Solubility of CO_{2} and Carbonate Equilibrium

$$
\begin{gathered}
\mathrm{CO}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{CO}_{2}(\mathrm{aq}) \leftrightarrow \mathrm{H}_{2} \mathrm{CO}_{3} \leftrightarrow \mathrm{HCO}_{3}^{-} \leftrightarrow \mathrm{CO}_{3}^{2-} \\
\mathrm{CO}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{CO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{2} \mathrm{CO}_{3} \\
\mathrm{H}_{2} \mathrm{CO}_{3} \leftrightarrow \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \\
\mathrm{HCO}_{3}^{-} \leftrightarrow \mathrm{CO}_{3}^{2-}+\mathrm{H}^{+} \\
\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}^{+}+\mathrm{OH}^{-}
\end{gathered}
$$

Solubility of CO_{2} and Carbonate Equilibrium

1. $\mathrm{K}_{\mathrm{H}}=\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right] / \mathrm{P}_{\mathrm{CO} 2}$
2. $\mathrm{K}_{1}=\left[\mathrm{HCO}_{3}^{-}\right]\left[\mathrm{H}^{+}\right] /\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right] \quad=9 \times 10^{-7} \mathrm{M}=10^{-6.1} \mathrm{M}$
3. $\mathrm{K}_{2}=\left[\mathrm{CO}_{3}{ }^{2-}\right]\left[\mathrm{H}^{+}\right] /\left[\mathrm{HCO}_{3}{ }^{-}\right] \quad=2.7 \times 10^{-10} \mathrm{M}=10^{-9.6} \mathrm{M}$
4. $\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \quad=10^{-14} \mathrm{M}^{2}$

Note: Values of these equil. constants are sensitive to temperature and ionic strength of the solution; these values are appropriate to seawater.

CO_{2} Partitioning Atmosphere - Ocean

pH of Natural Waters

So we want to understand what controls pH ...

pH of Natural Waters General concept...

At least six unknowns:

- $\mathrm{H}^{+}, \mathrm{OH}^{-}$
- $P_{\mathrm{CO} 2}$
- $\mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{HCO}_{3}{ }^{-}, \mathrm{CO}_{3}{ }^{2-}$
\therefore Need at least six equations:
- Equilibrium expressions 1-4
- Typically, constraint on either $\mathrm{P}_{\mathrm{CO} 2}$ ("open system") or total moles carbon ("closed system")
- Charge balance; $\Sigma \mathrm{n}\left[\mathrm{in}^{\mathrm{n}}\right]=\Sigma \mathrm{m}\left[\mathrm{j}^{\mathrm{m}}\right]$

pH of Natural Waters

Pure water in contact with atmosphere

- Six unknowns
- Equilibrium expressions (4 equations)
- $\mathrm{P}_{\mathrm{CO} 2}=3.5 \times 10^{-4} \mathrm{~atm}$ (1 more equation)
- Charge balance (6th equation):

$$
\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCO}_{3}^{-}\right]+2\left[\mathrm{CO}_{3}^{2-}\right]+\left[\mathrm{OH}^{-}\right]
$$

- Strategy: Rewrite charge balance equation in terms of $\left[\mathrm{H}^{+}\right]$ and known quantities...

pH of Natural Waters

Example: Pure water in contact with atmosphere

$$
\left[\mathrm{H}^{+}\right]=\mathrm{K}_{1} \mathrm{~K}_{\mathrm{H}} \mathrm{P}_{\mathrm{Co2} 2} /\left[\mathrm{H}^{+}\right]+2 \mathrm{~K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{\mathrm{H}} \mathrm{P}_{\mathrm{Co2} 2} /\left[\mathrm{H}^{+}\right]^{2}+\mathrm{K}_{\mathrm{w}} /\left[\mathrm{H}^{+}\right]
$$

Can solve rigorously for $\left[\mathrm{H}^{+}\right]$. Alternatively, make a simplifying assumption:

$$
\left[\mathrm{CO}_{3}{ }^{2-}\right] \ll\left[\mathrm{HCO}_{3}^{-}\right]
$$

In this case:

$$
\left[\mathrm{H}^{+}\right]=\mathrm{K}_{1} \mathrm{~K}_{\mathrm{H}} \mathrm{P}_{\mathrm{co} 2}\left[\left[\mathrm{H}^{+}\right]+\mathrm{K}_{\mathrm{w}} /\left[\mathrm{H}^{+}\right]\right.
$$

or

$$
\left[\mathrm{H}^{+}\right]^{2}=\mathrm{K}_{1} \mathrm{~K}_{\mathrm{H}} \mathrm{P}_{\mathrm{CO} 2}+\mathrm{K}_{\mathrm{w}}
$$

This is easily solved:
For pure water @ $25^{\circ} \mathrm{C}$: $\mathrm{K}_{1}=4.45 \times 10^{-7} \mathrm{M} ; \mathrm{K}_{\mathrm{H}}=3.39 \times 10^{-2} \mathrm{M} / \mathrm{atm}$

$$
\begin{aligned}
\therefore[H+] & =2.4 \times 10-6 \mathrm{M} \\
\mathrm{pH} & =5.62
\end{aligned}
$$

\therefore "Acid rain" is a term applied to $\mathrm{pH}<5$

pH of Natural Waters
 Assess simplifying assumption...

Is it fair to assume $\left[\mathrm{CO}_{3}^{2-}\right] \ll\left[\mathrm{HCO}_{3}^{-}\right]$?

$$
\begin{gathered}
\mathrm{K}_{2}=\left[\mathrm{CO}_{3}^{2-}\right]\left[\mathrm{H}^{+}\right] /\left[\mathrm{HCO}_{3}^{-}\right]=10^{-10.33} \text { (pure water, } 25^{\circ} \mathrm{C} \text {) } \\
\text { So: }\left[\mathrm{CO}_{3}^{2-}\right] /\left[\mathrm{HCO}_{3}^{-}\right]=10^{-10.33} /\left[\mathrm{H}^{+}\right]
\end{gathered}
$$

Clearly, $\left[\mathrm{CO}_{3}{ }^{2-}\right] /\left[\mathrm{HCO}_{3}^{-}\right] \ll 1$ as long as $\left[\mathrm{H}^{+}\right] \gg 10^{-10.33}$ i.e., as long as $\mathrm{pH} \ll 10.33$

This is true in most natural waters
$6 \mathrm{O}_{2}$ So ubility, HCO_{3}^{-}and $\mathrm{CO}_{3}{ }^{2-}$

Another perspective

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}
$$

$$
\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}
$$

Net direction if $\mathrm{pH}>\sim 6$
$\mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-} \rightarrow \mathrm{HCO}_{3}^{-} \quad$ Net direction if $\mathrm{pH}<\sim 10$ $\mathrm{CO}_{2}+\mathrm{CO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HCO}_{3}^{-}$

Conside CO_{2} Solubility (again)

```
P
= [H2CO3}]/\mp@subsup{K}{H}{
= [H+}][\mp@subsup{\textrm{HCO}}{3}{-}]/(\mp@subsup{\textrm{K}}{1}{}\mp@subsup{\textrm{K}}{\textrm{H}}{}
= (K2[ [HCO3}\mp@subsup{}{3}{-}]/[\mp@subsup{CO}{3}{}\mp@subsup{}{}{2}-])([\mp@subsup{\textrm{HCO}}{3}{-}]/(\mp@subsup{\textrm{K}}{1}{}\mp@subsup{\textrm{K}}{\textrm{H}}{})
= K
```

So what?

pH of Natural Waters Alkalinity

- Imagine we dissolve some CaCO_{3} in the system
- Now: $2\left[\mathrm{Ca}^{2+}\right]+\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCO}_{3}^{-}\right]+2\left[\mathrm{CO}_{3}{ }^{2-}\right]+\left[\mathrm{OH}^{-}\right]$
- In this case, $\left[\mathrm{H}^{+}\right]$is free to have lower values $(\mathrm{pH}>7)$ as long as $\left[\mathrm{Ca}^{2+}\right]$ is present

pH of Natural Waters Alkalinity

Not all cation sources will work this way...

- Imagine we dissolve some NaCl into the system
- Now: $\left[\mathrm{Na}^{+}\right]+\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCO}_{3}^{-}\right]+2\left[\mathrm{CO}_{3}{ }^{2}\right]+\left[\mathrm{Cl}^{-}\right]+\left[\mathrm{OH}^{-}\right]$ But: $\left[\mathrm{Na}^{+}\right]=\left[\mathrm{Cl}^{-}\right]$, right?
- So, no effect on charge balance equation
- To cope: Distinguish between "conservative" and "nonconservative" ions...

pH of Natural Waters Alkalinity

- Conservative ions: lons whose concentrations are not affected by pH (or pressure or temperature; not important variables here)
- Examples: $\mathrm{Ca}^{2+}, \mathrm{Na}^{+}, \mathrm{NO}_{3}^{-}, \mathrm{K}^{+}, \mathrm{Cl}^{-}$, etc.
- Nonconservative ions: lons whose concentrations are affected by pH
- Examples: $\mathrm{CO}_{3}{ }^{2-}, \mathrm{HCO}_{3}^{-}, \mathrm{NH}_{4}{ }^{+}, \mathrm{B}(\mathrm{OH})_{4}, \mathrm{H}^{+}, \mathrm{OH}^{-}$
- "Alkalinity" $\equiv \Sigma \mathrm{n}\left[\mathrm{in}^{+}\right]$- $\Sigma \mathrm{m}\left[\mathrm{j}^{\mathrm{m}}\right]$ where i and j are only conservative ions; alkalinity is what's left over after these are accounted for.
- Units: equiv./liter

pH of Natural Waters Alkalinity

- If we consider only $\mathrm{HCO}_{3}{ }^{-}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{OH}^{-}$and H^{+}and conservative ions, then we may write:
- $\Sigma n\left[\mathrm{i}^{\mathrm{n}}\right]+\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCO}_{3}{ }^{-}\right]+2\left[\mathrm{CO}_{3}{ }^{2-}\right]+\left[\mathrm{OH}^{-}\right]+\Sigma \mathrm{m}\left[\mathrm{j}^{\mathrm{m}}-\right]$
- $\Sigma \mathrm{n}\left[\mathrm{in}^{\mathrm{n}+}\right]-\Sigma \mathrm{m}\left[\mathrm{j}^{\mathrm{m}}\right]=\left[\mathrm{HCO}_{3}^{-}\right]+2\left[\mathrm{CO}_{3}{ }^{2-}\right]+\left[\mathrm{OH}^{-}\right]-\left[\mathrm{H}^{+}\right]$
- Alkalinity $=\left[\mathrm{HCO}_{3}{ }^{-}\right]+2\left[\mathrm{CO}_{3}{ }^{2-}\right]+\left[\mathrm{OH}^{-}\right]-\left[\mathrm{H}^{+}\right]$
- Typically, Alkalinity $\sim\left[\mathrm{HCO}_{3}{ }^{-}\right]+2\left[\mathrm{CO}_{3}{ }^{2-}\right] \equiv \mathrm{Alk}_{\text {carb }}$
- For seawater, Alkalinity $\sim 2.3 \times 10^{-3}$ equiv/liter
- Fresh waters, Alkalinity 0 to 5 meq/liter

pH of Natural Waters Alkalinity

- Alkalinity of seawater allows it to dissolve more CO_{2}
- Higher alkalinity leads to lower $\left[\mathrm{H}^{+}\right]$and higher pH
- Any reaction that introduces $\left[\mathrm{H}^{+}\right]$lowers alkalinity
- e.g., $\mathrm{NH}_{4}^{+}+2 \mathrm{O}_{2} \rightarrow \mathrm{NO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{H}^{+}$
- Any reaction that raises $\left[\mathrm{CO}_{3}{ }^{2-}\right]$ or $\left[\mathrm{HCO}_{3}^{-}\right]$raises alkalinity

$$
- \text { e.g., } \mathrm{CaCO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow \mathrm{Ca}^{2+}+2 \mathrm{HCO}_{3}^{-}
$$

$$
\mathrm{P}_{\mathrm{CO} 2}=\mathrm{K}_{3}\left[\mathrm{HCO}_{3}^{-}\right]^{2} /\left[\mathrm{CO}_{3}{ }^{2-}\right]
$$

This is the equilibrium expression for the reaction:

$$
\mathrm{CO}_{2}+\mathrm{CO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow 2 \mathrm{HCO}_{3}^{-}
$$

i.e., solubility of CO_{2} consumes $\mathrm{CO}_{3}{ }^{2-}$, produces $\mathrm{HCO}_{3}{ }^{-}$;

Note that addition of CO_{2} itself does not affect Alkalinity (gain 2 moles $\mathrm{HCO}_{3}{ }^{-}$for every $\mathrm{CO}_{3}{ }^{2-}$)

Note also that capacity for CO_{2} uptake determined by $\left[\mathrm{CO}_{3}{ }^{2-}\right]$
CO_{2} So ubility, HCO_{3}^{--}and $\mathrm{CO}_{3}{ }^{2-}$
Alk $\quad \sim\left[\mathrm{HCO}_{3}{ }^{-}\right]+2\left[\mathrm{CO}_{3}{ }^{2}-\right]$
$\Sigma \mathrm{CO}_{2}=\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]+\left[\mathrm{HCO}_{3}{ }^{-}\right]+\left[\mathrm{CO}_{3}{ }^{2-}\right]$
$\sim\left[\mathrm{HCO}_{3}{ }^{-}\right]+\left[\mathrm{CO}_{3}{ }^{2-}\right]$
$\mathrm{P}_{\mathrm{CO} 2}=\mathrm{K}_{3}\left[\mathrm{HCO}_{3}\right]^{-]^{2} /\left[\mathrm{CO}_{3}{ }^{2-}\right]}$

Algebra...

$$
\begin{aligned}
{\left[\mathrm{CO}_{3}^{2-}\right] } & =\mathrm{Alk}-\Sigma \mathrm{CO}_{2} \\
{\left[\mathrm{HCO}_{3}-\right] } & =2 \Sigma \mathrm{CO}_{2}-\mathrm{Alk} \\
\mathrm{P}_{\mathrm{CO} 2}= & =\mathrm{K}_{3}\left(2 \Sigma \mathrm{CO}_{2}-\mathrm{Alk}\right)^{2} /\left(\mathrm{Alk}-\Sigma \mathrm{CO}_{2}\right)
\end{aligned}
$$

i.e., $\mathrm{P}_{\mathrm{CO} 2}$ is controlled by Alk and $\mathrm{\Sigma CO}_{2}$

Figure 9.1 Fetter, Applied Hydrogeology $4^{\text {th }}$ Edition

Organic acids (e.g.. Oxalic acid)

- * Onganic material breaks down and releases acids ($\mathrm{pH} \sim 5$). These natural acids play an important role in weathering in absence of human activity; behaves very much like carbonic acid
$4 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ (oxalic acid) $+2 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{H}_{2} \mathrm{CO}_{3}^{--} \uparrow
$$

CO_{2} in three forms in ocean $\left(\mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{HCO}_{3}-, \mathrm{CO}_{3}=\right)$:

$$
\begin{array}{r}
\mathrm{CO}_{2}(\mathrm{aq})\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)=10-5 \mathrm{M} \\
=\mathrm{kPCO}_{2}=10^{-1.5} \times 10^{-3.5}
\end{array}
$$

$\mathbf{H C O}_{3^{-}}=10^{-2.8} \mathrm{M}$ Dominant pH 6.3-10.3
$\mathrm{CO}_{3}{ }^{=}=10^{-3.8} \mathrm{M}$
CO_{2} is in equilibrium at the surface of the ocean

$$
\begin{gathered}
{\left[\mathrm{CO}_{2}\right]=\mathrm{k} \mathbf{P}_{\mathrm{CO} 2} \quad \mathrm{pH}=8.4} \\
{\left[\mathrm{H}^{+}\right]=10^{-8.4}}
\end{gathered}
$$

$\mathrm{H}_{2} \mathrm{CO}_{3} \cdot \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$

$$
\begin{gathered}
\mathrm{K}_{1}=\frac{\left[\mathrm{HCO}_{3}-\right][\mathrm{H}+]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}=10^{-6.3}, \mathrm{pK}_{1}=6.3 \\
\hline
\end{gathered}
$$

(When A + B $\rightarrow \mathrm{C}+\mathrm{D}$, $\mathrm{K}=$ products/reactants $=[\mathrm{C}]$ [D]/[A] [B]).

When $\left[\mathrm{HCO}_{3}-\right]=\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$
then $\left[\mathrm{HCO}_{3}-\mathrm{-}=1\right.$
$\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right.$]
and $\mathrm{H}^{+}=10^{-6.3}$ and $\mathrm{pH}=6.3$

$$
\begin{aligned}
& \mathrm{pK}_{2}=10.3 \\
& \mathbf{H C O}_{3^{-}} \quad \mathrm{H}^{+}+\mathbf{C O}_{3}=\left(\mathrm{K}_{2}\right. \text { found by } \\
& \text { using same method as for } \left.\mathrm{K}_{1}\right)
\end{aligned}
$$

This balance is controlled by $\mathrm{H}^{+}, \mathrm{pK}_{1}, \mathrm{pK}_{2}$, charge balance

Surface Ocean $\mathrm{Ca}^{++}+\mathrm{CO}_{3}=\rightarrow \mathbf{C a C O}_{3}(\mathbf{s})$ (a percentage sinks and redis solves)
CO_{2} Removal $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{2} \mathrm{O}+\mathrm{O}_{2}$

$$
\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{3}=\rightarrow 2 \mathrm{HCO}_{3}-
$$

Photosynthesis More CO_{2} will dissolve from atmosphere

$$
\left[\mathrm{CO}_{2}\right]=\mathrm{kPCO}_{2}
$$

Deep Water \rightarrow Respiration $\mathrm{CH}_{2} \mathrm{O}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{3}=\rightarrow 2 \mathrm{HCO}_{3}-
$$

Shifts pH down, increases [$\mathrm{H}+$]
Higher $\mathbf{H}_{2} \mathbf{C O}_{3}$ or $\left(\mathrm{PCO}_{2}\right) \rightarrow 3$ - 5 times
Lower $\quad \mathrm{pH}, \mathbf{C O}_{3}=\mathrm{pH}$ decreases, 8.4 at surface
7.8 deep water
(Pacific)

- 1. Laqk of CaCO_{3}

-2. Thin or no soil = high surface flow into lakes
3. Thick soil: large exchangeable pool of Ca^{2+}

Review of Equilibrium:
$\mathrm{xA}+\mathrm{yB} \rightarrow \mathrm{zC}+\mathrm{wD}$

$$
\mathrm{K}_{\text {eq }}=\frac{[\mathrm{C}]^{2}[\mathrm{D}]^{\mathrm{w}}}{[\mathrm{~A}]^{\mathrm{x}}[\mathrm{~B}]^{y}} \quad=10^{-5.6} \rightarrow \mathrm{pK}=5.6
$$

Acid: $\quad \mathrm{HaC} \leftrightarrow \mathrm{H}^{+}+\mathrm{Ac}^{-}$

$$
\mathrm{K}_{\mathrm{eq}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{Ac}^{-}\right]}{[\mathrm{Hac}]} \quad\left[\mathrm{Ac}^{-}\right]=10^{-7.3}
$$

$$
\begin{array}{llc}
{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]=\mathrm{k}_{\mathrm{T}} \mathrm{P}_{\mathrm{CO} 2} \quad \text { at } \mathrm{P}_{\mathrm{CO} 2}=10^{-3.45}} & {\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]=10^{-5} \mathrm{M}} \\
\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} \quad \mathrm{k}=10^{-1.55} & \\
\mathrm{pk}_{1}=+5.7 \quad \mathrm{H}_{2} \mathrm{CO}_{3} \leftrightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} \quad \mathrm{k}_{1}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]} \\
10^{-9.2}=10^{-10.7}=\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right] \\
{\left[\mathrm{HCO}_{3}^{-}\right]=\left[\mathrm{H}^{+}\right]=10^{-5.4} \rightarrow \mathrm{pH}=5.4 \quad \mathrm{k}_{1}=10^{-5.7}} \\
\text { Soil } \mathrm{P}_{\mathrm{CO} 2} \sim 10,000 \mathrm{ppm} \rightarrow 10^{-2} \rightarrow \mathrm{pH} \sim 4.6
\end{array}
$$

