} = \frac{[C]^{z}[D]^{w}}{[A]^{x}[B]^{y}} = 10^{-5.6} \rightarrow pK = 5.6$
Acid : $HaC \leftrightarrow H^{+} + Ac^{-}$
 $K_{eq} = \frac{[H^{+}][Ac^{-}]}{[Hac]}$
 $[Ac^{-}] = 10^{-7.3}$
 $[H_{2}CO_{3}] = k_{T} P_{CO2}$
 $at P_{CO2} = 10^{-3.45}$
 $[H_{2}CO_{3}] = 10^{-5} M$
 $H_{2}CO_{3} \rightarrow H^{+} + HCO_{3}^{--} k = 10^{-1.55}$
 $pk_{1} = +5.7$
 $H_{2}CO_{3} \leftrightarrow H^{+} + HCO_{3}^{--} k_{1} = \frac{[H^{+}][HCO_{3}^{-}]}{[H_{2}CO_{3}]}$
 $10^{-9.2} = 10^{-10.7} = [H^{+}][HCO_{3}^{-}]$
 $[HCO_{3}^{-}] = [H^{+}] = 10^{-5.4} \rightarrow pH = 5.4$
 $k_{1} = 10^{-5.7}$
Soil $P_{CO2} \sim 10,000 \text{ ppm} \rightarrow 10^{-2} \rightarrow pH\sim 4.6$