Twelve Key Ideas
In Machine Learning

Pedro Domingos
Dept. of Computer Science & Eng.
University of Washington
Traditional Programming

Data → Computer → Output

Program → Computer

Machine Learning

Data → Computer → Program

Output → Computer
Example: Classification

- **Classifier**
 - **Input**: Vector of discrete/numeric values (features)
 - **Output**: Class
 - **Example**: Spam filter

- **Learner**
 - **Input**: Training set of \((input, output)\) examples
 - **Output**: Classifier
 - **Test**: Predictions on new examples
1. Learning = Representation + Evaluation + Optimization

- Thousands of learning algorithms
- Combinations of just three elements

<table>
<thead>
<tr>
<th>Representation</th>
<th>Evaluation</th>
<th>Optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instances</td>
<td>Accuracy</td>
<td>Greedy search</td>
</tr>
<tr>
<td>Hyperplanes</td>
<td>Precision/Recall</td>
<td>Branch & bound</td>
</tr>
<tr>
<td>Decision trees</td>
<td>Squared error</td>
<td>Gradient descent</td>
</tr>
<tr>
<td>Sets of rules</td>
<td>Likelihood</td>
<td>Quasi-Newton</td>
</tr>
<tr>
<td>Neural networks</td>
<td>Posterior prob.</td>
<td>Linear progr.</td>
</tr>
<tr>
<td>Graphical models</td>
<td>Margin</td>
<td>Quadratic progr.</td>
</tr>
<tr>
<td>Etc.</td>
<td>Etc.</td>
<td>Etc.</td>
</tr>
</tbody>
</table>
2. It’s Generalization that Counts

- Test examples never seen before
- Training examples can just be memorized
- Set data aside to test
- Don’t tune parameters on test data
- Use cross-validation
- No access to optimization goal
- Local optimum may be fine
3. Data Alone Is Not Enough

- Classes of unseen examples are arbitrary
- So learner must make assumptions
- “No free lunch” theorems
- Luckily, real world is not random
- Induction is knowledge lever
4. Overfitting Has Many Faces

- Overfitting = Hallucinating patterns
 = Chosen classifier not best on test
- The biggest problem in machine learning
- Bias and variance
- Less powerful learners can be better
- Solutions
 - Cross-validation
 - Regularization
5. Intuition Fails In High Dimensions

- Curse of dimensionality
- Sparseness worsens exponentially with number of features
- Irrelevant features ruin similarity
- In high dimensions all examples look alike
- 3D intuitions do not apply in high dimensions
- Blessing of non-uniformity
6. Theoretical Guarantees Are Not What They Seem

- Bounds on number of examples needed to ensure good generalization
- Extremely loose
- Low training error \neq Low test error
- Asymptotic guarantees may be misleading
- Theory is useful for algorithm design, not evaluation
7. Feature Engineering Is the Key

- Most effort in ML projects is constructing features
- Black art: Intuition, creativity required
- ML is iterative process
8. More Data Beats A Cleverer Algorithm

- Easiest way to improve: More data
- Then: Data is bottleneck
- Now: Scalability is bottleneck
- ML algorithms more similar than they appear
- Clever algorithms require more effort but can pay off in the end
- Biggest bottleneck is human time
9. Learn Many Models, Not Just One

- Three stages of machine learning
 1. Try variations of one algorithm, chose one
 2. Try variations of many algorithms, choose one
 3. Combine many algorithms, variations

- Ensemble techniques
 - Bagging
 - Boosting
 - Stacking
 - Etc.
10. Simplicity Does Not Imply Accuracy

- Occam’s razor
- Common misconception: Simpler classifiers are more accurate
- Contradicts “no free lunch” theorems
- Counterexamples: ensembles, SVMs, etc.
- Can make preferred hypotheses shorter
11. Representable Does Not Imply Learnable

- Standard claim: “My language can represent/approximate any function”
- No excuse for ignoring others
- Causes of non-learnability
 - Not enough data
 - Not enough components
 - Not enough search
- Some representations exponentially more compact than others
12. Correlation Does Not Imply Causation

- Predictive models are guides to action
- Often interpreted causally
- Observational vs. experimental data
- Correlation → Further investigation
To Learn More

- **Article:**
P. Domingos, “A Few Useful Things to Know About Machine Learning,” *Communications of the ACM*, October 2012 (Free version on my Web page)

- **Online course:**
 https://www.coursera.org/course/machlearning