• 45.

    Murray, L. T., A. M. Fiore, D. T. Shindell, V. Naik and L. W. Horowitz (2020), Large uncertainties in global hydroxyl projections tied to fate of reactive nitrogen and carbon, P Natl Acad Sci USA, in revision.

  • 44.

    Orbe, C., D. Rind, J. Jonas, L. Nazarenko, G. Faluvegi, L. T. Murray, D. T. Shindell, K. Tsigaridis, T. Zhou, M. Kelley and G. Schmidt (2020), GISS Model E2.2: A climate model optimized for the middle atmosphere. Part 2: Validation of large-scale transport and evaluation of climate response, J Geophys Res Atmos, in press. PDF

  • 43.

    Petrenko, V. V., A. M. Smith, E. M. Crosier, R. Kazemi, P. Place, A. Colton, B. Yang, Q. Hua and L. T. Murray (2020), An improved method for atmospheric 14CO measurements, Atmos Meas Tech Discuss, 1-22, doi:10.5194/amt-2020-328. PDFSupplement

  • 42.

    Miller, R. L., G. A. Schmidt, L. Nazarenko, S. E. Bauer, M. Kelley, R. Ruedy, G. L. Russell, I. Aleinov, M. Bauer, R. Bleck, V. Canuto, G. Cesana, Y. Cheng, T. L. Clune, B. Cook, C. A. Cruz, A. D. Del Genio, G. S. Elsaesser, G. Faluvegi, N. Y. Kiang, D. Kim, A. A. Lacis, A. Leboissetier, A. N. LeGrande, K. K. Lo, J. C. Marshall, S. McDermid, E. E. Matthews, K. Mezuman, L. T. Murray, V. Oinas, C. Orbe, C. Pérez García-Pando, J. P. Perlwitz, M. J. Puma, D. Rind, A. Romanou, D. T. Shindell, S. Sun, N. Tausnev, K. Tsigaridis, G. Tselioudis, E. Weng, J. Wu and M. Yao (2020), CMIP6 historical simulations (1850-2014) with GISS ModelE2.1, J Adv Model Earth Syst, in revision. PDF

  • 41.

    Griffiths, P. T., L. T. Murray, G. Zeng, A. T. Archibald, L. K. Emmons, I. Galbally, B. Hassler, L. W. Horowitz, J. Keeble, J. J. Liu, O. Moeini, V. Naik, F. M. O'Connor, Y. M. Shin, D. Tarasick, S. Tilmes, S. T. Turnock, O. Wild, P. J. Young and P. Zanis (2020), Tropospheric ozone in CMIP6 Simulations, Atmos Chem Phys Discuss, 1–50, doi:10.5194/acp-2019-1216. PDF

  • 40.

    Stevenson, D. S., A. Zhao, V. Naik, F. M. O'Connor, S. Tilmes, G. Zeng, L. T. Murray, W. J. Collins, P. Griffiths, S. Shim, L. W. Horowitz, L. Sentman and L. Emmons (2020), Trends in global tropospheric hydroxyl radical and methane lifetime since 1850 from AerChemMIP, Atmos Chem Phys Discuss, doi:10.5194/acp-2019-1219. PDFSupplement

  • 39.

    Kelley, M., G. A. Schmidt, L. Nazarenko, R. L. Miller, S. E. Bauer, R. Ruedy, G. L. Russell, I. Aleinov, M. Bauer, R. Bleck, V. Canuto, G. Cesana, Y. Cheng, T. L. Clune, B. Cook, C. A. Cruz, A. D. Del Genio, G. S. Elsaesser, G. Faluvegi, N. Y. Kiang, D. Kim, A. A. Lacis, A. Leboissetier, A. N. LeGrande, K. K. Lo, J. C. Marshall, S. McDermid, E. E. Matthews, K. Mezuman, L. T. Murray, V. Oinas, C. Orbe, C. Pérez García-Pando, J. P. Perlwitz, M. J. Puma, D. Rind, A. Romanou, D. T. Shindell, S. Sun, N. Tausnev, K. Tsigaridis, G. Tselioudis, E. Weng, J. Wu and M. Yao (2020), GISS-E2.1: Configurations and climatology, J Adv Model Earth Syst, 12(8), e2019MS002,025, doi:10.1029/2019MS002025. PDF

  • 38.

    Nicely, J. M., B. N. Duncan, T. F. Hanisco, G. M. Wolfe, R. J. Salawitch, M. Deushi, A. S. Haslerud, P. Jöckel, B. Josse, D. E. Kinnison, A. Klekociuk, M. E. Manyin, V. Marécal, O. Morgenstern, L. T. Murray, G. Myhre, L. D. Oman, G. Pitari, A. Pozzer, I. Quaglia, L. E. Revell, E. Rozanov, A. Stenke, K. Stone, S. E. Strahan, S. Tilmes, H. Tost, D. M. Westervelt and G. Zeng (2020), A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1, Atmos Chem Phys, 20(3), 1341–1361, doi:10.5194/acp-20-1341-2020. PDFSupplement

  • 37.

    Yeung, L. Y., L. T. Murray, P. Martinerie, E. Witrant, H. Hu, A. Banerjee, A. Orsi and J. A. Chappellaz (2019), Isotopic constraint on the twentieth-century increase in tropospheric ozone, Nature, 570(7760), 224–227, doi:10.1038/s41586-019-1277-1. PDF

  • 36.

    Marais, E. A., D. J. Jacob, S. Choi, J. Joiner, M. Belmonte-Rivas, R. C. Cohen, S. Beirle, L. T. Murray, L. D. Schiferl, V. Shah and L. Jaeglé (2018), Nitrogen oxides in the global upper troposphere: interpreting cloud-sliced NO2 observations from the OMI satellite instrument, Atmos Chem Phys, 18(23), 17017–17027, doi:10.5194/acp-18-17017-2018. PDFSupplement

  • 35.

    Hall, S. R., K. Ullmann, M. J. Prather, C. M. Flynn, L. T. Murray, A. M. Fiore, G. Correa, S. A. Strode, S. D. Steenrod, J.-F. Lamarque, J. Guth, B. Josse, J. Flemming, V. Huijnen, N. L. Abraham and A. T. Archibald (2018), Cloud impacts on photochemistry: building a climatology of photolysis rates from the Atmospheric Tomography mission, Atmos Chem Phys, 18(22), 16809–16828, doi:10.5194/acp-18-16809-2018. PDFSupplement

  • 34.

    Fisher, J. A., E. L. Atlas, B. Barletta, S. Meinardi, D. R. Blake, C. R. Thompson, T. B. Ryerson, J. Peischl, Z. A. T. Sosa and L. T. Murray (2018), Methyl, Ethyl, and Propyl Nitrates: Global Distribution and Impacts on Reactive Nitrogen in Remote Marine Environments, J Geophys Res Atmos, 123(21), 12,429–12,451, doi:10.1029/2018JD029046. PDF

  • 33.

    Guo, J. J., A. M. Fiore, L. T. Murray, D. A. Jaffe, J. L. Schnell, C. T. Moore and G. P. Milly (2018), Average versus high surface ozone levels over the continental USA: model bias, background influences, and interannual variability, Atmos Chem Phys, 18(16), 12123–12140, doi:10.5194/acp-18-12123-2018. PDFSupplement

  • 32.

    Prather, M. J., C. M. Flynn, X. Zhu, S. D. Steenrod, S. A. Strode, A. M. Fiore, G. Correa, L. T. Murray and J.-F. Lamarque (2018), How well can global chemistry models calculate the reactivity of short-lived greenhouse gases in the remote troposphere, knowing the chemical composition, Atmos Meas Tech, 11(5), 2653–2668, doi:10.5194/amt-11-2653-2018. PDFSupplement

  • 31.

    Murray, L. T. (2018), An uncertain future for lightning, Nat Clim Change, doi:10.1038/s41558-018-0094-0. PDF

  • 30.

    Young, P. J., V. Naik, A. M. Fiore, A. Gaudel, J. Guo, M. Y. Lin, J. L. Neu, D. D. Parrish, H. E. Rieder, J. L. Schnell, S. Tilmes, O. Wild, L. Zhang, J. R. Ziemke, J. Brandt, A. Delcloo, R. M. Doherty, C. Geels, M. I. Hegglin, L. Hu, U. Im, R. Kumar, A. Luhar, L. T. Murray, D. Plummer, J. Rodriguez, A. Saiz-Lopez, M. G. Schultz, M. T. Woodhouse and G. Zeng (2018), Tropospheric Ozone Assessment Report: Assessment of global-scale model performance for global and regional ozone distributions, variability, and trends, Elem Sci Anth, 6(1), 10, doi:10.1525/elementa.265.

  • 29.

    Seltzer, K. M., D. T. Shindell, G. Faluvegi and L. T. Murray (2017), Evaluating Modeled Impact Metrics for Human Health, Agriculture Growth, and Near-Term Climate, J Geophys Res Atmos, 122(24), 13,506–13,524, doi:10.1002/2017JD026780.

  • 28.

    Fisher, J. A., L. T. Murray, D. B. A. Jones and N. M. Deutscher (2017), Improved method for linear carbon monoxide simulation and source attribution in atmospheric chemistry models illustrated using GEOS-Chem v9, Geosci Model Dev, 10(11), 4129–4144, doi:10.5194/gmd-10-4129-2017. PDFSupplement

  • 27.

    Jin, X., A. M. Fiore, L. T. Murray, L. C. Valin, L. N. Lamsal, B. N. Duncan, K. Folkert Boersma, I. De Smedt, G. G. Abad, K. V. Chance and G. S. Tonnesen (2017), Evaluating a Space-Based Indicator of Surface Ozone-NOx-VOC Sensitivity Over Midlatitude Source Regions and Application to Decadal Trends, J Geophys Res Atmos, 122(19), 10,439–10,461, doi:10.1002/2017JD026720.

    In the News:

  • 26.

    Zheng, Y., N. Unger, J. M. Tadić, R. Seco, A. B. Guenther, M. P. Barkley, M. J. Potosnak, L. T. Murray, A. M. Michalak, X. Qiu, S. Kim, T. Karl, L. Gu and S. G. Pallardy (2017), Drought impacts on photosynthesis, isoprene emission and atmospheric formaldehyde in a mid-latitude forest, Atmos Environ, 167, 190–201, doi:10.1016/j.atmosenv.2017.08.017.

  • 25.

    Prather, M. J., X. Zhu, C. M. Flynn, S. A. Strode, J. M. Rodriguez, S. D. Steenrod, J. Liu, J.-F. Lamarque, A. M. Fiore, L. W. Horowitz, J. Mao, L. T. Murray, D. T. Shindell and S. C. Wofsy (2017), Global atmospheric chemistry — which air matters?, Atmos Chem Phys, 17(14), 9081–9102, doi:10.5194/acp-17-9081-2017.

  • 24.

    Geng, L., L. T. Murray, L. J. Mickley, P. Lin, Q. Fu, A. J. Schauer and B. Alexander (2017), Isotopic evidence of multiple controls on atmospheric oxidants over climate transitions, Nature, 13, 5277, doi:10.1038/nature22340. PDF

  • 23.

    Shen, L., L. J. Mickley and L. T. Murray (2017), Influence of 2000-2050 climate change on particulate matter in the United States: results from a new statistical model, Atmos Chem Phys, 17(6), 4355–4367, doi:10.5194/acp-17-4355-2017. PDFSupplement

  • 22.

    Clifton, O. E., A. M. Fiore, J. W. Munger, S. Malyshev, L. W. Horowitz, E. Shevliakova, F. Paulot, L. T. Murray and K. L. Griffin (2017), Interannual variability in ozone removal by a temperate deciduous forest, Geophys Res Lett, 44(1), 542–552, doi:10.1002/2016GL070923. PDF

  • 21.

    Yeung, L. Y., L. T. Murray, J. L. Ash, E. D. Young, K. A. Boering, E. L. Atlas, S. M. Schauffler, R. A. Lueb, R. L. Langenfelds, P. B. Krummel, L. P. Steele and S. D. Eastham (2016), Isotopic ordering in atmospheric O2 as a tracer of ozone photochemistry and the tropical atmosphere, J Geophys Res Atmos, 121(20), 12,541–12,559, doi:10.1002/2016JD025455. Editor Highlight PDF

  • 20.

    Kort, E. A., M. L. Smith, L. T. Murray, A. Gvakharia, A. R. Brandt, J. Peischl, T. B. Ryerson, C. Sweeney and K. R. Travis (2016), Fugitive emissions from the Bakken shale illustrate role of shale production in global ethane shift, Geophys Res Lett, 43(9), 4617–4623, doi:10.1002/2016GL068703. Editor Highlight PDFSupplementSupplement

  • 19.

    Huang, L., J. H. Jiang, L. T. Murray, M. R. Damon, H. Su and N. J. Livesey (2016), Evaluation of UTLS carbon monoxide simulations in GMI and GEOS-Chem chemical transport models using Aura MLS observations, Atmos Chem Phys, 16(9), 5641–5663, doi:10.5194/acp-16-5641-2016. PDFSupplement

  • 18.

    Murray, L. T. (2016), Lightning NOx and Impacts on Air Quality, Curr Pollution Rep, 2(2), 115–133, doi:10.1007/s40726-016-0031-7.

  • 17.

    Achakulwisut, P., L. J. Mickley, L. T. Murray, A. P. K. Tai, J. O. Kaplan and B. Alexander (2015), Uncertainties in isoprene photochemistry and emissions: implications for the oxidative capacity of past and present atmospheres and for climate forcing agents, Atmos Chem Phys, 15(14), 7977–7998, doi:10.5194/acp-15-7977-2015. PDF

  • 16.

    Geng, L., M. C. Zatko, B. Alexander, T. J. Fudge, A. J. Schauer, L. T. Murray and L. J. Mickley (2015), Effects of postdepositional processing on nitrogen isotopes of nitrate in the Greenland Ice Sheet Project 2 ice core, Geophys Res Lett, 42(13), 5346–5354, doi:10.1002/2015GL064218. PDF

  • 15.

    Cooper, M., R. V. Martin, C. Wespes, P. F. Coheur, C. Clerbaux and L. T. Murray (2014), Tropospheric nitric acid columns from the IASI satellite instrument interpreted with a chemical transport model: Implications for parameterizations of nitric oxide production by lightning, J Geophys Res Atmos, 119(16), 10068–10079, doi:10.1002/2014JD021907. PDF

  • 14.

    Lee, H.-M., D. K. Henze, B. Alexander and L. T. Murray (2014), Investigating the sensitivity of surface-level nitrate seasonality in Antarctica to primary sources using a global model, Atmos Environ, 89, 757–767, doi:10.1016/j.atmosenv.2014.03.003. PDF

  • 13.

    Murray, L. T., L. J. Mickley, J. O. Kaplan, E. D. Sofen, M. Pfeiffer and B. Alexander (2014), Factors controlling variability in the oxidative capacity of the troposphere since the Last Glacial Maximum, Atmos Chem Phys, 14(7), 3589–3622, doi:10.5194/acp-14-3589-2014. PDFSupplement

  • 12.

    Murray, L. T., J. A. Logan and D. J. Jacob (2013), Interannual variability in tropical tropospheric ozone and OH: The role of lightning, J Geophys Res Atmos, 118(19), 11468–11480, doi:10.1002/jgrd.50857. PDF

  • 11.

    Liu, J., J. A. Logan, L. T. Murray, H. C. Pumphrey, M. J. Schwartz and I. A. Megretskaia (2013), Transport analysis and source attribution of seasonal and interannual variability of CO in the tropical upper troposphere and lower stratosphere, Atmos Chem Phys, 13(1), 129–146, doi:10.5194/acp-13-129-2013. PDFSupplement

  • 10.

    Murray, L. T., D. J. Jacob, J. A. Logan, R. C. Hudman and W. J. Koshak (2012), Optimized regional and interannual variability of lightning in a global chemical transport model constrained by LIS/OTD satellite data, J Geophys Res Atmos, 117(D20), doi:10.1029/2012JD017934. PDF

  • 9.

    Zhang, L., Q. B. Li, L. T. Murray, M. Luo, H. Liu, J. H. Jiang, Y. Mao, D. Chen, M. Gao and N. J. Livesey (2012), A tropospheric ozone maximum over the equatorial Southern Indian Ocean, Atmos Chem Phys, 12(9), 4279–4296, doi:10.5194/acp-12-4279-2012. PDF

  • 8.

    Barrett, S. R. H., S. H. L. Yim, C. K. Gilmore, L. T. Murray, S. R. Kuhn, A. P. K. Tai, R. M. Yantosca, D. W. Byun, F. Ngan, X. Li, J. I. Levy, A. Ashok, J. Koo, H. M. Wong, O. Dessens, S. Balasubramanian, G. G. Fleming, M. N. Pearlson, C. Wollersheim, R. Malina, S. Arunachalam, F. S. Binkowski, E. M. Leibensperger, D. J. Jacob, J. I. Hileman and I. A. Waitz (2012), Public Health, Climate, and Economic Impacts of Desulfurizing Jet Fuel, Environ Sci Technol, 46(8), 4275–4282, doi:10.1021/es203325a.

  • 7.

    Walker, T. W., D. B. A. Jones, M. Parrington, D. K. Henze, L. T. Murray, J. W. Bottenheim, K. Anlauf, J. R. Worden, K. W. Bowman, C. Shim, K. Singh, M. Kopacz, D. W. Tarasick, J. Davies, P. von der Gathen, A. M. Thompson and C. C. Carouge (2012), Impacts of midlatitude precursor emissions and local photochemistry on ozone abundances in the Arctic, J Geophys Res, 117(D1), D01305, doi:10.1029/2011JD016370. PDF

  • 6.

    Zhang, L., D. J. Jacob, N. V. Downey, N. V. Downey, D. A. Wood, D. A. Wood, D. Blewitt, D. Blewitt, C. C. Carouge, A. van Donkelaar, D. B. A. Jones, L. T. Murray and Y. Wang (2011), Improved estimate of the policy-relevant background ozone in the United States using the GEOS-Chem global model with 1/2° x 2/3° horizontal resolution over North America, Atmos Environ, 45(37), 6769–6776, doi:10.1016/j.atmosenv.2011.07.054. PDF

  • 5.

    Nassar, R., J. A. Logan, I. A. Megretskaia, L. T. Murray, L. Zhang and D. B. A. Jones (2009), Analysis of tropical tropospheric ozone, carbon monoxide, and water vapor during the 2006 El Niño using TES observations and the GEOS-Chem model, J Geophys Res, 114(D17), D17304, doi:10.1029/2009JD011760. PDF

  • 4.

    Hudman, R. C., L. T. Murray, D. J. Jacob, S. Turquety, S. Wu, D. B. Millet, M. A. Avery, A. H. Goldstein and J. Holloway (2009), North American influence on tropospheric ozone and the effects of recent emission reductions: Constraints from ICARTT observations, J Geophys Res, 114(D7), D07302, doi:10.1029/2008JD010126. PDF

  • 3.

    Hudman, R. C., L. T. Murray, D. J. Jacob, D. B. Millet, S. Turquety, S. Wu, D. R. Blake, A. H. Goldstein, J. Holloway and G. W. Sachse (2008), Biogenic versus anthropogenic sources of CO in the United States, Geophys Res Lett, 35(4), L04801, doi:10.1029/2007GL032393. PDF

  • 2.

    Logan, J. A., I. A. Megretskaia, R. Nassar, L. T. Murray, L. Zhang, K. W. Bowman, H. M. Worden and M. Luo (2008), Effects of the 2006 El Niño on tropospheric composition as revealed by data from the Tropospheric Emission Spectrometer (TES), Geophys Res Lett, 35(3), L03816, doi:10.1029/2007GL031698. PDF

  • 1.

    Hudman, R. C., D. J. Jacob, S. Turquety, E. M. Leibensperger, L. T. Murray, S. Wu, A. B. Gilliland, M. A. Avery, T. H. Bertram, W. Brune, R. C. Cohen, J. E. Dibb, F. M. Flocke, A. Fried, J. Holloway, J. A. Neuman, R. E. Orville, A. E. Perring, X. Ren, G. W. Sachse, H. B. Singh, A. Swanson and P. J. Wooldridge (2007), Surface and lightning sources of nitrogen oxides over the United States: Magnitudes, chemical evolution, and outflow, J Geophys Res Atmos, 112(D12), doi:10.1029/2006JD007912. PDF


Broad Theme
Chemical Species