Whose and What Chatter Matters? The Effect of Tweets on Movie Sales

Huaxia Rui
(joint work with Yizao Liu, and Andrew Whinston)

Simon School of Business
University of Rochester

October 6, 2012
1. Whose and What Chatter Matters?
 - Motivations
 - Data
 - Model
 - Results
 - TwitterSensor
Word-of-Mouth (WOM) Research

Word-of-mouth is often considered to be the most credible information source to consumers for the purchase of a new product or new service.

- Offline period (before 2003)
- Online period (since 2004)
- Big Data period (present)
The Effect of WOM on Product Sales

Awareness effect vs. Persuasive effect

- **Awareness effect**: the function of spreading basic information about the product among the population.

- **Persuasive effect**: the function of altering people's preferences toward the product and thus influencing their purchase decisions.
Motivation 1

What Chatter Matters: the Good, the Bad, or the Eager?

- “back at work and recovering from #avatar - fantastic movie!”
- “I’m just not excited about the new Alice In Wonderland :/ Tim Burton seems to be running out ideas a bit”
- “DAMN IT!!! Didn’t make it...Sold out tickets for Avatar!!!”
Motivation 2

“Today a single customer complaint from someone with influence can have more impact on your company’s reputation than your best marketing.” – Jason Duty, head of Dell’s global social outreach service.

1 Source: Customer must be king in the web world, Financial Times. 01/25/2012
Motivation 2

The Million Followers Fallacy?

- “The number of Twitter followers (or reach) is usually meaningless.”\(^a\)
- “Indegree alone reveals very little about the influence of a user.”\(^b\)
- Per Christakis’ anecdotal evidence, Twitter follower/Facebook friend counts are misleading.\(^c\)
- Recently, Evan Williams hinted that a simple measure of followers “doesn’t capture your distribution” and follower counts may soon become the second most important number to users.

\(^a\)Avnit, A. (2009), Berinato, S. (2010)
\(^b\)Cha, Haddadi, Benevenuto, and Gummadi (2010)
\(^c\)Garber, M. (2010)
Why Twitter WOM data?

- Twitter is a more natural environment to study the awareness effect of WOM (push vs. pull).
- More social network information is available from Twitter.
- A new category of WOM: intention WOM.
- Volume: 4 million tweets about 63 movies.
 - 12,136 posts used in Liu (2006).
 - 95,867 posts used in Duan, Gu, and Whinston (2008).
Data

- Daily box office revenue data from BoxOfficeMojo.com
- Tweets from twitter.com collected through Twitter Application Programming Interface (API).
 - Each tweet: content, time, number of followers.
 - Pre-processing: advertising tweets, irrelevant tweets.
 - Tweet classification: intention tweets, positive tweets, negative tweets, neutral tweets.
Tweet Classification

- tweets
 - Intention Classifier
 - intention tweets
 - positive tweets
 - neutral tweets
 - negative tweets
 - Sentiment Classifier
Intention Classifier

Pattern Matching

- (plan|need) (to|2) (watch|see|c|catch)(the)* movie
- (sold|sell) out|no ticket
- saw|watched|went
- just
- really
- last
- ...

SVM

- Decision function: \(f(x) = \sum_{i} \alpha_i K(x_i, x) + b \)
- RBF Kernel: \(K(x, x') = \exp(-\gamma \|x - x'\|^2) \)
Sentiment Classifier

Naive Bayesian Approach

\[C^* = \arg\max_{C_i} P(C_i|D) \]

\[P(C_i|D) = \frac{P(D|C_i)P(C_i)}{P(D)}; \quad P(D|C_i) = \prod_{j=1}^{n} P(t_j|C_i) \]

\[P(t_j|C_i) = \frac{N_{ij} + \alpha}{N_i + 2\alpha} \]

- \(\alpha \): smoothing factor
- \(N_{ij} \): number of tweets in class \(i \) containing word \(j \).
- \(N_i \): number of tweets in class \(i \).
Variables

<table>
<thead>
<tr>
<th>Gross Revenues</th>
<th>Movie gross box office revenues from Friday to next Thursday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ad</td>
<td>Advertising expenditure in a week</td>
</tr>
<tr>
<td>Tweets</td>
<td>Total number of tweets mentioning the name of the movie (i) in a week (i.e., from this Friday to next Thursday)</td>
</tr>
<tr>
<td>Type-1 tweets</td>
<td>Total number of tweets with followers less than 400 (small audiences) from Friday to next Thursday</td>
</tr>
<tr>
<td>Type-2 tweets</td>
<td>Total number of tweets with followers more than 400 (large audiences) from Friday to next Thursday</td>
</tr>
<tr>
<td>T2Ratio</td>
<td>Ratio of Type-2 tweets in a week</td>
</tr>
<tr>
<td>IntRatio (%)</td>
<td>Ratio of intention tweets in a week</td>
</tr>
<tr>
<td>PosRatio (%)</td>
<td>Ratio of tweets with positive sentiment in a week</td>
</tr>
<tr>
<td>NegRatio (%)</td>
<td>Ratio of tweets with negative sentiment in a week</td>
</tr>
</tbody>
</table>
Dynamic Panel Data Model

\[y_{it} = \alpha y_{i,t-1} + \beta' x_{i,t-1} + \eta_i + \nu_{it} \]

\(Revenue_{it} = \alpha Revenue_{i,t-1} + \beta_0 Ad_{i,t-1} + \beta_1 Tweets_{i,t-1} \)
\[+ \beta_2 T2Ratio_{i,t-1} + \beta_3 IntRatio_{i,t-1} \]
\[+ \beta_4 PosRatio_{i,t-1} + \beta_5 NegRatio_{i,t-1} \]
\[+ \eta_i + \nu_{it} \]
Estimation

\[
(y_{it} - y_{i,t-1}) = \alpha(y_{i,t-1} - y_{i,t-2}) + (x_{i,t-1} - x_{i,t-2})'\beta + (\nu_{it} - \nu_{i,t-1})
\]

\[
\bar{y}_{it} = \alpha\bar{y}_{i,t-1} + \beta'\bar{x}_{i,t-1} + \bar{\nu}_{it}
\] \hspace{1cm} (3)

where

\[
\bar{y}_{it} = y_{it} - y_{i,t-1}
\]

\[
\bar{x}_{i,t-1} = x_{i,t-1} - x_{i,t-2}
\]

\[
\bar{\nu}_{it} = \nu_{it} - \nu_{i,t-1}.
\]
Estimation

To estimate $\delta = (\alpha, \beta')'$, we use $y_{i1}, \cdots, y_{i,t-2}, x_{i1}, \cdots, x_{i,t-2}$ as instruments for movie i, period t.

$$\bar{X}_i = \begin{bmatrix} \bar{y}_{i,2} & \bar{x}_{i,2} \\ \vdots & \vdots \\ \bar{y}_{i,T-1} & \bar{x}_{i,T-1} \end{bmatrix}, \quad \bar{Y}_i = \begin{bmatrix} \bar{y}_{i,3} \\ \vdots \\ \bar{y}_{i,T} \end{bmatrix}$$

$$Z_i = \begin{bmatrix} y_{i1} & x_{i1} & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & y_{i1} & y_{i2} & x_{i1} & x_{1,2} & \cdots & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & y_{i1} & y_{i,T-2} & x_{i1} & \cdots & x_{i,T-2} \end{bmatrix}.$$
The GMM estimator minimizes the criterion

$$J = \left[\sum_{i=1}^{N} Z_i' (\bar{Y}_i - \bar{X}_i \delta) \right]' W \left[\sum_{i=1}^{N} Z_i' (\bar{Y}_i - \bar{X}_i \delta) \right]$$

where W is the weighting matrix and $\delta = (\alpha, \beta)'$ is the coefficient vector. Hence, we have the following estimator:

$$\delta_{GMM} = (\bar{X}' Z W Z' \bar{X})^{-1} \bar{X}' Z W Z' \bar{Y},$$
Estimation Results

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tweets</td>
<td>5.35***</td>
<td>0.36</td>
</tr>
<tr>
<td>T2Ratio</td>
<td>75,653.54***</td>
<td>18,229.72</td>
</tr>
<tr>
<td>IntRatio</td>
<td>154,698.00***</td>
<td>38,300.25</td>
</tr>
<tr>
<td>PosRatio</td>
<td>116,681*</td>
<td>61,798.56</td>
</tr>
<tr>
<td>NegRatio</td>
<td>−136,926.9*</td>
<td>70,445.52</td>
</tr>
<tr>
<td>Lag Revenue</td>
<td>0.30***</td>
<td>0.01</td>
</tr>
<tr>
<td>Ad</td>
<td>155.1425</td>
<td>203.7851</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tweets</td>
<td>Total number of tweets mentioning movie (i) in a week</td>
</tr>
<tr>
<td>T2Ratio</td>
<td>Ratio of type 2 tweets in a week</td>
</tr>
<tr>
<td>IntRatio (%)</td>
<td>Ratio of intention tweets in a week</td>
</tr>
<tr>
<td>PosRatio (%)</td>
<td>Ratio of tweets with positive sentiment in a week</td>
</tr>
<tr>
<td>NegRatio (%)</td>
<td>Ratio of tweets with negative sentiment in a week</td>
</tr>
</tbody>
</table>

No. Weekly Observations: 433
Managerial Implications

- Firms interested in the online WOM about their products should actively monitor or even seek WOM messages produced by people with large indegree in the social network.

- Companies may carefully monitor people’s intention toward certain products on Twitter and incorporate that information to better forecast future sales.

- The dual effect of intention tweets revealed in our study suggests the possibility of targeted advertising on Twitter.
TwitterSensor

- Individually, each tweet might be inconsequential and “boring”;
- Collectively, the Twitterverse might reveal interesting patterns.
Whose and What Chatter Matters? The Effect of Tweets on Movie Sales

TwitterSensor

![Graph showing TwitterSensor search results for debt over time]

Top Searches:
- Apple
- Windows
- Android
- Nokia
- Earthquake
- Resolution
- Bin Laden
- Christmas
- Thanksgiving
- Allergy
- Jobs
- Google
- Hawaii
- Austin
- Tax
- Ibm
- Acer
- Independence
- Texas
- Steve Jobs
- Happy
- Birth
- Mac
TwitterSensor

Figure 2: http://www.twittersensor.com
TwitterSensor
References

Whose and What Chatter Matters? The Effect of Tweets on Movie Sales

References